

DAS-4300 Series
Function Call Driver

U S E R ’ S G U I D E

DAS-4300 Series
Function Call Driver

User’s Guide

Revision A - June 1995
Part Number: 94530

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1995.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

vii

Preface

This manual describes how to write application programs for
DAS-4301/8K boards using the DAS-4300 Series Function Call Driver.
The DAS-4300 Series Function Call Driver supports the following
DOS-based languages:

●

Microsoft



 C/C++ (Version 4.0 and higher)

●

Borland



 C/C++ (Version 1.0 and higher)

The DAS-4300 Series Function Call Driver supports the following
Windows-based languages:

●

Microsoft C/C++ (Version 7.0 and higher)

●

Borland C/C++ (Version 4.0 and higher)

●

Microsoft Visual Basic



 for Windows (Version 3.0 and higher)

The manual is intended for application programmers using a
DAS-4301/8K board in an IBM



 PC AT



 or compatible computer. It is
assumed that users have read the

DAS-4300 Series User’s Guide

 to
familiarize themselves with the board’s features, and that they have
completed the appropriate hardware installation and configuration. It is
also assumed that users are experienced in programming in their selected
language and that they are familiar with data acquisition principles.

viii

The

DAS-4300 Series Function Call Driver User’s Guide

 is organized as
follows:

●

Chapter 1 contains the information needed to install the DAS-4300
Series Function Call Driver and to get help.

●

Chapter 2 contains the background information needed to use the
functions included in the DAS-4300 Series Function Call Driver.

●

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-4300 Series Function Call
Driver.

●

Chapter 4 contains detailed descriptions of the DAS-4300 Series
Function Call Driver functions, arranged in alphabetical order.

●

Appendix A contains a list of the error codes returned by DAS-4300
Series Function Call Driver functions.

●

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

●

Appendix C present bandwidth charts for the supported input ranges.

An index completes this manual.

Table of Contents

iii

Preface

1

Getting Started

2

Available Operations

System Operations .2-1
Initializing the Driver .2-2
Initializing a Board .2-2
Retrieving Revision Levels .2-3
Handling Errors. .2-3

Analog Input Operations .2-4
Operation Mode .2-4
Memory Allocation and Management.2-5

Dimensioning a Local Array .2-5
Dynamically Allocating a Memory Buffer.2-5
Assigning the Starting Address .2-7

Channels .2-7
Input Ranges .2-7
Pacer Clocks .2-8

Internal Pacer Clock .2-8
External Pacer Clock .2-9

Triggers .2-10
Trigger Sources .2-10

Internal Trigger .2-10
External Analog Trigger .2-11
External Digital Trigger. .2-12

Trigger Acquisition. .2-13
Post-Trigger Acquisition .2-13
Pre-Trigger Acquisition .2-14
About-Trigger Acquisition .2-15

3

Programming with the Function Call Driver

How the Driver Works .3-1
Programming Overview .3-5
Preliminary Tasks. .3-6
Analog Input Programming Tasks .3-6

iv

C/C++ Programming Information .3-8
Dimensioning and Assigning a Local Array3-8
Dynamically Allocating and Assigning a Memory Buffer . . .3-9

Allocating a Memory Buffer .3-9
Accessing the Data .3-10

Handling Errors. .3-10
Programming in Microsoft C/C++ (for DOS).3-11
Programming in Microsoft C/C++ (for Windows)3-12
Programming in Borland C/C++ (for DOS)3-13
Programming in Borland C/C++ (for Windows).3-14

Microsoft Visual Basic for Windows
Programming Information .3-15

Dimensioning and Assigning a Local Array3-15
Dynamically Allocating and Assigning a Memory Buffer . .3-16

Allocating a Memory Buffer .3-16
Accessing the Data .3-17

Handling Errors. .3-17
Programming in Microsoft Visual Basic for Windows3-18

4

Function Reference

K_ClearFrame .4-5
K_CloseDriver .4-6
K_ClrAboutTrig .4-7
K_DASDevInit. .4-8
K_FreeDevHandle .4-9
K_FreeFrame .4-10
K_GetADFrame. .4-11
K_GetClkRate .4-13
K_GetDevHandle. .4-15
K_GetErrMsg. .4-17
K_GetShellVer .4-18
K_GetVer .4-19
K_IntAlloc .4-21
K_IntFree .4-23
K_IntStart. .4-24
K_IntStatus. .4-25
K_IntStop .4-28
K_MoveBufToArray .4-30
K_OpenDriver .4-31
K_SetAboutTrig .4-33
K_SetADTrig .4-34
K_SetBuf .4-36

v

K_SetBufI .4-38
K_SetChn .4-40
K_SetClk .4-41
K_SetClkRate. .4-42
K_SetDITrig. .4-44
K_SetG. .4-46
K_SetPostTrigDelay .4-48
K_SetTrig .4-50

A

Error/Status Codes

B

Data Formats

Converting Counts to Voltage. B-1
Converting Voltage to Counts. B-3

C

Bandwidth Charts for Input Voltage Ranges

Index

List of Figures

Figure 2-1. Analog Trigger Conditions 2-12
Figure 2-2. Digital Trigger Conditions.2-13
Figure 3-1. Interrupt-Mode Operation3-3
Figure 4-1. Status Word Settings .4-26
Figure C-1. ±0.2 V Input Range (Gain Code 0) C-1
Figure C-2. ±0.25 V Input Range (Gain Code 1) C-2
Figure C-3. ±0.5 V Input Range (Gain Code 2) C-2
Figure C-4. ±1 V Input Range (Gain Code 3). C-3
Figure C-5. ±0.125 V Input Range (Gain Code 4) C-3
Figure C-6. ±0.15625 V Input Range (Gain Code 5) C-4
Figure C-7. ±0.3125 V Input Range (Gain Code 6) C-4
Figure C-8. ±0.625 V Input Range (Gain Code 7) C-5
Figure C-9. ±0.1 V Input Range (Gain Code 8) C-5
Figure C-10. ±0.125 V Input Range (Gain Code 9) C-6
Figure C-11. ±0.25 V Input Range (Gain Code 10) C-6
Figure C-12. ±0.5 V Input Range (Gain Code 11) C-7
Figure C-13. ±0.025 V Input Range (Gain Code 12) C-7
Figure C-14. ±0.03125 V Input Range (Gain Code 13) C-8
Figure C-15. ±0.0625 V Input Range (Gain Code 14) C-8
Figure C-16. ±0.125 V Input Range (Gain Code 15) C-9

vi

List of Tables

Table 2-1. Supported Operations .2-1
Table 2-2. Analog Input Ranges .2-8
Table 2-3. Available Conversion Rates Using Internal Clock 2-9
Table 3-1. A/D Frame Elements .3-4
Table 3-2. Setup Functions for Interrupt-Mode

Analog Input Operations .3-7
Table 4-1. Functions .4-2
Table 4-2. Data Type Prefixes. .4-4
Table A-1. Error/Status Codes . A-1
Table B-1. Some Span Values For Analog Input

Data Conversion Equations B-2

Table 2-1. Supported Operations .2-1
Table 2-2. Analog Input Ranges .2-8
Table 2-3. Available Conversion Rates Using Internal Clock 2-9
Table 3-1. A/D Frame Elements .3-4
Table 3-2. Setup Functions for Interrupt-Mode
Analog Input Operations3-7
Table 4-1. Functions .4-2
Table 4-2. Data Type Prefixes. .4-4
Table A-1. Error/Status Codes . A-1
Table B-1. Some Span Values For Analog Input Data Conversion
Equations B-2

Figure 2-1. Analog Trigger Conditions 2-12
Figure 2-2. Digital Trigger Conditions.2-13
Figure 3-1. Interrupt-Mode Operation3-3
Figure 4-1. Status Word Settings .4-26
Figure C-1. ±0.2 V Input Range (Gain Code 0) C-1
Figure C-2. ±0.25 V Input Range (Gain Code 1) C-2
Figure C-3. ±0.5 V Input Range (Gain Code 2) C-2
Figure C-4. ±1 V Input Range (Gain Code 3). C-3
Figure C-5. ±0.125 V Input Range (Gain Code 4) C-3
Figure C-6. ±0.15625 V Input Range (Gain Code 5) C-4
Figure C-7. ±0.3125 V Input Range (Gain Code 6) C-4
Figure C-8. ±0.625 V Input Range (Gain Code 7) C-5
Figure C-9. ±0.1 V Input Range (Gain Code 8) C-5
Figure C-10. ±0.125 V Input Range (Gain Code 9) C-6
Figure C-11. ±0.25 V Input Range (Gain Code 10) C-6
Figure C-12. ±0.5 V Input Range (Gain Code 11) C-7
Figure C-13. ±0.025 V Input Range (Gain Code 12) C-7
Figure C-14. ±0.03125 V Input Range (Gain Code 13) C-8
Figure C-15. ±0.0625 V Input Range (Gain Code 14) C-8
Figure C-16. ±0.125 V Input Range (Gain Code 15) C-9

1-1

1

Getting Started

The DAS-4300 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

●

DAS-4300 Series Standard Software package

 - This is the software
package that is shipped with DAS-4301/8K boards; it includes utility
programs, running under DOS, that allow you to configure, calibrate,
and test the DAS-4301/8K boards.

●

ASO-4300 software package

 - This is the Advanced Software
Option for DAS-4301/8K boards. You purchase the ASO-4300
software package separately from the board; it includes the following:

– Libraries of FCD functions for Microsoft C/C++ (for DOS) and
Borland C/C++ (for DOS).

– Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft C/C++ (for Windows), and
Borland C/C++ (for Windows).

– Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

– Utility programs, running under DOS, that allow you to
configure, calibrate, and test the DAS-4301/8K boards.

– Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file
using the setup and installation procedures described in the

DAS-4300
Series User’s Guide

.

1-2 Getting Started

If you need help installing or using the DAS-4300 Series Function Call
Driver, call your local sales office or the Keithley Metrabyte Applications
Engineering Department at:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Please make sure that you have the following information available before
you call:

DAS-4301/8K board
configuration

Serial #
Revision code
Base I/O address setting
Memory address setting
Interrupt level setting

Computer

Manufacturer
CPU type
Clock speed (MHz)
KB of RAM
Video system
BIOS type
Memory manager

Operating system

DOS version
Windows version
Windows mode

Software package

Name
Serial #
Version
Invoice/Order #

1-3

Compiler
(if applicable)

Language
Manufacturer
Version

Accessories

Type ____________________

1-4 Getting Started

System Operations 2-1

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-4301/8K boards. The
supported operations are listed in Table 2-1.

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-4301/8K boards and to the
DAS-4300 Series Function Call Driver. It includes information on
initializing a driver, initializing a board, retrieving revision levels, and
handling errors.

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog input page 2-4

2-2 Available Operations

Initializing the Driver

You must initialize the DAS-4300 Series Function Call Driver and any
other Keithley DAS Function Call Drivers you are using in your
application program. To initialize the drivers, use the

K_OpenDriver

function. You specify the driver you are using and the configuration file
that defines the use of the driver. The driver returns a unique identifier for
the driver; this identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, you can use the

K_CloseDriver

 function
to free a driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Initializing a Board

The DAS-4300 Series Function Call Driver supports up to two boards.
You must use the

K_GetDevHandle

 function to specify the boards you
want to use. The driver returns a unique identifier for each board; this
identifier is called the device handle.

Device handles allow you to communicate with more than one board. You
use the device handle returned by

K_GetDevHandle

 in subsequent
function calls related to the board.

You can specify a maximum of 30 device handles for all the Keithley
MetraByte boards accessed from all your application programs. If a board
is no longer being used and you want to free some memory or if you have
used all 30 device handles, you can use the

K_FreeDevHandle

 function
to free a device handle.

System Operations 2-3

To reinitialize a board during an operation, use the

K_DASDevInit

function.

K_GetDevHandle

 and

K_DASDevInit

 perform the following
tasks:

●

Abort all operations currently in progress that are associated with the
board identified by the device handle.

●

Verify that the board identified by the device handle is the board
specified in the configuration file associated with the board.

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are installed on your computer.

The

K_GetVer

 function allows you to get both the revision number of the
DAS-4300 Series Function Call Driver and the revision number of the
Keithley DAS Driver Specification to which the driver conforms.

The

K_GetShellVer

 function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all DAS boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported programming language uses a different procedure for
error checking. Refer to the following for information:

C/C++ page 3-10

Visual Basic for Windows page 3-17

2-4 Available Operations

For C-language application programs only, the DAS-4300 Series
Function Call Driver provides the

K_GetErrMsg

 function, which gets
the address of the string corresponding to an error code.

Analog Input Operations

This section describes the following:

●

Analog input operation mode available.

●

How to allocate and manage memory for analog input operations.

●

How to specify the following for an analog input operation: a
channel, a gain and range, a clock source, a trigger source, and the
trigger acquisition type.

Operation Mode

DAS-4301/8K boards support interrupt mode only. In interrupt mode, the
board acquires multiple samples from a single analog input channel. A
hardware clock initiates A/D conversions. Once the analog input
operation begins, control returns to your application program. The
hardware continues to store the acquired data in its onboard memory until
the specified number of samples is acquired, then transfers the data all at
once to a user-defined array or buffer in the computer using an interrupt
service routine.

Use the

K_IntStart

 function to start an analog input operation in
interrupt mode. Use the

K_IntStop

 function to stop an interrupt-mode
operation. Use the

K_IntStatus

 function to determine the current status
of an interrupt-mode operation.

The converted data is stored as counts. For information on converting
counts to voltage, refer to Appendix B.

Analog Input Operations 2-5

Memory Allocation and Management

Interrupt-mode analog input operations require a memory location in
which to store acquired data. DAS-4301/8K boards can transfer up to
8,192 samples (bytes) to this memory location.

Note:

Even though you can reserve a memory location greater than the
board requires, to conserve memory it is recommended that you allocate

only the required amount (maximum of 8,192 bytes).

The ways you can allocate and manage memory are described in the
following sections.

Dimensioning a Local Array

The simplest way to reserve a memory location is to dimension an array
within your application program’s memory area. This is the
recommended way to reserve memory for this driver. The advantage of
this method is that the array is directly accessible to your application
program. The limitation of this method is that local arrays occupy
permanent memory areas; these memory areas cannot be freed to make
them available to other programs or processes.

Since the DAS-4300 Series Function Call Driver stores data in 16-bit
integers, you must dimension a local array as an integer data type.

Dynamically Allocating a Memory Buffer

You can allocate a memory buffer dynamically outside of your
application program’s memory area. The advantages of this method are as
follows:

●

The size of the buffer is limited by the amount of free physical
memory available in your computer at run time.

●

A dynamically allocated memory buffer can be freed to make it
available to other programs or processes.

2-6 Available Operations

The limitation of this method is that, for Visual Basic for Windows, data
in a dynamically allocated buffer is not directly accessible to your
program. You must use the

K_MoveBufToArray

 function to move the
data from the dynamically allocated buffer to the program’s local array;
refer to page 3-16 for more information.

Use the

K_IntAlloc

 function to dynamically allocate a memory buffer.
You specify the operation requiring the buffer and the number of samples
to store in the buffer (maximum of 8,192). The driver returns the starting
address of the buffer and a unique identifier for the buffer (this identifier
is called the memory handle). When the buffer is no longer required, you
can free the buffer for another use by specifying this memory handle in
the

K_IntFree

 function.

Notes:

For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, the

K_IntAlloc

 function uses the DOS Int
21H function 48H to dynamically allocate far heap memory. For
Windows-based languages, the

K_IntAlloc

 function calls the

GlobalAlloc

 API function to allocate the desired buffer size from the
global heap.

For Windows-based languages, dynamically allocated memory is

guaranteed to be fixed and locked in memory.

Analog Input Operations 2-7

Assigning the Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer. Each supported programming language
requires a particular procedure for assigning a starting address. Refer to
the following for information:

Channels

The DAS-4301/8K board provides two analog input channels; the
software refers to the analog input signal from the Ch A connector as
channel 0 and the analog input signal from the Trg/Ch B connector as
channel 1. You can perform an analog input operation on a single channel
at a time. To acquire samples from both channels, you must alternate
between the two channels after an acquisition is done.

You can acquire a single sample or multiple samples from a single analog
input channel. Use the

K_SetChn

 function to specify the channel.

Input Ranges

Each channel on the DAS-4301/8K board can measure signals in one of
16, software-selectable bipolar analog input ranges.

Table 2-2 lists the analog input ranges supported by DAS-4301/8K boards
and the gain code associated with each range. Use the

K_SetG

 function
to specify the gain code. Refer to Appendix C to understand the effect of
the input range on the bandwidth of the DAS-4301/8K board.

Language
Memory
Location

Function See...

C/C++ Array or
Buffer

K_SetBuf page 3-9

Visual Basic for Windows Array K_SetBufI page 3-15

Buffer K_SetBuf page 3-16

2-8 Available Operations

Pacer Clocks

The pacer clock determines the period between A/D conversions. Use the

K_SetClk

 function to specify an internal or an external pacer clock. The
internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described in the following
subsections; refer to the

DAS-4300 Series User’s Guide

 for more
information.

Internal Pacer Clock

When you start an analog input operation (using

K_IntStart

),
conversions are performed at a rate of 20 Gsamples/s divided by a count
value of 20, 40, 80, 200, 400, 800, 1600, 3200, 6400, 12800, or 25600.
Use the

K_SetClkRate

 function to specify the count value. Each count
represents .05 ns between conversions.

Table 2-3 lists the conversion rates, sample periods, and count values for
the internal pacer clock.

Table 2-2. Analog Input Ranges

Analog
Input Range

Gain
Code

Analog
Input Range

Gain
Code

±25 mV 12 ±200 mV 0

±31.25 mV 13 ±250 mV 1, 10

±62.5 mV 14 ±312.5 mV 6

±100 mV 8 ±0.5 V 2, 11

±125 mV 4, 9, 15 ±0.625 V 7

±156.25 mV 5 ±1.0 V 3

Analog Input Operations 2-9

Note:

If you enter a count value that is not one of those listed in Table
2-3, the driver uses the next fastest rate. For example, if you enter a count
value of 50, the driver uses a count value of 40 to perform the faster
conversion rate. To determine the actual count value used, use the

K_GetClkRate

function.

External Pacer Clock

When you start an analog input operation (using

K_IntStart

),
conversions are armed. At the next rising edge of the external pacer clock
(and at every subsequent rising edge of the external pacer clock), a
conversion is initiated.

Do not use a conversion rate less than 100 Msamples/s when using an
external pacer clock or an error will result.

Table 2-3. Available Conversion Rates Using Internal Clock

Conversion Rate
Sample
Period

Count
Value

1 Gsamples/s 1 ns 20

500 Msamples/s 2 ns 40

250 Msamples/s 4 ns 80

100 Msamples/s 10 ns 200

50 Msamples/s 20 ns 400

25 Msamples/s 40 ns 800

12.5 Msamples/s 80 ns 1600

6.25 Msamples/s 160 ns 3200

3.125 Msamples/s 320 ns 6400

1.5625 Msamples/s 640 ns 12800

0.78250 Msamples/s1280 ns 25600

2-10 Available Operations

Triggers

A trigger is an event that occurs based on a specified set of conditions.
The operation must have a start trigger that determines when the
acquisition starts. In addition, you can choose the optional about trigger to
determine when the acquisition stops.

You can define operations that acquire data after the trigger event occurs
(post-trigger acquisition), operations that acquire data before a trigger
event (pre-trigger acquisition), and operations that acquire data before
and after a trigger event (about-trigger acquisition). For post-trigger
acquisitions, you can also specify a post-trigger delay. If you specify an
about trigger, the operation stops when a specified number of samples has
been acquired after the occurrence of the about-trigger event.

When the trigger event occurs, a TTL-level, signal is output on the Trg IO
connector. The signal is edge sensitive with a positive polarity.

The following sections describe the supported trigger sources and the
ways to acquire data using triggers.

Trigger Sources

Use

K_SetTrig

 to specify an internal or an external trigger source.
External triggers can be either analog triggers or digital triggers. The
trigger event is not significant until the operation the trigger governs has
been started (using

K_IntStart

).

The internal trigger, external analog trigger, and external digital trigger
are described in the following subsections.

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the operation using the

K_IntStart

 function. Note that there is a
slight delay between the time you start the operation and the time the
trigger event occurs. The internal trigger is the default trigger source.

Analog Input Operations 2-11

External Analog Trigger

You can select the digitized analog input signal from the Ch A connector
(referred to in software as analog trigger channel 0) or from the Trg/Ch B
connector (referred to in software as analog trigger channel 1) as the
trigger signal. You program the trigger level as a count value in 256 steps
(

−

128 to +127). If you use analog trigger channel 0 or 1, you must acquire
data from the same channel you are using as the trigger channel. For
example, if you specify 0 as the trigger channel, you must also acquire
analog input data from the Ch A connector by specifying 0 in

K_SetChn

.

You can also select the ±10 V trigger input signal from the Trg/Ch B
connector (referred to in software as analog trigger channel 2) as the
trigger signal. You program the trigger level as a count value in 256 steps
(

−

127 to 128) from

−

10 V to +9.922 V. If you use analog trigger channel
2, you can acquire analog input data from either the Ch A connector or
from the Trg/Ch B connector.

Note:

Even though the resolution of the ±10 V range is 12 bits in
hardware, the driver accepts only 8 bits, resulting in the loss of some

accuracy.

The trigger conditions for external analog triggers are illustrated in Figure
2-1 and described as follows:

●

Positive-Edge Trigger

 - A trigger event occurs the first time the
trigger signal changes from a voltage that is less than the trigger level
to a voltage that is greater than the trigger level.

●

Negative-Edge Trigger

 - A trigger event occurs the first time the
trigger signal changes from a voltage that is greater than the trigger
level to a voltage that is less than the trigger level.

2-12 Available Operations

Figure 2-1. Analog Trigger Conditions

Use the

K_SetADTrig

 function to specify the analog input channel to use
as the trigger channel, the trigger level, and the trigger polarity. The
trigger sensitivity is always edge for the DAS-4301/8K board.

Refer to Appendix B for information on how to convert a voltage to a
count value.

External Digital Trigger

The digital trigger signal is connected to the Trg IO

connector of the
DAS-4301/8K board. Use

K_SetDITrig

 to specify the digital input
channel to use as the trigger channel and whether you want the trigger
event to occur on the rising edge of the digital trigger signal
(positive-edge trigger) or on a falling edge of the digital trigger signal
(negative-edge trigger). The trigger sensitivity is always edge for
DAS-4301/8K boards. The trigger events are illustrated in Figure 2-2.

Negative-edge
trigger occurs

Analog input operation
start function is executed

Positive-edge trigger occurs

0 V

Level + 5 V

Analog Input Operations 2-13

Figure 2-2. Digital Trigger Conditions

Trigger Acquisition

The maximum number of samples you can collect for each trigger event
is 8,192. The minimum number of samples you can collect for each
trigger event depends on the conversion rate as follows:

●

Conversion rate of 100 Msamples/s and slower

: minimum of 1
sample in increments of 1 sample.

●

Conversion rate of 250 Msamples/s and faster

: minimum of 10
samples in increments of 10 samples.

The ways you can acquire data using triggers are described in the
following subsections.

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect
data after a specific trigger event. You specify a start trigger only; the start
trigger determines when the operation starts and can be either an internal,
an external analog, or an external digital trigger. To stop the operation,
use the K_IntStop function. If desired, you can specify the number of
samples to wait between when the trigger event occurs and when the data
is collected by using the K_SetPostTrigDelay function.

Trigger signal

Positive-edge
trigger event occurs

Negative-edge
trigger event occurs

2-14 Available Operations

At a conversion rate of 100 Msamples/s or slower, the post-trigger delay
can range from 0 to 65,536 samples (in increments of 1); at a conversion
rate of 250 Msamples/s or faster, the post-trigger delay can range from 0
to 655,360 samples (in increments of 10).

To specify post-trigger acquisition, perform the following steps:

1. Specify the start trigger.

– Use K_SetTrig to specify an internal or an external trigger
source (specify external for an analog or digital trigger).

– If you specify an external start trigger in K_SetTrig, define the
start trigger conditions using K_SetADTrig (for an analog
trigger) or K_SetDITrig (for a digital trigger).

2. If you specified an external analog or digital start trigger, use
K_ClrAboutTrig to disable the about trigger.

3. To specify the number of post-trigger samples to wait after the trigger
event occurs and before data is collected, use K_SetPostTrigDelay.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific trigger event. The operation starts when your application
program calls the K_IntStart function. The about trigger can be either an
external analog or external digital trigger; the operation stops when the
about-trigger event occurs.

Note: The memory buffer must fill up with data at least once before the
board can accept a trigger event.

To specify pre-trigger acquisition, perform the following steps:

1. Use K_SetTrig to specify an external about-trigger source (external
analog or external digital trigger).

2. Use K_SetAboutTrig to enable the about trigger and to set the
number of samples to 1.

Analog Input Operations 2-15

Note: The minimum number of samples that you can specify in
K_SetAboutTrig is 1.

3. Specify the trigger conditions for the about trigger.

– If the about trigger is an external analog trigger, use
K_SetADTrig to specify the trigger conditions for the about
trigger.

– If the about trigger is an external digital trigger, use K_SetDITrig
to specify the trigger conditions for the about trigger.

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific trigger event. The operation starts
when your application program calls the K_IntStart function. The about
trigger can be either an external analog or external digital trigger; the
operation stops after a specified number of samples has been acquired
after the about-trigger event occurs.

Note: The memory location must fill up with data at least once before the
board can accept a trigger event.

To specify about-trigger acquisition, perform the following steps:

1. Use K_SetTrig to specify an external about-trigger source (external
analog or external digital trigger).

2. Use K_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples.

3. Specify the trigger conditions for the about trigger.

– If the about trigger is an external analog trigger, use
K_SetADTrig to specify the trigger conditions for the about
trigger.

– If the about trigger is an external digital trigger, use K_SetDITrig
to specify the trigger conditions for the about trigger.

2-16 Available Operations

After the about-trigger acquisition is completed, the software
automatically ensures that the post-trigger samples are the last samples in
the array or buffer.

For example, suppose you set the the number of post-trigger samples in
K_SetAboutTrig to 4,160 and start the about-trigger acquisition.
Pre-trigger data is collected and begins to fill the 8,192 byte buffer. Once
the buffer is filled, the board can accept a trigger; pre-trigger data
continues to be collected and overwrites the data in the buffer until the
trigger event occurs. When a valid trigger event occurs, the board collects
4,160 post-trigger samples then stops the acquisition. The number of
pre-trigger samples in the buffer is 8,192 minus 4,160 or 4,032.

How the Driver Works 3-1

3

Programming with
the Function Call Driver

This chapter contains an overview of the structure of the DAS-4300
Series Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-4300 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley MetraByte DAS Function Call Drivers. You initialize each
driver according to a particular configuration file. If you are using more
than one driver or more than one configuration file with a single driver,
the driver handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You
initialize each board using a device handle to uniquely identify each
board. Each device handle is associated with a particular driver.

The driver uses frames to perform operations. A frame is a data structure
whose elements define the attributes of the operation. Each frame is
associated with a particular board, and therefore, with a particular driver.

3-2 Programming with the Function Call Driver

Frames help you create structured application programs. You set up the
attributes of the operation in advance, using a separate function call for
each attribute, and then start the operation at an appropriate point in your
program. Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long.

You indicate that you want to perform an analog input operation by
getting an available frame for the driver. The DAS-4300 Series Function
Call Driver provides analog input frames, called A/D (analog-to-digital)
frames. You use the

K_GetADFrame

 function to access an available A/D
frame. The driver returns a unique identifier for the frame; this name is
called the frame handle.

You then specify the attributes of the operation by using setup functions
to define the elements of the frame associated with the operation. For
example, to specify the channel on which to perform an analog input
operation, you would use the

K_SetChn

 setup function.

You use the frame handle you specified when accessing the frame in all
setup functions and other functions related to the operation. This ensures
that you are defining the same operation.

When you are ready to perform the operation you have set up, you can
start the operation by referencing the appropriate frame handle. Figure
3-1 illustrates the syntax of the interrupt-mode operation function

K_IntStart

.

How the Driver Works 3-3

Figure 3-1. Interrupt-Mode Operation

If you want to perform an interrupt-mode operation and all frames have
been accessed, you can use the

K_FreeFrame

 function to free a frame
that is no longer in use. You can then redefine the elements of the frame
for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the

K_ClearFrame

 function to reset all the elements of a
frame to their default values.

Table 3-1 lists the elements of a DAS-4300 Series A/D frame. This table
also lists the default value of each element and the setup function used to
define each element.

Channel

Clock Source

Trigger Source
.
.
.

Analog input channel

Pacer clock source

Trigger source
.
.
.

Attrib utes of OperationFrame

K_IntStart (frameHandle)

3-4 Programming with the Function Call Driver

Table 3-1. A/D Frame Elements

Element Default Value Setup Function

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetBuf

Number of Samples 0 K_SetBuf

Channel 0 K_SetChn

Input range 0 (±200 mV) K_SetG

Clock Source Internal A/D pacer
clock

K_SetClk

Pacer Clock Rate 0 K_SetClkRate

Trigger Source Internal K_SetTrig

Trigger Type Digital K_SetADTrig
K_SetDITrig

Trigger Channel 0 (for analog trigger) K_SetADTrig

0 (for digital trigger) Not applicable

2

2

The default value of this element cannot be changed.

Trigger Polarity Positive K_SetADTrig
K_SetDITrig

Trigger Sensitivity Edge (for analog) Not applicable

2

Edge (for digital) Not applicable

2

Trigger Level 0 K_SetADTrig

About-Trigger
Acquisition

Disabled K_SetAboutTrig

K_ClrAboutTrig

3

3

Use this function to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame. Whenever
you clear a frame or get a new frame, this frame element is set to its default
value automatically.

Post-Trigger Delay 0 K_SetPostTrigDelay

Programming Overview 3-5

Note:

The DAS-4300 Series Function Call Driver provides many other
functions that are not related to controlling frames or defining the
elements of frames. These functions include initialization functions,

memory management functions, and miscellaneous functions.

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DAS-4300 Series Function
Call Driver, perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

– Preliminary Tasks, the next section, which describes the
programming tasks that are common to all application programs.

– Analog Input Programming Tasks on page 3-6, which describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

– Chapter 4, which contains detailed descriptions of the FCD
functions.

– The example programs in the ASO-4300 software package. The
FILES.TXT file in the installation directory lists and describes
the example programs.

3. Compile and link the program. Refer to the language-specific
programming information (page 3-11 to page 3-14 for C/C++ or page
3-18 for Visual Basic for Windows), or to the EXAMPLES.TXT file
in the installation directory for compile and link statements and other
language-specific considerations for each supported language.

3-6 Programming with the Function Call Driver

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. This file is included in the ASO-4300 software package.

2. Declare and initialize program variables.

3. Use

K_OpenDriver

 to initialize the driver.

4. Use

K_GetDevHandle

 to specify the board you want to use and to
initialize the board. If you are using more than one board, use the
board initialization function once for each board you are using.

After completing the preliminary tasks, perform the analog input
programming tasks described in the following section.

Analog Input Programming Tasks

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the

K_GetADFrame

 function to access an A/D frame.

2. Dimension a local array within your program’s memory area or use
the

K_IntAlloc

 function to allocate a buffer dynamically outside your
program's memory area.

3.

If you are programming in Visual Basic for Windows and are using a
local array

, use the

K_SetBufI

function

to assign the starting address
of the array and to specify the number of samples in the array.

Otherwise

, use the

K_SetBuf

function

to assign the starting address
of the array or buffer and to specify the number of samples in the
array or buffer.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-2.

Analog Input Programming Tasks 3-7

Note:

When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list

of the default values of A/D frame elements.

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use the

K_IntStart

 function to start the interrupt-mode operation.

6. Use the

K_IntStatus

 function to monitor the status of the
interrupt-mode operation.

Table 3-2. Setup Functions for Interrupt-Mode
Analog Input Operations

Attribute Setup Function(s)

Channel K_SetChn

Input Range K_SetG

Clock Source K_SetClk

Pacer Clock Rate

1

K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig
K_SetDITrig

Trigger Polarity K_SetADTrig
K_SetDITrig

Trigger Level K_SetADTrig

About-Trigger
Acquisition

K_SetAboutTrig
K_ClrAboutTrig

Post-Trigger Delay K_SetPostTrigDelay

3-8 Programming with the Function Call Driver

7. Use the

K_IntStop

 function to stop the interrupt-mode operation
when the appropriate number of samples has been acquired.

8.

If you are programming in Visual Basic for Windows and you are
using a dynamically allocated memory buffer

, use the

K_MoveBufToArray

 function to transfer the acquired data from the
allocated buffer to a local array that your program can use.

9.

If you used a dynamically allocated memory buffer

, use the

K_IntFree

 function to free the memory.

C/C++ Programming Information

The following sections contain information you need to dimension an
array or dynamically allocate a memory buffer when programming in C
or C++, as well as language-specific information for Microsoft C/C++
and Borland C/C++ for DOS and Windows.

Note:

When programming in C/C++, proper typecasting may be required

to avoid C/C++ type-mismatch warnings.

Dimensioning and Assigning a Local Array

You can use a single, local array for an interrupt-mode analog input
operation. The following code fragment illustrates how to dimension an
array of 8,192 samples for the frame defined by hFrame and how to use

K_SetBuf

 to assign the starting address of the array.

. . .
int Data[8192]; //Dimension array of 8,192 samples
. . .
wDasErr = K_SetBuf (hFrame, Data, 8192);
. . .

Refer to the example programs on disk for more information.

C/C++ Programming Information 3-9

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to dynamically
allocate and assign a memory buffer when programming in C or C++ and
how to access the data in the buffer. Refer to the example programs on
disk for more information.

Note:

If you are programming in Windows Enhanced mode, you may be
limited in the amount of memory you can allocate. It is recommended that
you install the Keithley Memory Manager before you begin programming
to ensure that you can allocate a large enough buffer; refer to the

DAS-4300 Series User’s Guide

 for information on the Keithley Memory

Manager.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for an
interrupt-mode analog input operation. The following code fragment
illustrates how to use

K_IntAlloc

 to allocate a buffer of size Samples for
the frame defined by hFrame and how to use

K_SetBuf

 to assign the
starting address of the buffer.

. . .
void far *AcqBuf; //Declare pointer to buffer
WORD hMem; //Declare word for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples);
. . .

The following code illustrates how to use

K_IntFree

 to later free the
allocated buffer, using the memory handle stored by

K_IntAlloc

.

. . .
wDasErr = K_IntFree (hMem);
. . .

3-10 Programming with the Function Call Driver

Accessing the Data

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

. . .
int huge *pData; //Declare a pointer called pData
. . .
pData = (int huge *) AcqBuf; //Assign pData to buffer
for (i = 0; i < 10; i++)

printf ("Sample #%d %X", i, *(pData+i));
. . .

Note:

Declaring pData as a huge pointer allows the program to directly
access all data within the computer’s memory buffer, regardless of the

buffer size.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the

K_GetDevHandle

function.

. . .
if ((wDASErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf (“Error %X during K_GetDevHandle”, wDASErr);
exit (1);
}

. . .

C/C++ Programming Information 3-11

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-4300 software package.

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note that

filename

 indicates the
name of your application program.

File Description

DAS4300.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C (.c programs)

DASDECL.HPP Include file when compiling in C++ (.cpp
programs).

USE4300.OBJ Linkable object

Type of Compile Compile and Link Statements

1

Notes

1

These statements assume a large memory model; in DOS, only the large
memory model is acceptable.

C CL /c

filename

.c
LINK

filename

+use4300.obj,,,das4300+dasrface;

C++ CL /c

filename

.cpp
LINK

filename

+use4300.obj,,,das4300+dasrface;

3-12 Programming with the Function Call Driver

Programming in Microsoft C/C++ (for Windows)

To program in Microsoft C/C++ (for Windows), including Microsoft
Visual C++, you need the following files; these files are provided in the
ASO-4300 software package.

To create an executable file in Microsoft C/C++ (for Windows), use the
following compile and link statements. Note that

filename

 indicates the
name of your application program.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS4300.DLL Dynamic Link Library

DASDECL.H Include file when compiling in C (.c programs)

DASDECL.HPP Include file when compiling in C++ (.cpp programs)

DASIMP.LIB DAS Shell Imports

Type of Compile Compile and Link Statements

C CL /c

filename

.c
LINK

filename

,,,dasimp,

filename

.def;
RC -r

filename

.rc
RC -30

filename

.res

C++ CL /c

filename

.cpp
LINK

filename

,,,dasimp,

filename

.def;
RC -r

filename.rc
RC -30 filename.res

C/C++ Programming Information 3-13

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Add all necessary files to the project make file by choosing Edit from
the Project menu. Make sure that you include filename.c (or
filename.cpp), filename.rc, filename.def, and DASIMP.LIB, where
filename indicates the name of your application program.

3. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-4300 software package.

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note that filename indicates the
name of your application program.

File Description

DAS4300.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C (.c programs)

DASDECL.HPP Include file when compiling in C++ (.cpp programs)

USE4300.OBJ Linkable object

Type of Compile Compile and Link Statements 1

Notes
1 These statements assume a large memory model; in DOS, only the large memory

model is acceptable.

C BCC -ml filename.c use4300.obj das4300.lib dasrface.lib

C++ BCC -ml filename.cpp use4300.obj das4300.lib dasrface.lib

3-14 Programming with the Function Call Driver

Programming in Borland C/C++ (for Windows)

To program in Borland C/C++ (for Windows), you need the following
files; these files are provided in the ASO-4300 software package.

To create an executable file in Borland C/C++ (for Windows), use the
following compile and link statements. Note that filename indicates the
name of your application program.

To create an executable file in the Borland C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Inside the Project window, select the project name and click on the
right mouse button.

3. Select the Add node option and add all necessary files to the project
make file. Make sure that you include filename.c (or filename.cpp),

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS4300.DLL Dynamic Link Library

DASDECL.H Include file when compiling in C (.c programs)

DASDECL.HPP Include file when compiling in C++ (.cpp programs)

DASIMP.LIB DAS Shell Imports

Type of Compile Compile and Link Statements

C BCC -c filename.c
TLINK filename,,,dasimp, filename.def;
BRC -r filename.rc
BRC -30 filename.res

C++ BCC -c filename.cpp
TLINK filename,,,dasimp, filename.def;
BRC -r filename.rc
BRC -30 filename.res

Microsoft Visual Basic for Windows Programming Information 3-15

filename.rc, filename.def, and DASIMP.LIB, where filename indicates
the name of your application program.

4. From the Options menu, select Project.

5. From the Project Options dialog box, select Linker\General and make
sure that you turn OFF both the Case sensitive link and Case sensitive
exports and imports options.

6. From the Project menu, choose Build All to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

Microsoft Visual Basic for Windows
Programming Information

The following sections contain information you need to dimension an
array or dynamically allocate a memory buffer when programming in
Microsoft Visual Basic for Windows, as well as language-specific
information for Microsoft Visual Basic for Windows.

Dimensioning and Assigning a Local Array

You can use a single, local array for an interrupt-mode analog input
operation. The following code fragment illustrates how to dimension an
array of 8K samples for the frame defined by hFrame and how to use
K_SetBufI to assign the starting address of the array.

. . .
Global Data(8191) As Integer ’ Allocate array
. . .
wDasErr = K_SetBufI (hFrame, Data(0), 8192)
. . .

Refer to the example programs on disk for more information.

3-16 Programming with the Function Call Driver

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to dynamically
allocate and assign a memory buffer and how to access the data in the
buffer when programming in Microsoft Visual Basic for Windows. Refer
to the example programs on disk for more information.

Note: If you are programming in Windows Enhanced mode, you may be
limited in the amount of memory you can allocate. It is recommended that
you use the Keithley Memory Manager before you begin programming to
ensure that you can allocate a large enough buffer. Refer to your
DAS-4300 Series User’s Guide for more information about the Keithley
Memory Manager.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for an
interrupt-mode analog input operation. The following code fragment
illustrates how to use K_IntAlloc to allocate a buffer of size Samples for
the frame defined by hFrame and how to use K_SetBuf to assign the
starting address of the buffer.

. . .
Global AcqBuf As Long ’ Declare pointer to buffer
Global hMem As Integer ’ Declare integer for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples)
. . .

The following code illustrates how to use K_IntFree to later free the
allocated buffer, using the memory handle stored by K_IntAlloc .

. . .
wDasErr = K_IntFree (hMem)
. . .

Microsoft Visual Basic for Windows Programming Information 3-17

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
use K_MoveBufToArray to move a subset (up to 32,766 samples) of the
data into a local array as required. The following code fragment illustrates
how to move 100 samples from the buffer described in the previous
section (AcqBuf) to a local array.

. . .
Dim Buffer(1000) As Integer ’ Declare local array
. . .
wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf, 100)
. . .

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function:

. . .
wDASErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDASErr <> 0) Then

MsgBox “K_GetDevHandle Error: ” + Hex$ (wDASErr),
MB_ICONSTOP, “DAS-4300 SERIES ERROR”

End
End If
. . .

3-18 Programming with the Function Call Driver

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-4300 software
package.

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the File menu.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS4300.DLL Dynamic Link Library

DASDECL.BAS Include file; must be added to the Project List

. 4-1

4

Function Reference

The FCD functions are organized into the following groups:

●

Initialization functions

●

Operation functions

●

Frame management functions

●

Memory management functions

●

Buffer address functions

●

Channel and gain functions

●

Clock functions

●

Trigger functions

●

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2 Function Reference

Table 4-1. Functions

Function Type Function Name Page Number

Initialization K_OpenDriver page 4-31

K_CloseDriver page 4-6

K_GetDevHandle page 4-15

K_FreeDevHandle page 4-9

K_DASDevInit page 4-8

Operation K_IntStart page 4-24

K_IntStatus page 4-25

K_IntStop page 4-28

Frame Management K_GetADFrame page 4-11

K_FreeFrame page 4-10

K_ClearFrame page 4-5

Memory Management K_IntAlloc page 4-21

K_IntFree page 4-23

K_MoveBufToArray page 4-30

Buffer Address K_SetBuf page 4-36

K_SetBufI page 4-38

Channel and Gain K_SetChn page 4-40

K_SetG page 4-46

Clock K_SetClk page 4-41

K_SetClkRate page 4-42

K_GetClkRate page 4-13

. 4-3

Keep the following conventions in mind throughout this chapter:

●

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

●

Variable names are shown in italics.

●

The return value for all DAS-4300 Series FCD functions is the
error/status code. A value of 0 indicates that the function executed
successfully. A non-zero value indicates that an error occurred. Refer
to Appendix A for more information.

●

The description shows the prototype for the function.

●

In the Usage section, the variables are not defined. It is assumed that
the variables are defined as shown in the prototype.

Trigger K_SetTrig page 4-50

K_SetADTrig page 4-34

K_SetDITrig page 4-44

K_SetAboutTrig page 4-33

K_ClrAboutTrig page 4-7

K_SetPostTrigDelay page 4-48

Miscellaneous K_GetErrMsg page 4-17

K_GetVer page 4-19

K_GetShellVer page 4-18

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

4-4 Function Reference

The name of each function argument in the Prototype and Usage sections
includes a prefix that indicates the associated data type. These prefixes are
described in Table 4-2.

Table 4-2. Data Type Prefixes

Prefix Data Type Comments

sz Pointer to string terminated by
zero

This data type is typically used for variables that
specify the driver's configuration file name.

h Handle to device, frame, and
memory block

This data type is used for handle-type variables. You
declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variableThis data type is used when calling the FCD functions
to get a driver handle, a frame handle, or a memory
handle. The actual variable is passed to the driver by
reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for example,

anVar

 denotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

K_ClearFrame

4-5

Purpose

Sets the elements of a frame to their default values.

Prototype C/C++

DASErr far pascal K_ClearFrame (DWORD

hFrame

);

Visual Basic for Windows

Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function sets the elements of the frame specified by

hFrame

 to their
default values.

Refer to Table 3-1 on page 3-4 for the default values of the elements of an
A/D frame.

See Also

K_GetADFrame

Usage C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_ClearFrame (hAD);

Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
wDasErr = K_ClearFrame (hAD)

K_CloseDriver

4-6 Function Reference

Purpose

Closes a previously initialized Keithley DAS Function Call Driver.

Prototype C/C++

DASErr far pascal K_CloseDriver (DWORD

hDrv

);

Visual Basic for Windows

Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal

hDrv

 As Long) As Integer

Parameters

hDrv

Driver handle you want to free.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function frees the driver handle specified by

hDrv

 and closes the
associated use of the Function Call Driver. This function also frees all
device handles and frame handles associated with

hDrv

.

If

hDrv

 is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

See Also

K_FreeDevHandle

Usage C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_CloseDriver (hDrv);

Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
wDasErr = K_CloseDriver (hDrv)

K_ClrAboutTrig

4-7

Purpose

Disables the about trigger for an analog input operation.

Prototype C/C++

DASErr far pascal K_ClrAboutTrig (DWORD

hFrame

);

Visual Basic for Windows

Declare Function K_ClrAboutTrig Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function disables the about trigger for the operation defined by

hFrame

.

K_GetADFrame

 and

K_ClearFrame

 also disable the about trigger.

See Also

K_ClearFrame, K_GetADFrame, K_SetAboutTrig

Usage C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_ClrAboutTrig (hAD);

Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
wDasErr = K_ClrAboutTrig (hAD)

K_DASDevInit

4-8 Function Reference

Purpose

Reinitializes a board.

Prototype C/C++

DASErr far pascal K_DASDevInit (DWORD

hDev

);

Visual Basic for Windows

Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal

hDev

 As Long) As Integer

Parameters

hDev

Handle associated with the board.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function stops all current operations on the board specified by

hDev

and verifies that the board identified by the device handle is the board
specified in the configuration file associated with the board.

Usage C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_DASDevInit (hDev);

Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
wDasErr = K_DASDevInit (hDev)

K_FreeDevHandle

4-9

Purpose

Frees a previously specified device handle.

Prototype C/C++

DASErr far pascal K_FreeDevHandle (DWORD

hDev

);

Visual Basic for Windows

Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal

hDev

 As Long) As Integer

Parameters

hDev

Device handle you want to free.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function frees the device handle specified by

hDev

 as well as all
frame handles associated with

hDev

.

See Also K_GetDevHandle

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_FreeDevHandle (hDev)

K_FreeFrame

4-10 Function Reference

Purpose Frees a frame.

Prototype C/C++
DASErr far pascal K_FreeFrame (DWORD hFrame);

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to frame you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the frame specified by hFrame, making the frame
available for another operation.

See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_FreeFrame (hAD)

K_GetADFrame

4-11

Purpose Accesses an A/D frame for an analog input operation.

Prototype C/C++
DASErr far pascal K_GetADFrame (DWORD hDev,
DWORD far * phFrame);

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, phFrame As Long) As Integer

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform an interrupt-mode analog
input operation on the board specified by hDev, and accesses an available
A/D frame with the handle phFrame. The frame is initialized to its default
settings; the default settings are given in Table 3-1 on page 3-4.

The value stored in phFrame is intended to be used exclusively as an
argument to functions that require a frame handle. Your program should
not modify the value stored in phFrame.

See Also K_ClearFrame, K_FreeFrame

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
DWORD hAD;
...
wDasErr = K_GetADFrame (hDev, &hAD);

K_GetADFrame (cont.)

4-12 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global hAD As Long
...
wDasErr = K_GetADFrame (hDev, hAD)

K_GetClkRate

4-13

Purpose Gets a count value that determines the time between conversions for the
internal pacer clock.

Prototype C/C++
DASErr far pascal K_GetClkRate (DWORD hFrame,
DWORD far *pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pRate As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pRate Count value.
Value stored: 20 to 25600, described as follows:

Conversion Rate
Sample
Period

Count
Value

1 Gsamples/s 1 ns 20

500 Msamples/s 2 ns 40

250 Msamples/s 4 ns 80

100 Msamples/s 10 ns 200

50 Msamples/s 20 ns 400

25 Msamples/s 40 ns 800

12.5 Msamples/s 80 ns 1600

6.25 Msamples/s 160 ns 3200

3.125 Msamples/s 320 ns 6400

1.5625 Msamples/s 640 ns 12800

0.78250 Msamples/s1280 ns 25600

K_GetClkRate (cont.)

4-14 Function Reference

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the number of
clock ticks between conversions in pRate.

The pRate variable contains the value of the Pacer Clock Rate element.

See Also K_SetClkRate

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
DWORD dwRate;
...
wDasErr = K_GetClkRate (hAD, &dwRate);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global dwRate As Long
...
wDasErr = K_GetClkRate (hAD, dwRate)

K_GetDevHandle

4-15

Purpose Initializes any Keithley DAS board.

Prototype C/C++
DASErr far pascal K_GetDevHandle (DWORD hDrv,
WORD nBoardNum, DWORD far * pDev);

Visual Basic for Windows
Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByVal nBoardNum As Integer, pDev As Long) As
Integer

Parameters hDrv Driver handle of the associated Function Call
Driver.

nBoardNum Board number.
Valid values: 0 to 1

pDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the board associated with hDrv and specified by
nBoardNum, and stores the device handle of the specified board in pDev.

The value stored in pDev is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in pDev.

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
DWORD hDev;
...
wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

K_GetDevHandle (cont.)

4-16 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global hDev As Long
...
wDasErr = K_GetDevHandle (hDrv, 0, hDev)

K_GetErrMsg

4-17

Purpose Gets the address of an error message string.

Prototype C/C++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr,
char far * far * pErrMsg);

Visual Basic for Windows
Not supported

Parameters hDev Handle associated with the board.

nDASErr Error message number.

pErrMsg Address of error message string.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the address of the
string corresponding to error message number nDASErr in pErrMsg.

Refer to page 2-3 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
char far *pErrMsg;
...
wDasErr = K_GetErrMsg (hDev, wDASErr, &pErrMsg);

K_GetShellVer

4-18 Function Reference

Purpose Gets the current DAS shell version.

Prototype C/C++
DASErr far pascal K_GetShellVer (WORD far *pVersion);

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersion As Integer) As Integer

Parameters pVersion A word value containing the major and minor
version numbers of the DAS shell.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stores the current DAS shell version in pVersion. To obtain
the major version number of the DAS shell, divide pVersion by 256. To
obtain the minor version number of the DAS shell, perform a Boolean
AND operation with pVersion and 255 (0FF hex).

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
WORD wShellVer;
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS to your project)
...
Global wShellVer As Integer
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$(STR$(INT(wShellVer / 256))) + "." + :
 LTRIM$(STR$(wShellVer AND &HFF))
PRINT "Driver Ver: " + ShellVer$

K_GetVer

4-19

Purpose Gets revision numbers.

Prototype C/C++
DASErr far pascal K_GetVer (DWORD hDev, short far * pSpecVer,
short far * pDrvVer);

Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL"
(ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer)
As Integer

Parameters hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the revision number
of the DAS-4300 Series Function Call Driver in pDrvVer and the revision
number of the driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
10; therefore, the high byte of pDrvVer contains the value of 2 (512) and
the low byte of pDrvVer contains the value of 10; the value of both bytes
is 522.

To extract the major and minor revision levels from the value stored in
pDrvVer or pSpecVer, use the following equations:

major revision level Integer portion of
returned value

256

 
 

=

minor revision level returned value MOD 256=

K_GetVer (cont.)

4-20 Function Reference

Usage

C/C++

#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
short nSpecVer, nDrvVer;
...
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$(STR$(INT(nDrvVer / 256))) + "." + :
 LTRIM$(STR$(nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$

K_IntAlloc

4-21

Purpose

Dynamically allocates a buffer for an interrupt-mode operation.

Prototype C/C++

DASErr far pascal K_IntAlloc (DWORD

hFrame

, DWORD

dwSamples

,
void far * far

*pBuf

, WORD far

*pMem

);

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long, ByVal

dwSamples

 As Long,

pBuf

 As Long,

pMem

 As Integer) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

dwSamples

Number of samples.
Valid values:

1

to

 8192

pBuf

Starting address of the allocated buffer.

pMem

Handle associated with the allocated buffer.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function dynamically allocates
a buffer of the size specified by dwSamples, and stores the starting
address of the buffer in pBuf and the handle of the buffer in pMem.

The data in the allocated buffer is stored as counts. Refer to Appendix B
for information on converting a count value to voltage.

See Also K_IntFree, K_SetBuf

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer
...
wDasErr = K_IntAlloc (hAD, 8192, &pBuf, &hMem);

K_IntAlloc (cont.)

4-22 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_IntAlloc (hAD, 8192, pBuf, hMem)

K_IntFree

4-23

Purpose Frees a buffer dynamically allocated for an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntFree (WORD hMem);

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

Parameters hMem Handle to interrupt buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by hMem; the buffer was
previously allocated dynamically using K_IntAlloc .

See Also K_IntAlloc

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_IntFree (hMem)

K_IntStart

4-24 Function Reference

Purpose Starts an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStart (DWORD hFrame);

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the interrupt-mode operation defined by hFrame.
Refer to page 3-6 for a discussion of the programming tasks associated
with interrupt-mode operations.

See Also K_IntStatus, K_IntStop

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_IntStart (hAD)

K_IntStatus

4-25

Purpose Gets the status of an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation; see Remarks
below for value stored.

pCount Current number of samples transferred into the
array or buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the interrupt-mode operation defined by hFrame, this function stores
the status in pStatus and the current number of samples transferred into
the array or buffer in pCount.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

Bit 0123456789101112131415

0 = Interrupt operation inactive
1 = Interrupt operation active

0 = Buffer not filled
1 = Buffer filled

About-trigger
00 = Disabled
01 = Armed
11 = Done

K_IntStatus (cont.)

4-26 Function Reference

Figure 4-1. Status Word Settings

The bits are described as follows:

● Bit 0: This bit indicates whether an interrupt-mode operation is in
progress.

● Bits 1 to 3: Not used.

● Bit 4: This bit is set when the array or buffer that is assigned to the
active operation has been filled with data.

● Bits 6 and 7: These bits indicate the state of the about trigger.

● Bits 8 to 15: Not used.

See Also K_IntStart, K_IntStop

K_IntStatus (cont.)

4-27

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStatus (hAD, wStatus, dwCount)

K_IntStop

4-28 Function Reference

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation. Refer to page 4-26
for more information on the status word returned.

pCount Current number of samples transferred into the
array or buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the board from acquiring data, disables the
interrupt-mode operation, and returns the status of the operation when
your program called this function. No data is transferred into the array or
buffer in computer memory.

If you are using an external start or about trigger, call this function if the
trigger event does not occur.

See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStop (hAD, &wStatus, &dwCount);

K_IntStop (cont.)

4-29

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStop (hAD, wStatus, dwCount)

K_MoveBufToArray

4-30 Function Reference

Purpose Transfers data from a buffer allocated through K_IntAlloc to a locally
dimensioned array.

Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer) As Integer

Parameters pDest Address of destination array.

pSource Address of source buffer.

nCount Number of samples to transfer.
Value values:1 to 8192

Return Value Error/status code. Refer to Appendix A.

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

In Visual Basic for Windows, the buffer allocated through K_IntAlloc is
not accessible to your program; you must use K_MoveBufToArray to
move the data from the allocated buffer to the program’s local array.

See Also K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_IntAlloc (hAD, 8192, pBuf, hMem)
...
wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 8192)

K_OpenDriver

4-31

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_OpenDriver (char far * szDrvName,
char far * szCfgName, DWORD far * pDrv);

Visual Basic for Windows
Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvName As String, ByVal szCfgName As String,
pDrv As Long) As Integer

Parameters szDrvName Board name.
Valid value: "DAS4300" (for DAS-4301/8K

 boards)

szCfgName Driver configuration file.
Valid values: The name of a configuration file;

0 if driver has already been
opened

pDrv Handle associated with the driver.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the DAS-4300 Series Function Call Driver
according to the information in the configuration file specified by
szCfgName, and stores the driver handle in pDrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board. For DAS-4301/8K boards, the
string stored in szDrvName must be DAS4300. Refer to other Function
Call Driver user’s guides for the appropriate string to store in szDrvName
for other Keithley MetraByte DAS boards.

The value stored in pDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in pDrv.

You create a configuration file using the CFG4300.EXE utility. Refer to
your DAS-4300 Series User’s Guide for more information.

K_OpenDriver (cont.)

4-32 Function Reference

If szCfgName = 0, K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment.

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
DWORD hDrv;
...
wDasErr = K_OpenDriver ("DAS4300", "DAS4300.CFG", &hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)
...
DIM hDrv As Long
...
wDasErr = K_OpenDriver("DAS4300", "DAS4300.CFG", hDrv)

K_SetAboutTrig

4-33

Purpose Enables the about trigger and specifies the number of post-trigger
samples.

Prototype C/C++
DASErr far pascal K_SetAboutTrig (DWORD hFrame,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of post-trigger samples.
Valid values: 0 to 8191

Return Value Error/status code. Refer to Appendix A.

Remarks This function enables the about trigger and specifies the number of
post-trigger samples in dwSamples. At least one pre-trigger sample must
be in the buffer.

Note that you cannot use an about trigger with an external start trigger.

See Also K_ClrAboutTrig

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetAboutTrig (hAD, 100);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetAboutTrig (hAD, 100)

K_SetADTrig

4-34 Function Reference

Purpose Sets up an external analog start or about trigger.

Prototype C/C++
DASErr far pascal K_SetADTrig (DWORD hFrame, short nOpt,
short nChan, DWORD dwLevel);

Visual Basic for Windows
Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal dwLevel As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity and sensitivity.
Valid values: 0 for Positive edge

2 for Negative edge

nChan Trigger channel.
Valid values: 0 for ±1 V signal from

Ch A connector
1 for ±1 V signal from

Trg/Ch B connector
 2 for ±10 V signal from

Trg/Ch B connector

dwLevel Level at which the trigger event occurs, specified
in counts.
Valid values: −128 to 127

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the channel
used for an analog trigger in nChan, the level used for the analog trigger
in dwLevel, and the trigger polarity and trigger sensitivity in nOpt.

If you specified a value of 0 for nChan, you must specify channel 0 in
K_SetChn. If you specified a value of 1 for nChan, you must specify
channel 1 in K_SetChn. If you specified a value of 2 for nChan, you can
specify either channel 0 or channel 1 in K_SetChn.

K_SetADTrig (cont.)

4-35

You specify the value for dwLevel in counts. Refer to Appendix B for
information on converting the actual voltage to a count value.

The values you specify set the following elements in the frame identified
by hFrame:

● nOpt sets the value of the Trigger Polarity and Trigger Sensitivity
elements.

● nChan sets the value of the Trigger Channel element.

● dwLevel sets the value of the Trigger Level element.

K_SetADTrig does not affect the operation defined by hFrame unless the
Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_IntStart .

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetADTrig (hAD, 0, 1, 127);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetADTrig (hAD, 0, 1, 127)

K_SetBuf

4-36 Function Reference

Purpose Specifies the starting address of a previously allocated array or buffer and
the number of samples in the array or buffer.

Prototype C/C++
DASErr far pascal K_SetBuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of array or buffer.

dwSamples Number of samples.
Valid values: 1 to 8192

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of a previously allocated array or buffer in pBuf and the number
of samples (the size of the array or buffer) in dwSamples.

For Visual Basic for Windows, use this function only for dynamically
allocated buffers. For locally dimensioned arrays, use K_SetBufI.

For C application programs, make sure that you use proper typecasting to
prevent C/C++ type-mismatch warnings.

The values you specify set the following elements in the frame identified
by hFrame:

● pBuf sets the value of the Buffer element.

● dwSamples sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBufI

K_SetBuf (cont.)

4-37

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_IntAlloc (hAD, 8192, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 8192);

Visual Basic for Windows
(Add DASDECL.BAS to your project)
...
Global pBuf As Long
...
wDasErr = K_IntAlloc (hAD, 8191, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 8192)

K_SetBufI

4-38 Function Reference

Purpose Specifies the starting address of a locally dimensioned integer array and
the number of samples in the array.

Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_SetBufI Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long) As
Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the locally dimensioned
integer array.

dwSize Number of samples.
Valid values: 1 to 8192

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of a locally dimensioned integer array in pBuf and the number of
samples stored in the array in dwSize.

Do not use this function for C; instead, use K_SetBuf.

For Visual Basic for Windows, use this function only for locally
dimensioned arrays. For buffers allocated dynamically using K_IntAlloc ,
use K_SetBuf.

The pBuf variable sets the value of the Buffer element; the dwSize variable
sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBuf

K_SetBufI (cont.)

4-39

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global ADData(8191) As Integer
...
wDasErr = K_SetBufI (hAD, ADData(0), 8192)

K_SetChn

4-40 Function Reference

Purpose Specifies a single channel.

Prototype C/C++
DASErr far pascal K_SetChn (DWORD hFrame, short nChan);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform the operation.
Valid values: 0 for signal from Ch A connector

1 for signal from Trg/Ch B
connector

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the single
channel used in nChan.

Software channel 0 corresponds to the analog input signal from the Ch A
connector on the board; software channel 1 corresponds to the analog
input signal from the Trg/Ch B connector on the board.

The value you specify in nChan sets the Channel element in the frame
identified by hFrame.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetChn (hAD, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetChn (hAD, 0)

K_SetClk

4-41

Purpose Specifies the pacer clock source.

Prototype C/C++
DASErr far pascal K_SetClk (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the pacer
clock source in nMode. The value you specify in nMode sets the Clock
Source element in the frame identified by hFrame.

K_GetADFrame and K_ClearFrame specify internal as the default
clock source.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetClk (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetClk (hAD, 1)

K_SetClkRate

4-42 Function Reference

Purpose Specifies a count value that determines the time between conversions for
the internal pacer clock.

Prototype C/C++
DASErr far pascal K_SetClkRate (DWORD hFrame,
DWORD dwDivisor);

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Count value.
Valid values: 20 to 25600, described as follows::

Conversion Rate
Sample
Period

Count
Value

1 Gsamples/s 1 ns 20

500 Msamples/s 2 ns 40

250 Msamples/s 4 ns 80

100 Msamples/s 10 ns 200

50 Msamples/s 20 ns 400

25 Msamples/s 40 ns 800

12.5 Msamples/s 80 ns 1600

6.25 Msamples/s 160 ns 3200

3.125 Msamples/s 320 ns 6400

1.5625 Msamples/s 640 ns 12800

0.78250 Msamples/s1280 ns 25600

K_SetClkRate (cont.)

4-43

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the count
value, which is divided into 20 Gsamples/s, for the internal pacer clock in
dwDivisor.

The value you specify in dwDivisor sets the Pacer Clock Rate element in
the frame identified by hFrame.

Refer to page 2-8 for more information on the internal pacer clock.

See Also K_GetClkRate

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetClkRate (hAD, 20);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetClkRate (hAD, 20)

K_SetDITrig

4-44 Function Reference

Purpose Sets up an external digital start or about trigger.

Prototype C/C++
DASErr far pascal K_SetDITrig (DWORD hFrame, short nOpt,
short nChan, DWORD nPattern);

Visual Basic for Windows
Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal nPattern As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Trigger polarity and sensitivity.
Valid values: 0 for Positive edge

2 for Negative edge

nChan Digital input channel.
Valid value: 0

nPattern Trigger pattern.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies the use of a digital trigger for the operation defined
by hFrame.

Since an external digital trigger is always connected to the Trg IO
connector on the board, the value of nChan is meaningless. In addition,
the DAS-4300 Series Function Call Driver does not support digital pattern
triggering; therefore, the value of nPattern is meaningless. The nChan and
nPattern parameters are provided for future compatibility.

K_SetDITrig (cont.)

4-45

The values you specify set the following elements in the frame identified
by hFrame:

● nOpt sets the value of the Trigger Polarity element.

● nChan sets the value of the Trigger Channel element.

● nPattern sets the value of the Trigger Pattern element.

K_SetDITrig does not affect the operation defined by hFrame unless the
Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_IntStart .

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetDITrig (hAD, 0, 0, 0)

K_SetG

4-46 Function Reference

Purpose Sets the input range.

Prototype C/C++
DASErr far pascal K_SetG (DWORD hFrame, short nGain);

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nGain Gain code.
Valid values: 0 to 15, described as follows:

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the gain code,
which represents the input voltage range, for a single channel in nGain.
Refer to Appendix C to understand the effect of input voltage ranges on
the bandwidth of the DAS-4301/8K board.

The value you specify in nGain sets the Gain element in the frame
identified by hFrame.

K_GetADFrame and K_ClearFrame specify 0 as the default gain code.

Analog
Input Range

Gain
Code

Analog
Input Range

Gain
Code

±25 mV 12 ±200 mV 0

±31.25 mV 13 ±250 mV 1, 10

±62.5 mV 14 ±312.5 mV 6

±100 mV 8 ±0.5 V 2, 11

±125 mV 4, 9, 15 ±0.625 V 7

±156.25 mV 5 ±1.0 V 3

K_SetG (cont.)

4-47

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetG (hAD, 1)

K_SetPostTrigDelay

4-48 Function Reference

Purpose Sets the number of post-trigger delay samples.

Prototype C/C++
DASErr far pascal K_SetPostTrigDelay (WORD hFrame,
DWORD nDelay);

Visual Basic for Windows
Declare Function K_SetPostTrigDelay Lib "DAS4300.DLL"
(ByVal hFrame As Long, nDelay As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nDelay Post-trigger delay samples.
Valid values:
0 to 65536 (at conversion rate of
 100 Msamples/s or slower)
0 to 655360 (at conversion rate of
 250 Msamples/s or faster)

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the number of
post-trigger delay samples in nDelay .

At a conversion rate of 100 Msamples/s or slower, the post-trigger delay
can range from 0 to 65,536 samples (in increments of 1); at a conversion
rate of 250 Msamples/s or faster, the post-trigger delay can range from 0
to 655,360 samples (in increments of 10).

You cannot specify a post-trigger delay if you are using an about trigger.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
WORD nDelay;
...
wDasErr = K_SetPostTrigDelay (hFrame, hDelay);

K_SetPostTrigDelay (cont.)

4-49

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global Delay As Long
...
wDasErr = K_SetPostTrigDelay (hFrame, nDelay)

K_SetTrig

4-50 Function Reference

Purpose Specifies the trigger source.

Prototype C/C++
DASErr far pascal K_SetTrig (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal start trigger

1 for External start or about
trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the trigger
source in nMode.

An internal trigger is a software trigger; conversions begin when your
application program calls K_IntStart . An external trigger is either an
analog trigger or a digital trigger. Refer to page 2-10 for more information
on trigger sources.

You cannot use an external start trigger (as required for post-trigger
acquisition) when the about trigger is enabled. If you want to use an
external start trigger, ensure that the about trigger is disabled by using the
K_ClrAboutTrig function. Refer to page 2-13 for more information on
trigger acquisitions.

If nMode = 1, an external digital trigger is assumed. Use K_SetDITrig to
change the conditions of the digital trigger. Use K_SetADTrig to specify
the conditions for an external analog trigger.

K_GetADFrame and K_ClearFrame set the trigger source to internal.

K_SetTrig (cont.)

4-51

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetTrig (hAD, 1)

A-1

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-4300
Series Function Call Driver, possible causes for error conditions, and
possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Code
Cause Solution

Hex Decimal

0 0 No error has been detected. Status only; no action is necessary.

6000 24576

Error in configuration file:

 The
configuration file you specified in
the driver initialization function is
corrupt, does not exist, or contains
one or more undefined keywords.

Check that the file exists at the
specified path. Check for illegal
keywords in file; you can avoid
illegal keywords by using the
configuration utility to create and
modify configuration files.

6001 24577

Illegal base address in
configuration file:

The board's
base I/O address in the
configuration file is illegal and/or
does not match the base address
switches on the board.

Use the configuration utility to
change the base I/O address to one
that matches the base address
switches on the board.

6002 24578

Illegal IRQ level in configuration
file:

 The interrupt level in the
configuration file is illegal.

Use the configuration utility to
change the interrupt level to a legal
one for your board. Refer to the
user’s guide for legal interrupt
levels.

A-2 Error/Status Codes

6003 24579

Illegal DMA channel in
configuration file:

 The DMA
channel in the configuration file is
illegal.

Use the configuration utility to
change the DMA channel to a legal
one for your board. Refer to the
user’s guide for legal DMA
channels.

6005 24581

Illegal channel number:

 The
specified channel number is illegal
for the board and/or for the range
type (unipolar or bipolar).

Specify a legal channel number.
Refer to the user’s guide or to the
description of

K_SetChn

 in
Chapter 4 for legal channel
numbers.

6006 24582

Illegal gain code:

The specified
channel gain code is illegal for this
board.

Specify a legal gain code. Refer to
the user’s guide or to the
description of

K_SetG

 in
Chapter 4 for a list of legal gain
codes.

6007 24583

Illegal DMA address:

An FCD
function specified a buffer address
that is not suitable for a DMA
operation for the number of
samples required.

Use the

K_DMAAlloc

 function to
allocate dynamic buffers for DMA
operations. In Windows, make sure
that the Keithley Memory Manager
is installed; refer to the user’s guide
for information.

6008 24584

Illegal number in configuration
file:

 The configuration file contains
one or more numeric values that
are illegal.

Use the configuration utility to
check and then change the
configuration file.

600A 24586

Configuration file not found:

 The
driver cannot find the
configuration file specified as an
argument to the driver initialization
function.

Check that the file exists at the
specified path. Check that the file
name is spelled correctly in the
driver initialization function
parameter list.

600B 24587

Error returning DMA buffer:

DOS returned an error in INT 21H
function 49H during the execution
of

K_DMAFree

.

Check that the memory handle
passed as an argument to

K_DMAFree

 was previously
obtained using

K_DMAAlloc

.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-3

600C 24588

Error returning interrupt
buffer:

 The memory handle
specified in

K_IntFree

 is invalid.

Check the memory handle stored
by

K_IntAlloc

 and make sure that
it was not modified.

600D 24589

Illegal frame handle:

 The
specified frame handle is not valid
for this operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600E 24590

No more frame handles:

 No
frames are left in the pool of
available frames.

Use

K_FreeFrame

 to free a frame
that the application is no longer
using.

600F 24591

Requested buffer size too large:

The requested buffer cannot be
dynamically allocated because of
its size.

Specify a smaller buffer size; refer
to the description of

K_IntAlloc

 in
Chapter 4 for the legal range. If in
Windows Enhanced mode with the
Keithley Memory Manager
(VDMAD.386) installed, use
KMMSETUP.EXE to increase the
reserved buffer heap size.

6010 24592

Cannot allocate interrupt buffer:

(Windows-based languages only)

K_IntAlloc

 failed because there
was not enough available DOS
memory.

Remove some Terminate and Stay
Resident programs (TSRs) that are
no longer needed.

6012 24594

Interrupt buffer deallocation
error:

 (Windows-based languages
only) An error occurred when

K_IntFree

 attempted to free a
memory handle.

Make sure that the memory handle
passed as an argument to

K_IntFree

 was previously
obtained using

K_IntAlloc

.

6015 24597

DMA Buffer too large:

 The
number of samples specified in

K_DMAAlloc

 is too large.

Refer to the description of

K_DMAAlloc

 in Chapter 4 for the
buffer size range.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-4 Error/Status Codes

6016 24598

VDS - Region not contiguous:

An
error occurred while using
Windows Virtual DMA Services.
You tried to use

K_DMAAlloc

 in
Windows Enhanced mode and the
Keithley Memory Manager
(VDMAD.386) was not installed

Refer to the user’s guide for
information on how to install and
set up the Keithley Memory
Manager (VDMAD.386).

6017 24599

VDS - DMA wraparound:

 See
error 6016.

 See error 6016.

6018 24600

VDS - Unable to lock region:

See
error 6016.

See error 6016.

6019 24601

VDS - No buffer available:

See
error 6016.

See error 6016.

601A 24602

VDS - Region too large:

See error
6016.

See error 6016.

601B 24603

VDS - Buffer in use:

See error
6016.

See error 6016.

601C 24604

VDS - Illegal region:

See error
6016.

See error 6016.

601D 24605

VDS - Region not locked:

See
error 6016.

See error 6016.

601E 24606

VDS - Illegal page:

See error
6016.

See error 6016.

601F 24607

VDS - Illegal buffer:

See error
6016.

See error 6016.

6020 24608

VDS - Copy out of range:

See
error 6016.

See error 6016.

6021 24609

VDS - Illegal DMA channel:

See
error 6016.

See error 6016.

6022 24610

VDS - Count overflow:

See error
6016.

See error 6016.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-5

6023 24611

VDS - Count underflow:

See
error 6016.

See error 6016.

6024 24612

VDS - Function not supported:

See error 6016.
See error 6016.

6025 24613

Illegal OBM mode:

 The mode
number specified in

K_SetOBMMode

 is illegal.

Refer to the description of

K_SetOBMMode

 in Chapter 4 for
legal mode values.

6026 24614

Illegal DMA structure:

An error
occurred during the execution of

K_DMAFree

.

Try using

K_DMAFree

 again. If
the error continues, contact the
Keithley MetraByte Applications
Engineering Department.

6027 24615

DMA allocation error:

 See error
6026.

 See error 6026.

6028 24616

NULL DMA handle:

See error
6026.

 See error 6026.

6029 24617

DMA unlock error:

See error
6026.

 See error 6026.

602A 24618

DMA free error:

See error 6026. See error 6026.

602B 24619

Not enough memory to
accommodate request:

The
number of samples you requested
in the Keithley Memory Manager
is greater than the largest
contiguous block available in the
reserved heap.

Specify a smaller number of
samples. Free a previously
allocated buffer. Use the
KMMSETUP utility to expand the
reserved heap.

602C 24620

Requested buffer size exceeds
maximum:

 The number of
samples you requested from the
Keithley Memory Manager is
greater than the allowed maximum.

Specify a value within the legal
range when calling

K_DMAAlloc

or

 K_IntAlloc

in Windows
Enhanced mode. Refer to the
description of

K_DMAAlloc

or

K_IntAlloc

 in Chapter 4 for legal
values.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-6 Error/Status Codes

602D 24621

Illegal device handle:

A bad
device handle was passed to a
function such as

K_GetADFrame

.
The handle used was not initialized
using

K_GetDevHandle

 or it was
corrupted by your program.

Check the device handle value.

602E 24622

Illegal Setup option:

 An illegal
option was specified to a function
that accepts a user option, such as

K_SetDITrig

.

Check the option value passed to
the function where the error
occurred.

6030 24624

DMA word-page wrap:

 During

K_DMAAlloc

, a DMA word-page
wrap condition occurred and the
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

Reduce the number of samples and
retry. If in Windows Enhanced
mode, install and configure
VDMAD.386.

6031 24625

Illegal memory handle:

 A bad
memory handle was passed to

K_IntFree

 or

K_DMAFree

. The
handle used was not initialized
through a call to

K_IntAlloc

 or

K_DMAAlloc

, or it was corrupted
by you program.

Restart your program and monitor
the memory handle value(s).

6032 24626

Out of memory handles:

 An
attempt to allocate a memory block
using

K_IntAlloc

 or

K_DMAAlloc

 failed because the
maximum number of handles has
already been assigned.

Use

K_IntFree

 or

K_DMAFree

 to
free previously allocated memory
blocks before allocating again.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-7

6034 24628

Memory corrupted:

Int 21H
function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

Recheck the parameters set by

K_DMAAlloc

 and

K_SetDMABuf

. If a fatal system
error, restart your computer.

6035 24629

Driver in use:

 The driver
attempted to configure a device
that had already been configured
by a call to

K_OpenDriver

. (This
can occur since, under Windows, it
is possible to open the same driver
from multiple programs that are
running simultaneously.)

To continue using the driver with
the same configuration, pass a null
string as the second argument to

K_OpenDriver

. To use the driver
with a different configuration,
close any application programs
currently accessing the driver, and
then open the driver again (using

K_OpenDriver

).

6036 24630

Illegal driver handle:

 The
specified driver handle is not valid.

Someone may have closed the
driver; if so, use

K_OpenDriver

to
reopen the driver with the desired
driver handle. Try again using
another driver handle.

6037 24631

Driver not found: The specified
driver cannot be found.

Check your link statement to make
sure the specified driver is
included. Make sure that the device
name string is entered correctly in
K_OpenDriver.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-8 Error/Status Codes

6038 24632 Invalid source pointer:
(Windows-based languages only)
The pointer to the source buffer
that you passed as an argument to
K_MoveBufToArray is invalid for
the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

Check the pointer to the source
buffer and the number of samples
to transfer that you specified in
K_MoveBufToArray .

6039 24633 Invalid destination pointer:
(Windows-based languages only)
The pointer to the destination
buffer (local array) that you passed
as an argument to
K_MoveBufToArray is invalid for
the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)

Check the dimension of the local
array and the number of samples to
transfer that you specified in
K_MoveBufToArray .

603A 24634 Illegal setup value: An illegal
value was passed to the function in
which the error occurred.

Check the legal ranges of all
parameters passed to this function.

603B 24635 Error freeing buffer selector:
K_DMAFree or K_IntFree failed
because one or more of the
selectors that reference the
memory buffer could not be freed.

Check that the memory buffer
being freed was previously
obtained through K_DMAAlloc or
K_IntAlloc.

603C 24636 Error allocating buffer selector:
K_DMAAlloc or K_IntAlloc
failed because a selector could not
be allocated from Window’s Local
Descriptor Table.

Close all applications and restart
Windows. If the error continues,
contact the Keithley MetraByte
Applications Engineering
Department.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-9

603D 24637 Error allocating memory buffer:
K_DMAAlloc or K_IntAlloc
failed because a necessary internal
buffer could not be allocated to
complete the operation.

Close all applications and restart
Windows. If the error continues,
contact the Keithley MetraByte
Applications Engineering
Department.

7000 28672 No board number: The board
number field was missing or out of
place in the specified configuration
file.

Specify the board number in the
configuration file.

7002 28674 Illegal board number: The driver
initialization function found an
illegal board number in the
specified configuration file.

Specify a legal board number:
0 to 1

7003 28675 Illegal base address: The driver
initialization function found an
illegal base I/O address in the
specified configuration file.

Specify a base I/O address in the
inclusive range &H240 (576) to
&H2F8 (760) in increments of 8H
(8). Make sure that &H precedes
hexadecimal numbers.

7004 28676 Illegal memory address: The
driver initialization function found
an illegal memory address in the
specified configuration file.

Specify a memory address in the
inclusive range &HA000 to
&HDC00 in increments of 400H.
Make sure that &H precedes
hexadecimal numbers.

7005 28677 Illegal interrupt level : The driver
initialization function found an
illegal interrupt level in the
specified configuration file.

Specify a legal interrupt level: 5, 7,
9, 10, 11, 12, or 15

7007 28679 Illegal zero wait state: The driver
initialization function found an
illegal input in the specified
configuration file.

Specify enabled or disabled.

7009 28681 Illegal A/D channel: The analog
input channel specified in
K_SetChn is illegal.

Make sure that the analog input
channel in K_SetChn is 0 (Ch A
connector), or (Trg/Ch B
connector).

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-10 Error/Status Codes

700A 28682 Illegal start- and about-trigger
combination: The start trigger
must be internal when the about
trigger is enabled.

Either set the start trigger to
internal using K_SetTrig, or
disable the about trigger using
K_ClrAboutTrig .

700B 28683 Illegal analog trigger channel:
The analog input channel specified
in K_SetADTrig does not match
the analog input channel being
sampled (specified in K_SetChn).

When using an external software
analog trigger, make sure that the
analog trigger channel is the same
as the analog input channel that is
sampled.

700C 28684 Illegal about- and post-trigger
delay combination: The about
trigger cannot be enabled while the
post-trigger delay is specified.

Either disable the about trigger
using K_ClrAboutTrig or do not
specify a delay with
K_SetPostTrigDelay.

700E 28686 Resource busy: The application
program attempted to start an
operation while a similar operation
was in progress.

Use K_IntStop to stop the
in-progress operation before
initiating the second operation.

700F 28687 Start and stop channel are not
equal: Only one analog input
channel can be sampled during an
operation.

Do not try to acquire data from
more than one channel at a time.

7010 28688 Illegal number of post-trigger
delay samples: At a conversion
rate of 100 Msamples/s or slower,
the number of post-trigger delay
samples can range from 0 to
65,536. At a conversion rate of
250 Msamples/s or faster, the
number of post-trigger delay
samples can range from 0 to
655,360.

Use K_SetPostTrigDelay to
specify a valid number of
post-trigger delay samples.

7012 28690 Missing clock pulse or rate too
slow: The external clock is using a
conversion rate less than
100 Msamples/s.

Ensure that the external clock uses
a conversion rate above
100 Msamples/s.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-11

7015 28693 Illegal number of about-trigger
samples: The number of
about-trigger samples exceeds the
buffer size or is greater than 8192
samples.

Ensure that the number of
about-trigger samples specified in
K_SetAboutTrig is less or equal
to 8191 or is less than or equal to
the size of your array or buffer as
specified in K_SetBuf or
K_SetBufI.

7017 28695 Illegal calibration on board: The
EEPROM settings are not giving a
consistent value.

Contact the Keithley MetraByte
Applications Engineering
Department.

7018 28696 Memory map conflict or
inconsistency: The board could
not map into the memory address
configured.

Configure the jumpers on the board
to choose another memory address.

7019 28697 Windows could not supply
memory map: Windows did not
return the selector for the memory
location of the board requested.

Check to make sure that your
memory manager excludes the
memory your board is using. For
example, if you are using
EMM386, your CONFIG.SYS file
should contain a line similar to the
following:
DEVICE=C:\DOS\EMM386.EXE
X=CC00-CFFF
(Note this should be typed on one
line.)

8001 32769 Function not supported: You
have attempted to use a function
not supported by the Function Call
Driver.

Contact the Keithley MetraByte
Applications Engineering
Department.

8003 32771 Illegal board number: An illegal
board number was specified in the
board initialization function.

Refer to the description of
K_GetDevHandle in Chapter 4 for
legal board numbers.

8004 32772 Illegal error number: The error
message number specified in
K_GetErrMsg is invalid.

The error number must be one the
error numbers listed in this
appendix.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-12 Error/Status Codes

8005 32773 Board not found at configured
address: The board initialization
function does not detect the
presence of a board.

Make sure that the base address
setting of the switches on the board
matches the base address setting in
the configuration file.

8006 32774 A/D not initialized: You attempted
to start a frame-based analog input
operation without the A/D frame
being properly initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8007 32775 D/A not initialized: You attempted
to start a frame-based analog
output operation without the D/A
frame being properly initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8008 32776 Digital input not initialized: You
attempted to start a frame-based
digital input operation without the
DI frame being properly
initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

8009 32777 Digital output not initialized: You
attempted to start a frame-based
digital output operation without the
DO frame being properly
initialized.

Always call K_ClearFrame
before setting up a new
frame-based operation.

800B 32779 Conversion overrun: Data was
overwritten before it was
transferred to the computer’s
memory.

Adjust the clock source to slow
down the rate at which the board
acquires data. Remove other
application programs that are
running and using computer
resources.

8016 32790 Interrupt overrun : The board
communicated a hardware event to
the software by generating a
hardware interrupt, but the
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Check the maximum throughput
rate for your computer’s
programming environment and use
K_SetClkRate to specify an
appropriate rate.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

A-13

801A 32794 Interrupts already active: You
have attempted to start an operation
whose interrupt level is being used
by another system resource.

Use K_IntStop to stop the first
operation before starting the
second operation.

801B 32795 DMA already active: You
attempted to start a DMA-mode
operation using a DMA channel
that is currently used by another
active operation.

Use K_DMAStop to stop the first
operation before starting the
second operation.

801C 32796 Timer channel already active:
This error appears when you try to
perform an operation and the timer
channel is already in use by
another system resource.

Stop the first operation before
starting the next operation, or wait
until the first operation stops before
starting the next operation.

8020 32800 FIFO Overflow event detected:
During data acquisition, the
temporary on-board data storage
(FIFO) overflowed.

The conversion rate is too fast for
your computer’s programming
environment; use K_SetClkRate
to reduce the conversion rate. If
you are using DMA-mode and
your board supports dual-DMA,
use the configuration utility to
reconfigure your board to use
dual-DMA.

8021 32801 Illegal clock sync mode: The two
operations you are trying to
synchronize cannot be
synchronized on your board.

Check the synchronizing clock
source that you specified in
K_SetSync. Make sure that your
board supports clock
synchronization.

FFFF 65535 User aborted operation: You
pressed Ctrl +Break during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

Start the operation again, if
desired.

Table A-1. Error/Status Codes (cont.)

Error Code
Cause Solution

Hex Decimal

Converting Counts to Voltage B-1

B

Data Formats

The DAS-4300 Series Function Call Driver can read and write counts
only. When reading a value, you may want to convert the count to a more
meaningful voltage value; when writing a value (as in

K_SetTrig

), you
must convert the voltage value to a count value.

The remainder of this appendix contains instructions for converting
counts to voltage and for converting voltage to counts.

Converting Counts to Voltage

You may want to convert counts to voltage when reading an analog input
value.

To convert an analog input value to a voltage, use the following equation,
where

count

 is the count value, and

span

 is the appropriate value from
Table B-1 on page B-2:

Voltage count span×
256

---------------------------------=

B-2 Data Formats

For example, assume that you want to read analog input data from a
channel on a DAS-4301/8K board with an input range of ±1 V (span of
2 V); the count value is 72. The voltage is determined as follows:

Table B-1. Some Span Values For Analog Input Data Conversion Equations

Gain
Code

Input Range Span (V)

0 ±200 mV 0.4

1 ±250 mV .5

2 ±0.5 V 1

3 ±1 V 2

4 ±125 mV 0.25

5 ±156.25 mV 0.3125

6 ±312.5 mV 0.625

7 ±0.625 V 1.25

8 ±100 mV 0.2

9 ±125 mV 0.25

10 ±250 mV 0.5

11 ±0.5 V 1

12 ±25 mV 0.5

13 ±31.25 mV 0.625

14 ±62.5 mV 0.125

15 ±125 mV 0.25

72 2 V ×
256

--------------------- 0.5625 V=

Converting Voltage to Counts B-3

Converting Voltage to Counts

You must convert voltage to a count value when specifying an analog
trigger level.

To convert a voltage to a count value when specifying an analog trigger
level, use one of the following equations, where

V

trig

 is the desired
voltage, and

span

 is the appropriate value from Table B-1 on page B-2:

For ±1 V Trigger Signal from Ch A or Trg/Ch B Connector

For ±10 V Trigger Signal from Trg/Ch B Connector

For example, assume that you want to specify an analog trigger level of
125 mV for the input signal coming into the Ch A connector on a
DAS-4301/8K board configured for an input range type of ±200 mV
(span of 0.4 V). The count value is determined as follows:

Alternatively, assume that you want to specify an analog trigger level of
5 V for the trigger input signal coming into the Trg/Ch B connector on a
DAS-4301/8K board. The count value is determined as follows:

Count
Vtrig 256×

span
---------------------------=

Count
Vtrig 256×

20
---------------------------=

0.125˙ V 256 ×
0.4 V

----------------------------------- 80=

5̇ V 256 ×
20 V

------------------------ 64=

C-1

C

Bandwidth Charts for Input
Voltage Ranges

The following figures show the effect of input voltage ranges on the
bandwidth of the DAS-4301/8K board. These figures are useful in
determining the best input voltage range for a particular application. Note
that the number in parentheses indicates the gain code used.

Figure C-1. ±0.2 V Input Range (Gain Code 0)

±0.2 V Input Range (Gain Code 0)

C-2 Bandwidth Charts for Input Voltage Ranges

Figure C-2. ±0.25 V Input Range (Gain Code 1)

Figure C-3. ±0.5 V Input Range (Gain Code 2)

±0.25 V Input Range (Gain Code 1)

2±0.5 V Input Range (Gain Code 2)

C-3

Figure C-4. ±1 V Input Range (Gain Code 3)

Figure C-5. ±0.125 V Input Range (Gain Code 4)

±1 V Input Range (Gain Code 3)

±0.125 V Input Range (Gain Code 4)

C-4 Bandwidth Charts for Input Voltage Ranges

Figure C-6. ±0.15625 V Input Range (Gain Code 5)

Figure C-7. ±0.3125 V Input Range (Gain Code 6)

±0.15625 V Input Range (Gain Code 5)

±0.3125 V Input Range (Gain Code 6)

C-5

Figure C-8. ±0.625 V Input Range (Gain Code 7)

Figure C-9. ±0.1 V Input Range (Gain Code 8)

±0.625 V Input Range (Gain Code 7)

±0.1 V Input Range (Gain Code 8)

C-6 Bandwidth Charts for Input Voltage Ranges

Figure C-10. ±0.125 V Input Range (Gain Code 9)

Figure C-11. ±0.25 V Input Range (Gain Code 10)

±0.125 V Input Range (Gain Code 9)

±0.25 V Input Range (Gain Code 10)

C-7

Figure C-12. ±0.5 V Input Range (Gain Code 11)

Figure C-13. ±0.025 V Input Range (Gain Code 12)

±0.5 V Input Range (Gain Code 11)

±0.025 V Input Range (Gain Code 12)

C-8 Bandwidth Charts for Input Voltage Ranges

Figure C-14. ±0.03125 V Input Range (Gain Code 13)

Figure C-15. ±0.0625 V Input Range (Gain Code 14)

±0.03125 V Input Range (Gain Code 13)

±0.0625 V Input Range (Gain Code 14)

C-9

Figure C-16. ±0.125 V Input Range (Gain Code 15)

±0.125 V Input Range (Gain Code 15)

X-1

Index

A

about-trigger acquisition

2-15

allocating memory
dynamically in C/C++

3-9

dynamically in Visual Basic for
Windows

3-16

locally in C/C++

3-8

locally in Visual Basic for Windows

3-15

analog input operations
channels

2-7

converting analog input values to
voltages

B-1

input ranges

2-7

memory allocation

2-5

operation modes

2-4

pacer clocks

2-8

programming tasks

3-6

triggers

2-10

analog trigger

B-3

B

bandwidth charts

C-1

board initialization

2-2

Borland C/C++
compile and link statements for DOS

3-13

compile and link statements for
Windows

3-14

creating an executable file for DOS

3-13

creating an executable file for Windows

3-14

dimensioning a local array

3-8

dynamically allocating a memory buffer

3-9

files required for DOS

3-13

files required for Windows

3-14

handling errors

3-10

buffer address

2-7

buffer address function

4-2

C

C/C++:

see

 Borland C/C++, Microsoft
C/C++

channel and gain functions

4-2

channels

2-7

clock functions

4-2

clock sources:

see

 pacer clocks
compile and link statements

Borland C/C++ (for DOS)

3-13

Borland C/C++ (for Windows)

3-14

Microsoft C/C++ (for DOS)

3-11

Microsoft C/C++ (for Windows)

3-12

conventions

4-3

conversion rate

2-9

converting
counts to voltages

B-1

voltages to counts

B-3

creating an executable file
Borland C/C++ (for DOS)

3-13

Borland C/C++ (for Windows)

3-14

Microsoft C/C++ (for DOS)

3-11

Microsoft C/C++ (for Windows)

3-12

Visual Basic for Windows

3-18

D

data conversions
converting counts to voltages

B-1

converting voltages to counts

B-3

data types

4-4

default values of A/D frame elements

3-4

device handle

2-2

,

3-1

X-2 Index

digital trigger

2-12

dimensioning a local array
C/C++

3-8

Visual Basic for Windows

3-15

driver handle

2-2

driver initialization

2-2

dynamically allocating a memory buffer
C/C++

3-9

Visual Basic for Windows

3-16

E

elements of frame

3-4

error codes

A-1

error handling

2-3

Borland C/C++

3-10

Microsoft C/C++

3-10

Visual Basic for Windows

3-17

external pacer clock

2-9

F

files required
Borland C/C++ (for DOS)

3-13

Borland C/C++ (for Windows)

3-14

Microsoft C/C++ (for DOS)

3-11

Microsoft C/C++ (for Windows)

3-12

Visual Basic for Windows

3-18

frame elements

3-4

frame handle

3-2

frame management functions

4-2

frame types

3-2

functions
buffer address

4-2

channel and gain

4-2

clock

4-2

frame management

4-2

initialization

4-2

K_ClearFrame

3-3

,

4-5

K_CloseDriver

2-2

,

4-6

K_ClrAboutTrig

4-7

K_DASDevInit

2-3

,

4-8

K_FreeDevHandle

2-2

,

4-9

K_FreeFrame

3-3

,

4-10
K_GetADFrame 3-2, 4-11
K_GetClkRate 2-9, 4-13
K_GetDevHandle 4-15
K_GetErrMsg 2-4, 4-17
K_GetShellVer 2-3, 4-18
K_GetVer 2-3, 4-19
K_IntAlloc 2-6, 4-21
K_IntFree 2-6, 4-23
K_IntStart 2-4, 4-24
K_IntStatus 2-4, 4-25
K_IntStop 2-4, 4-28
K_MoveBufToArray 2-6, 4-30
K_OpenDriver 2-2, 4-31
K_SetAboutTrig 2-15, 4-33
K_SetADTrig 2-12, 4-34
K_SetBuf 2-7, 4-36
K_SetBufI 2-7, 4-38
K_SetChn 2-7, 4-40
K_SetClk 2-8, 4-41
K_SetClkRate 4-42
K_SetDITrig 2-12, 4-44
K_SetG 2-7, 4-46
K_SetPostTrigDelay 2-13, 4-48
K_SetTrig 2-10, 4-50
memory management 4-2
miscellaneous 4-3
operation 4-2
trigger 4-3

X-3

H
handle

device 2-2, 3-1
driver 2-2
frame 3-2
memory 2-6

I
initialization functions 4-2
initializing a board 2-2
initializing the driver 2-2
input ranges 2-7

bandwidth charts C-1
internal pacer clock 2-8
internal trigger 2-10
interrupt-mode operations 2-4

K
K_ClearFrame 3-3, 4-5
K_CloseDriver 2-2, 4-6
K_ClrAboutTrig 4-7
K_DASDevInit 2-3, 4-8
K_FreeDevHandle 2-2, 4-9
K_FreeFrame 3-3, 4-10
K_GetADFrame 3-2, 4-11
K_GetClkRate 2-9, 4-13
K_GetDevHandle 4-15
K_GetErrMsg 2-4, 4-17
K_GetShellVer 2-3, 4-18
K_GetVer 2-3, 4-19
K_IntAlloc 2-6, 4-21
K_IntFree 2-6, 4-23
K_IntStart 2-4, 4-24
K_IntStatus 2-4, 4-25
K_IntStop 2-4, 4-28
K_MoveBufToArray 2-6, 4-30

K_OpenDriver 2-2, 4-31
K_SetAboutTrig 2-15, 4-33
K_SetADTrig 2-12, 4-34
K_SetBuf 2-7, 4-36
K_SetBufI 2-7, 4-38
K_SetChn 2-7, 4-40
K_SetClk 2-8, 4-41
K_SetClkRate 4-42
K_SetDITrig 2-12, 4-44
K_SetG 2-7, 4-46
K_SetPostTrigDelay 2-13, 4-48
K_SetTrig 2-10, 4-50

M
maintenance operations: see system

operations
memory allocation 2-5

Visual Basic for Windows 3-15
memory handle 2-6
memory management functions 4-2
Microsoft C/C++

compile and link statements for DOS
3-11

compile and link statements for
Windows 3-12

creating an executable file for DOS 3-11
creating an executable file for Windows

3-12
dimensioning a local array 3-8
dynamically allocating a memory buffer

3-9
files required for DOS 3-11
files required for Windows 3-12
handling errors 3-10

Microsoft Visual Basic for Windows
see Visual Basic for Windows

miscellaneous functions 4-3
miscellaneous operations: see system

operations

X-4 Index

O
operation functions 4-2
operations

analog input 2-4
system 2-1

P
pacer clocks 2-8
post-trigger acquisition 2-13
pre-trigger acquisition 2-14
programming information

C/C++ 3-8
Visual Basic for Windows 3-15

programming overview 3-5
programming tasks

analog input operations 3-6
preliminary 3-6

R
ranges 2-7

bandwidth charts C-1
return values 2-3
revision levels 2-3
routines: see functions

S
software trigger: see internal trigger
specifying an analog trigger level B-3
starting an operation 2-4
status 2-4
status codes 2-3
stopping an operation 2-3, 2-4
system operations 2-1

T
tasks: see programming tasks
trigger functions 4-3
trigger level, specifying an analog trigger

B-3
triggers 2-10

about-trigger acquisition 2-15
external analog trigger source 2-11
external digital trigger source 2-12
internal trigger source 2-10
post-trigger acquisition 2-13
pre-trigger acquisition 2-14

V
Visual Basic for Windows

creating an executable file 3-18
dimensioning a local array 3-15
dynamically allocating memory buffers

3-16
files required 3-18
handling errors 3-17

voltage input ranges 2-7
bandwidth charts C-1

