

 DAS-1800AO Series
 LabVIEW



 VI Driver

U S E R ’ S G U I D E

DAS-1800AO Series
LabVIEW VI Driver

User’s Guide

Revision A – October 1994
Part Number: 93180

®

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

ix

Preface

The

DAS-1800AO Series LabVIEW



 VI Driver User’s Guide

 explains
how to write LabVIEW application programs for DAS-1800AO Series
boards using the Keithley MetraByte DAS-1800 Series VI Driver.

This manual is intended for LabVIEW application programmers using a
DAS-1800AO Series board in an IBM



 PC AT



 or compatible computer.
It is assumed that users have read the user’s guide for the board and are
familiar with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is further assumed
that users are experienced in programming in LabVIEW and are familiar
with Windows™ and with data acquisition principles.

Manual Organization

The manual is organized as follows:

●

Chapter 1 explains how to install the DAS-1800 Series VI Driver and
how to get help, if necessary.

●

Chapter 2 contains the background information needed to use the VIs
included in the DAS-1800 Series VI Driver.

●

Chapter 3 provides guidelines for using the DAS-1800 Series VIs.

●

Chapter 4 contains detailed descriptions of the DAS-1800 Series VIs,
arranged in alphabetical order.

●

Appendix A describes the error codes returned by DAS-1800 Series
VIs.

●

Appendix B provides instructions for converting raw counts to
voltage and for converting voltage to raw counts.

x

An index completes the manual.

Conventions Used in this Manual

The following conventions are used throughout this manual:

●

References to DAS-1800AO Series boards apply to the DAS-1801AO
board and the DAS-1802AO board.

●

All VIs supported by the DAS-1800 Series VI Driver are illustrated
graphically, as shown in the example below. The name of the VI is
shown beneath the DAS-1800 icon; the wires connecting the inputs to
and the outputs from the DAS-1800 icon represent the data type of
the parameters.

Cluster

Array

String

Numeric Data

K_ Example VI
Cluster

Array

String

Numeric Data

Input Parameters

Wiring Name of VI

Output Parameters

xi

●

The data types of the inputs and outputs are represented as follows:

Related Documents

For more information, refer to the following documents:

●

DAS-1800AO Series User’s Guide

●

LabVIEW manuals

 U16

OutputsInputs

[] I16

 U8

 U32

 I16

 U16

 U8

 U32

 I16

 a b c a b c

Unsigned 8-bit integer

Data Type

Unsigned 16-bit integer

Unsigned 32-bit integer

Signed 16-bit integer

String

Cluster

Array of signed 16-bit integers

 T F Boolean T F

[] I16

 I32 I32 Signed 32-bit integer

[] U32 [] U32 Array of unsigned 32-bit integers

[] U16 [] U16 Array of unsigned 16-bit integers

Table of Contents

iii

Preface

Manual Organization . ix
Conventions Used in this Manual . x
Related Documents . xi

1

Getting Started

Installing the VI Driver .1-1
Getting Help. .1-2

2

Available Operations

System Operations .2-1
Initializing the Driver .2-2
Initializing a Board .2-2
Retrieving Revision Levels .2-3
Handling Errors. .2-3

Analog Input Operations .2-4
Operation Mode .2-4
Memory Allocation and Management.2-5
Gains and Ranges .2-7
Channels .2-8

Specifying Channels When Using EXP-1800
 Expansion Boards. .2-8
Acquiring Samples from a Single Channel 2-10
Acquiring Samples from a Group of Consecutive
 Channels .2-11
Acquiring Samples Using a Channel-Gain Array 2-12

Conversion Mode .2-13
Clock Source .2-13

A/D Pacer Clock. .2-14
Burst Mode Conversion Clock .2-15

Buffering Mode .2-16
Trigger .2-16

Trigger Source .2-17
Post-Trigger Acquisition .2-20
Pre-Trigger Acquisition .2-21
About-Trigger Acquisition .2-22

iv

Hardware Gate. .2-22
Analog Output Operations .2-23

Operation Mode .2-23
Memory Allocation and Management.2-25
Gains and Ranges .2-26
Channels .2-26

Writing Values to a Single Channel2-26
Writing Values to Both Channels Using the
 Same Gain Code. .2-27
Writing Values to Both Channels Using
 Different Gain Codes .2-27

Clock Source .2-28
D/A Pacer Clock. .2-28
External Pacer Clock .2-29
A/D Pacer Clock. .2-29

Buffering Mode .2-30
Trigger .2-30

Trigger Source .2-30
Retriggering .2-32

Hardware Gate. .2-33
Digital I/O Operations .2-34

Operation Mode .2-34
Memory Allocation and Management.2-36
Digital Input Channel .2-36
Digital Output Channel .2-37
Clock Source .2-38
Buffering Mode .2-39

3

Programming with the VI Driver

How the Driver Works .3-1
General Programming Tasks .3-10
Operation-Specific Programming Tasks.3-11

Analog Input Operations .3-11
Single Mode .3-11
Interrupt Mode .3-11
DMA Mode .3-14

Analog Output Operations .3-16
Single Mode .3-16
Interrupt Mode .3-16
DMA Mode .3-18
Recycle Mode. .3-20

v

Digital I/O Operations. .3-22
Single Mode .3-22
Interrupt Mode .3-23

4

VI Reference

K_ADRead .4-5
K_AllocChnGAry .4-7
K_BufListAdd .4-8
K_BufListReset . 4-9
K_ClearFrame .4-10
K_CloseDriver .4-11
K_ClrAboutTrig .4-12
K_ClrADFreeRun .4-13
K_ClrContRun .4-14
K_DASDevInit. 4-15
K_DAWriteGain .4-16
K_DIRead .4-17
K_DMAAlloc .4-18
K_DMAFree .4-19
K_DMAStart .4-20
K_DMAStatus . 4-21
K_DMAStop .4-24
K_DOWrite .4-25
K_FormatChnGAry .4-26
K_FreeChnGAry .4-27
K_FreeDevHandle .4-28
K_FreeFrame .4-29
K_GetADCommonMode .4-30
K_GetADConfig .4-31
K_GetADFrame .4-32
K_GetADMode .4-33
K_GetClkRate . 4-34
K_GetDAFrame .4-35
K_GetDevHandle .4-36
K_GetDIFrame .4-37
K_GetDOFrame .4-38
K_GetErrMsg .4-39
K_GetShellVer .4-40
K_GetVer .4-41
K_IntAlloc .4-43
K_IntFree .4-44
K_IntStart .4-45

vi

K_IntStatus .4-46
K_IntStop .4-49
K_MoveArrayToBuf .4-50
K_MoveBufToArray .4-51
K_OpenDriver .4-52
K_SetAboutTrig .4-53
K_SetADCommonMode .4-54
K_SetADConfig .4-55
K_SetADFreeRun .4-56
K_SetADMode .4-57
K_SetADTrig .4-58
K_SetBuf .4-60
K_SetBurstTicks .4-61
K_SetChn .4-62
K_SetChnGAry .4-63
K_SetClk .4-64
K_SetClkRate .4-66
K_SetContRun .4-68
K_SetDITrig .4-69
K_SetDMABuf . 4-71
K_SetExtClkEdge .4-72
K_SetG .4-73
K_SetGate .4-74
K_SetSSH .4-75
K_SetStartStopChn .4-76
K_SetStartStopG .4-78
K_SetSync .4-80
K_SetTrig .4-81
K_SetTrigHyst .4-82

A

Error Codes

B

Converting Data Formats

Converting Raw Counts to Voltage . B-1
Converting Voltage to Raw Counts . B-3

Specifying an Analog Output Value B-3
Specifying an Analog Trigger Level B-3
Specifying a Hysteresis Value . B-4

Index

vii

List of Figures

Figure 2-1. Example of Logical Channel Assignments2-10
Figure 2-2. Trigger Events for Analog Triggers.2-18
Figure 2-3. Using a Hysteresis Value.2-19
Figure 2-4. Trigger Events For Digital Triggers 2-20
Figure 2-5. Digital Input Bits .2-36
Figure 2-6. Digital Output Bits. .2-37
Figure 3-1. Single-Mode Operation .3-2
Figure 3-2. Using a Frame for an Interrupt-Mode Operation. .3-3

List of Tables

Table 2-1. Supported Operations .2-1
Table 2-2. Analog Input Ranges and Gains 2-7
Table 2-3. Analog Output Ranges. .2-26
Table 3-1. A/D Frame Elements .3-4
Table 3-2. D/A Frame Elements .3-6
Table 3-3. DI Frame Elements .3-8
Table 3-4. DO Frame Elements. .3-9
Table 3-5. Error Cluster Elements. .3-10
Table 3-6. VIs Used for Interrupt-Mode

Analog Input Operations3-12
Table 3-7. VIs Used for DMA-Mode

Analog Input Operations3-14
Table 3-8. VIs Used for Interrupt-Mode

Analog Output Operations3-17
Table 3-9. VIs Used for DMA-Mode

Analog Output Operations3-19
Table 3-10. VIs Used for Recycle-Mode

Analog Output Operations3-21
Table 3-11. VIs Used for Interrupt-Mode

Digital Input and Digital Output Operations3-23
Table 4-1. VIs by Functional Group .4-2
Table A-1. Error Codes . A-1
Table B-1. Span Values For Analog Input Data

Conversion Equations . B-2

Table 2-1. Supported Operations .2-1
Table 2-2. Analog Input Ranges and Gains 2-7
Table 2-3. Analog Output Ranges. .2-26
Table 3-1. A/D Frame Elements .3-4
Table 3-2. D/A Frame Elements .3-6
Table 3-3. DI Frame Elements .3-8
Table 3-4. DO Frame Elements. .3-9
Table 3-5. Error Cluster Elements. .3-10
Table 3-6. VIs Used for Interrupt-Mode
Analog Input Operations3-12
Table 3-7. VIs Used for DMA-Mode
Analog Input Operations3-14
Table 3-8. VIs Used for Interrupt-Mode
Analog Output Operations3-17
Table 3-9. VIs Used for DMA-Mode
Analog Output Operations3-18
Table 3-10. VIs Used for Recycle-Mode
Analog Output Operations3-20
Table 3-11. VIs Used for Interrupt-Mode
Digital Input and Digital Output Operations3-23
Table 4-1. VIs by Functional Group .4-2
Table A-1. Error Codes . A-1
Table B-1. Span Values For Analog Input Data Conversion
Equations B-2

Figure 2-1. Example of Logical Channel Assignments2-10
Figure 2-2. Trigger Events for Analog Triggers.2-18
Figure 2-3. Using a Hysteresis Value.2-19
Figure 2-4. Trigger Events For Digital Triggers 2-20
Figure 2-5. Digital Input Bits .2-35
Figure 2-6. Digital Output Bits. .2-36
Figure 3-1. Single-Mode Operation .3-2
Figure 3-2. Using a Frame for an Interrupt-Mode Operation. .3-3

1-1

1

Getting Started

The DAS-1800 Series VI Driver is a library of data acquisition and
control VIs (Virtual Instruments) used to write application programs for
DAS-1800AO Series data acquisition boards.

This chapter describes how to install the DAS-1800 Series VI Driver and
how to get help, if required.

Installing the VI Driver

To install the DAS-1800 Series VI Driver, perform the following
procedure:

1. Insert the VI Driver disk into the appropriate disk drive of your
computer.

2. Enter Windows.

3. From the Program Manager File menu, select Run.

4. Assuming you are using drive A, type the following command line in
the Run dialog box:

A:SETUP

5. Select OK.

6. Respond to the installation prompts as appropriate.

The program creates a Program Manager setup group called KEITHLEY
DAS-1800 VI Driver. This group contains files for the VI driver, utilities,
and example programs using the DAS-1800 Series VIs.

1-2 Getting Started

Once you have installed the DAS-1800 Series VI Driver, install your
DAS-1800AO Series board and its software, run the Keithley Memory
Manager utility, and run the configuration program. Refer to the user’s
guide for your board for the information required to perform these steps.

The above steps must be completed in order to open the VI Driver
example programs. You can open LabVIEW from the Program Manager
group by opening a VI Driver example program.

After installation, you may want to review the following files:

●

Readme.Txt - An ASCII file containing information available after
the publication of this manual.

●

Files.Txt - An ASCII file that describes all of the files available.

Getting Help

If you need help installing or using the DAS-1800 Series VI Driver, call
your local sales office or the Keithley Metrabyte Applications
Engineering Department at:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-3

Please make sure that you have the following information available before
you call:

Board Configuration

Model
Serial #
Revision code
Base address setting
Interrupt level setting
Number of channels
Input (S.E. or Diff.)
Mode (uni. or bip.)
DMA chan(s)
Number of SSH-8s
Number of EXPs

Computer

Manufacturer
CPU type
Clock speed (MHz)
KB of RAM
Video system
BIOS type

Operating System

Windows version
Windows mode

__

LabVIEW Package

Version ____________________

Accessories

Type
Type
Type
Type
Type
Type
Type
Type

2-1

2

Available Operations

This chapter contains the background information you need to use the VIs
to perform operations on DAS-1800AO Series boards. The supported
operations are listed in Table 2-1.

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-1800AO Series boards and to
the DAS-1800 Series VI Driver. It includes information on initializing a
driver, initializing a board, retrieving revision levels, and handling errors.

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog input page 2-4

Analog output page 2-23

Digital input and output (I/O) page 2-34

2-2 Available Operations

Initializing the Driver

You must initialize the DAS-1800 Series VI Driver and any other Keithley
DAS VI Drivers you are using in your application program. To initialize
the drivers, use

K_OpenDriver

. You specify the configuration file that
defines this particular use of the driver. The driver returns a unique
identifier for the particular use of the driver; this identifier is called the
driver handle. A maximum of 30 driver handles can be specified for all
the Keithley MetraByte boards accessed from your application program.

If a particular use of a driver is no longer required and you want to free
some memory or if all 30 driver handles have been used, you can use

K_CloseDriver

to free a driver handle and close the associated use of the
driver. If the driver handle you free is the last driver handle specified for a
VI Driver, the driver is shut down.

Initializing a Board

The DAS-1800 Series VI Driver supports up to three boards. You must
use

K_GetDevHandle

 to specify the boards you want to use. The driver
returns a unique identifier for each board; this identifier is called the board
handle. Board handles allow you to communicate with more than one
board. In subsequent VIs related to the board, you use the board handle
returned by

K_GetDevHandle

. A maximum of 30 board handles can be
specified for all the Keithley DAS boards accessed from your application
program.

If a board is no longer being used and you want to free some memory or if
all 30 board handles have been used, you can use

K_FreeDevHandle

 to
free a board handle.

To reinitialize a board during an operation, use

K_DASDevInit

, which
performs the following tasks:

●

Aborts all operations currently in progress that are associated with the
board identified by the board handle.

●

Verifies that the board identified by the board handle is the board
specified in the configuration file.

2-3

Retrieving Revision Levels

If you are having problems with your application program, you may want
to verify which versions of the VI Driver, Keithley DAS Driver
Specification, and Keithley DAS Shell are installed on your board.

K_GetVer

 allows you to get both the revision number of the DAS-1800
Series VI Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

K_GetShellVer

 allows you to
get the revision number of the Keithley DAS Shell (the Keithley DAS
Shell is a group of VIs that are shared by all DAS boards).

Handling Errors

Error information is passed from one VI to the next in your application
program. You must first create an error cluster, which consists of three
variables:

●

A Boolean error status (True/False: True = error)

●

A numeric error code for the number of the error, if an error occurred
(0 = no error, nonzero = error occurred)

●

A string for the name of the VI (error source) that returned the error,
if an error occurred

You then wire the cluster to each VI in your program, normally starting
with

K_OpenDriver.

When the program begins, the first VI checks the
error status; if the status is False (no error), the VI runs. When it has
finished, the VI sets the error status. If an error occurred during the
execution of the VI, the error status is set to True, the error code is set to a
nonzero value identifying the error, and the error source is set to the name
of the VI that caused the error. The next VI in the program reads the error
status; if it finds that the error status is True, the VI does not execute. All
VIs remaining in the program do likewise.

You can read the error information by placing an Unbundle by Name
function after a VI (normally the last VI in your program,

K_CloseDriver

).

You create a variable for each element in the error
cluster; once the variables are wired to the Unbundle by Name cluster, the
error information is displayed there.

Appendix A contains a complete list of error codes and their descriptions.

2-4 Available Operations

Analog Input Operations

This section describes the following:

●

Analog input operation modes available.

●

How to allocate and manage memory for analog input operations.

●

How to specify the following for an analog input operation: channels
and gains, conversion mode, clock source, buffering mode, trigger
source, and hardware gate.

Operation Mode

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to the
computer. You can perform analog input operations in one of the
following modes:

●

Single mode

 - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates conversions; you
cannot perform any other operation until the single-mode operation is
complete.

Use

K_ADRead

 to start an analog input operation in single mode.
You specify the board you want to use, the analog input channel, and
the gain code for the gain at which you want to read the signal.

●

Interrupt mode

 - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program. The
hardware temporarily stores the acquired data in the onboard A/D
FIFO (first-in, first-out data buffer) and then transfers the data to a
user-defined buffer in the computer using an interrupt service routine.
Use

K_IntStart

 to start an analog input operation in interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-16 for more information
on buffering modes. Use

K_IntStop

 to stop an interrupt-mode
operation. Use

K_IntStatus

 to determine the current status of an
interrupt operation.

2-5

●

DMA mode

 - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. The hardware
temporarily stores the acquired data in the onboard A/D FIFO and
then transfers the data to a user-defined DMA buffer in the computer.

Note:

You can perform an analog input operation in single-DMA
mode or dual-DMA mode, depending on whether you specified one
or two DMA channels in your configuration file. Refer to your

DAS-1800AO Series User’s Guide

 for more information.

Use

K_DMAStart

 to start an analog input operation in DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-16 for more information on
buffering modes. Use

K_DMAStop

 to stop a continuous-mode DMA
operation. Use

K_DMAStatus

 to determine the current status of a
DMA operation.

The converted data is stored as raw counts. For information on converting
raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations require memory
buffers in which to store the acquired data. You can reserve a single
buffer, or you can reserve multiple buffers (up to a maximum of 150) to
increase the number of samples you can acquire. Buffers must be
dynamically allocated outside of your application program’s memory
area.

Use

K_IntAlloc

 to allocate memory dynamically for interrupt-mode
operations; use

K_DMAAlloc

 to allocate memory dynamically for
DMA-mode operations. You specify the operation requiring the buffer
and the number of samples to store in the buffer (up to 65,536). The driver
returns the starting address of the buffer and a unique identifier for the
buffer; this identifier is called the buffer handle.

2-6 Available Operations

To assign the starting address of a buffer and the number of samples in the
buffer, use

K_SetBuf

for interrupt operations or

K_SetDMABuf

 for
DMA operations. If you are using multiple buffers, use

K_BufListAdd

 to
add each buffer to the list of multiple buffers associated with each
operation. To move the contents of an allocated buffer to a LabVIEW
array, use

K_MoveBufToArray

.

The following example shows how to allocate multiple buffers using

K_DMAAlloc

 and

K_BufListAdd

. For each

K_DMAAlloc

 VI used, you
use the

K_BufListAdd

 VI to add the allocated buffer to the list of buffers.
The example is illustrated in DMA mode; interrupt mode is identical
except that you use the appropriate interrupt-mode VIs. Refer to the
examples on disk for more information.

Note:

If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate enough buffers and large enough buffers. Refer to
your DAS-1800 Series board user’s guide for more information about the

Keithley Memory Manager.

When a buffer is no longer required, you can free its memory for another
use by specifying the buffer handle in

K_IntFree

 for interrupt-mode
operations or in

K_DMAFree

 for DMA-mode operations.

K_DMAAlloc

Frame Handle

Number of Samples U32

K_BufListAdd K_DMAAlloc K_BufListAdd

Error In

 U32
Buffer Address

Buffer Handle U16

To K_DMAFreeBuffer Handle U16

To K_DMAFree

 • • •

2-7

Gains and Ranges

Each analog input channel on a DAS-1800AO Series board can measure
signals in one of four software-selectable unipolar or bipolar analog input
ranges. The input range type (unipolar or bipolar) is initially set according
to your configuration file; use

K_SetADMode

 to reset the input range
type. Refer to your

DAS-1800AO Series User’s Guide

 for more
information about analog input ranges.

Table 2-2 lists the analog input ranges supported by DAS-1800AO Series
boards and the gain and gain code associated with each range. (The gain
code is used by the VIs to represent the gain.)

Table 2-2. Analog Input Ranges and Gains

Boards
Analog Input Range

Gain
Gain
CodeBipolar Unipolar

DAS-1801AO ±5 V 0 to 5 V 1 0

±1 V 0 to 1 V 5 1

±100 mV 0 to 100 mV 50 2

±20 mV 0 to 20 mV 250 3

DAS-1802AO ±10 V 0 to 10 V 1 0

±5 V 0 to 5 V 2 1

±2.5 V 0 to 2.5 V 4 2

±1.25 V 0 to 1.25 V 8 3

DAS-1801AO with
EXP-1800 attached

±100 mV 0 to 100 mV 50 4

±20 mV 0 to 20 mV 250 5

±2 mV 0 to 2 mV 2500 6

±0.4 mV 0 to 0.4 mV 12.5k 7

2-8 Available Operations

Channels

DAS-1800AO Series boards are configured with either 16 onboard
single-ended or eight onboard differential analog input channels. You can
increase the number of channels to 256 single-ended channels using
EXP-1800 expansion boards, described in the next section.

The input channel configuration (differential or single-ended) is initially
set according to the configuration file; use

K_SetADConfig

 to reset the
input channel configuration. Use

K_SetADCommonMode

 to set the
common-mode ground reference for boards configured for single-ended
input.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channels you are using.

Specifying Channels When Using EXP-1800 Expansion Boards

To increase the number of analog input channels, you can attach up to 16
EXP-1800 expansion boards to the DAS-1800AO Series board. Each
EXP-1800 board has 16 analog input channels. If you are using

N

 EXP-1800 boards, you must attach them to DAS-1800AO channels 0 to

N-1

. Refer to the user’s guide for information on connecting EXP-1800
boards to DAS-1800AO Series boards.

DAS-1802AO with
EXP-1800 attached

±200 mV 0 to 200 mV 50 4

±100 mV 0 to 100 mV 100 5

±50 mV 0 to 50 mV 200 6

±25 mV 0 to 25 mV 400 7

Table 2-2. Analog Input Ranges and Gains (cont.)

Boards
Analog Input Range

Gain
Gain
CodeBipolar Unipolar

2-9

The analog input channel connections on a DAS-1800AO Series board or
EXP-1800 board are designated with numbers from 0 to 15. These
numbers are the

physical channel

numbers

. If a system includes a
DAS-1800AO Series board and one or more EXP-1800s, then that system
contains duplicate physical channel numbers. To uniquely identify a
physical channel, the VI Driver uses a scheme of

logical channel
numbers.

 The

channel#

 argument for any VI must be specified as a logical
channel number.

The logical channel number corresponding to a particular physical
channel number is given by one of the following equations:

If the physical channel is on a DAS-1800AO Series board:

If the physical channel is on an EXP-1800:

where

NumEXPs

 is an integer from 0 to 16 that identifies the number of
EXP-1800s connected to the DAS-1800AO Series board, and

EXP#

 is an integer from 0 to 15 that indicates on which EXP-1800
the physical channel is located (0 indicates the first EXP-1800).

LogicalChan# PhysicalChan# 15 NumEXPs×()+=

LogicalChan# PhysicalChan# 16 EXP#×()+=

2-10 Available Operations

For example, consider the system illustrated in Figure 2-1, in which three
EXP-1800s are connected to a DAS-1801AO.

Figure 2-1. Example of Logical Channel Assignments

The logical channel that identifies channel 3 on the DAS-1801AO is given
by:

The logical channel that identifies channel 15 on the third EXP-1800 is
given by:

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use K_ADRead to specify the
channel and the gain code.

DAS-1801AO

0

1

2

3

15

EXP #0
0 1 2 ... 15

EXP #1
0 1 2 ... 15

EXP #2
0 1 2 ... 15

Logical Channels 0 to 15

Logical Channels 16 to 31

Logical Channels 32 to 47

Logical Channel 48

Logical Channel 60

LogicalChan# 3 15 3×()+ 3 45 48=+==

LogicalChan# 15 16 2×() 15 32+ 47==+=

2-11

For interrupt-mode and DMA-mode analog input operations, you can
acquire a single sample or multiple samples from a single analog input
channel. Use K_SetChn to specify the channel and K_SetG to specify
the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from a group of consecutive channels. Use
K_SetStartStopChn to specify the first and last channels in the group.
The channels are sampled in order from first to last; the channels are then
sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17,
and you want to acquire five samples. Your program reads data first from
channel 14, then from channels 15, 16, and 17, and finally from
channel 14 again.

You can specify a start channel that is higher than the stop channel. For
example, assume that you are using a single-ended input configuration
with no expansion boards, the start channel is 15, the stop channel is 2,
and you want to acquire five samples. Your program reads data first from
channel 15, then from channels 0, 1, and 2, and finally from channel 15
again.

Use K_SetG to specify the gain code for all channels in the group. (All
channels must use the same gain code.) Use K_SetStartStopG to specify
the gain code, the start channel, and the stop channel in a single VI.

Refer to Table 2-2 on page 2-7 for a list of the analog input ranges
supported by DAS-1800 Series boards and the gain code associated with
each range.

2-12 Available Operations

Acquiring Samples Using a Channel-Gain Array

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from channels in a hardware channel-gain queue. You
create an array and specify the channels you want to sample, the order in
which you want to sample them, and a gain code for each channel. You
can set the channels in the channel-gain array in consecutive order or in
nonconsecutive order. You can also specify the same channel more than
once. The channel gain array can contain up to 256 entries.

The channels are sampled in order from the first channel specified in the
array to the last channel specified in the array; the channels in the array
are then sampled again until the specified number of samples is read.

For example, assume you want to sample channels 0, 5, and 3. Channel 0
uses a gain code of 1, channel 5 uses a gain code of 2 and channel 3 uses
a gain code of 3. Your array would look like this:

where the first element is the number of entries and the remaining pairs of
elements represent the channel to read and its associated gain code.

After you create the channel-gain array, you allocate space for the
channel-gain array in your program using K_AllocChnGAry ; you
initialize the channel-gain array using K_FormatChnGAry ; you set the
frame element for the channel-gain array using K_SetChnGAry. When
the operation is finished with the channel-gain array, you can free its
space using K_FreeChnGAry.

Refer to Table 2-2 on page 2-7 for a list of the analog input ranges
supported by DAS-1800AO Series boards and the gain code associated
with each range.

of
Entries Chan

Gain
Code Chan

Gain
Code Chan

Gain
Code

3 0 1 5 2 3 3

2-13

Conversion Mode

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). For
interrupt-mode and DMA-mode analog input operations, you can specify
one of the following conversion modes:

● Paced mode - Use paced mode if you want to accurately control the
period between conversions of individual channels in a scan. Paced
mode is the default conversion mode.

● Burst mode - Use burst mode if you want to accurately control both
the period between conversions of individual channels in a scan and
the period between conversions of the entire scan. Use
K_SetADFreeRun to specify burst mode.

Use burst mode with SSH (sample-and-hold) if you want to
simultaneously sample all channels in a scan using the SSH-8
accessory board. Use K_SetSSH to specify burst mode with SSH.

Note: If you use an SSH-8 accessory board, you must use burst mode
with SSH. One extra tick of the burst mode conversion clock is
required to allow the SSH-8 board to sample and hold the values.
Refer to the SSH-8 board documentation for more information.

Refer to your DAS-1800AO Series User’s Guide for more information
about conversion modes.

Clock Source

DAS-1800AO Series boards provide two clock sources for analog input
operations: an A/D pacer clock and a burst mode conversion clock. Each
clock has a dedicated use. When performing interrupt-mode and
DMA-mode analog input operations in paced mode, you use only the A/D
pacer clock; when performing interrupt-mode and DMA-mode analog
input operations in burst mode and burst mode with SSH, you use both
the A/D pacer clock and the burst mode conversion clock. These clock
sources are described in the following subsections.

2-14 Available Operations

A/D Pacer Clock

In paced mode, the A/D pacer clock determines the period between the
conversion of one channel and the conversion of the next channel. In burst
mode and burst mode with SSH, the A/D pacer clock determines the
period between the conversions of one scan and the conversions of the
next scan. Use K_SetClk to specify an internal or an external A/D pacer
clock source. The internal A/D pacer clock is the default pacer clock.

The internal and external A/D pacer clocks are described as follows:

● Internal A/D pacer clock - The internal A/D pacer clock uses two
cascaded counters of the onboard counter/timer circuitry. The
counters are normally in an idle state. When you start the analog input
operation (using K_IntStart or K_DMAStart), a conversion is
initiated. Note that a slight time delay occurs between the time the
operation is started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a
count value and begin counting down. When the counters count down
to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 µs. Use K_SetClkRate to specify the number of counts (clock
ticks) between conversions. For example, if you specify a count of 30,
the period between conversions is 6 µs (166.67 ksamples/s).

You can specify a count between 15 and 4,294,967,295. The period
between conversions ranges from 3 µs to 14.3 minutes.

When using the internal A/D pacer clock, use the following formula
to determine the number of counts to specify:

For example, if you want a conversion rate of 10 ksamples/s, specify
a count of 500, as shown in the following equation:

counts 5 MHz time base
conversion rate

---=

5 000 000, ,
10 000,

--------------------------- 500=

2-15

●

External A/D pacer clock

 - You connect an external pacer clock to
the XPCLK pin (pin 44) on the board’s main I/O connector. When
you start an analog input operation (using

K_IntStart

 or

K_DMAStart

), conversions are armed. At the next active edge of the
external pacer clock (and at every subsequent active edge of the
external pacer clock), a conversion is initiated. Use

K_SetExtClkEdge

 to specify the active edge (rising or falling) of the
external pacer clock. A falling edge is the default active edge for the
external pacer clock.

Note:

The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other
issues. If you are using an external pacer clock for analog input
operations, make sure that the clock initiates conversions at a rate that

the ADC can handle.

Refer to your

DAS-1800AO Series User’s Guide

 for more information
about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock
determines the period between the conversion of one channel in a scan
and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents 1

µ

s. Use

K_SetBurstTicks

 to specify the number
of clock ticks between conversions. For example, if you specify 30 clock
ticks, the period between conversions is 30

µ

s (33.33 ksamples/s).

You can specify between 3 and 63 clock ticks. The period between
conversions ranges from 3

µ

s to 63

µ

s.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

clock ticks 1 MHz time base
burst mode conversion rate
---=

2-16 Available Operations

For example, if you want a burst mode conversion rate of 20 ksamples/s,
specify 50 clock ticks, as shown in the following equation:

Refer to your

DAS-1800AO Series User’s Guide

 for more information
about the burst mode conversion clock.

Buffering Mode

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

●

Single-cycle mode

 - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

●

Continuous

mode

 - In continuous mode, the board continuously
converts samples and stores them in the buffer until the process is
stopped; any values already stored in the buffer are overwritten. Use

K_SetContRun

 to specify continuous buffering mode.

Trigger

A trigger is an event that starts or stops an interrupt-mode or DMA-mode
analog input operation. An operation can use either one or two triggers.
Every operation must have a

start trigger

 that marks the beginning of the
operation. You can use an optional second trigger, the

about trigger

, to
define when the operation stops. If you specify an about trigger, the
operation stops when a specified number of samples has been acquired
after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that uses only a start
trigger. The about trigger provides the capability to define operations that
acquire data before a trigger event (pre-trigger acquisition) and operations
that acquire data about (before and after) a trigger event (about-trigger
acquisition). The supported trigger sources and post-trigger, pre-trigger,
and about-trigger acquisitions are described in the following subsections.

1 000 000, ,
20 000,

--------------------------- 50=

2-17

Trigger Source

The VI Driver supports two trigger sources: internal and external. For
interrupt-mode and DMA-mode analog input operations, use

K_SetTrig

to specify the trigger source. External triggers can be analog triggers or
digital triggers.

The trigger event is not significant until the operation the trigger governs
has been started (using

K_DMAStart

 or

K_IntStart

). The point at which
conversions begin depends on the pacer clock; refer to page 2-13 for more
information.

The internal trigger, external analog trigger, and external digital trigger
are described as follows:

●

Internal trigger

 - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the operation. Consequently,

K_DMAStart

 or

K_IntStart

 is considered the trigger event for an
internal trigger. The internal trigger is the default trigger source.

●

External analog trigger

 - You can use the signal on any analog input
channel as the trigger signal for an analog trigger. Trigger events for
analog triggers (illustrated in Figure 2-2) are described as follows:

–

Positive trigger

 - The trigger signal changes from a voltage that
is less than the trigger level to a voltage that is greater than the
trigger level.

–

Negative trigger

 - The trigger signal changes from a voltage that
is greater than the trigger level to a voltage that is less than the
trigger level.

Note:

Analog triggering is a feature of the VI Driver and is not
implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver

recognizes that the trigger event occurred.

2-18 Available Operations

Figure 2-2. Trigger Events for Analog Triggers

Use

K_SetADTrig to specify the analog input channel to use as the
trigger channel, the trigger level, and the trigger polarity (positive or
negative).

You specify the trigger level as a raw count value. Refer to
Appendix B for information on how to convert a voltage value to a
raw count value.

You can specify a hysteresis value to prevent noise from triggering an
operation. Use K_SetTrigHyst to specify the hysteresis value. For a
positive trigger, the analog signal must be below the specified trigger
level by at least the amount of the hysteresis value and then rise above
the trigger level before the trigger occurs; for a negative trigger, the
analog signal must be above the specified trigger level by at least the
amount of the hysteresis value and then fall below the trigger level
before the trigger occurs.

The hysteresis value is an absolute number, which you specify as a
raw count value between 0 and 4095. When you add the hysteresis
value to the trigger level (for a negative trigger) or subtract the
hysteresis value from the trigger level (for a positive trigger), the
resulting value must also be between 0 and 4095.

Trigger level

Trigger signal

Trigger level

Trigger signal

Negative trigger

Trigger event

Trigger event

Positive trigger

2-19

For example, assume that you are using a negative trigger on a
channel of a board configured for an analog input range of ±5 V. If the
trigger level is +4.8 V (4014 counts), you can specify a hysteresis
value of 0.1 V (41 counts) because 4014 + 41 is less than 4095, but
you cannot specify a hysteresis value of 0.3 V (123 counts) because
4014 + 123 is greater than 4095. Refer to Appendix B for information
on how to convert a voltage value to a raw count value.

In Figure 2-3, the specified trigger level is +4 V and the hysteresis
value is 0.1 V. The analog signal must be below +3.9 V and then rise
above +4 V before a positive trigger occurs; the analog signal must be
above +4.1 V and then fall below +4 V before a negative trigger
occurs.

Figure 2-3. Using a Hysteresis Value

Level +4 V

Analog input operation
start VI is executed

Positive trigger
occurs

+3.9 V

+4.1 V

Level +4 V

Analog input operation
start VI is executed

Negative trigger
occurs

Hysteresis = 0.1 V

Hysteresis = 0.1 V

2-20 Available Operations

● External digital trigger - The digital trigger signal is available on the
TGIN pin (pin 46) on the board’s main I/O connector. Use
K_SetDITrig to specify whether you want the trigger event to occur
on a rising edge (positive polarity) or a falling edge (negative
polarity). These trigger events are illustrated in Figure 2-4.

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect
data after a specific event. Acquisition starts on an internal, analog, or
digital trigger event and continues until a specified number of samples has
been acquired or until the operation is stopped by K_DMAStop or
K_IntStop .

To specify post-trigger acquisition, use the following VIs:

1. If you want acquisition to continue until you stop it with
K_DMAStop or K_IntStop , use K_SetContRun to set the buffering
mode to continuous.

Trigger signal

Trigger signal

Positive polarity

Negative polarity

Trigger event

Trigger
event

2-21

2. If you want acquisition to stop after a specified number of samples
has been acquired, use K_ClrContRun to set the buffering mode to
single-cycle (in this buffering mode, the operation stops as soon as
the board has acquired the number of samples specified by
K_SetBuf, K_SetDMABuf , or K_BufListAdd).

3. Use K_SetTrig to specify the trigger source that will start the
operation (internal for an internal trigger, external for an analog or
digital trigger).

4. If you are using an analog trigger, use K_SetADTrig to define the
trigger conditions; if you are using a digital trigger, use K_SetDITrig
to define the trigger conditions.

5. Use K_ClrAboutTrig to disable the about trigger.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific digital trigger event (this is the about trigger event).
Acquisition starts on an internal, analog, or digital trigger event and
continues until the about-trigger event. Pre-trigger acquisition is available
with DMA-mode operations only.

To specify pre-trigger acquisition, use the following VIs:

1. Use K_SetTrig to specify the trigger source that will start the
operation (internal for an internal trigger, external for an analog or
digital trigger).

2. If you are using an analog start trigger, use K_SetADTrig to define
the trigger conditions; if you are using a digital start trigger, use
K_SetDITrig to define the trigger conditions.

3. Use K_SetAboutTrig to enable the about trigger and to set the
number of post-trigger samples to 1.

4. If the start trigger is not digital, use K_SetDITrig to specify the
active edge for the about trigger. (If the start trigger is digital, then its
active edge is also used for the about trigger).

2-22 Available Operations

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific digital trigger event (this is the
about-trigger event). Acquisition starts on an internal, analog, or digital
trigger event and continues until a specified number of samples has been
acquired after the about-trigger event. About-trigger acquisition is
available with DMA-mode operations only.

To specify about-trigger acquisition, use the following VIs:

1. Specify the trigger that will start the operation. Use K_SetTrig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. If you are using an analog start trigger, use K_SetADTrig to define
the trigger conditions; if you are using a digital start trigger, use
K_SetDITrig to define the trigger conditions.

3. Use K_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples.

4. If the start trigger is not digital, use K_SetDITrig to specify the
active edge for the about trigger. (If the start trigger is digital, then its
active edge is also used for the about trigger).

Hardware Gate

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the TGIN pin
(pin 46) on the board’s main I/O connector. If you have started an
interrupt-mode or DMA-mode analog input operation (using K_IntStart
or K_DMAStart) and the hardware gate is enabled, the state of the gate
signal determines whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the gate signal to TGIN is high; if the gate signal to TGIN is low,
conversions are inhibited. If the board is configured with a negative gate,
conversions occur only if the gate signal to TGIN is low; if the gate signal
to TGIN is high, conversions are inhibited. Use K_SetGate to enable and
disable the hardware gate and to specify the gate polarity (positive or
negative). The default state of the hardware gate is disabled.

2-23

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
input operation, the hardware waits until the gate signal is in the active
state before conversions begin.

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K_SetTrig
or by setting up an analog trigger (using K_SetADTrig).

Analog Output Operations

This section describes the following:

● Analog output operation modes available.

● How to allocate and manage memory for analog output operations.

● How to specify the following for an analog output operation:
channels and gains, clock source, buffering mode, trigger source, and
hardware gate.

Operation Mode

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

● Single mode - In single mode, the driver writes a single value to one
analog output channel; you cannot perform any other operation until
the single-mode operation is complete.

Use K_DAWriteGain to start an analog output operation in single
mode. You specify the board you want to use, the analog output
channel, the gain code, and the value you want to write.

2-24 Available Operations

● Interrupt mode - In interrupt mode, the driver writes a single value
or multiple values to one or both analog output channels. A hardware
clock paces the updating of the analog output channels. Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
buffer in the computer. The hardware temporarily stores the output
data in the onboard D/A FIFO and then writes the data using an
interrupt service routine. Use K_IntStart to start an analog output
operation in interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-30 for more information
on buffering modes. Use K_IntStop to stop an interrupt operation.
Use K_IntStatus to determine the current status of an interrupt
operation.

● DMA mode - In DMA mode, the driver writes a single sample or
multiple samples to one or both analog output channels. A hardware
clock paces the updating of the analog output channels. Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
DMA buffer in the computer. The hardware temporarily stores the
output data in the onboard D/A FIFO and then writes the data. Use
K_DMAStart to start an analog output operation in DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-30 for more information on
buffering modes. Use K_DMAStop to stop a DMA operation. Use
K_DMAStatus to determine the current status of a DMA operation.

● Recycle mode - In recycle mode, the driver writes a single sample or
up to a total of 2048 samples to one or both analog output channels. A
hardware clock paces the updating of the analog output channels.
Once the analog output operation begins, control returns to your
application program. You store the values you want to write in a
user-defined buffer in the computer. The hardware temporarily stores
the output data in the onboard D/A FIFO and then writes the data.
The data in the D/A FIFO is continuously recycled until the operation
is stopped. Use K_DMAStart or K_IntStart to start an analog
output operation in recycle mode.

If you are performing a recycle mode analog output operation, the
board automatically uses the onboard D/A FIFO; the PC’s interrupt or
DMA resources are not used. In this case, the board attains its highest
transfer rate (up to 500 ksamples/s).

2-25

You must specify continuous buffering mode for recycle-mode
operations. Refer to page 2-30 for more information on buffering
modes. Use K_DMAStop or K_IntStop to stop a recycle-mode
operation. Use K_DMAStatus or K_IntStatus to determine the
current status of a recycle-mode operation.

For an analog output operation, the values are written as raw counts. For
information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog output operations require
memory buffers in which to store the data to be written to the analog
output channels. You can reserve a single buffer, or you can reserve
multiple buffers (up to a maximum of 150) to increase the number of
samples. Recycle-mode analog output operations require a single memory
buffer of no more than 2048 samples. Buffers must be dynamically
allocated outside of your application program’s memory area.

Use K_IntAlloc to allocate memory dynamically for interrupt-mode or
recycle-mode operations; use K_DMAAlloc to allocate memory
dynamically for DMA-mode or recycle-mode operations. You specify the
operation requiring the buffer and the number of samples to store in the
buffer (up to 65,536). The driver returns the starting address of the buffer
and a unique identifier for the buffer; this identifier is called the buffer
handle.

To assign the starting address of a buffer and the number of samples in the
buffer, use K_SetBuf for buffers allocated with K_IntAlloc or
K_SetDMABuf for buffers allocated with K_DMAAlloc . If you are
using multiple buffers, use K_BufListAdd to add each buffer to the list of
multiple buffers associated with each operation. Refer to page 2-5 for an
example of using multiple buffers. To move the contents of a LabVIEW
buffer to an allocated buffer, use K_MoveArrayToBuf .

When a buffer is no longer required, you can free it for another use by
specifying the buffer handle in K_IntFree for buffers allocated with
K_IntAlloc or in K_DMAFree for buffers allocated with K_DMAAlloc .

2-26 Available Operations

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate enough buffers and large enough buffers. Refer to
the DAS-1800AO Series User’s Guide for more information about the
Keithley Memory Manager.

Gains and Ranges

Each analog output channel on a DAS-1800AO Series board can write an
analog output signal in one of two software-selectable ranges. Table 2-3
lists the analog output ranges supported by DAS-1800AO Series boards
and the gain code associated with each range.

Channels

DAS-1800AO Series boards contain two digital-to-analog converters
(DACs), each of which is associated with an analog output channel. You
can perform an analog output operation on a single channel or on both
channels. The following subsections explain how to specify the channels.

Writing Values to a Single Channel

For single-mode operations, you can write a single value to a single
analog output channel. Use K_DAWriteGain to specify the channel and
the gain code.

For interrupt-mode, DMA-mode, and recycle-mode operations, you can
write a single value or multiple values to a single analog channel. Use
K_SetChn to specify the channel and K_SetG to specify the gain code.

Table 2-3. Analog Output Ranges

Analog Output Range Gain Code

±5 V 0

±10 V 1

2-27

Writing Values to Both Channels Using the Same Gain Code

For interrupt-mode, DMA-mode, and recycle-mode analog output
operations, you can write a single value or multiple values to both analog
output channels simultaneously when both channels use the same gain
code. Use K_SetStartStopChn to specify channel 0 as the start channel
and channel 1 as the stop channel; use K_SetG to specify the gain code
for both channels. You can also use K_SetStartStopG to specify the start
channel, the stop channel, and the gain code in a single VI.

At each pacer clock pulse, two values in the buffer are written
simultaneously. The first value is written to channel 0 and the second
value is written to channel 1. After all the values in the buffer are written
once, the values are written again until the required number of values are
written.

Writing Values to Both Channels Using Different Gain Codes

For interrupt-mode, DMA-mode, and recycle-mode analog output
operations, you can write a single value or multiple values to both analog
output channels simultaneously when each channel uses a different gain
code. Both channels are updated simultaneously until the specified
number of values is written.

To specify one gain code for channel 0 and another gain code for channel
1, create a two-entry channel-gain array with channel 0 and its gain code
as the first channel-gain pair and channel 1 and its gain code as the second
channel-gain pair. For example, assume you want channel 0 configured
for a ±5 V range (gain code of 0) and channel 1 configured for a ±10 V
range (gain code of 1). Your channel-gain array would look like the
following example:

where the first element is the number of entries in the channel-gain array.

of
Entries Chan

Gain
Code Chan

Gain
Code

2 0 0 1 1

2-28 Available Operations

After you create the channel-gain array, you allocate space for the
channel-gain array in your program using K_AllocChnGAry ; you
initialize the channel-gain array using K_FormatChnGAry ; you set the
channel-gain array element using K_SetChnGAry. When the operation
is finished with the channel-gain array, you can free its space using
K_FreeChnGAry.

Refer to Table 2-3 for the analog output ranges supported by
DAS-1800AO Series boards and the gain code associated with each
range.

Clock Source

When performing interrupt-mode, DMA-mode, or recycle-mode analog
output operations, you can use one of three pacer clocks to determine the
period between the updating of a single analog output channel or between
each simultaneous updating of both analog output channels: the D/A
pacer clock, an external pacer clock, or the A/D pacer clock. These clock
sources are described in the following subsections.

D/A Pacer Clock

To specify the internal D/A pacer clock source, use K_SetClk to set the
clock source to internal.

Since the D/A pacer clock uses a 5 MHz time base, each count represents
0.2 µs. The driver automatically enables the divide-by-10 prescaler. Use
K_SetClkRate to specify the number of counts (clock ticks) between
updates. For example, if you specify a count of 30, the period between
updates is 6 µs (166.67 ksamples/s). If two channels are selected, they are
updated simultaneously at the rate of the pacer clock.

You can specify a count between 10 and 655,350. The period between
updates ranges from 2 µs to 131 ms.

When using the D/A pacer clock, use the following formula to determine
the number of counts to specify:

counts 5 MHz time base
update rate

---=

2-29

For example, if you want an update rate of 10 ksamples/s, specify a count
of 500, as shown in the following equation:

External Pacer Clock

To specify an external pacer clock, use

K_SetClk

 to set the clock source
to external.

You connect an external pacer clock to the XPCLK pin (pin 44) on the
board’s main I/O connector. When you start an analog output operation
(using

K_IntStart

 or

K_DMAStart

), the driver starts monitoring the
state of the external pacer clock. At the next active edge of the external
pacer clock (and at every subsequent active edge of the external pacer
clock), the analog output channels are updated. Use

K_SetExtClkEdge

to specify the active edge (rising or falling) of the external pacer clock. A
falling edge is the default active edge for the external pacer clock.

Note:

The rate at which the computer can reliably write data to the board
depends on a number of factors, including your computer, the operating
system/environment, the range of the channels, and other issues. If you
are using an external pacer clock for analog output operations, make sure

that the clock initiates conversions at a rate that the DACs can handle.

Refer to your

DAS-1800AO Series User’s Guide

 for more information
about the external pacer clock.

A/D Pacer Clock

A DAS-1800AO Series board can synchronize digital-to-analog (D/A)
conversions with analog-to-digital (A/D) conversions. Use

K_SetClk

to
set the clock source to internal, and then use

K_SetSync

 to specify that
the analog output operation will be synchronized with the analog input
operation.

5 000 000, ,
10 000,

--------------------------- 500=

2-30 Available Operations

Note that the ADC must be running using the internal A/D pacer clock
before a synchronized analog output operation can occur. Simultaneous
A/D and D/A conversions occur on each pacer clock pulse.

The update rate of a synchronized analog output operation is determined
by the internal A/D pacer clock; use

K_SetClkRate

, specifying an A/D
frame, to set the update rate.

Buffering Mode

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode, DMA-mode,
and recycle-mode analog output operations, you can specify one of the
following buffering modes:

●

Single-cycle mode

 - In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

●

Continuous

mode

 - In continuous mode, the driver continuously
writes values from the buffer until the process is stopped; when all the
values in the buffer have been written, the driver writes the values
again. Use

K_SetContRun

 to specify continuous buffering mode.

Trigger

You can use a trigger to start an interrupt-mode, DMA-mode, or
recycle-mode analog output operation. You can also retrigger an analog
output operation. The following subsections describe the supported
trigger sources and the retrigger operation.

Trigger Source

The VI Driver supports two trigger sources: internal and external. For
interrupt-mode and DMA-mode analog output operations, use

K_SetTrig

to specify the trigger source. External triggers can be either analog
triggers or digital triggers.

2-31

The trigger event is not significant until the operation the trigger governs
has been started (using

K_DMAStart

 or

K_IntStart

). The point at which
conversions begin depends on the pacer clock; refer to page 2-28 for more
information.

The internal trigger, external analog trigger, and external digital trigger
are described as follows:

●

Internal trigger

 - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the operation. Consequently,

K_DMAStart

 or

K_IntStart

 is considered the trigger event for an
internal trigger. The internal trigger is the default trigger source.

●

External analog trigger

 - If no analog input operations are running,
you can use the signal on any analog input channel as the trigger
signal for an analog trigger. The trigger events for analog triggers are
illustrated in Figure 2-2 on page 2-18.

Note:

Analog triggering is a feature of the VI Driver and is not
implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver
recognizes that the trigger event occurred.

Use K_SetADTrig to specify the analog input channel to use as the
trigger channel, the trigger level, and the trigger polarity (positive or
negative).

You specify the trigger level as a raw count value between 0 and
4095. Refer to Appendix B for information on how to convert a
voltage value to a raw count value.

You can specify a hysteresis value to prevent noise from triggering an
operation. Use K_SetTrigHyst to specify the hysteresis value. For a
positive trigger, the analog signal must be below the specified trigger
level by at least the amount of the hysteresis value and then rise above
the trigger level before the trigger occurs; for a negative trigger, the
analog signal must be above the specified trigger level by at least the
amount of the hysteresis value and then fall below the trigger level
before the trigger occurs.

2-32 Available Operations

The hysteresis value is an absolute number, which you specify as a
raw count value between 0 and 4095. When you add the hysteresis
value to the trigger level (for a negative trigger) or subtract the
hysteresis value from the trigger level (for a positive trigger), the
resulting value must also be between 0 and 4095.

For example, assume that you are using a negative trigger on a
channel of a board configured for an analog input range of ±5 V. If the
trigger level is +4.8 V (4014 counts), you can specify a hysteresis
value of 0.1 V (41 counts) because 4014 + 41 is less than 4095, but
you cannot specify a hysteresis value of 0.3 V (123 counts) because
4014 + 123 is greater than 4095. Refer to Appendix B for information
on how to convert a voltage value to a raw count value.

Refer to Figure 2-3 on page 2-19 for an illustration of hysteresis.

● External digital trigger - The digital trigger signal is available on the
TGIN pin (pin 46) on the board’s main I/O connector. Use
K_SetDITrig to specify whether you want the trigger event to occur
on a rising edge (positive polarity) or a falling edge (negative
polarity). These trigger events are shown in Figure 2-4 on page 2-20.

Retriggering

DAS-1800AO Series boards support analog output retriggering for data
sets of up to and including 2048 values. During a retriggered analog
output operation, after each external digital trigger, the board starts
writing the output values from the beginning of the D/A FIFO.

Use the following procedure to define a retriggered analog output
operation:

1. Use K_SetContRun to set the buffering mode to continuous.

2. Use K_SetTrig to set the trigger source to external.

3. Use K_SetDITrig to set up the digital trigger, setting the trigger type
to retrigger.

4. Use K_IntStart or K_DMAStart to start the operation.

2-33

Note: To retrigger an analog output operation, the values must fit in the
D/A FIFO, which can hold up to 2048 samples. If the user-defined buffer
contains more than 2048 samples and you specify retrigger mode, the
driver returns an error.

Hardware Gate

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the TGIN pin
(pin 46) on the board’s main I/O connector. If you have started an
interrupt-mode, DMA-mode, or recycle-mode analog output operation
(using K_IntStart or K_DMAStart) and the hardware gate is enabled,
the state of the gate signal determines whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the gate signal to TGIN is high; if the gate signal to TGIN is low,
conversions are inhibited. If the board is configured with a negative gate,
conversions occur only if the gate signal to TGIN is low; if the gate signal
to TGIN is high, conversions are inhibited. Use K_SetGate to enable and
disable the hardware gate and to specify the gate polarity (positive or
negative). The default state of the hardware gate is disabled.

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
output operation, the hardware waits until the gate signal is in the active
state before conversions begin.

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal trigger in K_SetTrig
or by setting up an analog trigger (using K_SetADTrig).

2-34 Available Operations

Digital I/O Operations

This section describes the following:

● Digital I/O operation modes available.

● How to allocate and manage memory for digital I/O operations.

● Digital I/O channels.

● How to specify a clock rate and buffering mode for a digital I/O
operation.

Note: You cannot use an external trigger or external pacer clock with a
digital I/O operation.

Operation Mode

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in one of the
following modes:

● Single mode - In a single-mode digital input operation, the driver
reads the value of digital input channel 0 once; in a single-mode
digital output operation, the driver writes a value to digital output
channel 0 once. You cannot perform any other operation until the
single-mode operation is complete.

Use K_DIRead to start a digital input operation in single mode; you
specify the board you want to use and the digital input channel. Use
K_DOWrite to start a digital output operation in single mode; you
specify the board you want to use, the digital output channel, and the
digital output value.

2-35

Notes: Since digital input channel 0 is only four bits wide, you must
mask the value stored by K_DIRead with 15 (0Fh) to obtain the
actual digital input value.

The value written by K_DOWrite must be a 32-bit value. The four
least significant bits contain the actual digital output value; all other
bits are irrelevant.

● Interrupt mode - In an interrupt-mode digital input operation, the
driver reads the value of digital input channel 0 multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or multiple values to digital output channel 0 multiple times. A
hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your application program. The
driver stores digital input values in a user-defined buffer in the
computer; you store digital output values in a user-defined buffer in
the computer. Use K_IntStart to start a digital I/O operation in
interrupt mode.

Note: The digital input buffer and the digital output buffer each
contain 16-bit integers. Each digital I/O value is stored in the four
least significant bits of each integer in the digital I/O buffer.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-39 for more information
on buffering modes. Use K_IntStop to stop a continuous-mode
interrupt operation. Use K_IntStatus to determine the current status
of an interrupt operation.

2-36 Available Operations

Memory Allocation and Management

Interrupt-mode digital I/O operations use a single memory buffer to store
the data to be read or written. The memory buffer must be dynamically
allocated outside of your application program’s memory area.

Use K_IntAlloc to allocate memory dynamically for interrupt-mode
operations. You specify the operation requiring the buffer and the number
of samples to store in the buffer (up to 65,536). The driver returns the
starting address of the buffer and a unique identifier for the buffer; this
identifier is called the buffer handle.

After you allocate your buffer, you must assign the starting address of the
buffer using K_SetBuf. To move the contents of an allocated buffer to a
LabVIEW buffer, use K_MoveBufToArray . To move the contents of a
LabVIEW buffer to an allocated buffer, use K_MoveArrayToBuf .

When the buffer is no longer required, you can free it for another use by
specifying the buffer handle in K_IntFree .

Digital Input Channel

DAS-1800AO Series boards contain one 4-bit digital input channel
(channel 0). As shown in Figure 2-5, bit 0 contains the value of digital
input line 0 (DI0); bit 1 contains the value of digital input line 1 (DI1); bit
2 contains the value of digital input line 2 (DI2); bit 3 contains the value
of digital input line 3 (DI3).

Figure 2-5. Digital Input Bits

bit 0bit 1bit 2

DI0DI1DI2DI3

bit 3

2-37

A value of 1 in the bit position indicates that the input is high; a value of 0
in the bit position indicates that the input is low. For example, if the value
is 5 (0101), the input at DI0 and DI2 is high and the input at DI1 and DI3
is low.

Note: If no signal is connected to a digital input line, the input appears
high (value is 1).

Digital Output Channel

DAS-1800AO Series boards contain one 4-bit digital output channel
(channel 0). As shown in Figure 2-6, bit 0 contains the value to be written
to digital output line 0 (DO0), bit 1 contains the value to be written to
digital output line 1 (DO1), and so on.

Figure 2-6. Digital Output Bits

A value of 1 in the bit position indicates that the output is high; a value of
0 in the bit position indicates that the output is low. For example, if the
value written is 12 (1100), the output at DO0 and DO1 is forced low and
the output at DO2 and DO3 is forced high.

bit 0bit 1bit 2

DO0DO1DO2DO3

bit 3

2-38 Available Operations

Clock Source

When performing interrupt-mode digital I/O operations, you can use the
internal A/D pacer clock to determine the period between reading the
digital input channel or writing to the digital output channel.

Note: You can use the internal A/D pacer clock only if it is not being used
by another operation.

The internal A/D pacer clock uses two cascaded counters of the onboard
counter/timer circuitry. The counters are normally in an idle state. When
you start the digital I/O operation (using K_IntStart), a value is read or
written. Note that a slight time delay occurs between the time the
operation is started and the time the reading or writing begins.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, another value is read or written and
the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 µs. Use K_SetClkRate to specify the number of counts (clock ticks)
between reads or writes. For example, if you specify a count of 5000, the
period between reads or writes is 1 ms (1 ksamples/s); if you specify a
count of 87654, the period between reads or writes is 17.53 ms (57
samples/s).

You can specify a count between 15 and 4,294,967,295. The period
between reads or writes ranges from 3 µs to 14.3 minutes.

Note: The driver accepts a count value as low as 15. However, since a
FIFO is not used to buffer values for digital I/O operations, a low count
value may cause overrun errors. The maximum typical read/write rate for
the internal A/D pacer clock is 1 ksamples/s. This rate would indicate a
minimum count of 5,000.

2-39

Use the following formula to determine the number of counts to specify:

For example, if you want to write data to digital output channel 0 at a rate
of 500 samples/s, specify a count of 10,000, as shown in the following
equation:

Buffering Mode

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/O operations, you can specify
one of the following buffering modes:

● Single-cycle mode - In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically. In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

● Continuous mode - In a continuous-mode digital input operation, the
driver continuously reads digital input channel 0 and stores the values
in the buffer until the process is stopped; any values already stored in
the buffer are overwritten. In a continuous mode digital output
operation, the driver continuously writes values from the buffer to
digital output channel 0 until the process is stopped; when all the
values in the buffer have been written, the driver writes the values
again. Use K_SetContRun to specify continuous buffering mode.

counts 5 MHz time base
read/write rate

---=

5 000 000, ,
500

--------------------------- 10 000,=

3-1

3

Programming
with the VI Driver

This chapter contains an overview of the structure of the DAS-1800
Series VI Driver, as well as programming guidelines to assist you when
writing LabVIEW application programs with DAS-1800 Series VIs.

How the Driver Works

When writing LabVIEW application programs, you can use VIs from one
or more Keithley MetraByte DAS VI Drivers. You initialize each driver
according to a particular configuration file. If you are using more than one
driver or more than one configuration file with a single driver, the driver
handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You
initialize each board; when you initialize a board, the driver returns a
handle that uniquely identifies the board. Each board handle is associated
with a particular driver.

The VI Driver supports a variety of operation modes. For single mode, the
I/O operation is performed using a single VI; the attributes of the I/O
operation are specified as input parameters to the VI. Figure 3-1 illustrates
a single-mode analog input operation using the VI,

K_ADRead

.

3-2 Programming with the VI Driver

Figure 3-1. Single-Mode Operation

For other operation modes, such as interrupt mode and DMA mode, the
driver uses frames to perform the I/O operation. A frame is a data
structure whose elements define the attributes of the I/O operation. Each
frame is associated with a particular board, and therefore with a particular
driver.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate VI for each
attribute, and then start the operation at an appropriate point in your
program. Frames are useful for operations that have many defining
attributes; in addition, some attributes, such as the clock source and
trigger source, are only available for I/O operations that use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the I/O operation by using the applicable VIs to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an I/O operation, you might use
the VI,

K_SetChn

.

You use the frame handle you specified when you accessed the frame in
all VIs related to the I/O operation. This ensures that you are defining the
same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode by referencing the
appropriate frame handle. Figure 3-2 shows the frame elements
referenced by the

Frame Handle

parameter specified by the VI,

K_IntStart

.

Error In Error Out

A/D Channel

A/D Gain

Board Handle
A/D Value

K_ADRead
 U16

 U16

 I16

3-3

Figure 3-2. Using a Frame for an Interrupt-Mode Operation

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DAS-1800AO Series boards, interrupt-mode, DMA-mode, and
recycle-mode operations require frames. The DAS-1800 Series VI Driver
provides the following types of frames:

●

Analog input frames, called A/D (analog-to-digital) frames, that can
be used with interrupt-mode and DMA-mode operations. You use

K_GetADFrame

 to access an available A/D frame and a frame
handle.

●

Analog output frames, called D/A (digital-to-analog) frames, that can
be used with interrupt-mode, DMA-mode, and recycle-mode
operations. You use

K_GetDAFrame

 to access an available D/A
frame and a frame handle.

●

Digital input frames, called DI frames, that can be used with
interrupt-mode operations. You use

K_GetDIFrame

 to access an
available DI frame and a frame handle.

Start Channel

Stop Channel

Clock Source

Trigger Source
 •
 •
 •

First analog input channel

Last analog input channel

Pacer clock source

Trigger source
 •
 •
 •

Attrib utes of Operation:Frame:

Error OutError In

 K_IntStart
Frame Handle U32

3-4 Programming with the VI Driver

●

Digital output frames, called DO frames, that can be used with
interrupt-mode operations. You use

K_GetDOFrame

 to access an
available DO frame and a frame handle.

If you want to perform an interrupt-mode, DMA-mod, or recycle-mode
operation and all frames of a particular type have been accessed, you can
use

K_FreeFrame

 to free a frame that is no longer in use. You can then
redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use

K_ClearFrame

 to reset all the elements of a frame to their
default values.

The tables on the following pages list the elements of frames for
DAS-1800AO Series boards: Table 3-1 lists the elements of an A/D
frame; Table 3-2 lists the elements of a D/A frame; Table 3-3 lists the
elements of a DI frame; Table 3-4 lists the elements of a DO frame. These
tables also list the default value of each element and the VIs used to define
each element.

Table 3-1. A/D Frame Elements

Element Default Value VIs

Buffer

1

 0 (NULL) K_SetBuf
K_SetDMABuf
K_BufListAdd

Number of Samples 0 K_SetBuf
K_BufListAdd

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

Gain 0 (gain of 1) K_SetG
K_SetStartStopG

Channel-Gain Array 0 (NULL) K_SetChnGAry

SSH Mode Disabled K_SetSSH

Clock Source Internal K_SetClk

Pacer Clock Rate

1

0 K_SetClkRate

3-5

External Clock Edge Negative K_SetExtClkEdge

Burst Clock Rate 3 (333 ksamples/s) K_SetBurstTicks

Trigger Source Internal K_SetTrig

Trigger Type Digital K_SetADTrig
K_SetDITrig

Trigger Channel 0 (for analog trigger) K_SetADTrig

0 (channel 0, bit 0)
(for digital trigger)

Not applicable

3

Trigger Polarity Positive (for analog
trigger)

K_SetADTrig

Positive (for digital
trigger)

K_SetDITrig

Trigger Sensitivity Edge (for analog and
digital trigger)

Not applicable

3

Trigger Level 0 K_SetADTrig

Trigger Hysteresis 0 K_SetTrigHyst

Trigger Pattern Not used

4

Not applicable

3

Hardware Gate Disabled K_SetGate

Notes

1

This element must be set.

2

Use this VI to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame.
Whenever you clear a frame or get a new frame, this frame element is
set to its default value automatically.

3

The default value of this element cannot be changed.

4

This element is not currently used; it is included for future
compatibility.

Table 3-1. A/D Frame Elements (cont.)

Element Default Value VIs

3-6 Programming with the VI Driver

Table 3-2. D/A Frame Elements

Element Default Value VIs

Buffer

1

 0 (NULL) K_SetBuf
K_SetDMABuf
K_BufListAdd

Number of Samples 0 K_SetBuf
K_SetDMABuf
K_BufListAdd

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

Start Channel 0 K_SetChn
K_SetStartStopChn
K_SetStartStopG

Stop Channel 0 K_SetStartStopChn
K_SetStartStopG

Gain 0 (gain of 1) K_SetG
K_SetStartStopG

Channel-Gain Array 0 (NULL) K_SetChnGAry

Conversion Mode Paced K_SetADFreeRun
K_ClrADFreeRun

2

Clock Source Internal D/A K_SetClk
K_SetSync

Pacer Clock Rate

1

0 K_SetClkRate

External Clock Edge Negative K_SetExtClkEdge

Trigger Source Internal K_SetTrig

Trigger Type Digital K_SetADTrig
K_SetDITrig

Trigger Channel 0 (for analog trigger) K_SetADTrig

0 (channel 0, bit 0)
(for digital trigger)

Not applicable

3

3-7

Trigger Polarity Positive (for analog
trigger)

K_SetADTrig

Positive (for digital
trigger)

K_SetDITrig

Trigger Sensitivity Edge (for analog and
digital trigger)

Not applicable

3

Trigger Level 0 K_SetADTrig

Trigger Hysteresis 0 K_SetTrigHyst

Trigger Pattern Not used

4

Not applicable

3

Hardware Gate Disabled K_SetGate

Notes

1

This element must be set.

2

Use this VI to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame.
Whenever you clear a frame or get a new frame, this frame element is
set to its default value automatically.

3

The default value of this element cannot be changed.

4

This element is not currently used; it is included for future
compatibility.

Table 3-2. D/A Frame Elements (cont.)

Element Default Value VIs

3-8 Programming with the VI Driver

Table 3-3. DI Frame Elements

Element Default Value VIs

Buffer

1

 0 (NULL) K_SetBuf

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

Number of Samples 0 K_SetBuf

Start Channel 0 Not applicable

3

Stop Channel 0 Not applicable

3

Clock Source Internal Not applicable

3

Pacer Clock Rate

1

0 K_SetClkRate

Notes

1

This element must be set.

2

Use this VI to reset the value of this particular frame element to
its default setting without clearing the frame or getting a new
frame. Whenever you clear a frame or get a new frame, this
frame element is set to its default value automatically.

3

The default value of this element cannot be changed.

3-9

The DAS-1800 Series VI Driver provides many other VIs that are not
related to controlling frames, defining the elements of frames, or reading
the values of frame elements. These include single-mode operation VIs,
initialization VIs, memory management VIs, and miscellaneous VIs.

For information about using VIs in your application program, refer to the
following sections of this chapter. For detailed information about each VI,
refer to Chapter 4.

Table 3-4. DO Frame Elements

Element Default Value VIs

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetBuf

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

2

Use this VI to reset the value of this particular frame element to
its default setting without clearing the frame or getting a new
frame. Whenever you clear a frame or get a new frame, this
frame element is set to its default value automatically.

Number of Samples 0 K_SetBuf

Start Channel 0 Not applicable

3

3

The default value of this element cannot be changed.

Stop Channel 0 Not applicable

3

Clock Source Internal Not applicable

3

Pacer Clock Rate

1

0 K_SetClkRate

3-10 Programming with the VI Driver

General Programming Tasks

For every LabVIEW program that uses DAS-1800 Series VIs, you must
perform the following tasks:

1. Create an error cluster by selecting a cluster control, defining the
elements, and initializing the values of the elements, as shown in
Table 3-5.

2. Define and initialize the parameters for each DAS-1800 Series VI in
your program and wire the appropriate parameters to the VIs. (See the
next section for defining the VIs specific to analog and digital
operations.) Note that the error cluster defined in step 1 should be
wired to the first DAS-1800 Series VI in your program, normally

K_OpenDriver

.

3. Select

K_OpenDriver

 to initialize the driver.

4. Initialize the DAS board by selecting

K_GetDevHandle

. If you are
using more than one DAS board, select the VI

once for each board
you are using.

Note:

At the end of your program, it is recommended that you read the
error information (using an Unbundle by Name function, as described on

page 2-3) and close the driver using

K_CloseDriver

.

Table 3-5. Error Cluster Elements

Element
Data
Type

Default
Value Description

VI Status False Boolean: Used to store the
status of the error

Error Code 0 Numeric: Used to store the
error code

Error Source Null String: Used to store the name
of the VI that caused the error

 T F

 I16

 a b c

3-11

Operation-Specific Programming Tasks

The programming tasks specific to analog and digital I/O operations are
described in the following sections. Refer to Chapter 2 for detailed
information about these VIs.

Note that any VIs that are not mentioned in the operation-specific
programming tasks can be used at any point in your application program.
Refer to Chapter 4 for detailed descriptions of each VI.

Analog Input Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, interrupt-mode, and DMA-mode
analog input operations.

Single Mode

For a single-mode analog input operation, use

K_ADRead

 to read the
single analog input value; specify the attributes of the operation as inputs
to the VI.

Interrupt Mode

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use

K_GetADFrame

 to access an A/D frame.

2. Use

K_IntAlloc

 to allocate the buffers in which to store the acquired
data.

3.

If you want to use a channel-gain array to specify the channels

, use

K_AllocChnGAry

,

K_FormatChnGAry

, and K_SetChnGAry to
define and set the array. Refer to page 2-12 for more information
about channel-gain arrays.

4. Use the appropriate VIs to specify the attributes of the operation.
These VIs are listed in Table 3-6.

3-12 Programming with the VI Driver

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the VI associated
with that element. Refer to Table 3-1 on page 3-4 for a list of the
default values of A/D frame elements.

Table 3-6. VIs Used for Interrupt-Mode
Analog Input Operations

Attribute VIs

Buffer1 K_SetBuf
K_BufListAdd

Number of Samples K_SetBuf
K_BufListAdd

Buffering Mode K_SetContRun
K_ClrContRun2

Start Channel K_SetChn
K_SetStartStopChn
K_SetStartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

Gain K_SetG
K_SetStartStopG

Channel-Gain Array K_SetChnGAry

Conversion Mode K_SetADFreeRun
K_ClrADFreeRun2

SSH Mode K_SetSSH

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

External Clock Edge K_SetExtClkEdge

Burst Clock Rate K_SetBurstTicks

Trigger Source K_SetTrig

3-13

5. Use K_IntStart to start the interrupt-mode operation.

6. Use K_IntStatus to monitor the status of the interrupt-mode
operation.

7. If you specified continuous buffering mode, use K_IntStop to stop the
interrupt-mode operation when the appropriate number of samples
has been acquired.

8. Use K_MoveBufToArray to transfer the acquired data from the
allocated buffer to a LabVIEW array.

9. Use K_IntFree to deallocate the buffers.

10. If you used K_BufListAdd to specify a list of multiple buffers, use
K_BufListReset to clear the list.

11. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig

Trigger Polarity K_SetADTrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

Hardware Gate K_SetGate

Notes
1 This element must be set.
2 Use this VI to reset the value of this particular frame element to its

default setting without clearing the frame or getting a new frame.

Table 3-6. VIs Used for Interrupt-Mode
Analog Input Operations (cont.)

Attribute VIs

3-14 Programming with the VI Driver

DMA Mode

For a DMA-mode analog input operation, perform the following tasks:

1. Use K_GetADFrame to access an A/D frame.

2. Use K_DMAAlloc to allocate the buffers in which to store the
acquired data.

3. If you want to use a channel-gain array to specify the channels, use
K_AllocChnGAry , K_FormatChnGAry , and K_SetChnGAry to
define and set the array. Refer to page 2-12 for more information
about channel-gain arrays.

4. Use the appropriate VIs to specify the attributes of the operation;
these VIs are listed in Table 3-7.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the VI associated
with that element. Refer to Table 3-1 on page 3-4 for a list of the
default values of A/D frame elements.

Table 3-7. VIs Used for DMA-Mode
Analog Input Operations

Attribute VIs

Buffer1 K_SetDMABuf
K_BufListAdd

Number of Samples K_SetBuf
K_BufListAdd

Buffering Mode K_SetContRun
K_ClrContRun2

Start Channel K_SetChn
K_SetStartStopChn
K_SetStartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

3-15

5. Use K_DMAStart to start the DMA-mode operation.

6. Use K_DMAStatus to monitor the status of the DMA-mode
operation.

Gain K_SetG
K_SetStartStopG

Channel-Gain Array K_SetChnGAry

Conversion Mode K_SetADFreeRun
K_ClrADFreeRun2

SSH Mode K_SetSSH

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

External Clock Edge K_SetExtClkEdge

Burst Clock Rate K_SetBurstTicks

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig

Trigger Polarity K_SetADTrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

About-Trigger Mode K_SetAboutTrig
K_ClrAboutTrig2

Hardware Gate K_SetGate

Notes
1 This element must be set.
2 Use this VI to reset the value of this particular frame element to its

default setting without clearing the frame or getting a new frame.

Table 3-7. VIs Used for DMA-Mode
Analog Input Operations (cont.)

Attribute VIs

3-16 Programming with the VI Driver

7. If you specified continuous buffering mode, use K_DMAStop to stop
the DMA-mode operation when the appropriate number of samples
has been acquired.

8. Use K_MoveBufToArray to transfer the acquired data from the
allocated buffer to a LabVIEW array.

9. Use K_DMAFree to deallocate the buffers.

10. If you used K_BufListAdd to specify a list of multiple buffers, use
K_BufListReset to clear the list.

11. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

Analog Output Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, interrupt-mode, DMA-mode, and
recycle-mode analog output operations.

Single Mode

For a single-mode analog output operation, use K_DAWriteGain to write
the single analog output value; specify the attributes of the operation as
inputs to the VI.

Interrupt Mode

For an interrupt-mode analog output operation, perform the following
tasks:

1. Use K_GetDAFrame to access a D/A frame.

2. Use K_IntAlloc to allocate the buffer in which to store the data to be
written.

3-17

3. If you want to use a channel-gain array to specify the channels, use
K_AllocChnGAry , K_FormatChnGAry , and K_SetChnGAry to
define and set the array. Refer to page 2-27 for more information
about channel-gain arrays.

4. Use the appropriate VIs to specify the attributes of the operation;
these VIs are listed in Table 3-10.

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the VI associated
with that element. Refer to Table 3-2 on page 3-6 for a list of the
default values of D/A frame elements.

Table 3-8. VIs Used for Interrupt-Mode
Analog Output Operations

Attribute VIs

Buffer1 K_SetBuf

Number of Samples K_SetBuf

Buffering Mode K_SetContRun
K_ClrContRun2

Gain K_SetG
K_SetStartStopG

Channel-Gain Array K_SetChnGAry

Clock Source/Sync K_SetClk
K_SetSync

Pacer Clock Rate1 K_SetClkRate

External Clock Edge K_SetExtClkEdge

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig

Trigger Polarity K_SetADTrig

3-18 Programming with the VI Driver

5. Use K_MoveArrayToBuf to transfer the data from a LabVIEW
array to the allocated buffer.

6. Use K_IntStart to start the interrupt-mode operation.

7. Use K_IntStatus to monitor the status of the interrupt-mode
operation.

8. If you specified continuous buffering mode, use K_IntStop to stop the
interrupt-mode operation when the appropriate number of samples
has been written.

9. Use K_IntFree to deallocate the buffer.

10. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

DMA Mode

For a DMA-mode analog output operation, perform the following tasks:

1. Use K_GetDAFrame to access a D/A frame.

2. Use K_DMAAlloc to allocate the buffer dynamically outside your
program's memory area.

3. If you want to use a channel-gain array to specify the channels, use
K_AllocChnGAry , K_FormatChnGAry , and K_SetChnGAry to
define and set the array. Refer to page 2-27 for more information
about channel-gain arrays.

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

Hardware Gate K_SetGate

Notes
1 This element must be set.
2 Use this VI to reset the value of this particular frame element to its

default setting without clearing the frame or getting a new frame.

Table 3-8. VIs Used for Interrupt-Mode
Analog Output Operations (cont.)

Attribute VIs

3-19

4. Use the appropriate VIs to specify the attributes of the operation.
These VIs are listed in Table 3-10.

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the VI associated
with that element. Refer to Table 3-2 on page 3-6 for a list of the
default values of D/A frame elements.

Table 3-9. VIs Used for DMA-Mode
Analog Output Operations

Attribute VIs

Buffer1 K_SetDMABuf
K_SetBufListAdd

Number of Samples K_SetBuf
K_SetBufListAdd

Buffering Mode K_SetContRun
K_ClrContRun2

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Gain K_SetG
K_SetStartStopG

Channel-Gain Array K_SetChnGAry

Pacer Clock Rate1 K_SetClkRate

External Clock Edge K_SetExtClkEdge

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig

Trigger Polarity K_SetADTrig

3-20 Programming with the VI Driver

5. Use K_MoveArrayToBuf to transfer the data from a LabVIEW
array to the allocated buffer.

6. Use K_DMAStart to start the DMA-mode operation.

7. Use K_DMAStatus to monitor the status of the DMA-mode
operation.

8. If you specified continuous buffering mode, use K_DMAStop to stop
the DMA-mode operation when the appropriate number of samples
has been written.

9. Use K_DMAFree to deallocate the buffer.

10. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

Recycle Mode

For a recycle-mode analog output operation, perform the following tasks:

1. Use K_GetDAFrame to access a D/A frame.

2. Use K_IntAlloc or K_DMAAlloc to allocate the buffer dynamically
outside your program's memory area. The buffer must contain 2048
samples or fewer.

3. Use K_SetContRun to specify continuous buffering mode.

4. Use the appropriate VIs to specify the attributes of the operation.
These VIs are listed in Table 3-10.

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

Hardware Gate K_SetGate

Notes
1 This element must be set.
2 Use this VI to reset the value of this particular frame element to its

default setting without clearing the frame or getting a new frame.

Table 3-9. VIs Used for DMA-Mode
Analog Output Operations (cont.)

Attribute VIs

3-21

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the VI associated
with that element. Refer to Table 3-2 on page 3-6 for a list of the
default values of D/A frame elements.

Table 3-10. VIs Used for Recycle-Mode
Analog Output Operations

Attribute VIs

Buffer1

Notes
1 This element must be set.

K_SetDMABuf
K_SetBufListAdd

Number of Samples K_SetBuf
K_SetBufListAdd

Gain K_SetG
K_SetStartStopG

Channel-Gain Array K_SetChnGAry

Pacer Clock Rate1 K_SetClkRate

External Clock Edge K_SetExtClkEdge

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig

Trigger Polarity K_SetADTrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

Hardware Gate K_SetGate

3-22 Programming with the VI Driver

5. Use K_MoveArrayToBuf to transfer the data from a LabVIEW
array to the allocated buffer.

6. Use K_IntStart or K_DMAStart to start the recycle-mode
operation.

7. Use K_IntStatus or K_DMAStatus to monitor the status of the
recycle-mode operation.

8. Use K_IntStop or K_DMAStop to stop the recycle-mode operation
when the appropriate number of samples has been written.

9. If you used K_IntAlloc to allocate the buffer, use K_IntFree to
deallocate the buffer; if you used K_DMAAlloc to allocate the
buffer, use K_DMAFree to deallocate the buffer.

10. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

Digital I/O Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode and interrupt-mode digital I/O
operations.

Single Mode

For a single-mode digital I/O operation, use K_DIRead to read a single
digital input value or use K_DOWrite to write a single digital output
value. Specify the attributes of the operation as inputs to the VI.

3-23

Interrupt Mode

For an interrupt-mode digital I/O operation, perform the following tasks:

1. Use K_GetDIFrame to access a DI frame; use K_GetDOFrame to
access a DO frame.

2. Use K_IntAlloc to allocate the buffer in which to store the data to be
read or written.

3. Use the appropriate VIs to specify the attributes of the operation;
these VIs are listed in Table 3-11.

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular frame
element is suitable for your operation, you do not have to use the VI
associated with that element. Refer to Table 3-3 on page 3-8 for a list
of the default values of DI frame elements; refer to Table 3-4 on page
3-9 for a list of the default values of DO frame elements.

4. If you are performing a digital output operation, use
K_MoveArrayToBuf to transfer the data from a LabVIEW array to
the allocated buffer.

Table 3-11. VIs Used for Interrupt-Mode
Digital Input and Digital Output Operations

Attribute VIs

Buffer1

Notes
1 This element must be set.

K_SetBuf

Number of Samples K_SetBuf

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this VI to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame.

Pacer Clock Rate1 K_SetClkRate

3-24 Programming with the VI Driver

5. Use K_IntStart to start the interrupt-mode operation.

6. Use K_IntStatus to monitor the status of the interrupt-mode
operation.

7. If you specified continuous buffering mode, use K_IntStop to stop the
interrupt-mode operation when the appropriate number of samples
has been written.

8. If you are performing a digital input operation, use
K_MoveBufToArray to transfer the data from the allocated buffer to
a LabVIEW array.

9. Use K_IntFree to deallocate the buffer.

10. Use K_FreeFrame to return the frame you accessed in step 1 to the
pool of available frames.

4-1

4

VI Reference

The DAS-1800 Series VIs are organized into the following functional
groups:

●

Initialization

●

Operation mode

●

Frame management

●

Memory management

●

Buffer address

●

Buffering mode

●

Conversion mode

●

Channel and gain

●

Clock

●

Trigger

●

Gate

●

Miscellaneous

The particular VIs associated with each group are listed in Table 4-1. The
remainder of the chapter presents detailed descriptions of each VI,
arranged in alphabetical order.

4

4-2 VI Reference

Table 4-1. VIs by Functional Group

VI Functional Groups VI Name Page Number

Initialization K_OpenDriver page 4-54

K_CloseDriver page 4-11

K_GetDevHandle page 4-38

K_FreeDevHandle page 4-29

K_DASDevInit page 4-15

Operation Mode K_ADRead page 4-5

K_DAWriteGain page 4-16

K_DIRead page 4-18

K_DOWrite page 4-26

K_DMAStart page 4-21

K_DMAStatus page 4-22

K_DMAStop page 4-25

K_IntStart page 4-47

K_IntStatus page 4-48

K_IntStop page 4-51

Frame Management K_GetADFrame page 4-33

K_GetDAFrame page 4-37

K_GetDIFrame page 4-39

K_GetDOFrame page 4-40

K_FreeFrame page 4-30

K_ClearFrame page 4-10

4-3

Memory Management K_DMAAlloc page 4-19

K_DMAFree page 4-20

K_IntAlloc page 4-45

K_IntFree page 4-46

K_MoveArrayToBuf page 4-52

K_MoveBufToArray page 4-53

Buffer Address K_SetBuf page 4-62

K_SetDMABuf page 4-73

K_BufListAdd page 4-8

K_BufListReset page 4-9

Buffering Mode K_ClrContRun page 4-14

K_SetContRun page 4-70

Conversion Mode K_SetADFreeRun page 4-58

K_ClrADFreeRun page 4-13

K_SetSSH page 4-77

Channel and Gain K_SetChn page 4-64

K_SetStartStopChn page 4-78

K_SetG page 4-75

K_SetStartStopG page 4-80

K_AllocChnGAry page 4-7

K_FormatChnGAry page 4-27

K_FreeChnGAry page 4-28

K_SetChnGAry page 4-65

K_SetADCommonMode page 4-56

K_SetADConfig page 4-57

K_SetADMode page 4-59

Table 4-1. VIs by Functional Group (cont.)

VI Functional Groups VI Name Page Number

4-4 VI Reference

For a description of the error information in the Error In and Error Out
parameters in this chapter, see page 2-3.

Channel and Gain (cont.)K_GetADCommonMode page 4-31

K_GetADConfig page 4-32

K_GetADMode page 4-34

Clock K_SetClk page 4-66

K_SetClkRate page 4-68

K_SetExtClkEdge page 4-74

K_GetClkRate page 4-35

K_SetBurstTicks page 4-63

K_SetSync page 4-82

Trigger K_SetTrig page 4-83

K_SetADTrig page 4-60

K_SetTrigHyst page 4-84

K_SetDITrig page 4-71

K_SetAboutTrig page 4-55

K_ClrAboutTrig page 4-12

Gate K_SetGate page 4-76

Miscellaneous K_GetErrMsg page 4-41

K_GetVer page 4-43

K_GetShellVer page 4-42

Table 4-1. VIs by Functional Group (cont.)

VI Functional Groups VI Name Page Number

K_ADRead

4-5

Purpose

Reads a single analog input value.

Description

This VI reads the analog input channel represented by

Input Channel

 on
the board specified by

Board Handle

 at the gain represented by

Gain
Code

, and stores the raw count in

Input Value

.

Parameters

Board Handle

Handle associated with the board.

Input Channel

Analog input channel.
Valid values are shown below:

Gain Code

Valid values:

0

 to

3 =

 DAS board channels

0

 to

7

 = EXP-1800 channels

Input Value

Acquired analog input value.

Error In

Error information.

Error In
Error Out

Input

Gain Code

Board Handle

Input Value

 K_ADRead

 U32

 U16

Valid Channel Numbers

Board Configuration Differential Single-ended

DAS-1800AO Series board

0

 to

7 0

 to

15

DAS-1800AO Series board with

N

 EXP-1800s attached
Not applicable

0

 to

15(

N

 +

1)

 U16

 I16

K_ADRead (cont.)

4-6 VI Reference

Error Out

Error information.

Remarks

Refer to Table 2-2 on page 2-7 for the gain and input ranges associated
with each gain code.

Refer to Appendix B for converting the raw count stored in

Input Value

 to
voltage.

See Also

K_DMAStart, K_IntStart

K_AllocChnGAry

4-7

Purpose

Allocates space for a channel-gain array.

Description

For the operation defined by

Frame Handle,

this VI uses the number of
entries in

Number of Entries

 to allocate space for a channel-gain array and
creates a handle for the array in

ChnGAry Handle

.

Parameters

Frame Handle

Handle to the frame that defines the operation.

Number of Entries

Number of channel-gain pairs in the
channel-gain array.

ChnGAry Handle

Handle associated with the allocated
channel-gain array.

Error In

Error information.

Error Out

Error information.

Remarks

Refer to page 2-12 for information on setting up a channel-gain array for
analog input operations: refer to page 2-27 for information on setting up a
channel-gain array for analog output operations.

See Also

K_FormatChnGAry, K_FreeChnGAry, K_SetChnGAry

Error In Error Out

Number of Entries

Frame Handle

 K_AllocChnGAry

ChnGAry
Handle

 U32

 U16

K_BufListAdd

4-8 VI Reference

Purpose

Adds a buffer to the list of multiple buffers.

Description

For the operation defined by

Frame Handle

, this VI adds the buffer at the
address pointed to by

Buffer Address

 to the list of multiple buffers; the
number of samples in the buffer is specified in

Number of Samples

.

Parameters

Frame Handle

Handle to the frame that defines the operation.

Buffer Address

Starting address of buffer.

Number of Samples

Number of samples in the buffer.

Error In

Error information.

Error Out

Error information.

Remarks

The driver supports multiple buffers for analog input and analog output
operations. Before you add the buffer to the multiple-buffer list, you must
allocate the buffer dynamically using

K_IntAlloc

 or

K_DMAAlloc

.

Make sure that you add buffers to the multiple-buffer list in the order in
which you want to use them. The first buffer you add is Buffer 1, the
second buffer you add is Buffer 2, and so on. You can add up to 149
buffers. You can use

K_IntStatus

 or

K_DMAStatus

to determine which
buffer is currently in use.

See Also

K_BufListReset, K_DMAAlloc, K_IntAlloc

Error Out
Error In

Buffer Address

Number of Samples

Frame Handle

 K_BufListAdd

 U32

 U32

 U32

K_BufListReset

4-9

Purpose Clears the list of multiple buffers.

Description For the operation defined by Frame Handle, this VI clears all buffers from
the list of multiple buffers.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks This VI does not deallocate the buffers in the list of multiple buffers. If
dynamically allocated buffers are no longer needed, you can use
K_IntFree or K_DMAFree to free the buffers before resetting the buffer
list.

See Also K_DMAFree, K_IntFree, K_SetBuf, K_SetDMABuf

Error Out

Frame Handle

 K_BufListReset

Error In

 U32

K_ClearFrame

4-10 VI Reference

Purpose Sets the elements of a frame to their default values.

Description This VI sets the elements of the frame specified by Frame Handle to their
default values.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks For the default values of the elements of frames, refer to the following
tables:

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Error OutError In

Frame Handle

 K_ClearFrame

 U32

Frame Type See

A/D frames Table 3-1 on page 3-4

D/A frames Table 3-2 on page 3-6

DI frames Table 3-3 on page 3-8

DO frames Table 3-4 on page 3-9

K_CloseDriver

4-11

Purpose Closes a previously initialized Keithley DAS VI Driver.

Description This VI frees the driver handle specified by Driver Handle and closes the
associated use of the VI Driver. This VI also frees all board handles and
frame handles associated with Driver Handle.

Parameters

Driver Handle Driver handle you want to free.

Error In Error information.

Error Out Error information.

Remarks If Driver Handle is the last driver handle specified for the VI Driver, the
driver is shut down and unloaded.

See Also K_FreeDevHandle

Error OutError In

Driver Handle

 K_CloseDriver

 U32

K_ClrAboutTrig

4-12 VI Reference

Purpose Disables the about trigger for an analog input operation.

Description This VI disables the about trigger for the operation defined by Frame
Handle.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks K_GetADFrame and K_ClearFrame also disable the about trigger.

See Also K_ClearFrame, K_GetADFrame, K_SetAboutTrig

Error OutError In

Frame Handle

 K_ClrAboutTrig

 U32

K_ClrADFreeRun

4-13

Purpose Sets paced conversion mode for an analog input operation.

Description This VI sets the conversion mode for the operation defined by Frame
Handle to paced mode and sets the Conversion Mode element in the
frame accordingly.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks K_GetADFrame and K_ClearFrame also enable paced conversion
mode.

See Also K_ClearFrame, K_GetADFrame, K_SetADFreeRun

Error OutError In

Frame Handle

 K_ClrADFreeRun

 U32

K_ClrContRun

4-14 VI Reference

Purpose Sets single-cycle buffering mode.

Description This VI sets the buffering mode for the operation defined by Frame
Handle to single-cycle mode and sets the Buffering Mode element in the
frame accordingly.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame also enable single-cycle buffering
mode. For more information on buffering modes, refer to the following
pages:

See Also K_SetContRun

Error OutError In

Frame Handle

 K_ClrContRun

 U32

Operation See

Analog input page 2-16

Analog output page 2-30

Digital I/O page 2-39

K_DASDevInit

4-15

Purpose Reinitializes a board.

Description This VI stops all current operations and resets the board specified by
Board Handle and the driver to their power-up states.

Parameters

Board Handle Handle associated with the board.

Error In Error information.

Error Out Error information.

Error OutError In

Board Handle

 K_DASDevInit

 U32

K_DAWriteGain

4-16 VI Reference

Purpose Writes a single analog output value.

Description For the operation defined by Board Handle, this VI writes the single
analog output value Output Value to the channel represented by Output
Channel. The output range is specified by Gain Code.

Parameters

Board Handle Handle to the board that defines the operation.

Output Channel Analog output channel.
Valid values: 0 for DAC 0

1 for DAC 1

Output Value Analog output value.
Valid values: −2,048 to 2,047

Gain Code Valid values: 0 for ±5 V D/A range
1 for ±10 V D/A range

Error In Error information.

Error Out Error information.

Remarks The value of Output Value comprises only the least significant 12 bits.

Refer to page 2-26 for more information on output ranges and their
corresponding gain codes.

Refer to Appendix B for converting a voltage value to a raw count.

 K_DAWriteGain
Error In

Error Out

Board Handle

Output Value

Output Channel

Gain Code

 U32

 U16

 U32

 U16

K_DAWriteGain (cont.)

4-17

See Also K_IntStart

K_DIRead

4-18 VI Reference

Purpose Reads a single digital input value.

Description This VI reads the values of all digital input lines on the board specified by
Board Handle, and stores the value in Input Value.

Parameters

Board Handle Handle associated with the board.

Input Channel Digital input channel.
Valid value: 0

Input Value Digital input value.

Error In Error information.

Error Out Error information.

Remarks The acquired digital value in Input Value is stored in bits 0, 1, 2, and 3; the
values in the remaining bits of Input Value are not defined. Refer to Figure
on page 2-36 for more information.

See Also K_IntStart

Error In Error Out

Input Channel

Board Handle

Input Value

 K_DIRead

 U32

 U16

 U16

K_DMAAlloc

4-19

Purpose Allocates a buffer for a DMA-mode operation.

Description For the operation defined by Frame Handle, this VI allocates a buffer of
the size Number of Samples. On return, Buffer Address contains the
address of a buffer that is suitable for a DMA-mode operation and Buffer
Handle is the handle associated with the buffer.

Parameters

Frame Handle Handle to the frame that defines the operation.

Number of Samples Number of samples.
Valid values: 1 to 65,536

Buffer Address Starting address of the allocated buffer.

Buffer Handle Handle associated with the allocated buffer.

Error In Error information.

Error Out Error information.

Remarks Use K_SetDMABuf or K_BufListAdd to assign Buffer Address to the
frame that defines the operation. Buffer Handle, as returned by this VI, is
later used to free the allocated memory block when used with
K_DMAFree .

See Also K_DMAFree, K_SetDMABuf, K_BufListAdd

Error In Error Out

Number of Samples

Frame Handle
Buffer Address

Buffer Handle

 K_DMAAlloc

 U32

 U32

 U32

 U16

K_DMAFree

4-20 VI Reference

Purpose Frees a buffer allocated for a DMA-mode operation.

Description This VI frees the buffer specified by Buffer Handle; the buffer was
previously allocated dynamically using K_DMAAlloc .

Parameters

Buffer Handle Handle to DMA buffer.

Error In Error information.

Error Out Error information.

See Also K_DMAlloc, K_SetDMABuf, K_BufListAdd

Error In Error Out

Buffer Handle

 K_DMAFree

 U16

K_DMAStart

4-21

Purpose Starts a DMA-mode operation or a recycle-mode operation.

Description This VI starts the DMA-mode operation or recycle-mode operation
defined by Frame Handle.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks For analog output operations, if the user-defined buffer contains less than
2047 samples, the DAS-1800AO Series board does not use the DMA
resources of the board; this allows the board to provide the maximum
transfer rate (up to 500 kHz). However, your program must still use
K_DMAStart to start the operation regardless of whether the DMA
resources are used.

Refer to Chapter 2 for more information on DMA-mode operations and
on recycling data from the D/A FIFO.

Refer to Chapter 3 for a discussion of the programming tasks associated
with DMA-mode and recycle-mode operations.

See Also K_DMAStatus, K_DMAStop

Error OutError In

Frame Handle

 K_DMAStart

 U32

K_DMAStatus

4-22 VI Reference

Purpose Gets the status of a DMA-mode operation or a recycle-mode operation.

Description For the DMA-mode operation or recycle-mode operation defined by
Frame Handle, this VI stores the status in Status.

Parameters

Frame Handle Handle to the frame that defines the operation.

Status Status of DMA-mode operation or recycle-mode
operation.
Valid values: See Remarks below for value
stored.

Samples Transferred Number of samples.

Error In Error information.

Error Out Error information.

Remarks For analog input operations, Samples Transferred stores the number of
samples acquired into the current buffer. For analog output operations,
Samples Transferred stores the number of samples transferred to the D/A
FIFO.

Error Out
Error In

Status

Samples
Transferred

Frame Handle

 K_DMAStatus

 U32

 U16

 U32

K_DMAStatus (cont.)

4-23

The value stored in Status depends on the settings in the Status word, as
shown in the following diagram:

Bit 0123456789101112131415

0 = DMA operation inactive
1 = DMA operation active

0 = No FIFO overflow/underflow
1 = For analog input operations,
 A/D FIFO overflow.
 For analog output operations,
 D/A FIFO underflow.

0 = Buffer not filled/emptied
1 = Buffer filled/emptied

Active buffer number

0 = Buffer A active
1 = Buffer B active

About trigger:
00 = Disabled
01 = Armed
10 = Active
11 = Done

Note that bits 6 and 7
are not used for
analog output
operations.

K_DMAStatus (cont.)

4-24 VI Reference

The bits are described as follows:

● Bit 0: Indicates whether a DMA-mode operation is in progress.

● Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this
bit toggles each time a buffer is switched. If you are using a single
buffer, this bit is always 0.

● Bit 2: For analog input operations, this bit indicates whether the
onboard A/D FIFO overflowed. For analog output operations, this bit
indicates whether the onboard D/A FIFO underflowed. The overflow
or underflow event automatically stops all conversions.

● Bit 3: Not used for DMA mode.

● Bit 4: This bit is used during continuous buffering mode. For analog
input operations, this bit is set when all buffers that are currently
assigned to the active operation have been filled with data at least
once. For analog output operations, this bit is set when all buffers that
are currently assigned to the active operation have been emptied at
least once.

● Bit 5: Unassigned

● Bits 6-7: For analog input operations, these bits indicate the state of
the about trigger. For analog output operations, these bits are not
used.

● Bits 8-15: In multiple-buffer operations, these bits indicate the current
active buffer number. The active buffer number is related to the Status
word as follows:

See Also K_DMAStart, K_DMAStop

active buffer Status word
256

----------------------------=

K_DMAStop

4-25

Purpose

Stops a DMA-mode operation or a recycle-mode operation.

Description

This VI stops the DMA-mode operation or a recycle-mode operation
defined by

Frame Handle

and stores the status of the operation in

Status.

Parameters

Frame Handle

Handle to the frame that defines the operation.

Status

Status of operation.
Valid values: Refer to page 4-23 for the meaning
of the value stored.

Samples Transferred

Number of samples that were transferred into the
current buffer.

Error In

Error information.

Error Out

Error information.

Remarks

For analog input operations,

Samples Transferred

stores the number of

samples acquired into the current buffer. For analog output operations,

Samples Transferred

stores the number of samples transferred to the D/A
FIFO.

If a DMA or recycle operation is not in progress,

K_DMAStop

 is
ignored.

See Also

K_DMAStart, K_DMAStatus

Error Out
Error In

Status

Samples
Transferred

Frame Handle

 K_DMAStop

 U32

 U16

 U32

K_DOWrite

4-26 VI Reference

Purpose

Writes a single digital output value to the digital output channel.

Description

This VI writes the value

Output Value

to the digital output

lines on the
board specified by

Board Handle

.

Parameters

Board Handle

Handle associated with the board.

Output Channel

Digital output channel.
Valid value:

0

Output Value

Digital output value.
Valid values:

0

 to

15

Error In

Error information.

Error Out

Error information.

Remarks The value to be written is stored in bits 0 through 3; the values in the
remaining bits of Output Value are not defined. Refer to page 2-37 for
more information.

See Also K_IntStart

Error Out

Error In

Output Channel

Output Value

Board Handle

 K_DOWrite

 U32

 U16

 U32

K_FormatChnGAry

4-27

Purpose Initializes a channel-gain array.

Description For the channel-gain data represented by Input Array, this VI initializes
the handle ChnGAry Handle In and outputs the handle ChnGAry Handle
Out.

Parameters

Input Array LabVIEW array with channel-gain data.

ChnGAry Handle In Handle associated with the allocated
channel-gain array.

ChnGAry Handle Out Initialized handle associated with the allocated
channel-gain array.

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-12 for information on setting up a channel-gain array for
analog input operations: refer to page 2-27 for information on setting up a
channel-gain array for analog output operations.

See Also K_AllocChnGAry, K_FreeChnGAry, K_SetChnGAry

Error In Error Out

Input Array

 K_FormatChnGAry

ChnGAry
Handle OutChnGAry

Handle In

[] U16

K_FreeChnGAry

4-28 VI Reference

Purpose Frees space previously allocated for a channel-gain array.

Description This VI frees the space previously allocated for the channel-gain array
defined by ChnGAry Handle.

Parameters

ChnGAry Handle Handle to the channel-gain array.

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-12 for information on setting up a channel-gain array for
analog input operations: refer to page 2-27 for information on setting up a
channel-gain array for analog output operations.

See Also K_AllocChnGAry, K_FormatChnGAry, K_SetChnGAry

Error In Error Out

 K_FreeChnGAry

ChnGAr
y

K_FreeDevHandle

4-29

Purpose Frees a previously specified board handle.

Description This VI frees the board handle specified by Board Handle as well as all
frame handles associated with Board Handle.

Parameters

Board Handle Board handle you want to free.

Error In Error information.

Error Out Error information.

See Also K_GetDevHandle

Error OutError In

Board Handle

 K_FreeDevHandle

 U32

K_FreeFrame

4-30 VI Reference

Purpose Frees a frame.

Description This VI frees the frame specified by Frame Handle, making the frame
available for another operation.

Parameters

Frame Handle Handle to frame you want to free.

Error In Error information.

Error Out Error information.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Error OutError In

Frame Handle

 K_FreeFrame

 U32

K_GetADCommonMode

4-31

Purpose Gets the A/D common-mode ground reference.

Description For the board specified by Board Handle, this VI stores the code that
represents the A/D common-mode ground reference in Ground Reference.

Parameters

Board Handle Handle to the board that defines the operation.

Ground Reference A/D common-mode ground reference.
Value stored:0 for LL-GND

1 for user-defined

Error In Error information.

Error Out Error information.

See Also K_SetADCommonMode

Error In Error Out

Board Handle Ground Reference

 K_GetADCommonMode

 U32

 U16

K_GetADConfig

4-32 VI Reference

Purpose Gets the A/D input channel configuration.

Description This VI stores the code that represents the A/D input channel
configuration in Input Mode for the board specified by Board Handle.

Parameters

Board Handle Handle associated with the board.

Input Mode A/D input channel configuration.
Value stored:0 for Differential

1 for Single-ended

Error In Error information.

Error Out Error information.

See Also K_SetADConfig

Error OutError In

Input ModeBoard Handle

 K_GetADConfig

 U32

 U16

K_GetADFrame

4-33

Purpose Accesses an A/D frame for an analog input operation.

Description This VI specifies that you want to perform a DMA-mode or
interrupt-mode analog input operation on the board specified by Board
Handle, and accesses an available A/D frame with the handle A/D Frame
Handle.

Parameters

Board Handle Handle associated with the board.

A/D Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks The frame is initialized to its default settings; the default settings are
given in Table 3-1 on page 3-4.

See Also K_ClearFrame, K_FreeFrame

Error OutError In

A/D Frame
Handle

Board Handle

 K_GetADFrame

 U32

 U32

K_GetADMode

4-34 VI Reference

Purpose Gets the A/D input range type.

Description This VI stores the code that represents the A/D input range type for the
board specified by Board Handle in Input Range Type.

Parameters

Board Handle Handle associated with the board.

Input Range Type A/D input range type.
Value stored:0 for Bipolar

1 for Unipolar

Error In Error information.

Error Out Error information.

See Also K_SetADMode

Error OutError In

Board Handle
Input Range
Type

 K_GetADMode

 U32

 U16

K_GetClkRate

4-35

Purpose For analog input operations, gets the number of clock ticks used by the
internal A/D pacer clock source. For analog output operations, gets the
number of clock ticks used by the internal D/A pacer clock source.

Description For the operation defined by Frame Handle, this VI stores the number of
clock ticks between conversions in Clock Ticks Between Conversions.

Parameters

Frame Handle Handle to the frame that defines the operation.

Clock Ticks Between Number of clock ticks between conversions.
Conversions Value stored:

15 to 4,294,967,295 for A/D pacer clock
1 to 655,350 for D/A pacer clock

Error In Error information.

Error Out Error information.

Remarks The Clock Ticks Between Conversions variable contains the value of the
Pacer Clock Rate element. After an interrupt-mode, DMA-mode, or
recycle-mode operation, the value stored in Clock Ticks Between
Conversions represents the actual count used, not necessarily the count
set by K_SetClkRate.

For A/D frames, this VI applies to the 5 MHz internal A/D pacer clock
source only. The tick resolution is 2 µs.

For D/A frames, this VI applies to the 5 MHz internal D/A pacer clock
source only. The tick resolution is 2 µs.

Error OutError In

Frame Handle

Clock Ticks
Between
Conversions

 K_GetClkRate

 U32

 U32

K_GetClkRate (cont.)

4-36 VI Reference

See Also K_SetClkRate

K_GetDAFrame

4-37

Purpose Accesses a D/A frame for an analog output operation.

Description This VI specifies that you want to perform a DMA-mode, an
interrupt-mode, or a recycle-mode analog output operation on the board
specified by Board Handle, and accesses an available D/A frame with the
handle D/A Frame Handle.

Parameters

Board Handle Handle associated with the board.

D/A Frame Handle Handle to the frame that defines the analog
output operation.

Error In Error information.

Error Out Error information.

Remarks The frame is initialized to its default settings; the default settings are
given in Table 3-2 on page 3-6.

See Also K_FreeFrame, K_ClearFrame

Error OutError In

Board Handle D/A Frame
Handle

 K_GetDAFrame

 U32

 U32

K_GetDevHandle

4-38 VI Reference

Purpose Initializes any Keithley DAS board.

Description This VI initializes the board associated with Driver Handle and specified
by Board Number, and stores the board handle of the specified board in
Board Handle.

Parameters

Driver Handle Handle of the associated VI Driver.

Board Number Board number.
Valid values: 0 to 2

Board Handle Handle associated with the board.

Error In Error information.

Error Out Error information.

Remarks The value stored in Board Handle is intended to be used exclusively as an
input to VIs that require a board handle. Your program should not modify
the value stored in Board Handle.

See Also K_FreeDevHandle

Error Out
Error In

Driver Handle
Board Handle

Board Number

 K_GetDevHandle

 U32

 U16

 U32

K_GetDIFrame

4-39

Purpose Accesses a DI frame for a digital input operation.

Description This VI specifies that you want to perform an interrupt-mode digital input
operation on the board specified by Board Handle, and accesses an
available digital input frame with the handle DI Frame Handle.

Parameters

Board Handle Handle associated with the board.

DI Frame Handle Handle to the frame that defines the digital input
operation.

Error In Error information.

Error Out Error information.

Remarks The frame is initialized to its default settings; the default settings are
given in Table 3-3 on page 3-8.

See Also K_FreeFrame, K_ClearFrame

Error OutError In

Board Handle DI Frame
Handle

 K_GetDIFrame

 U32

 U32

K_GetDOFrame

4-40 VI Reference

Purpose Accesses a DO frame for a digital output operation.

Description This VI specifies that you want to perform an interrupt-mode digital
output operation on the board specified by Board Handle and accesses an
available digital output frame with the handle DO Frame Handle.

Parameters

Board Handle Handle associated with the board.

DO Frame Handle Handle to the frame that defines the digital
output operation.

Error In Error information.

Error Out Error information.

Remarks The frame is initialized to its default settings; the default settings are
given in Table 3-4 on page 3-9.

See Also K_FreeFrame, K_ClearFrame

Error OutError In

Board Handle DO Frame
Handle

 K_GetDOFrame

 U32

 U32

K_GetErrMsg

4-41

Purpose Gets an error message string.

Description For the board specified by Board Handle, this VI outputs the error
message string Error String corresponding to the error message number
represented by Error Number.

Parameters

Board Handle Handle associated with the board.

Error Number Error message number.

Error String Error message string.

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-3 for information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

Error OutError In

Board Handle
Error String

Error Number

 K_GetErrMsg

 U32

 U16

 a b c

K_GetShellVer

4-42 VI Reference

Purpose Gets the current DAS shell version.

Description This VI stores the major version number and the minor version number of
the current DAS shell in DAS Shell Version.

Parameters

DAS Shell Version A word value containing the major and minor
version numbers of the DAS shell.

Error In Error information.

Error Out Error information.

Remarks To obtain the major version number of the DAS shell, divide DAS Shell
Version by 256. To obtain the minor version number of the DAS shell,
perform a Boolean AND operation with DAS Shell Version and
255 (0FF hex).

Error Out

 K_GetShellVer

Error In

DAS Shell
Version

 U16

K_GetVer

4-43

Purpose Gets revision numbers.

Description For the board specified by Board Handle, this VI stores the revision
number of the DAS-1800 Series VI Driver in Driver Version and the
revision number of the driver specification in DAS Spec Rev Number.

Parameters

Board Handle Handle associated with the board.

DAS Spec Rev NumberRevision number of the Keithley DAS Driver
Specification to which the driver conforms.

Driver Version Driver version number.

Error In Error information.

Error Out Error information.

Remarks The high byte of DAS Spec Rev Number and Driver Version contains the
major revision level, and the low byte of each contains the minor revision
level. For example, if the driver version number is 2.1, the major revision
level is 2 and the minor revision level is 1; therefore, the high byte of
Driver Version contains the value of 2 (512) and the low byte of Driver
Version contains the value of 1; the value of both bytes is 513.

Error In
Error Out

Driver Version

 K_GetVer

Board Handle

DAS Spec
Rev Number

 U32

 U16

 U16

K_GetVer (cont.)

4-44 VI Reference

To extract the major and minor revision levels from the value stored in
Driver Version or DAS Spec Rev Number, use the following equations:

major revision level integer portion of
returned value

256

 
 

=

minor revision level returned value MOD 256=

K_IntAlloc

4-45

Purpose

Allocates a buffer for an interrupt-mode operation.

Description

For the operation defined by

Frame Handle

, this VI allocates a buffer of
the size specified by

Number of

Samples

, and stores the starting address
of the buffer in

Buffer Address

and the handle to the buffer in

Buffer
Handle

.

Parameters

Frame Handle

Handle to the frame that defines the operation.

Number of Samples

Number of samples.
Valid values:

1

to

 65,536

Buffer Address

Starting address of the allocated buffer.

Buffer Handle

Handle associated with the allocated buffer.

Error In

Error information.

Error Out

Error information.

Remarks

Use

K_SetBuf

 or

K_BufListAdd

to assign

Buffer Address

to the frame
that defines the operation.

Buffer Handle

, as returned by this VI, is later
used to free the allocated memory block when used with

K_IntFree

.

See Also

K_IntFree, K_SetBuf, K_BufListAdd

Error Out

 K_IntAlloc

Error In

Buffer Address

Buffer Handle

Frame Handle

Number of Samples

 U32

 U32

 U32

 U16

K_IntFree

4-46 VI Reference

Purpose Frees a buffer allocated for an interrupt-mode operation.

Description This VI frees the buffer specified by Buffer Handle; the buffer was
previously allocated dynamically using K_IntAlloc .

Parameters

Buffer Handle Handle to interrupt buffer.

Error In Error information.

Error Out Error information.

See Also K_IntAlloc

Error Out

 K_IntFree

Error In

Buffer Handle

 U16

K_IntStart

4-47

Purpose Starts an interrupt-mode operation or a recycle-mode operation.

Description This VI starts the interrupt-mode operation or recycle-mode operation
defined by Frame Handle.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-24 for more information on interrupt operations and on
recycling data from the D/A FIFO.

For analog output operations, if the user-defined buffer contains less than
2048 samples, the DAS-1800AO Series board does not use the interrupt
resources of the board; this allows the board to provide the maximum
transfer rate (up to 500 kHz). However, your program must still use
K_IntStart to start the operation regardless of whether the interrupt
resources are used.

See Also K_IntStatus, K_IntStop

Error Out

 K_IntStart

Error In

Frame Handle

 U32

K_IntStatus

4-48 VI Reference

Purpose Gets the status of an interrupt-mode operation or recycle-mode operation.

Description For the interrupt-mode operation or recycle-mode operation defined by
Frame Handle, this VI stores the status of the operation in Status and the
number of samples transferred in Samples Transferred.

Parameters

Frame Handle Handle to the frame that defines the operation.

Status Status of interrupt-mode operation or
recycle-mode operation.
Valid stored: see Remarks below for value
stored.

Samples Transferred Number of samples transferred.

Error In Error information.

Error Out Error information.

Remarks For input operations, Samples Transferred stores the number of samples
acquired into the current buffer. For output operations, Samples
Transferred stores the number of samples transferred from the current
buffer.

Error Out
 K_IntStatus

Error In

Status

Samples TransferredFrame Handle

 U32

 U16

 U32

K_IntStatus (cont.)

4-49

The value stored in Status depends on the settings in the Status word, as
shown in the following illustration:

Bit 0123456789101112131415

0 = Interrupt operation inactive
1 = Interrupt operation active

0 = No FIFO overflow/underflow
1 = For analog input operations,
 A/D FIFO overflow.
 For analog output operations,
 D/A FIFO underflow.
 For digital I/O operations,
 interrupt overrun.

0 = Buffer not filled/emptied
1 = Buffer filled/emptied

Active buffer number

0 = Buffer A active
1 = Buffer B active

K_IntStatus (cont.)

4-50 VI Reference

The bits are described as follows:

● Bit 0: Indicates whether an interrupt-mode operation is in progress.

● Bit 1: The Buffer A/B active bit. If you are using multiple buffers, this
bit toggles each time a buffer is switched. If you are using a single
buffer, this bit is always 0.

● Bit 2: For analog input operations, this bit indicates whether the
onboard A/D FIFO overflowed. For analog output operations, this bit
indicates whether the onboard D/A FIFO underflowed. The overflow
or underflow event automatically stops all conversions. For digital I/O
operations, this bit indicates that the board issued an interrupt while
the CPU was processing a previous interrupt from the same board.

● Bit 3: Reserved.

● Bit 4: This bit is used during continuous buffering mode. For input
operations, this bit is set when all buffers that are currently assigned
to the active operation have been filled with data at least once. For
output operations, this bit is set when all buffers that are currently
assigned to the active operation have been emptied at least once.

● Bits 5-7: Unassigned.

● Bits 8-15: In multiple-buffer operations, these bits indicate the current
active buffer number. The active buffer number is related to the Status
word as follows:

See Also K_IntStart, K_IntStop

active buffer Status word
256

----------------------------=

K_IntStop

4-51

Purpose

Stops an interrupt-mode operation or a recycle-mode operation.

Description

This VI stops the interrupt-mode operation or recycle-mode operation
defined by

Frame Handle

 and stores the status of the operation in

Status

and the number of samples transferred in

Samples Transferred

.

Parameters

Frame Handle

Handle to the frame that defines the operation.

Status

Status of operation

.

Value stored: refer to page 4-49 for the meaning
of the value stored.

Samples Transferred

Number of samples transferred.

Error In

Error information.

Error Out

Error information.

Remarks

For input operations,

Samples Transferred

 stores the number of samples
acquired into the current buffer. For output operations,

Samples
Transferred

 stores the number of samples written from the current buffer.

If an interrupt-mode operation or recycle-mode operation is not in
progress,

K_IntStop

 is ignored.

See Also

K_IntStart, K_IntStatus

Error Out
 K_IntStop

Error In

Status

Samples TransferredFrame Handle

 U32

 U16

 U32

K_MoveArrayToBuf

4-52 VI Reference

Purpose

Moves the contents of a LabVIEW array to an allocated buffer.

Description

This VI transfers the number of samples represented by

Count

 from the
array represented by

Input Data

 to the buffer at address

Dest Buffer
Address

.

Parameters

Dest Buffer Address

Address of destination buffer.

Count

Number of samples to transfer.
Valid values:

1

 to

32,767

Input Data

Source array containing the data to transfer.

Error In

Error information.

Error Out Error information.

See Also K_DMAAlloc, K_IntAlloc, K_MoveBufToArray

Error Out

K_MoveArrayToBuf

Error In

Dest Buffer Address
Count

Input Data

 U32

 U32

[] I16

K_MoveBufToArray

4-53

Purpose Moves the contents of an allocated buffer to a LabVIEW array.

Description This VI transfers the number of samples represented by Count from the
buffer at address Source Buffer Address to the LabVIEW array Input Data
and returns the filled array in Data.

Parameters

Source Buffer AddressAddress of source buffer.

Count Number of samples to transfer.
Valid values: 1 to 32,767

Input Data Array used to store data from the source buffer.

Data LabVIEW array containing data from an
allocated buffer.

Error In Error information.

Error Out Error information.

See Also K_DMAAlloc, K_IntAlloc, K_MoveArrayToBuf

Error Out

K_MoveBufToArray
Error In

Source Buffer Address

Count

Input Data
Data

 U32

 U32

[] I16

[] I16

K_OpenDriver

4-54 VI Reference

Purpose Initializes a Keithley DAS VI Driver.

Description This VI initializes the DAS VI Driver according to the information in the
configuration file specified by Configuration File, and stores the driver
handle in Driver Handle.

Parameters

Configuration File Driver configuration file.
Valid values: The name of a configuration file.

Null string if driver has already
been opened (see Remarks
below).

Driver Handle Handle associated with the driver.

Error In Error information.

Error Out Error information.

Remarks If Configuration File = Null, K_OpenDriver checks whether the driver
has already been opened and linked to a configuration file and if it has,
uses the current configuration. You create a configuration file using the
configuration utility. Refer to your DAS-1800 Series board user’s guide
for more information.

The value stored in Driver Handle is intended to be used exclusively as an
input to VIs that require a driver handle. Your program should not modify
the value stored in Driver Handle.

Error Out

K_OpenDriver
Error In

Configuration File Driver Handle

 a b c

 U32

K_SetAboutTrig

4-55

Purpose Enables the about trigger and specifies the number of samples after the
trigger occurs.

Description For the DMA-mode analog input operation defined by Frame Handle, this
VI enables the about trigger and specifies the number of samples after the
trigger occurs.

Parameters

Frame Handle Handle to the frame that defines the operation.

Post-Trigger Samples Number of post-trigger samples.
Valid values: 1 to 65,535

Error In Error information.

Error Out Error information.

See Also K_ClrAboutTrig

Error Out

 K_SetAboutTrig
Error In

Frame Handle

Post-Trigger
Samples

 U32

 U32

K_SetADCommonMode

4-56 VI Reference

Purpose Sets the A/D common-mode ground reference.

Description For the board specified by Board Handle, this VI specifies the A/D
common-mode ground reference in Ground Reference.

Parameters

Board Handle Handle to the board that defines the operation.

Ground Reference A/D common-mode ground reference.
Value stored:0 for LL-GND

1 for user-defined

Error In Error information.

Error Out Error information.

See Also K_GetADCommonMode

 K_SetADCommonMode

Error In Error Out

Board Handle

Ground Reference

 U32

 U16

K_SetADConfig

4-57

Purpose Sets the A/D input channel configuration.

Description This VI specifies the A/D input channel configuration in Input Mode for
the board specified by Board Handle.

Parameters

Board Handle Handle associated with the board.

Input Mode A/D input channel configuration.
Value stored:0 for Differential

1 for Single-ended

Error In Error information.

Error Out Error information.

Remarks If an SSH-8 or EXP-1800 accessory is enabled in the configuration file,
any use of K_SetADConfig that attempts to set the A/D channel
configuration to differential returns error 8001.

See Also K_GetADConfig

Error Out

 K_SetADConfig

Error In

Board Handle

Input Mode

 U32

 U16

K_SetADFreeRun

4-58 VI Reference

Purpose Specifies burst conversion mode.

Description This VI sets the conversion mode for the operation defined by Frame
Handle to burst mode.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-13 for information on conversion modes.

See Also K_ClrADFreeRun

Error Out

 K_SetADFreeRun

Error In

Frame Handle

 U32

K_SetADMode

4-59

Purpose Sets the A/D input range type.

Description For the board specified by Board Handle, this VI specifies the A/D input
range type in Input Range Type.

Parameters

Board Handle Handle associated with the board.

Input Range Type A/D input range type.
Valid values: 0 for Bipolar

1 for Unipolar

Error In Error information.

Error Out Error information.

See Also K_GetADMode

Error Out

 K_SetADMode

Error In

Board Handle

Input Range Type

 U32

 U16

K_SetADTrig

4-60 VI Reference

Purpose Sets up an analog start trigger.

Description For the operation defined by Frame Handle, this VI specifies the channel
used for an analog trigger in Trigger Channel, the level used for the
analog trigger in Trigger Level, and the trigger polarity and trigger
sensitivity in Trigger Option.

Parameters

Frame Handle Handle to the frame that defines the operation.

Trigger Option Analog trigger polarity.
Valid values: 0 for Positive edge

2 for Negative edge

Trigger Channel Analog input channel used as trigger channel.
Valid channel numbers are shown below:

Error Out

 K_SetADTrig
Error In

Trigger Option
Frame Handle
Trigger Level

Trigger Channel

 U32

 U16

 U16

Valid Channel Numbers

Board Configuration Differential Single-ended

DAS-1800AO Series board 0 to 7 0 to 15

DAS-1800AO Series board with
N EXP-1800 expansion boards
attached

Not applicable 0 to 15(N + 1)

K_SetADTrig (cont.)

4-61

Trigger Level Level at which the trigger event occurs, specified
in raw counts.
Valid values : 0 to 4,095 for Unipolar

−2048 to 2047 for Bipolar

Error In Error information.

Error Out Error information.

Remarks Trigger Option sets the value of the Trigger Polarity and Trigger
Sensitivity elements: Trigger Channel sets the value of the Trigger
Channel element: Trigger Level sets the value of the Trigger Level
element.

You specify the value for Trigger Level in raw counts. Refer to
Appendix B for information on converting voltage to a raw count.

K_SetADTrig does not affect the operation defined by Frame Handle
unless the Trigger Source element is set to external (using K_SetTrig)
before Frame Handle is used as an input to K_IntStart or K_DMAStart .

See Also K_SetTrig

 I32

K_SetBuf

4-62 VI Reference

Purpose Specifies the starting address of a previously allocated buffer.

Description For the operation defined by Frame Handle, this VI specifies the starting
address of a previously allocated buffer in Buffer Address and the number
of samples (the size of the buffer) in Number of Samples.

Parameters

Frame Handle Handle to the frame that defines the operation.

Buffer Address Starting address of buffer.

Number of Samples Number of samples.
Valid values: 0 to 65,535

Error In Error information.

Error Out Error information.

Remarks Use this VI for buffers allocated using K_IntAlloc . For buffers allocated
using K_DMAAlloc , use K_SetDMABuf .

Do not use this VI if you are using multiple buffers: use K_BufListAdd
to specify the starting addresses of multiple buffers.

Buffer Address sets the value of the Buffer element: Number of Samples
sets the value of the Number of Samples element.

See Also K_DMAAlloc, K_IntAlloc, K_BufListAdd, K_SetDMABuf

Error In
Error Out

Buffer Address

Number of Samples

 K_SetBuf

Frame Handle

 U32

 U32

 U32

K_SetBurstTicks

4-63

Purpose Sets the burst mode conversion rate.

Description For the operation defined by Frame Handle, this VI stores the number of
clock ticks between conversions of each channel in a scan in Clock Ticks
Between Conversions.

Parameters

Frame Handle Handle to the frame that defines the A/D
operation.

Clock Ticks Between The number of clock ticks between conversions
Conversions of each channel in a scan.

Valid values: 3 to 63

Error In Error information.

Error Out Error information.

Remarks Refer to page 2-15 for more information on burst mode conversion rate.

Error Out

 K_SetBurstTicks
Error In

Frame Handle

Clock Ticks
Between
Conversions

 U32

 U16

K_SetChn

4-64 VI Reference

Purpose Specifies a single channel.

Description For the operation defined by Frame Handle, this VI specifies the single
channel used in Channel.

Parameters

Frame Handle Handle to the frame that defines the operation.

Channel Channel on which to perform operation.
Valid channel numbers are shown below:

Error In Error information.

Error Out Error information.

Remarks The value you specify in Channel sets the Start Channel element and the
Stop Channel element in the frame identified by Frame Handle.

Error In Error Out

Channel

 K_SetChn

Frame Handle

 U32

 U16

Operation Valid Channel Numbers

Analog input; no EXP-1800
expansion boards attached

Differential: 0 to 7
Single-ended: 0 to 15

Analog input; N EXP-1800
expansion boards attached

Differential: Not applicable
Single-ended: 0 to 15(N + 1)

Analog output 0 = DAC 0
1 = DAC 1

K_SetChnGAry

4-65

Purpose Sets the channel-gain array element.

Description For the operation defined by Frame Handle, this VI sets the channel-gain
array element defined by ChnGAry Handle In.

Parameters

Frame Handle Handle to the frame that defines the operation.

ChnGAry Handle In Handle to the channel-gain array.

Error In Error information.

Error Out Error information.

Remarks For analog input operations, the maximum number of channel-gain
entries is 256. Refer to page 2-12 for information on setting up a
channel-gain array for analog input operations.

For analog output operations, the maximum number of channel-gain
entries is two. In addition, you cannot read channel 0 after channel 1.
Refer to page 2-27 for information on setting up a channel-gain array for
analog output operations.

See Also K_AllocChnGAry, K_FormatChnGAry, K_FreeChnGAry

Error Out

 K_SetChnGAry
Error In

Frame Handle

ChnGAry
Handle In

 U32

K_SetClk

4-66 VI Reference

Purpose Specifies the pacer clock source.

Description For the operation defined by Frame Handle, this VI specifies the pacer
clock source in Clock Source.

Parameters

Frame Handle Handle to the frame that defines the operation.

Clock Source Pacer clock source.
Valid values: 0 for Internal

1 for External

Error In Error information.

Error Out Error information.

Remarks For A/D, DI, and DO frames, the internal clock source is the internal A/D
pacer clock. For D/A frames, the internal clock source is the internal D/A
pacer clock.

If you want to pace an analog output operation using the internal A/D
pacer clock source, set the clock source to internal, then use K_SetSync.

The external pacer clock source is an external signal connected to the
XPCLK pin; this clock source can pace either an analog input or an
analog output operation.

Refer to page 2-13 (for analog input operations), page 2-28 (for analog
output operations), and page 2-38 (for digital I/O operations) for more
information about pacer clock sources.

Error In Error Out

Clock Source

 K_SetClk

Frame Handle

 U32

 U16

K_SetClk (cont.)

4-67

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify internal as the default
clock source. The default active edge is negative for an external clock
source; use K_SetExtClkEdge to specify a positive active edge.

K_SetClkRate

4-68 VI Reference

Purpose For analog input operations, specifies the number of clock ticks used by
the internal A/D pacer clock. For analog output operations, specifies the
number of clock ticks used by the internal D/A pacer clock.

Description For the operation defined by Frame Handle, this VI specifies the number
of clock ticks between conversions in Clock Ticks Between Conversions.

Parameters

Frame Handle Handle to the frame that defines the operation.

Clock Ticks Between Number of clock ticks.
Conversions Valid values:

15 to 4,294,967,295 for A/D pacer clock
1 to 655,350 for D/A pacer clock

Error In Error information.

Error Out Error information.

Remarks The value you specify in Clock Ticks Between Conversions sets the Pacer
Clock Rate element in the frame identified by Frame Handle.

For analog input frames, this VI applies to the 5 MHz internal A/D pacer
clock source only. The tick resolution is 0.2 µs.

For analog output frames, this VI applies to the 5 MHz internal D/A pacer
clock source only. The tick resolution is 0.2 µs. The driver enables the
optional divide-by-ten prescaler based on the value of Clock Ticks
Between Conversions.

Error Out

 K_SetClkRateError In

Frame Handle

Clock Ticks
Between
Conversions

 U32

 U32

K_SetClkRate (cont.)

4-69

When synchronizing D/A conversions with A/D conversions, the
sampling rate of the analog output operation is determined by the A/D
pacer clock source. Use K_SetClkRate, specifying an A/D frame, to set
the sampling rate of a synchronized analog output operation. Use
K_SetClk to specify the clock source as internal.

Refer to page 2-13 for more information on the internal A/D pacer clock.
Refer to page 2-28 for more information on the internal D/A pacer clock.

See Also K_GetClkRate

K_SetContRun

4-70 VI Reference

Purpose Specifies continuous buffering mode.

Description For the operation defined by Frame Handle, this VI sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

Parameters

Frame Handle Handle to the frame that defines the operation.

Error In Error information.

Error Out Error information.

Remarks K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify single-cycle as the default
buffering mode.

Error Out

 K_SetContRun

Error In

Frame Handle

 U32

Operation See

Analog input page 2-16

Analog output page 2-30

Digital I/O page 2-39

K_SetDITrig

4-71

Purpose Sets up an external digital trigger.

Description This VI specifies the digital trigger polarity in Trigger Option for the
operation defined by Frame Handle.

Parameters

Frame Handle Handle to the frame that defines the operation.

Trigger Option Trigger polarity and sensitivity.
Valid values:
0 for Positive-edge, pre-, post-, or about-trigger
 operation
2 for Negative-edge, pre-, post-, or about-trigger
 operation
4 for Positive-edge, retrigger operation
6 for Negative-edge, retrigger operation

Trigger Channel Digital input channel.
Valid value: 0

Trigger Pattern Trigger pattern.

Error In Error information.

Error Out Error information.

Error Out

 K_SetDITrig
Error In

Trigger Option
Frame Handle

Trigger Channel

Trigger Pattern

 U32

 U16

 U16

 U32

K_SetDITrig (cont.)

4-72 VI Reference

Remarks Trigger Option sets the value of the Trigger Polarity and Trigger
Sensitivity elements used to either start a pre-, post-, or about-trigger
analog input operation or to retrigger an analog output operation.

Trigger Channel sets the value of the Trigger Channel element.

Trigger Pattern sets the value of the Trigger Pattern element. Since the
DAS-1800 Series VI driver does not currently support digital pattern
triggering, Trigger Pattern is not used. It is provided for future
compatibility.

K_SetDITrig does not affect the operation defined by Frame Handle
unless the Trigger Source element is set to External (using K_SetTrig)
before Frame Handle is used as an input to K_IntStart or K_DMAStart .
Additionally, if you want to retrigger a waveform from the D/A FIFO, the
Buffering Mode element must be set to Continuous (using
K_SetContRun) before Frame Handle is used as a input to K_IntStart
or K_DMAStart .

See Also K_SetTrig

K_SetDMABuf

4-73

Purpose Sets the values of a DMA buffer address and the Number of Samples
element.

Description For the operation specified by Frame Handle, this VI stores the address of
the currently allocated buffer in Buffer Address and the number of
samples stored in the buffer in Number of Samples.

Parameters

Frame Handle Handle to the frame that defines the DMA-mode
operation.

Buffer Address Starting address of buffer.

Number of Samples Number of samples.
Valid values: 0 to 65,535

Error In Error information.

Error Out Error information.

Remarks Use this VI for buffers allocated using K_DMAAlloc . For buffers
allocated using K_IntAlloc , use K_SetBuf.

Buffer Address contains the value of the Buffer element.

Number of Samples contains the value of the Number of Samples
element.

See Also K_DMAAlloc, K_BufListAdd

Error Out

 K_SetDMABuf
Error In

Buffer Address

Frame Handle

Number of Samples

 U32

 U32

 U32

K_SetExtClkEdge

4-74 VI Reference

Purpose Specifies the active edge of the external pacer clock.

Description For the operation defined by Frame Handle, this VI sets the active edge of
the external pacer clock to the value represented by External Clock Edge
and sets the External Clock Edge element in the frame accordingly.

Parameters

Frame Handle Handle to the frame that defines the operation.

External Clock Edge Active edge of external pacer clock.
Valid values: 0 for Negative edge

1 for Positive edge

Error In Error information.

Error Out Error information.

Remarks K_SetExtClkEdge does not affect the operation defined by Frame
Handle unless the Trigger Source element is set to External (using
K_SetTrig) before Frame Handle is used as an input to K_IntStart or
K_DMAStart .

Error Out

 K_SetExtClkEdge

Error In

Frame Handle

External Clock Edge

 U32

 U16

K_SetG

4-75

Purpose Sets the gain code for an analog input or analog output operation.

Description For the operation defined by Frame Handle, this VI specifies the gain
code for a single channel or for a group of consecutive channels in Gain
Code.

Parameters

Frame Handle Handle to the frame that defines the operation.

Gain Code Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels

Error In Error information.

Error Out Error information.

Remarks This VI is valid for A/D and D/A frames.

The value you specify in Gain Code sets the Gain element in the frame
identified by Frame Handle.

For analog input operations, refer to Table 2-2 on page 2-7 for the gain
and input range associated with each gain code. For analog output
operations, refer to Table 2-3 on page 2-26 for the range associated with
each gain code

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify 0 as the default gain
code.

See Also K_SetStartStopG

Error In Error Out

Gain Code

 K_SetG

Frame Handle

 U32

 U16

K_SetGate

4-76 VI Reference

Purpose Specifies the status of the hardware gate.

Description For the operation defined by Frame Handle, this VI specifies the status of
the hardware gate in Gate Status.

Parameters

Frame Handle Handle to the frame that defines the operation.

Gate Status Status of the hardware gate.
Valid values: 0 for Gate disabled

1 for Positive gate enabled
2 for Negative gate enabled

Error In Error information.

Error Out Error information.

Remarks For the operation defined by Frame Handle, this VI specifies the status of
the hardware gate in Gate Status.

External gating is supported for analog input and analog output
operations. You cannot enable the hardware gate if you are using an
external digital trigger.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify disabled as the default
gate setting.

Error In Error Out

Gate Status

 K_SetGate

Frame Handle

 U32

 U16

K_SetSSH

4-77

Purpose Enables or disables SSH mode.

Description For the operation defined by Frame Handle, this VI stores the code that
indicates the SSH mode in SSH Mode.

Parameters

Frame Handle Handle to the frame that defines the operation.

SSH Mode Code that indicates the status of SSH mode.
Valid values: 0 for Disabled

1 for Enabled

Error In Error information.

Error Out Error information.

Remarks K_GetADFrame and K_ClearFrame also disable SSH mode.

Refer to page 2-13 for information on SSH mode.

Error In Error Out

SSH Mode

 K_SetSSH

Frame Handle

 U32

 U16

K_SetStartStopChn

4-78 VI Reference

Purpose Specifies the first and last channels in a group of consecutive channels.

Description For the operation defined by Frame Handle, this VI specifies the first
channel in a group of consecutive channels in Start Channel and the last
channel in the group of consecutive channels in Stop Channel.

Parameters

Frame Handle Handle to the frame that defines the operation.

Start Channel First channel in a group of consecutive channels.
Valid values are shown below:

Stop Channel Last channel in a group of consecutive channels.
Valid values: Same as for Start Channel above.

Error In Error information.

Error Out Error information.

 K_SetStartStopChn

Error In Error Out

Frame Handle

Stop Channel

Start Channel

 U32

 U16

Operation Valid Channel Numbers

Analog input; no EXP-1800
expansion boards attached

Differential: 0 to 7
Single-ended: 0 to 15

Analog input; N EXP-1800
expansion boards attached

Differential: Not applicable
Single-ended: 0 to 15(N + 1)

Analog output 0 for DAC 0
1 for DAC 1

 U16

K_SetStartStopChn (cont.)

4-79

Remarks For analog input channels, the start channel can be higher than the stop
channel. For example, the start channel can be 3 and the stop channel can
be 0. Refer to page 2-8 for more information.

For analog output channels, the start channel must be less than or equal to
the stop channel. For example, if the start channel is DAC 1, the stop
channel must be DAC 1. Refer to page 2-26 for more information.

The values you specify set the following elements in the frame identified
by Frame Handle:

● Start Channel sets the value of the Start Channel element.

● Stop Channel sets the value of the Stop Channel element.

K_GetADFrame and K_ClearFrame set the Start Channel and Stop
Channel elements to 0.

See Also K_SetStartStopG

K_SetStartStopG

4-80 VI Reference

Purpose Specifies the first and last channels in a group of consecutive channels and
sets the gain code for all channels in the group.

Description For the operation defined by Frame Handle, this VI specifies the first
channel in a group of consecutive channels in Start Channel, the last
channel in a group of consecutive channels in Stop Channel, and the gain
code for all channels in the group in Gain Code.

Parameters

Frame Handle Handle to the frame that defines the operation.

Start Channel First channel in a group of consecutive channels.
Valid values are shown below:

Stop Channel Last channel in a group of consecutive channels.
Valid values: Same as for Start Channel above.

Gain Code Valid values: 0 to 3 for DAS board channels
0 to 7 for EXP-1800 channels.

 K_SetStartStopG
Error In

Error Out

Frame Handle

Stop Channel

Start Channel

Gain Code

 U32

 U16

Operation Valid Channel Numbers

Analog input; no EXP-1800
expansion boards attached

Differential: 0 to 7
Single-ended: 0 to 15

Analog input; N EXP-1800
expansion boards attached

Differential: Not applicable
Single-ended: 0 to 15(N + 1)

Analog output 0 for DAC 0
1 for DAC 1

 U16

 U16

K_SetStartStopG (cont.)

4-81

Error In Error information.

Error Out Error information.

Remarks For analog input channels, the start channel can be higher than the stop
channel. For example, the start channel can be 3 and the stop channel can
be 0. Refer to page 2-8 for more information.

For analog output channels, the start channel must be less than or equal to
the stop channel. For example, if the start channel is DAC 1, the stop
channel must be DAC 1. Refer to page 2-26 for more information.

The values you specify set the following elements in the frame identified
by Frame Handle:

● Start Channel sets the value of the Start Channel element.

● Stop Channel sets the value of the Stop Channel element.

● Gain Code sets the value of the Gain element.

For analog input operations, refer to Table 2-2 on page 2-7 for the gain
and input range associated with each gain code.

For analog output operations, refer to Table 2-3 on page 2-26 for the
range associated with each gain code.

K_GetADFrame and K_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

K_SetSync

4-82 VI Reference

Purpose Specifies the synchronizing clock source for analog output operations.

Description This VI sets up conversion clock synchronization between the Frame
Handle and another frame denoted by the mode that is set.

Parameters

Frame Handle Handle to the frame that defines the operation.

Mode Synchronizing clock source.
Valid values: 0 for None

1 for the internal A/D pacer clock
if the board is performing A/D
conversions in paced mode; or
the burst mode conversion clock if
the board is performing A/D
conversions in burst mode.

Error In Error information.

Error Out Error information.

Remarks DAS-1800AO Series boards allow you to synchronize D/A conversions
with A/D conversions provided that the ADC is running using the internal
A/D pacer clock. D/A conversions are synchronized with A/D channel
conversions.

The sampling rate of a synchronized analog output operation is
determined by the internal A/D pacer clock source; use K_SetClkRate,
specifying an A/D frame, to set the sampling rate. Use K_SetClk to
specify the clock source as external for a D/A frame.

Error In Error Out

Mode

 K_SetSync

Frame

 U32

 U16

K_SetTrig

4-83

Purpose Specifies the trigger source.

Description For the operation defined by Frame Handle, this VI specifies the trigger
source in Trigger Source.

Parameters

Frame Handle Handle to the frame that defines the operation.

Trigger Source Valid values: 0 for Internal trigger
1 for External trigger

Error In Error information.

Error Out Error information.

Remarks An internal trigger is a software trigger; conversions begin when the
operation is started. An external trigger is either an analog trigger or a
digital trigger; conversions begin when the trigger event occurs.

When performing a pre-trigger or about-trigger acquisition operation,
mode, Trigger Source refers to the start trigger.

If Trigger Source = 1, an external digital trigger (positive edge on TGIN)
is assumed. Use K_SetDITrig to change the conditions of the digital
trigger. Use K_SetADTrig to specify the conditions for an external
analog trigger.

K_GetADFrame and K_ClearFrame set the trigger source to internal.

Error In Error Out

Trigger Source

 K_SetTrig

Frame Handle

 U32

 U16

K_SetTrigHyst

4-84 VI Reference

Purpose Specifies the hysteresis value.

Description For the operation defined by Frame Handle, this VI specifies the
hysteresis value used for an analog trigger in Hysteresis Value.

Parameters

Frame Handle Handle to the frame that defines the operation.

Hysteresis Value Hysteresis value, specified in raw counts.
Valid values: 0 to 4,095

Error In Error information.

Error Out Error information.

Remarks The value you specify in Hysteresis Value sets the Trigger Hysteresis
element in the frame identified by Frame Handle.

You must specify the hysteresis value in raw counts. Refer to Appendix B
for information on converting the hysteresis voltage to a raw count.

K_SetTrigHyst does not affect the operation defined by Frame Handle
unless the Trigger Source element is set to External (using K_SetTrig)
before Frame Handle is used as an input to K_IntStart or K_DMAStart .

Refer to page 2-17 for more information about analog triggers.

Error Out

 K_SetTrigHyst

Error In

Hysteresis Value

Frame Handle

 U32

 U16

A-1

A

Error Codes

Table A-1 lists the error codes that are returned by the DAS-1800 Series
VI Driver, possible causes for error conditions, and possible solutions for
resolving error conditions.

If you cannot resolve an error condition, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error Codes

Error Code

Cause SolutionHex Decimal

0 0 No error has been detected. Status only; no action is necessary.

6000 24576

Error in configuration file:

 The
configuration file you specified in

K_OpenDriver

 is corrupt, does
not exist, or contains one or more
undefined keywords.

Check that the file exists at the
specified path. Check for illegal
keywords in file; you can avoid
illegal keywords by using the
configuration utility to create and
modify configuration files.

6001 24577

Illegal base address in
configuration file:

The board's
base I/O address in the
configuration file is illegal and/or
does not match the base address
switches on the board.

Use the configuration utility to
change the base I/O address to one
that matches the base address
switches on the board.

6002 24578

Illegal IRQ level in configuration
file:

 The interrupt level in the
configuration file is illegal.

Use the configuration utility to
change the interrupt level to a legal
one for your board. Refer to the
user’s guide for legal interrupt
levels.

A-2 Error Codes

6003 24579

Illegal DMA channel in
configuration file:

 The DMA
channel in the configuration file is
illegal.

Use the configuration utility to
change the DMA channel to a legal
one for your board. Refer to the
user’s guide for legal DMA
channels.

6005 24581

Illegal channel number:

 The
specified channel number is illegal
for the board and/or for the range
type (unipolar or bipolar).

Specify a legal channel number.
Refer to the user’s guide or to

K_SetStartStopChn

 in Chapter 4
for legal channel numbers.

6006 24582

Illegal gain code:

The specified
analog I/O channel gain code is
illegal for this board.

Specify a legal gain code. Refer to
the user’s guide or to the
description of

K_SetG

 in
Chapter 4 for a list of legal gain
codes.

6007 24583

Illegal DMA address:

A VI
specified a buffer address that is
not suitable for a DMA operation
for the number of samples
required.

Use

K_DMAAlloc

 to allocate
dynamic buffers for DMA
operations. In Windows, make sure
that the Keithley Memory Manager
is installed; refer to Appendix D of
the user’s guide for information.

6008 24584

Illegal number in configuration
file:

 The configuration file contains
one or more numeric values that
are illegal.

Use the configuration utility to
check and then change the
configuration file.

600A 24586

Configuration file not found:

 The
driver cannot find the
configuration file specified as an
argument to

K_OpenDriver

.

Check that the file exists at the
specified path. Check that the file
name is spelled correctly in the

K_OpenDriver

 parameter list.

600B 24587

Error returning DMA buffer:

DOS returned an error in INT 21H
function 49H during the execution
of

K_DMAFree

.

Check that the buffer handle passed
to

K_DMAFree

 was previously
obtained using

K_DMAAlloc

.

600C 24588

Error returning interrupt
buffer:

 The buffer handle specified
in

K_IntFree

 is invalid.

Check the buffer handle stored by

K_IntAlloc

 and make sure that it
was not modified.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-3

600D 24589

Illegal frame handle:

 The
specified frame handle is not valid
for this operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600E 24590

No more frame handles:

 No
frames are left in the pool of
available frames.

Use

K_FreeFrame

 to free a frame
that the application is no longer
using.

600F 24591

Requested buffer size too large:

The requested buffer cannot be
dynamically allocated because of
its size.

Specify a smaller buffer size; refer
to the description of

K_IntAlloc

 in
Chapter 4 for the legal range. If in
Windows Enhanced mode with the
Keithley Memory Manager
(VDMAD.386) installed, use
KMMSETUP.EXE to increase the
reserved buffer heap size.

6010 24592

Cannot allocate interrupt buffer:
K_IntAlloc

 failed because there
was not enough available DOS
memory.

Remove some Terminate and Stay
Resident programs (TSRs) that are
no longer needed.

6012 24594

Interrupt buffer deallocation
error:

 An error occurred when

K_IntFree

 attempted to free a
buffer handle.

Make sure that the buffer handle
passed as an argument to

K_IntFree

 was previously
obtained using

K_IntAlloc

.

6015 24597

DMA Buffer too large:

 The
number of samples specified in

K_DMAAlloc

 is too large.

Refer to the description of

K_DMAAlloc

 in Chapter 4 for the
buffer size range.

6016 24598

VDS - Region not contiguous:

An
error occurred while using
Windows Virtual DMA Services.
You tried to use

K_DMAAlloc

 in
Windows Enhanced mode and the
Keithley Memory Manager
(VDMAD.386) was not installed

Refer to Appendix D in the user’s
guide for information on how to
install and set up the Keithley
Memory Manager (VDMAD.386).

6017 24599

VDS - DMA wraparound:

 See
error 6016.

 See error 6016.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-4 Error Codes

6018 24600

VDS - Unable to lock region:

See
error 6016.

See error 6016.

6019 24601

VDS - No buffer available:

See
error 6016.

See error 6016.

601A 24602

VDS - Region too large:

See error
6016.

See error 6016.

601B 24603

VDS - Buffer in use:

See error
6016.

See error 6016.

601C 24604

VDS - Illegal region:

See error
6016.

See error 6016.

601D 24605

VDS - Region not locked:

See
error 6016.

See error 6016.

601E 24606

VDS - Illegal page:

See error
6016.

See error 6016.

601F 24607

VDS - Illegal buffer:

See error
6016.

See error 6016.

6020 24608

VDS - Copy out of range:

See
error 6016.

See error 6016.

6021 24609

VDS - Illegal DMA channel:

See
error 6016.

See error 6016.

6022 24610

VDS - Count overflow:

See error
6016.

See error 6016.

6023 24611

VDS - Count underflow:

See
error 6016.

See error 6016.

6024 24612

VDS - Function not supported:

See error 6016.
See error 6016.

6025 24613

Illegal OBM mode:

 The mode
number specified in

K_SetOBMMode

 is illegal.

If applicable to your board, refer to
the description of

K_SetOBMMode

 in Chapter 4 for
legal mode values.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-5

6026 24614

Illegal DMA structure:

An error
occurred during the execution of

K_DMAFree

.

Try using

K_DMAFree

 again. If
the error continues, contact the
Keithley MetraByte Applications
Engineering Department.

6027 24615

DMA allocation error:

 See error
6026.

 See error 6026.

6028 24616

NULL DMA handle:

See error
6026.

 See error 6026.

6029 24617

DMA unlock error:

See error
6026.

 See error 6026.

602A 24618

DMA free error:

See error 6026. See error 6026.

602B 24619

Not enough memory to
accommodate request:

The
number of samples you requested
in the Keithley Memory Manager
is greater than the largest
contiguous block available in the
reserved heap.

Specify a smaller number of
samples. Free a previously
allocated buffer. Use the
KMMSETUP utility to expand the
reserved heap.

602C 24620

Requested buffer size exceeds
maximum:

 The number of
samples you requested from the
Keithley Memory Manager is
greater than the allowed maximum.

Specify a value within the legal
range when calling

K_DMAAlloc

in Windows Enhanced mode. Refer
to the description of

K_DMAAlloc

in Chapter 4 for legal values.

602D 24621

Illegal device handle:

A bad board
handle was passed to a VI such as

K_GetADFrame

. The handle used
was not initialized through a call to

K_GetDevHandle

,

or it was
corrupted by your program.

Check the board handle value.

602E 24622

Illegal Setup option:

 An illegal
option was specified to a VI that
accepts a user option, such as

K_SetDITrig

.

Check the option value passed to
the VI where the error occurred.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-6 Error Codes

6030 24624

DMA word-page wrap:

 During

K_DMAAlloc

, a DMA word-page
wrap condition occurred and the
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

Reduce the number of samples and
retry. If in Windows Enhanced
mode, use the KMMSETUP utility
to expand the reserved heap.

6031 24625

Illegal memory handle:

 A bad
buffer handle was passed to

K_IntFree

 or

K_DMAFree

. The
handle used was not initialized
through a call to

K_IntAlloc

 or

K_DMAAlloc

, or it was corrupted
by you program.

Restart your program and monitor
the buffer handle values.

6032 24626

Out of memory handles:

 An
attempt to allocate a memory block
using

K_IntAlloc

 or

K_DMAAlloc

 failed because the
maximum number of handles has
already been assigned.

Use

K_IntFree

 or

K_DMAFree

 to
free previously allocated memory
blocks before allocating again.

6034 24628

Memory corrupted:

Int 21H
function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

Recheck the parameters set by

K_DMAAlloc

 and

K_SetDMABuf

. If a fatal system
error, restart your computer.

6035 24629

Driver in use:

 The driver
attempted to configure a device
that had already been configured
by a call to

K_OpenDriver

. (This
can occur since, under Windows, it
is possible to open the same driver
from multiple programs that are
running simultaneously.)

Make sure that you configure the
driver for a particular device only
once during a single Windows
session. If a driver has already been
configured, pass a null string as the
second argument to

K_OpenDriver

.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-7

6036 24630

Illegal driver handle:

 The
specified driver handle is not valid.

Someone may have closed the
driver; if so, use

K_OpenDriver

to
reopen the driver with the desired
driver handle. Try again using
another driver handle.

6037 24631

Driver not found: The specified
driver cannot be found.

Check your link statement to make
sure the specified driver is
included. Make sure that the board
name string is entered correctly in
K_OpenDriver .

6038 24632 Invalid source pointer: The
pointer to the source buffer that
you passed as an argument to
K_MoveBufToArray is invalid
for the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

Check the pointer to the source
buffer and the number of samples
to transfer that you specified in
K_MoveBufToArray .

6039 24633 Invalid destination pointer: The
pointer to the destination buffer
(local array) that you passed to
K_MoveBufToArray is invalid
for the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)

Check the dimension of the local
array and the number of samples to
transfer that you specified in
K_MoveBufToArray .

603A 24634 Illegal setup value: An illegal
value was passed to the VI in
which the error occurred.

Check the legal ranges of all
parameters passed to this VI.

603B 24635 Error freeing buffer selector:
K_DMAFree or K_IntFree failed
because one or more of the
selectors that reference the
memory buffer could not be freed.

Check that the memory buffer
being freed was previously
obtained through K_DMAAlloc or
K_IntAlloc.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-8 Error Codes

603C 24636 Error allocating buffer selector:
K_DMAAlloc or K_IntAlloc
failed because a selector could not
be allocated from Window’s Local
Descriptor Table.

Close all applications and restart
Windows. If the error continues,
contact the Keithley MetraByte
Applications Engineering
Department.

603D 24637 Error allocating memory buffer:
K_DMAAlloc or K_IntAlloc
failed because a necessary internal
buffer could not be allocated to
complete the operation.

Close all applications and restart
Windows. If the error continues,
contact the Keithley MetraByte
Applications Engineering
Department.

7000 28672 No board name: K_OpenDriver
did not find a board name in the
specified configuration file.

Specify a legal board name in the
configuration file.

7001 28673 Illegal board name: The board
name in the specified configuration
file is illegal.

Specify a legal board name in the
configuration file.

7002 28674 Illegal board number:
K_OpenDriver found an illegal
board number in the specified
configuration file.

Specify a legal board number: 0, 1,
or 2

7003 28675 Illegal base address:
K_OpenDriver found an illegal
base address in the specified
configuration file.

Specify a base address in the
inclusive range &H200 (512) to
&H3F0 (1008) in increments of
10H (16). Make sure that &H
precedes hexadecimal numbers.

7004 28676 Illegal DMA channel:
K_OpenDriver found an illegal
DMA channel in the specified
configuration file.

Specify a legal DMA channel: 5, 6,
7, 5+6, 6+7, or 7+5

7005 28677 Illegal interrupt level :
K_OpenDriver found an illegal
interrupt level in the specified
configuration file.

Specify a legal interrupt level: 3, 5,
7, 10, 11, or 15

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-9

7007 28679 Illegal A/D channel mode:
K_OpenDriver found an illegal
input range type in the specified
configuration file.

Specify a legal input range type:
bipolar, unipolar

7008 28680 Illegal A/D channel
configuration: K_OpenDriver
found an illegal input configuration
in the specified configuration file.

Specify a legal input configuration:
single-ended, differential

700A 28682 Illegal number of SSH boards:
The number of SSH-8s in the
configuration file is not valid.

Use the configuration utility to
specify the number of SSH-8s as a
number in the range 0 to 8.

700B 28683 Illegal SSH8 channel: The SSH-8
channel in the configuration file is
not valid.

Use the configuration utility to
specify the SSH-8 channel as a
number in the range 0 to 7.

700C 28684 Illegal SSH8 gain: The SSH-8
channel gain in the configuration
file is not valid.

Use the configuration utility to
specify the SSH-8 channel gain as
0.5, 5, 50, or 250.

700D 28685 DAS Spec rev number is bad: A
board-specific component is
incompatible with the DAS shell
version.

Re-install the DAS driver software
from the original disks for this
board.

700E 28686 Resource busy: The application
program attempted to start an
operation while a similar operation
was in progress.

Use K_IntStop or K_DMAStop
to stop the in-progress operation
before initiating the second
operation.

700F 28687 Illegal analog trigger, A/D busy:
An analog input operation was in
progress when the application
attempted to start an analog output
operation for which an analog
trigger was defined.

Wait until the analog input
operation is done or use
K_IntStop or K_DMAStop to
stop the analog input operation
before initiating the analog output
operation.

7010 28688 Illegal retrigger mode: The
number of output values for a
re-triggered analog output
operation exceeds 2048.

Specify the number of output
values as 2048 or less.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-10 Error Codes

7011 28689 D/A FIFO Underflow: The pacer
clock rate specified for an analog
output operation is too fast.

Specify a slower pacer clock rate.

7012 28690 Illegal burst mode conversion
clock divider: The burst rate
divider passed to
K_SetBurstTicks is out of range.

Specify a burst rate divider in the
range 3 to 255.

7013 28691 DMA channel busy: The
application program attempted to
start a DMA-mode analog input
operation while another
DMA-mode analog input operation
was active.

Use K_DMAStop to stop the
active operation before initiating
the second operation.

7014 28692 Counter 0 resource busy: The
application program attempted to
start a DMA-mode analog input
operation with about-trigger mode
enabled while another DMA-mode
with about-trigger operation was
active.

Use K_DMAStop to stop the
active operation before initiating
the second operation.

7015 28693 Illegal number of about-trigger
samples: The number of samples
passed to K_SetAboutTrig is out
of range.

Specify a number of samples in the
range 1 to 65,536.

7016 28694 Illegal about-trigger mode:
About-trigger mode was enabled
for an interrupt-mode operation.

Disable about-trigger mode
(about-trigger mode is available for
DMA-mode analog input
operations only).

7017 28695 Illegal number of EXP-1800
boards: The number of EXP-1800
expansion accessories specified in
the configuration file is not valid.

Run CFG1800.EXE and specify
the number of EXP-1800s as a
number in the range 0 to 16.

8001 32769 Function not supported: You
have attempted to use a VI not
supported by the VI Driver.

Contact the Keithley MetraByte
Applications Engineering
Department.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-11

8003 32771 Illegal board number: An illegal
board number was specified in
K_OpenDriver.

Refer to the description of
K_GetDevHandle in Chapter 4
for legal board numbers.

8004 32772 Illegal error number: The error
message number specified in
K_GetErrMsg is invalid.

The error number must be one the
error numbers listed in this
appendix.

8005 32773 Board not found at configured
address: K_OpenDriver does not
detect the presence of a board.

Make sure that the base address
setting of the switches on the board
matches the base address setting in
the configuration file.

8006 32774 A/D not initialized: You attempted
to start a frame-based analog input
operation without the A/D frame
being properly initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8007 32775 D/A not initialized: You attempted
to start a frame-based analog
output operation without the D/A
frame being properly initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8008 32776 Digital input not initialized: You
attempted to start a frame-based
digital input operation without the
DI frame being properly
initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8009 32777 Digital output not initialized: You
attempted to start a frame-based
digital output operation without the
DO frame being properly
initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

800B 32779 Conversion overrun: Data was
overwritten before it was
transferred to the computer’s
memory.

Adjust the clock source to slow
down the rate at which the board
acquires data. Remove other
application programs that are
running and using computer
resources.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-12 Error Codes

8016 32790 Interrupt overrun : The board
communicated a hardware event to
the software by generating a
hardware interrupt, but the
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Check the maximum throughput
rate for your computer’s
programming environment and use
K_SetClkRate to specify an
appropriate rate.

801A 32794 Interrupts already active: You
have attempted to start an operation
whose interrupt level is being used
by another system resource.

Use K_IntStop to stop the first
operation before starting the
second operation.

801B 32795 DMA already active: You
attempted to start a DMA-mode
operation using a DMA channel
that is currently used by another
active operation.

Use K_DMAStop to stop the first
operation before starting the
second operation.

8020 32800 FIFO Overflow event detected:
During data acquisition, the
temporary on-board data storage
(FIFO) overflowed.

The conversion rate is too fast for
your computer’s programming
environment; use K_SetClkRate
to reduce the conversion rate. If
you are using DMA-mode and
your board supports dual-DMA,
use the configuration utility to
reconfigure your board to use
dual-DMA.

8021 32801 Illegal clock sync mode: The two
operations you are trying to
synchronize cannot be
synchronized on your board.

Check the synchronizing clock
source that you specified in
K_SetSync.

FFFF 65535 User aborted operation You pressed [Ctrl]+[Break]
while waiting for an analog trigger
event to occur.

Table A-1. Error Codes (cont.)

Error Code

Cause SolutionHex Decimal

B-1

B

Converting Data Formats

The DAS-1800 Series VI Driver can read and write raw counts only.
When reading a value (as in

K_ADRead

), you may want to convert the
raw count to a more meaningful voltage value; when writing a value (as in

K_SetTrigHyst

), you must convert the voltage value to a raw count.

The remainder of this appendix contains instructions for converting raw
counts to voltage and for converting voltage to raw counts.

Converting Raw Counts to Voltage

You may want to convert raw counts to voltage when reading an analog
input value or when reading the analog trigger level or hysteresis value.

To convert an analog input value to a voltage, use one of the following
equations, where

count

 is the count value, and

span

 is the appropriate
value from Table B-1 on page B-2:

Voltage count span×
4096

---------------------------------=

B-2 Converting Data Formats

For example, assume that you want to read analog input data from a
channel on a DAS-1801AO board configured for unipolar input range
type; the channel collects the data at a gain of 1. The count value is 3072.
The voltage is determined as follows:

Table B-1. Span Values For Analog Input Data Conversion Equations

Board Input Range
Type

Gain Input Range Span (V)

DAS-1801AO Unipolar 1 0 to 5 V 5

5 0 to 1 V 1

50 0 to 100 mV 0.1

250 0 to 20 mV 0.02

Bipolar 1

−

5 to 5 V 10

5

−

1 to 1 V 2

50

−

100 to 100 mV 0.2

250

−

20 to 20 mV 0.04

DAS-1802AO Unipolar 1 0 to 10 V 10

2 0 to 5 V 5

4 0 to 2.5 V 2.5

8 0 to 1.25 V 1.25

Bipolar 1

−

10 to 10 V 20

2

−

5 to 5 V 10

4

−

2.5 to 2.5 V 5

8

−

1.25 to 1.25 V 2.5

3072 5 V ×
4096

--------------------------- 3.75 V=

B-3

As another example, assume that you want to read analog input data from
a channel on a DAS-1802AO board configured for a bipolar input range
type; the channel collects the data at a gain of 2. The count value is 1024.
The voltage is determined as follows:

Converting Voltage to Raw Counts

You must convert voltage to raw counts when specifying an analog output
value, analog trigger level, or hysteresis value.

Specifying an Analog Output Value

To convert a voltage value to a raw count when specifying an analog
output value, use the following equation, where

voltage

 is the desired
voltage, and

span

 is 10 V for the ±5 V range and 20 V for the ±10 V
range:

For example, assume that you want to specify an analog output value of
5 V for a channel whose output range is ±10 V. The raw count is
determined as follows:

Specifying an Analog Trigger Level

To convert a voltage value to a raw count when specifying an analog
trigger level, use one of the following equations, where

V

trig

 is the desired
voltage, and

span

 is 10 V for the ±5 V range and 20 V for the ±10 V
range:

1024 10× V
4096

------------------------------ 2.5 V=

Count voltage 4096×
span

--------------------------------------=

5 V 4096 ×
20 V

--------------------------- 1024=

B-4 Converting Data Formats

Note:

When converting voltage to raw counts to specify an analog trigger
level, always use a gain of 1 to determine which span value to use, no

matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger level of
2.5 V for a channel on a DAS-1801AO board configured for a bipolar
input range type. The raw count is determined as follows:

Specifying a Hysteresis Value

To convert a voltage value to a raw count when specifying a hysteresis
value, use one of the following equations, where

V

hyst

 is the desired
voltage, and

span

 is 10 V for the ±5 V range and 20 V for the ±10 V
range:

Note:

When converting voltage to raw counts to specify a hysteresis
value, always use a gain of 1 to determine which span value to use from

 Table B-1, no matter what the gain of the channel is.

For example, assume that you want to specify an analog trigger hysteresis
value of 0.5 V for a channel on a DAS-1801AO board configured for a
bipolar input range type. The raw count is determined as follows:

Count
Vtrig 4096×

span
------------------------------=

2.5 V 4096 ×
10 V

-------------------------------- 1024=

Count
Vhyst 4096×

span
------------------------------=

1.25 V 4096 ×
10 V

----------------------------------- 512=

X-1

Index

A

allocating memory
analog input operations

2-5

analog output operations

2-25

digital I/O operations

2-36

multiple buffers

2-5

,

2-6

,

2-25

analog input operations
characteristics of

2-4

input range type

2-7

programming tasks

3-11

analog output operations

2-27

characteristics of

2-23

output ranges

2-26

programming tasks

3-16

B

board handle

2-2

board initialization

2-2

buffer handle

2-5

,

2-25

,

2-36

buffering mode
for analog input operations

2-16

for analog output operations

2-30

for digital I/O operations

2-39

C

channel-gain array
for analog input operations

2-12

channels
for analog input operations

2-8

for analog output operations

2-26

for digital input operations

2-36

for digital output operations

2-37

clock sources
for analog input operations

2-13

for analog output operations

2-28

for digital I/O operations

2-38

common-mode ground reference

2-8

conversion rate
for analog input operations

2-14

for analog output operations

2-28

converting data formats
converting raw counts to voltages

B-1

converting voltages to raw counts

B-3

D

DAS-1800 Series VI Driver:

see

 VI driver
data transfer modes:

see

 operation modes
digital I/O operations

2-34

programming tasks

3-22

driver:

see

 VI driver
driver handle

2-2

E

error
codes

A-1

error cluster

2-3

handling

2-3

F

frame handle

3-2

frame types

3-3

frames, default values
A/D frame elements

3-4

D/A frame elements

3-6

DI frame elements

3-8

DO frame elements

3-9

X-2 Index

G

gains and gain codes
for analog input operations

2-7

for analog output operations

2-26

gate
for analog input operations

2-22

for analog output operations

2-33

H

help

1-2

hysteresis, trigger
for analog input operations

2-18

for analog output operations

2-31

I

initializing a board

2-2

initializing the driver

2-2

installing the VI driver

1-1

internal A/D pacer clock

2-14

,

2-29

,

2-38

internal D/A pacer clock

2-28

internal trigger

2-17

,

2-31

interrupt mode
analog input operations

2-4

analog output operations

2-24

digital I/O operations

2-35

K

K_ADRead

4-5

K_AllocChnGAry

4-7

K_BufListAdd

2-6

,

2-25

,

4-8

K_BufListReset

4-9

K_ClearFrame

3-4

,

4-10

K_CloseDriver

4-11

K_ClrAboutTrig

4-12

K_ClrADFreeRun

4-13

K_ClrContRun

4-14

K_DASDevInit

2-2

,

4-15

K_DAWriteGain

4-16

K_DIRead

4-17

K_DMAAlloc

2-5

,

2-25

,

4-18

K_DMAFree 2-6, 2-25, 4-19
K_DMAStart 4-20
K_DMAStatus 4-21
K_DMAStop 4-24
K_DOWrite 4-25
K_FormatChnGAry 4-26
K_FreeChnGAry 4-27
K_FreeDevHandle 2-2, 4-28
K_FreeFrame 3-4, 4-29
K_GetADCommonMode 4-30
K_GetADConfig 4-31
K_GetADFrame 3-3, 3-4, 4-32
K_GetADMode 4-33
K_GetClkRate 4-34
K_GetDAFrame 4-35
K_GetDevHandle 4-36
K_GetDIFrame 4-37
K_GetDOFrame 4-38
K_GetErrMsg 4-39
K_GetShellVer 4-40
K_GetVer 4-41
K_IntAlloc 2-5, 2-25, 2-36, 4-43
K_IntFree 2-6, 2-25, 2-36, 4-44
K_IntStart 4-45
K_IntStatus 4-46
K_IntStop 4-49
K_MoveArrayToBuf 4-50
K_MoveBufToArray 4-51
K_OpenDriver 4-52
K_SetAboutTrig 4-53
K_SetADCommonMode 4-54
K_SetADConfig 4-55
K_SetADFreeRun 4-56
K_SetADMode 4-57
K_SetADTrig 4-58
K_SetBuf 4-60

X-3

K_SetBurstTicks 4-61
K_SetChn 4-62
K_SetChnGAry 4-63
K_SetClk 4-64
K_SetClkRate 4-66
K_SetContRun 4-68
K_SetDITrig 4-69
K_SetDMABuf 4-71
K_SetExtClkEdge 4-72
K_SetG 4-73
K_SetGate 4-74
K_SetSSH 4-75
K_SetStartStopChn 4-76
K_SetStartStopG 4-78
K_SetSync 4-80
K_SetTrig 4-81
K_SetTrigHyst 4-82

M
memory allocation: see allocating memory

O
operation mode

for analog input operations 2-4
for analog output operations 2-23

operations: see analog input operations,
analog output operations, digital
input operations, digital output
operations, system operations

P
programming tasks

general 3-10
operation-specific 3-11

R
revision levels 2-3

S
single-cycle mode

analog input operations 2-16
analog output operations 2-30
digital I/O operations 2-39

system operations 2-1

T
trigger

for analog input operations 2-16
for analog output operations 2-30
for digital I/O operations 2-34, 2-35

trigger hysteresis
for analog input operations 2-18
for analog output operations 2-31

V
VI driver

initialization 2-2
installation 1-1

X-4 Index

VI functional groups
buffer address 4-3
buffering mode 4-3
channel and gain 4-3
clock 4-4
conversion mode 4-3
frame management 4-2
gate 4-4
initialization 4-2
memory management 4-3
miscellaneous 4-4
operation mode 4-2
trigger 4-4

