DAS-1800A0 Series
LabVIEW VI Driver

USER’S GUIDE

DAS-1800A0 Series
LabVIEW “VI Driver
User’s Guide

Revision A — October 1994
Part Number: 93180

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179

Preface

The DAS-1800A0 Series LabVIEW!| Driver User’'s Guideexplains
how to write LabVIEW application programs for DAS-1800A0 Series
boards using the Keithley MetraByte DAS-1800 Series VI Driver.

This manual is intended for LabVIEW application programmers using a
DAS-1800A0 Series board in an IBMPC AT or compatible computer.

It is assumed that users have read the user’s guide for the board and are
familiar with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is further assumed
that users are experienced in programming in LabVIEW and are familiar
with Windows™ and with data acquisition principles.

Manual Organization

The manual is organized as follows:

Chapter 1 explains how to install the DAS-1800 Series VI Driver and
how to get help, if necessary.

Chapter 2 contains the background information needed to use the Vis
included in the DAS-1800 Series VI Driver.

Chapter 3 provides guidelines for using the DAS-1800 Series VIs.

Chapter 4 contains detailed descriptions of the DAS-1800 Series Vs,
arranged in alphabetical order.

Appendix A describes the error codes returned by DAS-1800 Series
Vis.

Appendix B provides instructions for converting raw counts to
voltage and for converting voltage to raw counts.

An index completes the manual.

Conventions Used in this Manual

The following conventions are used throughout this manual:

. References to DAS-1800A0 Series boards apply to the DAS-1801A0
board and the DAS-1802A0 board.

. AllVIs supported by the DAS-1800 Series VI Driver are illustrated
graphically, as shown in the example below. The name of the VI is
shown beneath the DAS-1800 icon; the wires connecting the inputs to
and the outputs from the DAS-1800 icon represent the data type of
the parameters.

Input Parameters Output Parameters
) 4
Numeric Data Numeric Data
Array =— Array
String x x x A ~ String
g
Cluster == =a %= = Cluster
K_ Exagmle VI
Wiring Name of VI

. The data types of the inputs and outputs are represented as follows:

Inputs | Outputs| Data Type
[[116]| | [Ciz6]] | Signed 16-bit integer

132 132 Signed 32-bit integer
[Cus]] | [Cus]] | Unsigned 8-bit integer

U16 U16 Unsigned 16-bit integer

U32 u32 Unsigned 32-bit integer
[16 1| | [11e] | Array of signed 16-bit integers
[uis] | [uie] | Array of unsigned 16-bit integers
[[us2] | [us21] | Array of unsigned 32-bit integers

Cluster

[[abc]| abe String
[C(TF]] | [(ZF]] | Boolean

Related Documents

For more information, refer to the following documents:
. DAS-1800A0 Series User’'s Guide
. LabVIEW manuals

xi

Table of Contents

Preface

Manual Organization e iX
Conventions Used inthisManual X
Related Documentscoi ittt Xi

Getting Started
Installing the VIDriver 1-1
Getting Help. 1-2

Available Operations

System Operationsottt 2-1
Initializing the Driver i 2-2
InitializingaBoard 2-2
Retrieving Revision Levels. 2-3
Handling Errors. 2-3

Analog Input Operations i 2-4
Operation Mode e 2-4
Memory Allocation and Management. 2-5
Gainsand RanNges oot 2-7
Channels 2-8

Specifying Channels When Using EXP-1800
Expansion Boards. 2-8
Acquiring Samples from a Single Channel 2-10
Acquiring Samples from a Group of Consecutive
Channels. 2-11
Acquiring Samples Using a Channel-Gain Array 2-12
ConversionMode 2-13
Clock Source. 2-13
AIDPacerClock. 2-14
Burst Mode Conversion Clock. 2-15
BufferingMode. 2-16
THQOE . . e e e 2-16
Trigger SOUICEottt 2-17
Post-Trigger Acquisition, 2-20
Pre-Trigger Acquisition 2-21
About-Trigger Acquisition. 2-22

Hardware Gate. i 2-22

Analog Output Operations. 2-23
Operation Mode 2-23
Memory Allocation and Management. 2-25
Gainsand RanNgest 2-26
Channels 2-26

Writing Values to a Single Channel 2-26
Writing Values to Both Channels Using the
Same GainCode.ciiiii 2-27
Writing Values to Both Channels Using
DifferentGainCodes, 2-27
Clock Source. 2-28
D/APacerClock. 2-28
External PacerClock 2-29
AIDPacerClock. 2-29
BufferingMode. 2-30
THGQEr. . 2-30
TrQOer SOUMCE . .. oot e e 2-30
Retriggering 2-32
Hardware Gate. iee 2-33

Digital /O Operations 2-34
OperationMode 2-34
Memory Allocation and Management. 2-36
Digital Input Channel 2-36
Digital Output Channel 2-37
Clock Source. 2-38
BufferingMode. 2-39

Programming with the VI Driver

Howthe DriverWorks i 3-1
General Programming Tasks 3-10
Operation-Specific Programming Tasks. 3-11
Analog Input Operations.c . 3-11
SingleMode 3-11
InterruptMode 3-11
DMAMOdE o 3-14
Analog Output Operations 3-16
SingleMode 3-16
Interrupt Mode 3-16
DMAMOdE ... 3-18

Recycle Mode. i 3-20

Digital /O Operations. 3-22
SingleMode 3-22
InterruptMode 3-23

VI Reference

K ADRead 4-5
K AIocChNGArY e e 4-7
K BUfLIStADd e 4-8
K BufListReset 4-9
K_ClearFrame e 4-10
K_CloseDriver 4-11
K_ClrAboutTrig 4-12
K CIrADFreeRUN e e e e 4-13
K CIrContRun 4-14
K_DASDevInit. 4-15
K_DAWrIteGAIN 4-16
K. DIREaAd 4-17
K_DMAAIIOC ... e 4-18
K DMAFTIEE . .. e 4-19
K DMAStart e 4-20
K DMASEatuSo 4-21
K DMASIOP .. .ot 4-24
K DOWHItE . . 4-25
K FormatChnGAry 4-26
K FreeChnGArYyo e e e 4-27
K FreeDevHandle 4-28
K_FreeFrame 4-29
K_GetADCommonMode 4-30
K GetADConfig 4-31
K GetADFrame e 4-32
K_GetADMOdE 4-33
K GetCIkRate e 4-34
K_GetDAFrame 4-35
K_GetDevHandle 4-36
K GetDIFrame e 4-37
K GetDOFrame 4-38
K GetErrMsg 4-39
K_GetShellVer 4-40
K Gt er 4-41
K_INtAIIOC . ..o 4-43
K INtFree 4-44
KoIntStart 4-45

vi

KntStatus 4-46

KINtStop ... 4-49
K_MoveArrayToBuf 4-50
K _MoveBUfTOAITaY 4-51
K OpenDriver 4-52
K _SetAboutTrig e 4-53
K_SetADCommonMode 4-54
K_SetADCOoNfig 4-55
K_SetADFreeRUN e e 4-56
K SetADMode 4-57
K SetADTIIg .ottt e 4-58
K SetBuf ... 4-60
K_SetBurstTicks 4-61
K SetChn 4-62
K_SetChnGArYy e 4-63
K SetCIK .. 4-64
K SetCIKRate et 4-66
K SetContRun 4-68
K SetDITrig ..o e 4-69
K_SetDMABUf 4-71
K_SetEXICIKEdge e 4-72
K SetG L 4-73
K SetGate 4-74
K SetSSH 4-75
K_SetStartStopChn 4-76
K_SetStanStopG 4-78
K SetSYNC . . o 4-80
K SetTrig ... 4-81
K_SetTrigHyst 4-82

Error Codes

Converting Data Formats

Converting Raw CountstoVoltage B-1
Converting VoltagetoRaw Counts B-3
Specifying an Analog OutputValue B-3
Specifying an Analog Trigger Level B-3
Specifying a HysteresisValue. B-4
Index

List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 3-1.
Figure 3-2.

Example of Logical Channel Assignments 2-10
Trigger Events for Analog Triggers. 2-18
Using a Hysteresis Value. 2-19
Trigger Events For Digital Triggers 2-20
Digital InputBits 2-36
Digital Output Bits. 2-37
Single-Mode Operation 3-2

Using a Frame for an Interrupt-Mode Operation. .3-3

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.

Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 4-1.

Table A-1.
Table B-1.

Supported Operations 2-1
Analog Input Rangesand Gains 2-7
Analog Output Ranges. 2-26
A/DFrameElements....................... 3-4
D/AFrameElements....................... 3-6
DI Frame Elements 3-8
DO Frame Elements. 3-9
Error Cluster Elements. 3-10
VIs Used for Interrupt-Mode

Analog Input Operations 3-12
VIs Used for DMA-Mode

Analog Input Operations 3-14
VIs Used for Interrupt-Mode

Analog Output Operations. 3-17
VIs Used for DMA-Mode

Analog Output Operations. 3-19
VIs Used for Recycle-Mode

Analog Output Operations. 3-21

VIs Used for Interrupt-Mode
Digital Input and Digital Output Operations. .. .3-23

VIs by Functional Group 4-2
ErrorCodes A-1
Span Values For Analog Input Data

Conversion Equations B-2

Vii

Table 2-1. Supported Operations 2-1

Table 2-2. Analog Input Rangesand Gains 2-7
Table 2-3. Analog OutputRanges. 2-26
Table 3-1. A/DFrameElements....................... 34
Table 3-2. D/AFrameElements....................... 3-6
Table 3-3. DIFrameElements 3-8
Table 3-4. DO FrameElements. 3-9
Table 3-5. Error ClusterElements. 3-10

Table 3-6. VIs Used for Interrupt-Mode

Analog Input Operations3-12

Table 3-7. VIs Used for DMA-Mode

Analog Input Operations3-14

Table 3-8. VIs Used for Interrupt-Mode

Analog Output Operations3-17

Table 3-9. VIs Used for DMA-Mode

Analog Output Operations3-18

Table 3-10. VIs Used for Recycle-Mode

Analog Output Operations3-20

Table 3-11. VIs Used for Interrupt-Mode

Digital Input and Digital Output Operations3-23

Table 4-1. VIs by Functional Group 4-2
Table A-1. ErrorCodes ..., A-1
Table B-1. Span Values For Analog Input Data Conversion
Equations B-2

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 3-1.
Figure 3-2.

Example of Logical Channel Assignments 2-10

Trigger Events for Analog Triggers. 2-18
Using a Hysteresis Value. 2-19
Trigger Events For Digital Triggers 2-20
Digital InputBits 2-35
Digital OutputBits. 2-36
Single-Mode Operation 3-2

Using a Frame for an Interrupt-Mode Operation. .3-3

1

Getting Started

The DAS-1800 Series VI Driver is a library of data acquisition and
control Vis (Virtual Instruments) used to write application programs for
DAS-1800A0 Series data acquisition boards.

This chapter describes how to install the DAS-1800 Series VI Driver and
how to get help, if required.

Installing the VI Driver

To install the DAS-1800 Series VI Driver, perform the following
procedure:

1. Insert the VI Driver disk into the appropriate disk drive of your
computer.

Enter Windows.
From the Program Manager File menu, select Run.

. Assuming you are using drive A, type the following command line in
the Run dialog box:

A:SETUP
5. Select OK.
6. Respond to the installation prompts as appropriate.
The program creates a Program Manager setup group called KEITHLEY

DAS-1800 VI Driver. This group contains files for the VI driver, utilities,
and example programs using the DAS-1800 Series VIs.

11

Once you have installed the DAS-1800 Series VI Driver, install your
DAS-1800A0 Series board and its software, run the Keithley Memory
Manager utility, and run the configuration program. Refer to the user’s
guide for your board for the information required to perform these steps.

The above steps must be completed in order to open the VI Driver
example programs. You can open LabVIEW from the Program Manager
group by opening a VI Driver example program.

After installation, you may want to review the following files:

. Readme.Txt - An ASCII file containing information available after
the publication of this manual.

. Files.Txt - An ASCII file that describes all of the files available.

Getting Help

If you need help installing or using the DAS-1800 Series VI Driver, call
your local sales office or the Keithley Metrabyte Applications
Engineering Department at:

(508) 880-3000

Monday - Friday, 8:00AM. - 6:00r.Mm., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-2 Getting Started

Please make sure that you have the following information available before

you call:

Board Configuration

Computer

Operating System

LabVIEW Package

Accessories

Model

Serial #

Revision code

Base address setting
Interrupt level setting
Number of channels
Input (S.E. or Diff.)
Mode (uni. or bip.)
DMA chan(s)
Number of SSH-8s
Number of EXPs

Manufacturer

CPU type

Clock speed (MHz)
KB of RAM

Video system
BIOS type

Windows version
Windows mode

\ersion

Type
Type
Type
Type
Type
Type
Type
Type

1-3

2

Available Operations

This chapter contains the background information you need to use the Vls
to perform operations on DAS-1800A0 Series boards. The supported
operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference
System page 2-1
Analog input page 2-4
Analog output page 2-23
Digital input and output (1/O) | page 2-34

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-1800A0 Series boards and to
the DAS-1800 Series VI Driver. It includes information on initializing a
driver, initializing a board, retrieving revision levels, and handling errors.

2-1

Initializing the Driver

You must initialize the DAS-1800 Series VI Driver and any other Keithley
DAS VI Drivers you are using in your application program. To initialize
the drivers, us&_OpenDriver. You specify the configuration file that
defines this particular use of the driver. The driver returns a unique
identifier for the particular use of the driver; this identifier is called the
driver handle. A maximum of 30 driver handles can be specified for all
the Keithley MetraByte boards accessed from your application program.

If a particular use of a driver is no longer required and you want to free
some memory or if all 30 driver handles have been used, you can use
K_CloseDriver to free a driver handle and close the associated use of the
driver. If the driver handle you free is the last driver handle specified for a
VI Driver, the driver is shut down.

Initializing a Board

2-2

The DAS-1800 Series VI Driver supports up to three boards. You must
useK_GetDevHandleto specify the boards you want to use. The driver
returns a unique identifier for each board; this identifier is called the board
handle. Board handles allow you to communicate with more than one
board. In subsequent Vls related to the board, you use the board handle
returned byK_GetDevHandle A maximum of 30 board handles can be
specified for all the Keithley DAS boards accessed from your application
program.

If a board is no longer being used and you want to free some memory or if
all 30 board handles have been used, you caK useeeDevHandleto
free a board handle.

To reinitialize a board during an operation, Ksé&ASDevInit, which
performs the following tasks:

. Aborts all operations currently in progress that are associated with the
board identified by the board handle.

. Verifies that the board identified by the board handle is the board
specified in the configuration file.

Available Operations

Retrieving Revision Levels

If you are having problems with your application program, you may want
to verify which versions of the VI Driver, Keithley DAS Driver
Specification, and Keithley DAS Shell are installed on your board.
K_GetVer allows you to get both the revision number of the DAS-1800
Series VI Driver and the revision number of the Keithley DAS Driver
Specification to which the driver confornks.GetShellVer allows you to

get the revision number of the Keithley DAS Shell (the Keithley DAS
Shell is a group of Vls that are shared by all DAS boards).

Handling Errors

Error information is passed from one VI to the next in your application
program. You must first create an error cluster, which consists of three
variables:

. A Boolean error status (True/False: True = error)

. A numeric error code for the number of the error, if an error occurred
(0 = no error, nonzero = error occurred)

. A string for the name of the VI (error source) that returned the error,
if an error occurred

You then wire the cluster to each VI in your program, normally starting
with K_OpenDriver. When the program begins, the first VI checks the
error status; if the status is False (no error), the VI runs. When it has
finished, the VI sets the error status. If an error occurred during the
execution of the VI, the error status is set to True, the error code is set to a
nonzero value identifying the error, and the error source is set to the name
of the VI that caused the error. The next VI in the program reads the error
status; if it finds that the error status is True, the VI does not execute. All
VIs remaining in the program do likewise.

You can read the error information by placing an Unbundle by Name
function after a VI (normally the last VI in your program,

K_CloseDriver). You create a variable for each element in the error
cluster; once the variables are wired to the Unbundle by Name cluster, the
error information is displayed there.

Appendix A contains a complete list of error codes and their descriptions.

Analog Input Operations

Operation Mode

2-4

This section describes the following:

Analog input operation modes available.
How to allocate and manage memory for analog input operations.

How to specify the following for an analog input operation: channels
and gains, conversion mode, clock source, buffering mode, trigger
source, and hardware gate.

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to the
computer. You can perform analog input operations in one of the
following modes:

Single mode- In single mode, the board acquires a single sample
from an analog input channel. The driver initiates conversions; you
cannot perform any other operation until the single-mode operation is
complete.

UseK_ADRead to start an analog input operation in single mode.
You specify the board you want to use, the analog input channel, and
the gain code for the gain at which you want to read the signal.

Interrupt mode - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program. The
hardware temporarily stores the acquired data in the onboard A/D
FIFO (first-in, first-out data buffer) and then transfers the data to a
user-defined buffer in the computer using an interrupt service routine.
UseK_IntStart to start an analog input operation in interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-16 for more information
on buffering modes. Ud€ IntStop to stop an interrupt-mode
operation. Us& _IntStatus to determine the current status of an
interrupt operation.

Available Operations

. DMA mode - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. The hardware
temporarily stores the acquired data in the onboard A/D FIFO and
then transfers the data to a user-defined DMA buffer in the computer.

Note: You can perform an analog input operation in single-DMA
mode or dual-DMA mode, depending on whether you specified one
or two DMA channels in your configuration file. Refer to your
DAS-1800A0 Series User’s Guifte more information.

UseK_DMAStart to start an analog input operation in DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-16 for more information on
buffering modes. Usk DMAStop to stop a continuous-mode DMA
operation. Us& _DMAStatus to determine the current status of a
DMA operation.

The converted data is stored as raw counts. For information on converting
raw counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations require memory
buffers in which to store the acquired data. You can reserve a single
buffer, or you can reserve multiple buffers (up to a maximum of 150) to
increase the number of samples you can acquire. Buffers must be
dynamically allocated outside of your application program’s memory
area.

UseK_IntAlloc to allocate memory dynamically for interrupt-mode
operations; us&_DMAAIlloc to allocate memory dynamically for
DMA-mode operations. You specify the operation requiring the buffer

and the number of samples to store in the buffer (up to 65,536). The driver
returns the starting address of the buffer and a unique identifier for the
buffer; this identifier is called the buffer handle.

2-5

To assign the starting address of a buffer and the number of samples in the
buffer, useK_SetBuf for interrupt operations df_SetDMABuf for

DMA operations. If you are using multiple buffers, #seBufListAdd to

add each buffer to the list of multiple buffers associated with each
operation. To move the contents of an allocated buffer to a LabVIEW
array, us&k_MoveBufToArray .

The following example shows how to allocate multiple buffers using
K_DMAAIlloc andK_BufListAdd . For eaciK_DMAAIlloc VI used, you
use the_BufListAdd VI to add the allocated buffer to the list of buffers.
The example is illustrated in DMA mode; interrupt mode is identical
except that you use the appropriate interrupt-mode Vls. Refer to the
examples on disk for more information.

_ - - Buffer Address . _
Frame Handle [U32]} - .

K DMAANoc| | [K_BufListAdd

Error In| | S0 S |ja === ¢ -

K DMAAlloc|, | |K_BufListAdd

| Number of Samples [[U32]]

Buffer Handle| — —— ——| —To K_DMAFree
Buffer Handle |—To K_DMAFree

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate enough buffers and large enough buffers. Refer to
your DAS-1800 Series board user’s guide for more information about the
Keithley Memory Manager.

When a buffer is no longer required, you can free its memory for another
use by specifying the buffer handlelnIntFree for interrupt-mode
operations or ilK_DMAFree for DMA-mode operations.

2-6 Available Operations

Gains and Ranges

Each analog input channel on a DAS-1800A0 Series board can measure
signals in one of four software-selectable unipolar or bipolar analog input

ranges. The input range type (unipolar or bipolar) is initially set according

to your configuration file; us€_SetADMode to reset the input range

type. Refer to youbAS-1800A0 Series User’s Guitter more

information about analog input ranges.

Table 2-2 lists the analog input ranges supported by DAS-1800A0 Series

boards and the gain and gain code associated with each range. (The gain
code is used by the VIs to represent the gain.)

Table 2-2. Analog Input Ranges and Gains

Boards A-nalog Input Rang-e ain g gtijne
Bipolar Unipolar

DAS-1801A0 5V Oto5V 1 0
1V OtolV 5 1
+100 mV 0to 100 mV 50 2
+20 mV 0to 20 mV 250 3

DAS-1802A0 10V Oto10V 1 0
5V Oto5V 2 1
25V Oto25V 4 2
+1.25V 0to1.25V 8 3

DAS-1801A0 with | £100 mV 0 to 100 mV 50 4

EXP-1800 attached ' 5 my 0to20mvV | 250 |5
2 mVvV 0to2mV 2500 6
0.4 mV 0to 0.4 mV 12.5k 7

2-7

Table 2-2. Analog Input Ranges and Gains (cont.)

Bonrde A-nalog Input Rang-e ain gg:j”e
Bipolar Unipolar

DAS-1802A0 with | £200 mV 0 to 200 mV 50 4

EXP-1800 attached |) 00 mv 0to100mV 100 |5
+50 mV 0to 50 mV 200 6
+25 mV 0to 25 mV 400 7

Channels

DAS-1800A0 Series boards are configured with either 16 onboard
single-ended or eight onboard differential analog input channels. You can
increase the number of channels to 256 single-ended channels using
EXP-1800 expansion boards, described in the next section.

The input channel configuration (differential or single-ended) is initially
set according to the configuration file; W6eSetADConfig to reset the

input channel configuration. Ue SetADCommonModeto set the
common-mode ground reference for boards configured for single-ended
input.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channels you are using.

Specifying Channels When Using EXP-1800 Expansion Boards

2-8

To increase the number of analog input channels, you can attach up to 16
EXP-1800 expansion boards to the DAS-1800A0 Series board. Each
EXP-1800 board has 16 analog input channels. If you are using

N EXP-1800 boards, you must attach them to DAS-1800A0 channels 0 to
N-1. Refer to the user’s guide for information on connecting EXP-1800
boards to DAS-1800A0 Series boards.

Available Operations

The analog input channel connections on a DAS-1800A0 Series board or
EXP-1800 board are designated with numbers from 0 to 15. These
numbers are thehysical channehumbers|f a system includes a
DAS-1800A0 Series board and one or more EXP-1800s, then that system
contains duplicate physical channel numbers. To uniquely identify a
physical channel, the VI Driver uses a schemlegital channel
numbersThechannel#argument for any VI must be specified as a logical
channel number.

The logical channel number corresponding to a particular physical
channel number is given by one of the following equations:

If the physical channel is on a DAS-1800A0 Series board:

LogicalChant = PhysicalChai+ (15x NUMEXP$

If the physical channel is on an EXP-1800:

LogicalChan# = PhysicalChaw + (16x EXP#)

where

NumEXPsds an integer from 0 to 16 that identifies the number of
EXP-1800s connected to the DAS-1800A0 Series board, and

EXP#is an integer from O to 15 that indicates on which EXP-1800
the physical channel is located (0 indicates the first EXP-1800).

2-9

For example, consider the system illustrated in Figure 2-1, in which three
EXP-1800s are connected to a DAS-1801A0.

° 1EX2P #0 15 Logical Channels 0 to 15
0 r ° 1EX2P #l 15 Logical Channels 16 to 31
; ’7 ° 1EX2P #2 15 Logical Channels 32 to 47
DAS-180140 3 Logical Channel 48
15 ——— Logical Channel 60
[

Figure 2-1. Example of Logical Channel Assignments

The logical channel that identifies channel 3 on the DAS-1801A0 is given
by:

LogicalChant = 3+ (15x 3 =3+ 45= 48

The logical channel that identifies channel 15 on the third EXP-1800 is
given by:

LogicalChan# = 15+ (16x 29 = 15+ 32=47

Acquiring Samples from a Single Channel

2-10

You can acquire a single sample or multiple samples from a single analog
input channel.

For single-mode analog input operations, you can acquire a single sample

from a single analog input channel. UseADRead to specify the
channel and the gain code.

Available Operations

For interrupt-mode and DMA-mode analog input operations, you can
acquire a single sample or multiple samples from a single analog input
channel. Us&_SetChnto specify the channel ard SetG to specify

the gain code.

Acquiring Samples from a Group of Consecutive Channels

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from a group of consecutive channels. Use
K_SetStartStopChnto specify the first and last channels in the group.

The channels are sampled in order from first to last; the channels are then
sampled again until the required number of samples are read.

For example, assume that the start channel is 14, the stop channel is 17,
and you want to acquire five samples. Your program reads data first from
channel 14, then from channels 15, 16, and 17, and finally from

channel 14 again.

You can specify a start channel that is higher than the stop channel. For
example, assume that you are using a single-ended input configuration
with no expansion boards, the start channel is 15, the stop channel is 2,
and you want to acquire five samples. Your program reads data first from
channel 15, then from channels 0, 1, and 2, and finally from channel 15
again.

UseK_SetG to specify the gain code for all channels in the group. (All
channels must use the same gain code. }XUS®tStartStopGto specify
the gain code, the start channel, and the stop channel in a single VI.

Refer to Table 2-2 on page 2-7 for a list of the analog input ranges

supported by DAS-1800 Series boards and the gain code associated with
each range.

2-11

Acquiring Samples Using a Channel-Gain Array

2-12

For interrupt-mode and DMA-mode analog input operations, you can
acquire samples from channels in a hardware channel-gain queue. You
create an array and specify the channels you want to sample, the order in
which you want to sample them, and a gain code for each channel. You
can set the channels in the channel-gain array in consecutive order or in
nonconsecutive order. You can also specify the same channel more than
once. The channel gain array can contain up to 256 entries.

The channels are sampled in order from the first channel specified in the
array to the last channel specified in the array; the channels in the array
are then sampled again until the specified number of samples is read.

For example, assume you want to sample channels 0, 5, and 3. Channel O
uses a gain code of 1, channel 5 uses a gain code of 2 and channel 3 uses
a gain code of 3. Your array would look like this:

of Gain Gain Gain
Entries Chan Code Chan Code Chan Code
3 0 1 5 2 3 3

where the first element is the number of entries and the remaining pairs of
elements represent the channel to read and its associated gain code.

After you create the channel-gain array, you allocate space for the
channel-gain array in your program uskgAllocChnGAry ; you
initialize the channel-gain array usiKg FormatChnGAry ; you set the
frame element for the channel-gain array usn&etChnGAry. When
the operation is finished with the channel-gain array, you can free its
space usingl_FreeChnGAry.

Refer to Table 2-2 on page 2-7 for a list of the analog input ranges

supported by DAS-1800A0 Series boards and the gain code associated
with each range.

Available Operations

Conversion Mode

Clock Source

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). For
interrupt-mode and DMA-mode analog input operations, you can specify
one of the following conversion modes:

. Paced mode Use paced mode if you want to accurately control the
period between conversions of individual channels in a scan. Paced
mode is the default conversion mode.

. Burst mode - Use burst mode if you want to accurately control both
the period between conversions of individual channels in a scan and
the period between conversions of the entire scan. Use
K_SetADFreeRunto specify burst mode.

Use burst mode with SSH (sample-and-hold) if you want to
simultaneously sample all channels in a scan using the SSH-8
accessory board. Use SetSSHto specify burst mode with SSH.

Note: If you use an SSH-8 accessory board, you must use burst mode
with SSH. One extra tick of the burst mode conversion clock is
required to allow the SSH-8 board to sample and hold the values.
Refer to the SSH-8 board documentation for more information.

Refer to youlDAS-1800A0 Series User’s Guifte more information
about conversion modes.

DAS-1800A0 Series boards provide two clock sources for analog input
operations: an A/D pacer clock and a burst mode conversion clock. Each
clock has a dedicated use. When performing interrupt-mode and
DMA-mode analog input operations in paced mode, you use only the A/D
pacer clock; when performing interrupt-mode and DMA-mode analog
input operations in burst mode and burst mode with SSH, you use both
the A/D pacer clock and the burst mode conversion clock. These clock
sources are described in the following subsections.

2-13

A/D Pacer Clock

In paced mode, the A/D pacer clock determines the period between the
conversion of one channel and the conversion of the next channel. In burst
mode and burst mode with SSH, the A/D pacer clock determines the
period between the conversions of one scan and the conversions of the
next scan. Usk_SetClIk to specify an internal or an external A/D pacer
clock source. The internal A/D pacer clock is the default pacer clock.

The internal and external A/D pacer clocks are described as follows:

. Internal A/D pacer clock - The internal A/D pacer clock uses two
cascaded counters of the onboard counter/timer circuitry. The
counters are normally in an idle state. When you start the analog input
operation (usingl_IntStart or K_DMAStart), a conversion is
initiated. Note that a slight time delay occurs between the time the
operation is started and the time conversions begin.

After the first conversion is initiated, the counters are loaded with a
count value and begin counting down. When the counters count down
to 0, another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2ps. UseK_SetClkRate to specify the number of counts (clock
ticks) between conversions. For example, if you specify a count of 30,
the period between conversions igH(166.67 ksamples/s).

You can specify a count between 15 and 4,294,967,295. The period
between conversions ranges froms3to 14.3 minutes.

When using the internal A/D pacer clock, use the following formula
to determine the number of counts to specify:

5 MHz time base

counts = -
conversiorrate

For example, if you want a conversion rate of 10 ksamples/s, specify
a count of 500, as shown in the following equation:

5,000 000 _
10, 000 500

2-14 Available Operations

. External A/D pacer clock- You connect an external pacer clock to
the XPCLK pin (pin 44) on the board’s main 1/0O connector. When
you start an analog input operation (uskagntStart or
K_DMAStart), conversions are armed. At the next active edge of the
external pacer clock (and at every subsequent active edge of the
external pacer clock), a conversion is initiated. Use
K_SetExtCIkEdge to specify the active edge (rising or falling) of the
external pacer clock. A falling edge is the default active edge for the
external pacer clock.

Note: The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other
issues. If you are using an external pacer clock for analog input
operations, make sure that the clock initiates conversions at a rate that
the ADC can handle.

Refer to youlDAS-1800A0 Series User’s Guifte more information
about the pacer clock.

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the burst mode conversion clock
determines the period between the conversion of one channel in a scan
and the conversion of the next channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents (Is. UseK_SetBurstTicks to specify the number

of clock ticks between conversions. For example, if you specify 30 clock
ticks, the period between conversions iu8(33.33 ksamples/s).

You can specify between 3 and 63 clock ticks. The period between
conversions ranges fromu3 to 63us.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

1 MHz time base
burstmodeconversiorrate

clockticks =

2-15

For example, if you want a burst mode conversion rate of 20 ksamples/s,
specify 50 clock ticks, as shown in the following equation:

1, 000 000 _
20,000 >0

Refer to youDAS-1800A0 Series User’s Guitte more information
about the burst mode conversion clock.

Buffering Mode

Trigger

2-16

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

. Single-cycle mode In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

. Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the buffer until the process is
stopped; any values already stored in the buffer are overwritten. Use
K_SetContRun to specify continuous buffering mode.

A trigger is an event that starts or stops an interrupt-mode or DMA-mode
analog input operation. An operation can use either one or two triggers.
Every operation must havestart triggerthat marks the beginning of the
operation. You can use an optional second triggertioat trigger to

define when the operation stops. If you specify an about trigger, the
operation stops when a specified number of samples has been acquired
after the occurrence of the about-trigger event.

A post-trigger acquisition refers to an operation that uses only a start
trigger. The about trigger provides the capability to define operations that
acquire data before a trigger event (pre-trigger acquisition) and operations
that acquire data about (before and after) a trigger event (about-trigger
acquisition). The supported trigger sources and post-trigger, pre-trigger,
and about-trigger acquisitions are described in the following subsections.

Available Operations

Trigger Source

The VI Driver supports two trigger sources: internal and external. For
interrupt-mode and DMA-mode analog input operations KusgetTrig

to specify the trigger source. External triggers can be analog triggers or
digital triggers.

The trigger event is not significant until the operation the trigger governs
has been started (usikg DMAStart or K_IntStart). The point at which
conversions begin depends on the pacer clock; refer to page 2-13 for more
information.

The internal trigger, external analog trigger, and external digital trigger
are described as follows:

. Internal trigger - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the operation. Consequently,
K_DMAStart orK_IntStart is considered the trigger event for an
internal trigger. The internal trigger is the default trigger source.

. External analog trigger - You can use the signal on any analog input
channel as the trigger signal for an analog trigger. Trigger events for
analog triggers (illustrated in Figure 2-2) are described as follows:

— Positive trigger - The trigger signal changes from a voltage that
is less than the trigger level to a voltage that is greater than the
trigger level.

— Negative trigger - The trigger signal changes from a voltage that
is greater than the trigger level to a voltage that is less than the
trigger level.

Note: Analog triggering is a feature of the VI Driver and is not
implemented at the hardware level. Consequently, there is a delay
between the time the trigger event occurs and the time the driver
recognizes that the trigger event occurred.

2-17

2-18

Positive trigger Trigger event

Negative trigger

.

Trigger level - -------f------}-------f-----

Trigger signal

Trigger event

Trigger level - --------f------}-------f-----

Trigger signal

Figure 2-2. Trigger Events for Analog Triggers

UseK_SetADTrig to specify the analog input channel to use as the
trigger channel, the trigger level, and the trigger polarity (positive or
negative).

You specify the trigger level as a raw count value. Refer to
Appendix B for information on how to convert a voltage value to a
raw count value.

You can specify a hysteresis value to prevent noise from triggering an
operation. Us&_SetTrigHyst to specify the hysteresis value. For a
positive trigger, the analog signal must be below the specified trigger
level by at least the amount of the hysteresis value and then rise above
the trigger level before the trigger occurs; for a negative trigger, the
analog signal must be above the specified trigger level by at least the
amount of the hysteresis value and then fall below the trigger level
before the trigger occurs.

The hysteresis value is an absolute number, which you specify as a
raw count value between 0 and 4095. When you add the hysteresis
value to the trigger level (for a negative trigger) or subtract the
hysteresis value from the trigger level (for a positive trigger), the
resulting value must also be between 0 and 4095.

Available Operations

Level +4V

+3.9V

+4.1V

Level +4V

- — . — —

For example, assume that you are using a negative trigger on a
channel of a board configured for an analog input range of £5 V. If the
trigger level is +4.8 V (4014 counts), you can specify a hysteresis
value of 0.1V (41 counts) because 4014 + 41 is less than 4095, but
you cannot specify a hysteresis value of 0.3 V (123 counts) because
4014 + 123 is greater than 4095. Refer to Appendix B for information
on how to convert a voltage value to a raw count value.

In Figure 2-3, the specified trigger level is +4 V and the hysteresis
value is 0.1 V. The analog signal must be below +3.9 V and then rise
above +4 V before a positive trigger occurs; the analog signal must be
above +4.1V and then fall below +4 V before a negative trigger
occurs.

Positive trigger
occurs

|
|

.) |

\Analog input operation |
1

start VI is executed

Negative trigger
occurs

\Analog input operation

start VI is executed

Figure 2-3. Using a Hysteresis Value

2-19

. External digital trigger - The digital trigger signal is available on the
TGIN pin (pin 46) on the board’s main I/O connector. Use
K_SetDITrig to specify whether you want the trigger event to occur
on a rising edge (positive polarity) or a falling edge (negative
polarity). These trigger events are illustrated in Figure 2-4.

Trigger

" - event
Positive polarity v \ {

Trigger signal —

Trigger event

Negative polarity }

Trigger sighal —— ——— I

Figure 2-4. Trigger Events For Digital Triggers

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect
data after a specific event. Acquisition starts on an internal, analog, or
digital trigger event and continues until a specified number of samples has
been acquired or until the operation is stoppe& bpMAStop or

K_IntStop.

To specify post-trigger acquisition, use the following VIs:

1. If you want acquisition to continue until you stop it with
K_DMAStop orK_IntStop, useK_SetContRunto set the buffering
mode to continuous.

2-20 Available Operations

2. If you want acquisition to stop after a specified number of samples
has been acquired, uke ClrContRun to set the buffering mode to
single-cycle (in this buffering mode, the operation stops as soon as
the board has acquired the number of samples specified by
K_SetBuf, K_SetDMABUf, or K_BufListAdd).

3. UseK_ SetTrig to specify the trigger source that will start the
operation (internal for an internal trigger, external for an analog or
digital trigger).

4. If you are using an analog trigger, iseSetADTrig to define the
trigger conditions; if you are using a digital trigger, Ks&etDITrig
to define the trigger conditions.

5. UseK ClIrAboutTrig to disable the about trigger.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific digital trigger event (this is the about trigger event).
Acquisition starts on an internal, analog, or digital trigger event and
continues until the about-trigger event. Pre-trigger acquisition is available
with DMA-mode operations only.

To specify pre-trigger acquisition, use the following VIs:

1. UseK_SetTrig to specify the trigger source that will start the
operation (internal for an internal trigger, external for an analog or
digital trigger).

2. If you are using an analog start trigger, Ks&etADTrig to define
the trigger conditions; if you are using a digital start trigger, use
K_SetDITrig to define the trigger conditions.

3. UseK_SetAboutTrig to enable the about trigger and to set the
number of post-trigger samples to 1.

4. If the start trigger is not digital, use SetDITrig to specify the
active edge for the about trigger. (If the start trigger is digital, then its
active edge is also used for the about trigger).

2-21

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific digital trigger event (this is the
about-trigger event). Acquisition starts on an internal, analog, or digital
trigger event and continues until a specified number of samples has been
acquired after the about-trigger event. About-trigger acquisition is
available with DMA-mode operations only.

To specify about-trigger acquisition, use the following VIs:

1. Specify the trigger that will start the operation. Hs&etTrig to
specify the trigger source (internal for an internal trigger, external for
an analog or digital trigger).

2. If you are using an analog start trigger, Kis&etADTrig to define
the trigger conditions; if you are using a digital start trigger, use
K_SetDITrig to define the trigger conditions.

3. UseK_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples.

4. If the start trigger is not digital, ue SetDITrig to specify the
active edge for the about trigger. (If the start trigger is digital, then its
active edge is also used for the about trigger).

Hardware Gate

2-22

A hardware gate is an externally applied digital signal that determines
whether conversions occur. You connect the gate signal to the TGIN pin
(pin 46) on the board’s main I/O connector. If you have started an
interrupt-mode or DMA-mode analog input operation (unéntStart

or K_DMAStart) and the hardware gate is enabled, the state of the gate
signal determines whether conversions occur.

If the board is configured with a positive gate, conversions occur only if
the gate signal to TGIN is high; if the gate signal to TGIN is low,
conversions are inhibited. If the board is configured with a negative gate,
conversions occur only if the gate signal to TGIN is low; if the gate signal
to TGIN is high, conversions are inhibited. UseSetGateto enable and
disable the hardware gate and to specify the gate polarity (positive or
negative). The default state of the hardware gate is disabled.

Available Operations

You can use the hardware gate with an external analog trigger. The
software waits until the analog trigger conditions are met, and then the
hardware checks the state of the gate signal.

If you are not using an analog trigger, the gate signal itself can act as a
trigger. If the gate signal is in the inactive state when you start the analog
input operation, the hardware waits until the gate signal is in the active
state before conversions begin.

Note: You cannot use the hardware gate with an external digital trigger. If
you use a digital trigger at one point in your application program and later
want to use a hardware gate, you must first disable the digital trigger. You
disable the digital trigger by specifying an internal triggek irbetTrig

or by setting up an analog trigger (uskhgSetADTrig).

Analog Output Operations

This section describes the following:
. Analog output operation modes available.
. How to allocate and manage memory for analog output operations.

. How to specify the following for an analog output operation:
channels and gains, clock source, buffering mode, trigger source, and
hardware gate.

Operation Mode

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

. Single mode- In single mode, the driver writes a single value to one
analog output channel; you cannot perform any other operation until
the single-mode operation is complete.

UseK_DAWriteGain to start an analog output operation in single
mode. You specify the board you want to use, the analog output
channel, the gain code, and the value you want to write.

2-23

2-24

Interrupt mode - In interrupt mode, the driver writes a single value

or multiple values to one or both analog output channels. A hardware
clock paces the updating of the analog output channels. Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
buffer in the computer. The hardware temporarily stores the output
data in the onboard D/A FIFO and then writes the data using an
interrupt service routine. Ud€ IntStart to start an analog output
operation in interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-30 for more information
on buffering modes. Ude_IntStop to stop an interrupt operation.
UseK_IntStatus to determine the current status of an interrupt
operation.

DMA mode - In DMA mode, the driver writes a single sample or
multiple samples to one or both analog output channels. A hardware
clock paces the updating of the analog output channels. Once the
analog output operation begins, control returns to your application
program. You store the values you want to write in a user-defined
DMA buffer in the computer. The hardware temporarily stores the
output data in the onboard D/A FIFO and then writes the data. Use
K_DMAStart to start an analog output operation in DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-30 for more information on
buffering modes. UsK_DMAStop to stop a DMA operation. Use
K_DMAStatus to determine the current status of a DMA operation.

Recycle mode In recycle mode, the driver writes a single sample or
up to a total of 2048 samples to one or both analog output channels. A
hardware clock paces the updating of the analog output channels.
Once the analog output operation begins, control returns to your
application program. You store the values you want to write in a
user-defined buffer in the computer. The hardware temporarily stores
the output data in the onboard D/A FIFO and then writes the data.
The data in the D/A FIFO is continuously recycled until the operation
is stopped. Us& DMAStart orK_IntStart to start an analog

output operation in recycle mode.

If you are performing a recycle mode analog output operation, the
board automatically uses the onboard D/A FIFO; the PC's interrupt or
DMA resources are not used. In this case, the board attains its highest
transfer rate (up to 500 ksamples/s).

Available Operations

You must specify continuous buffering mode for recycle-mode
operations. Refer to page 2-30 for more information on buffering
modes. Us& DMAStop or K_IntStop to stop a recycle-mode
operation. Us&_DMAStatus or K_IntStatus to determine the
current status of a recycle-mode operation.

For an analog output operation, the values are written as raw counts. For
information on converting voltage to raw counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog output operations require

memory buffers in which to store the data to be written to the analog
output channels. You can reserve a single buffer, or you can reserve
multiple buffers (up to a maximum of 150) to increase the number of
samples. Recycle-mode analog output operations require a single memory
buffer of no more than 2048 samples. Buffers must be dynamically
allocated outside of your application program’s memory area.

UseK_IntAlloc to allocate memory dynamically for interrupt-mode or
recycle-mode operations; uke DMAAlloc to allocate memory
dynamically for DMA-mode or recycle-mode operations. You specify the
operation requiring the buffer and the number of samples to store in the
buffer (up to 65,536). The driver returns the starting address of the buffer
and a unique identifier for the buffer; this identifier is called the buffer
handle.

To assign the starting address of a buffer and the number of samples in the
buffer, useK_SetBuf for buffers allocated witi_IntAlloc or

K_SetDMABUf for buffers allocated witl_DMAAIloc . If you are

using multiple buffers, udé¢_BufListAdd to add each buffer to the list of
multiple buffers associated with each operation. Refer to page 2-5 for an
example of using multiple buffers. To move the contents of a LabVIEW
buffer to an allocated buffer, us&e MoveArrayToBuf .

When a buffer is no longer required, you can free it for another use by

specifying the buffer handle K_IntFree for buffers allocated with
K_IntAlloc or inK_DMAFree for buffers allocated witk_DMAAIloc .

2-25

Note: If you are using multiple buffers, it is recommended that you use
the Keithley Memory Manager before you begin programming to ensure
that you can allocate enough buffers and large enough buffers. Refer to
the DAS-1800A0 Series User’'s Guitte more information about the
Keithley Memory Manager.

Gains and Ranges

Channels

Each analog output channel on a DAS-1800A0 Series board can write an
analog output signal in one of two software-selectable ranges. Table 2-3
lists the analog output ranges supported by DAS-1800A0 Series boards
and the gain code associated with each range.

Table 2-3. Analog Output Ranges

Analog Output Range Gain Code

5V 0

+10V 1

DAS-1800A0 Series boards contain two digital-to-analog converters
(DACs), each of which is associated with an analog output channel. You
can perform an analog output operation on a single channel or on both
channels. The following subsections explain how to specify the channels.

Writing Values to a Single Channel

2-26

For single-mode operations, you can write a single value to a single
analog output channel. Uge DAWriteGain to specify the channel and

the gain code.

For interrupt-mode, DMA-mode, and recycle-mode operations, you can
write a single value or multiple values to a single analog channel. Use
K_SetChnto specify the channel aid SetG to specify the gain code.

Available Operations

Writing Values to Both Channels Using the Same Gain Code

For interrupt-mode, DMA-mode, and recycle-mode analog output
operations, you can write a single value or multiple values to both analog
output channels simultaneously when both channel