DAS-4100 Series
Function Call Driver

USER’S GUIDE

DAS-4100 Series
Function Call Driver
User’'s Guide

Revision A - October 1995
Part Number: 94550

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.
All brand and product names are trademarks or registered trademarks of their respective companies.
© Copyright Keithley Instruments, Inc., 1995.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Keithley MetraByte Division
Keithley Instruments, Inc.
440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-30Q0FAX: (508) 880-0179

Preface

This manual describes how to write application programs for DAS-4100
Series boards using the DAS-4100 Series Function Call Driver. The
DAS-4100 Series Function Call Driver supports the following DOS-based
languages:

. Microsoft? C/C++ (Version 4.0 and higher)

. Borland’ C/C++ (Version 1.0 and higher)

The DAS-4100 Series Function Call Driver supports the following
Windows-based languages:

. Microsoft C/C++ (Version 7.0 and higher)

. Borland C/C++ (Version 4.0 and higher)

. Microsoft Visual Basi€ for Windows (Version 3.0 and higher)

. Microsoft Visual C++£1 (Version 1.0 and higher)

The manual is intended for application programmers using a DAS-4100
Series boards in an IBMPC AT- or compatible computer. It is assumed
that users have read tBAS-4100 Series User’s Guittefamiliarize
themselves with the board’s features, and that they have completed the
appropriate hardware installation and configuration. It is also assumed

that users are experienced in programming in their selected language and
that they are familiar with data acquisition principles.

Vii

viii

TheDAS-4100 Series Function Call Driver User's Guiderganized as
follows:

Chapter 1 contains the information needed to install the DAS-4100
Series Function Call Driver and to get help.

Chapter 2 contains the background information needed to use the
functions included in the DAS-4100 Series Function Call Driver.

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-4100 Series Function Call
Driver.

Chapter 4 contains detailed descriptions of the DAS-4100 Series
Function Call Driver functions, arranged in alphabetical order.

Appendix A contains a list of the error codes returned by DAS-4100
Series Function Call Driver functions.

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

An index completes this manual.

Table of Contents

Preface
Getting Started

Available Operations

System Operations. 2-1
Initializing the Driver i 2-1
Initializinga Board 2-2
Retrieving Revision Levels. 2-3
Handling Errors. 2-3

Analog Input Operations 2-4
Operation Mode i 2-4
Memory Allocation and Management. 2-4

Dimensioninga lLocalArray 2-5
Dynamically Allocating a Memory Buffer. 2-6
Assigning the Starting Address 2-7
Channels 2-7
Acquiring Samples from a Single Channel 2-7
Acquiring Samples from Both Channels 2-8
Acquiring Samples Using a Channel-Gain Queue. 2-8
Input Ranges 2-8
Pacer Clocks i 2-9
Internal Pacer Clock. 2-9
External PacerClock 2-10
THGgEIS . o o 2-11
Trigger SOUMCESottt e e e 2-11
Internal Triggert 2-12
External Analog Trigger 2-12
External Digital Trigger. 2-13
Trigger Acquisition. 2-14
Post-Trigger Acquisition 2-14
Pre-Trigger Acquisition. 2-15
About-Trigger Acquisition 2-16

Programming with the Function Call Driver

How the DriverWorks i 3-1
Programming OVEIVIEW.ttt 3-4
Preliminary Tasks. 3-5
Analog Input Programming Tasks, 3-6
C/C++ Programming Information 3-8
Dimensioning and Assigning a Local Array 3-8
Dynamically Allocating and Assigning a Memory Buffer . . .3-9
Allocating a Memory Buffer 3-9
AccessingtheData., 3-10
Creating a Channel-GainQueue 3-10
Handling Errors. i e 3-11
Programming in Microsoft C/C++ (for DOS). 3-12
Programming in Microsoft C/C++ (for Windows) 3-13
Programming in Borland C/C++ (forDOS) 3-14
Programming in Borland C/C++ (for Windows). 3-15
Microsoft Visual Basic for Windows
Programming Information 3-16
Dimensioning and Assigning a Local Array 3-16
Dynamically Allocating and Assigning a Memory Buffer . .3-17
Allocating a Memory Buffer 3-17
AccessingtheData., 3-18
Creating a Channel-GainQueue 3-18
Handling Errors. i e 3-19
Programming in Microsoft Visual Basic for Windows 3-20

Function Reference

K_ClearFrame 4-5
K_CloseDriver. 4-6
K _CIrAboutTrig. 4-7
K_DASDeVINit. e 4-8
K_FormatChnGArIy e 4-9
K FreeDevHandle 4-10
K_FreeFrame 4-11
K GetADFrame. e e e 4-12
K GetCIKRate . ..o 4-14
K GetDevHandle. 4-16
K_GEetEIMMSg. . . oo 4-18
K_GetShellVer. e 4-19
K Gt T . 4-20
K INtAIIOC . . . 4-22
K INtFree 4-24

KoIntStart. 4-25

KoIntStatus. 4-26
KONtStop. . ..o 4-28
K _MoveBUfTOAITaY 4-30
K OpenDriver 4-31
K _RestoreChnGArY.o e 4-33
K_SetAbOUtTrig. . ..ot 4-34
K SetADTIIg . . . v vt 4-36
K SetBuf 4-38
K_SetBufl 4-40
K SetChn. 4-42
K_SetChnNGArYy e 4-43
K SetCIK .. 4-45
K _SetCIKRate. 4-46
K SetDITrig. . . oo 4-48
K SetG. oo 4-50
K _SetPostTrigDelay 4-52
K_SetStartStopChn 4-53
K SetTrig. . oo 4-54

Error/Status Codes

Data Formats

Converting CountstoVoltage. B-1
ConvertingVoltageto Counts., .. B-3
Index

List of Figures

Figure 2-1. Analog Trigger Conditions 2-13
Figure 2-2. Digital Trigger Conditions. 2-14
Figure 3-1. Interrupt-Mode Operation 3-2

vi

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.

Table 3-1.
Table 3-2.

Table 4-1.
Table 4-2.
Table A-1.
Table B-1.

Supported Operations 2-1
Sample Ranges. 2-5
Analog InputRanges, 2-9

Available Conversion Rates Using

Internal Clock 2-10
A/D FrameElements. 3-3
Setup Functions for Interrupt-Mode

Analog Input Operations 3-6
Functions i 4-2
Data Type Prefixes. . ..ot 4-4
Error/Status Codes. A-1
Some Span Values For Analog Input

Data Conversion Equations B-2

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
2-10

Table 3-1.
Table 3-2.

Supported Operations 2-1
Sample Ranges. 2-5
Analog InputRanges, 2-9
Available Conversion Rates Using Internal Clock . .

A/D Frame Elements. 3-3
Setup Functions for Interrupt-Mode

Analog Input Operations3-6

Table 4-1.
Table 4-2.
Table A-1.
Table B-1.
Equations

Functions 4-1
Data Type Prefixes., 4-3
Error/Status Codes. i A-1

Some Span Values For Analog Input Data Conversion
B-2

Figure 2-1.
Figure 2-2.
Figure 3-1.

Analog Trigger Conditions
Digital Trigger Conditions.
Interrupt-Mode Operation

é CHAPO1_.FRM Page 1 Wednesday, November 24, 1999 9:48 AM é ‘

Getting Started

Sy
B

The DAS-4100 Series Function Call Driver is a library of data acquisition
and control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

. DAS-4100 Series Standard Software packageThis is the software
package that is shipped with DAS-4100 Series boards; it includes
utility programs, running under DOS, that allow you to configure,
calibrate, and test the DAS-4100 Series boards.

. ASO0-4100 software package This is the Advanced Software
Option for DAS-4100 Series boards. You purchase the ASO-4100
software package separately from the board; it includes the following:

— Libraries of FCD functions for Microsoft C/C++ (for DOS) and
Borland C/C++ (for DOS).

— Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual Basic for Windows, Microsoft C/C++ (for Windows), and
Borland C/C++ (for Windows).

— Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

— Utility programs, running under DOS, that allow you to
configure, calibrate, and test the DAS-4100 Series boards.

— Language-specific example programs.
Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file

using the setup and installation procedures described DABe4100
Series User’s Guide

Getting Started

.

+ ~+/e

Z/\

é CHAPO1_.FRM Page 2 Wednesday, November 24, 1999 9:48 AM é i

S
7

If you need help installing or using the DAS-4100 Series Function Call
Driver, call your local sales office or the Keithley MetraByte Applications
Engineering Department at:

(508) 880-3000
Monday - Friday, 8:00a.M. - 6:00r.Mm., Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Please make sure that you have the following information available before
you call:

DAS-4100 Series Serial #

board configuration Revision code
Base I/O address setting
Memory address setting
Interrupt level setting

Computer Manufacturer
CPU type
Clock speed (MHz)
KB of RAM
Video system
BIOS type
Memory manager

Operating system DOS version
Windows version
Windows mode

Software package Name
Serial #
\ersion
Invoice/Order #

1-2

Z
S

é CHAPO1_.FRM Page 3 Wednesday, November 24, 1999 9:48 AM

S
7

Compiler Language

(if applicable) Manufacturer
Version

Accessories Type

Getting Started

—%

Zz
S

CHAPO1_.FRM Page 4 Wednesday, November 24, 1999 9:48 AM

;

1-4

IN

e

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-4100 Series boards. The
supported operations are listed in Table 2-1.

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog input page 2-4

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to DAS-4100 Series boards and to the
DAS-4100 Series Function Call Driver. It includes information on
initializing a driver, initializing a board, retrieving revision levels, and
handling errors.

Initializing the Driver

You must initialize the DAS-4100 Series Function Call Driver and any
other Keithley DAS Function Call Drivers you are using in your
application program. To initialize the drivers, use khé®penDriver

function. You specify the driver you are using and the configuration file
that defines the use of the driver. The driver returns a unique identifier for
the driver; this identifier is called the driver handle.

System Operations 2-1

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, you can us&th@&oseDriver function

to free a driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Initializing a Board

2-2

The DAS-4100 Series Function Call Driver supports up to two boards.
You must use th&_GetDevHandle function to specify the boards you
want to use. The driver returns a unique identifier for each board; this
identifier is called the device handle.

Device handles allow you to communicate with more than one board. You
use the device handle returnedkoyGetDevHandlein subsequent
function calls related to the board.

You can specify a maximum of 30 device handles for all the Keithley
MetraByte boards accessed from all your application programs. If a board
is no longer being used and you want to free some memory or if you have
used all 30 device handles, you can usekthereeDevHandlefunction

to free a device handle.

To reinitialize a board during an operation, usekhBASDevInit
function.K_GetDevHandle andK_DASDevInit perform the following
tasks:

. Abort all operations currently in progress that are associated with the
board identified by the device handle.

. Verify that the board identified by the device handle is the board
specified in the configuration file associated with the board.

Available Operations

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are installed on your computer.

TheK_GetVer function allows you to get both the revision number of the
DAS-4100 Series Function Call Driver and the revision number of the
Keithley DAS Driver Specification to which the driver conforms.

TheK_GetShellVer function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all DAS boards).

Handling Errors

System Operations

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported programming language uses a different procedure for
error checking. Refer to the following for information:

CIC++ page 3-11

Visual Basic for Windows| page 3-19

For C-language application programs only, the DAS-4100 Series
Function Call Driver provides tHé¢ GetErrMsg function, which gets
the address of the string corresponding to an error code.

2-3

Analog Input Operations

This section describes the following:
. Analog input operation mode available.
. How to allocate and manage memory for analog input operations.

. How to specify the following for an analog input operation: a
channel, a gain and range, a clock source, a trigger source, and the
trigger acquisition type.

Operation Mode

DAS-4100 Series boards support interrupt mode only. In interrupt mode,
the board acquires multiple samples from the analog input channels. A
hardware clock initiates A/D conversions. Once the analog input
operation begins, control returns to your application program. The
hardware continues to store the acquired data in its onboard memory until
the specified number of samples is acquired, then transfers the data all at
once to a user-defined array or buffer in the computer using an interrupt
service routine.

Use theK_IntStart function to start an analog input operation in
interrupt mode. Use the_IntStop function to stop an interrupt-mode
operation. Use thK_IntStatus function to determine the current status
of an interrupt-mode operation.

The converted data is stored as counts. For information on converting
counts to voltage, refer to Appendix B.

Memory Allocation and Management
Interrupt-mode analog input operations require a memory location in

which to store acquired data. Table 2-2 lists ranges for the DAS-4100
Series boards.

2-4 Available Operations

Table 2-2. Sample Ranges

Board Sample Range
DAS-4101/64K 1 to 64K
DAS-4101/256K 1to 256K
DAS-4101/1M 1to 1024K
DAS-4101/2M 1to 2048K
DAS-4102/64K 1to 128K
DAS-4102/256K 1to 512K
DAS-4102/1M 1to 2048K

Note: Even though you can reserve a memory location greater than the
board requires, to conserve memory it is recommended that you allocate
only the required amount.

The ways you can allocate and manage memory are described in the
following sections.

Dimensioning a Local Array

The simplest way to reserve a memory location is to dimension an array
within your application program’s memory area. This is the
recommended way to reserve memory for this driver. The advantage of
this method is that the array is directly accessible to your application
program. The limitation of this method is that local arrays occupy
permanent memory areas; these memory areas cannot be freed to make
them available to other programs or processes.

Since the DAS-4100 Series Function Call Driver stores data in 16-bit
integers, you must dimension a local array as an integer data type.

Analog Input Operations 2-5

Dynamically Allocating a Memory Buffer

2-6

You can allocate a memory buffer dynamically outside of your
application program’s memory area. The advantages of this method are as
follows:

. The size of the buffer is limited by the amount of free physical
memory available in your computer at run time.

. A dynamically allocated memory buffer can be freed to make it
available to other programs or processes.

. The limitation of this method is that, for Visual Basic for Windows,
data in a dynamically allocated buffer is not directly accessible to
your program. You must use tKe MoveBufToArray function to
move the data from the dynamically allocated buffer to the program’s
local array; refer to page 4-30 for more information.

Use theK_IntAlloc function to dynamically allocate a memory buffer.

You specify the operation requiring the buffer and the number of samples
to store in the buffer, refer to Table 2-2. The driver returns the starting
address of the buffer and a unique identifier for the buffer (this identifier
is called the memory handle). When the buffer is no longer required, you
can free the buffer for another use by specifying this memory handle in
theK_IntFree function.

Note: For DOS-based languages, the area used for dynamically allocated
memory buffers is referred to as the far heap; for Windows-based
languages, this area is referred to as the global heap. These heaps are
areas of memory left unoccupied as your application program and other
programs run.

For DOS-based languages, thelntAlloc function uses the DOS Int
21H function 48H to dynamically allocate far heap memory. For
Windows-based languages, tkelntAlloc function calls the
GlobalAlloc API function to allocate the desired buffer size from the
global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

Available Operations

Assigning the Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer. Each supported programming language
requires a particular procedure for assigning a starting address. Refer to
the following for information:

Memory
Language Location Function See...
CIC++ Array or Buffer | K_SetBuf page 4-38
Visual Basic for| Array K_SetBufl page 4-40
Windows Buffer K_SetBuf page 4-38

Channels

The DAS-4100 Series board provides up to two analog input channels;
the software refers to the analog input signal from the Channel A
connector as channel 0 and the analog input signal from the Channel B
connector as channel 1. You can perform an analog input operation on a
single channel at a time or both channels.

Acquiring Samples from a Single Channel

You can acquire a single sample or multiple samples from a single analog
input channel. For DAS-4102 boards useKh&etChn function to

specify the channel. For DAS-4101 boards you can only acquire off
channel 0. Us&_SetG function to specify the gain code. Refer to the

next section for the various input ranges available.

Analog Input Operations 2-7

Acquiring Samples from Both Channels

With DAS-4102 boards, you can acquire samples from both channels at
once. Us&_SetStartStopChnto specify channel 0 as the start channel
and channel 1 as the stop channel. The samples are gathered
simultaneously from both channels, but channel 0 is placed in the buffer
first before channel 1. Us€ SetG function to specify the gain code for
both channels. Refer to Table 2-3 on page 2-9 for the various input ranges
available.

Acquiring Samples Using a Channel-Gain Queue

Input Ranges

2-8

With DAS-4102 boards, you can acquire samples from both channels
with different gain settings, using a channel-gain queue. In the
channel-gain queue, you specify the gain for channel 0 and channel 1.

Channel 0 must be the first in the queue and channel 1 must be the other
channel in the list. The samples will be copied to the buffer in this order,
although they are acquired simultaneously.

The way that you specify the channel and gains in a channel-gain queue
depends on the language you are using. Refer to Chapter 4 for
information on programming the various drivers.

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to transfer the contents of the channel-gain
queue to the driver/board.

Each channel on the DAS-4100 Series board can measure signals in one
of 16, software-selectable bipolar analog input ranges.

Table 2-3 lists the analog input ranges supported by DAS-4100 Series
boards and the gain code associated with each range. UseSbtG
function to specify the gain code. For the £125 mV, £250 mV, and 0.5V
analog input ranges, the choice of gain code affects the bandwidth; refer
to Appendix C of thdAS-4100 Series User’s Guifler more

information.

Available Operations

Table 2-3. Analog Input Ranges

Analog Gain ||Analog Gain
Input Range | Code ||Input Range | Code
+100 mV 12 +800 mV 15
125 mV 8 X1V 511
+250 mV 4 +1.25V 6
+400 mV 13 2V 1,7
500 mV 0,9, 14|25V 2
625 mV 10 4.0V 3

Pacer Clocks

The pacer clock determines the period between A/D conversions. Use the
K_SetCIk function to specify an internal or an external pacer clock. The
internal pacer clock is the default pacer clock.

The internal and external pacer clocks are described in the following
subsections; refer to tH#AS-4100 Series User’s Guifler more
information.

Internal Pacer Clock

When you start an analog input operation (usingntStart),

conversions are performed at a rate of 16.384 Gsamples/s divided by a
count value of 256, 512, 1024, 2048, 4096, 8192, 16384 or 32768. Use
theK_SetClkRate function to specify the count value. Each count
represents .0610351 ns between conversions.

Table 2-4 lists the conversion rates, sample periods, and count values for
the internal pacer clock.

Analog Input Operations 2-9

Table 2-4. Available Conversion Rates Using Internal Clock

Sample Count
Conversion Rate Period Value

64 Msamples/s 15.625 ns | 256
32 Msamples/s 31.25ns |512
16 Msamples/s 62.5 ns 1024

8 Msamples/s 125 ns 2048
4 Msamples/s 250 ns 4096
2 Msamples/s 500 ns 8192
1 Msamples/s 1pus 16384
500 Ksamples/s 2us 32768

Note: If you enter a count value that is not one of those listed in

Table 2-4, the driver uses the next fastest rate. For example, if you enter a
count value of 550, the driver uses a count value of 512 to perform the
faster conversion rate. To determine the actual count value used, use the
K_GetCIkRate function.

External Pacer Clock

2-10

When you start an analog input operation (usingntStart),

conversions are armed. At the next rising edge of the external pacer clock
(and at every subsequent rising edge of the external pacer clock), a
conversion is initiated.

Note: Do not use a conversion rate greater than 64 Msamples/s when
using an external pacer clock or sample accuracy will not be guaranteed.

Available Operations

Triggers

Trigger Sources

The conversion rate divisor, as setkySetClkRate, still has an effect,

with a conversion rate divisor of 256 producing the base rate specified by
the input clock frequency. Conversion rate divisors must go by powers of
two (for instance, 128, 256, 512, 1024) with lower divisors producing
higher conversion rates and higher divisors producing lower conversion
rates. Each doubling of the divisor has the net effect of halving the
effective digitization rate. Conversely, halving the divisor doubles the
effective digitization rate.

A trigger is an event that occurs based on a specified set of conditions.
The operation must have a start trigger that determines when the
acquisition starts. In addition, you can choose the optional about trigger to
determine when the acquisition stops.

You can define operations that acquire data after the trigger event occurs
(post-trigger acquisition), operations that acquire data before a trigger
event (pre-trigger acquisition), and operations that acquire data before
and after a trigger event (about-trigger acquisition). For post-trigger
acquisitions, you can also specify a post-trigger delay. If you specify an
about trigger, the operation stops when a specified number of samples has
been acquired after the occurrence of the about-trigger event.

When the trigger event occurs, a TTL-level signal is output on the Trigger
I/O connector. The signal is edge-sensitive with a positive polarity.

The following sections describe the supported trigger sources and the
ways to acquire data using triggers.

UseK_SetTrig to specify an internal or an external trigger source.
External triggers can be either analog triggers or digital triggers. The
trigger event is not significant until the operation the trigger governs has
been started (using _IntStart).

The internal trigger, external analog trigger, and external digital trigger
are described in the following subsections.

Analog Input Operations 2-11

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the operation using teIntStart function. Note that there is a
slight delay between the time you start the operation and the time the
trigger event occurs. The internal trigger is the default trigger source.

External Analog Trigger

You can select the digitized analog input signal from the Channel A
connector (referred to in software as analog trigger channel 0) and/or
(with the DAS-4102 board) from the Channel B connector (referred to in
software as analog trigger channel 1). You program the trigger level as a
count value in 256 steps128 to +127) from4 V to +3.96 V.

You can also select the £16 V trigger input signal from the Analog Trigger
In connector (referred to in software as analog trigger channel 2) as the
trigger signal. You program the trigger level as a count value in 256 steps
(=128 to +127) from-16 V to +15.875 V. If you use analog trigger

channel 2, you can acquire analog input data from either the Channel A
connector or from the Channel B connector or both.

The trigger conditions for external analog triggers are illustrated in
Figure 2-1 and described as follows:

. Positive-Edge Trigger- A trigger event occurs the first time the
trigger signal changes from a voltage that is less than the trigger level
to a voltage that is greater than the trigger level.

. Negative-Edge Trigger- A trigger event occurs the first time the
trigger signal changes from a voltage that is greater than the trigger
level to a voltage that is less than the trigger level.

2-12 Available Operations

Positive-edge trigger occurs
— Negative-edge
\\ /tngger occurs

|
Level +5V —:

|

|

|

|
oV |—

KAnalog input operation

start function is executed

Figure 2-1. Analog Trigger Conditions

Use thek_SetADTrig function to specify the analog input channel to use
as the trigger channel, the trigger level, and the trigger polarity. The
trigger sensitivity is always edge for the DAS-4100 Series board.

Refer to Appendix B for information on how to convert a voltage to a
count value.

External Digital Trigger

The digital trigger signal is connected to the Triggerdé@nector of the
DAS-4100 Series board. Ue SetDITrig to specify the digital input
channel to use as the trigger channel and whether you want the trigger
event to occur on the rising edge of the digital trigger signal
(positive-edge trigger) or on a falling edge of the digital trigger signal
(negative-edge trigger). The trigger sensitivity is always edge for
DAS-4100 Series boards. The trigger events are illustrated in Figure 2-2.

Analog Input Operations 2-13

Negative-edge
trigger event occurs

Positive-edge
trigger event occurs \J[}

Trigger signal —

Figure 2-2. Digital Trigger Conditions

Trigger Acquisition

2-14

The ways you can acquire data using triggers are described in the
following subsections.

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect

data after a specific trigger event. You specify a start trigger only; the start
trigger determines when the operation starts and can be either an internal,
an external analog, or an external digital trigger. To stop the operation,
use theK_IntStop function. If desired, you can specify the number of
samples to wait between when the trigger event occurs and when the data
is collected by using thi€_SetPostTrigDelayfunction.

The post-trigger delay can range from 0 to 8,388,608 samples.

To specify post-trigger acquisition, perform the following steps:
1. Specify the start trigger.

— UseK_SetTrig to specify an internal or an external trigger
source (specify external for an analog or digital trigger).

— If you specify an external start triggerkn SetTrig, define the
start trigger conditions using SetADTrig (for an analog
trigger) ork_SetDITrig (for a digital trigger).

Available Operations

2. If you specified an external analog or digital start trigger, use
K_ClIrAboutTrig to disable the about trigger.

3. To specify the number of post-trigger samples to wait after the trigger
event occurs and before data is collected KusgetPostTrigDelay

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data
before a specific trigger event. The start trigger is always an internal
trigger; the operation starts when your application program calls the
K_IntStart function. The about trigger can be either an external analog
or external digital trigger; the operation stops when the about-trigger
event occurs.

Note: The implied number of pre-trigger samples must be acquired
before the board can accept a trigger event. A trigger that comes before all
implied pre-trigger samples are acquired is ignored.

To specify pre-trigger acquisition, perform the following steps:
1. UseK_SetTrig to specify an internal start trigger source.

2. UseK_SetAboutTrig to enable the about trigger and to set the
number of samples to 1.

Note: The minimum number of samples that you can specify in
K_SetAboutTrig is 1.

3. Specify the trigger conditions for the about trigger.

— If the about trigger is an external analog trigger, use
K_SetADTrig to specify the trigger conditions for the about
trigger.

— Ifthe about trigger is an external digital trigger, Ks&etDITrig
to specify the trigger conditions for the about trigger.

Analog Input Operations 2-15

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect
data both before and after a specific trigger event. The start trigger is
always an internal trigger; the operation starts when your application
program calls th& _IntStart function. The about trigger can be either an
external analog or external digital trigger; the operation stops after a
specified number of samples has been acquired after the about-trigger
event occurs.

Note: The implied number of pre-trigger samples must be acquired
before the board can accept a trigger event. A trigger that comes before all
implied pre-trigger samples are acquired is ignored.

To specify about-trigger acquisition, perform the following steps:
1. UseK_SetTrig to specify an internal start trigger source.

2. UseK_SetAboutTrig to enable the about trigger and to specify the
desired number of post-trigger samples.

3. Specify the trigger conditions for the about trigger.

— If the about trigger is an external analog trigger, use
K_SetADTrig to specify the trigger conditions for the about
trigger.

— Ifthe about trigger is an external digital trigger, Ks&etDITrig
to specify the trigger conditions for the about trigger.

2-16 Available Operations

3

Programming with
the Function Call Driver

This chapter contains an overview of the structure of the DAS-4100
Series Function Call Driver, as well as programming guidelines and
language-specific information to assist you when writing application
programs with the DAS-4100 Series Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley MetraByte DAS Function Call Drivers. You initialize each
driver according to a particular configuration file. If you are using more
than one driver or more than one configuration file with a single driver,
the driver handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. You
initialize each board using a device handle to uniquely identify each
board. Each device handle is associated with a particular driver.

The driver uses frames to perform operations. A frame is a data structure
whose elements define the attributes of the operation. Each frame is
associated with a particular board, and therefore, with a particular driver.

Frames help you create structured application programs. You set up the
attributes of the operation in advance, using a separate function call for
each attribute, and then start the operation at an appropriate point in your
program. Frames are useful for operations that have many defining
attributes, since providing a separate argument for each attribute could
make a function’s argument list unmanageably long.

How the Driver Works 3-1

You indicate that you want to perform an analog input operation by
getting an available frame for the driver. The DAS-4100 Series Function
Call Driver provides analog input frames, called A/D (analog-to-digital)
frames. You use th€ GetADFrame function to access an available A/D
frame. The driver returns a unique identifier for the frame; this name is
called the frame handle.

You then specify the attributes of the operation by using setup functions
to define the elements of the frame associated with the operation. For
example, to specify the channel on which to perform an analog input
operation, you would use the SetChn setup function.

You use the frame handle you specified when accessing the frame in all
setup functions and other functions related to the operation. This ensures
that you are defining the same operation.

When you are ready to perform the operation you have set up, you can
start the operation by referencing the appropriate frame handle.

Figure 3-1 illustrates the syntax of the interrupt-mode operation function
K_IntStart .

K_IntStart (frameHandI¢

|

Frame Attributes of Operation
Channel <——— > Analog input channel
Clock Source <«—— > Pacer clock source

Trigger Source <«— > Trigger source

Figure 3-1. Interrupt-Mode Operation

Programming with the Function Call Driver

If you want to perform an interrupt-mode operation and all frames have
been accessed, you can useKh&reeFrame function to free a frame

that is no longer in use. You can then redefine the elements of the frame
for the next operation.

When you access a frame, the elements are set to their default values. You
can also use th¢_ClearFrame function to reset all the elements of a
frame to their default values.

Table 3-1 lists the elements of a DAS-4100 Series A/D frame. This table
also lists the default value of each element and the setup function used to
define each element.

Table 3-1. A/D Frame Elements

Element Default Value Setup Function
Buffer! 0 (NULL) K_SetBuf
Number of Samples 0 K_SetBuf
Start and Stop 0 K_SetChn
Channel K_SetStartStopChn
Channel-Gain O(NULL) K_SetChnGAry
Queue
Input range 0 (200 mV) K_SetG
Clock Source Internal A/D pacer | K_SetClk
clock
Pacer Clock Rate |0 K_SetClkRate
Trigger Source Internal K_SetTrig
Trigger Type Digital K_SetADTrig
K_SetDITrig
Trigger Channel 0 (for analog trigger) K_SetADTrig
0 (for digital trigger)| Not applicabl@
Trigger Polarity Positive K_SetADTrig
K_SetDITrig

How the Driver Works 3-3

Table 3-1. A/D Frame Elements (cont.)

Element Default Value Setup Function

Trigger Sensitivity | Edge (for analog) | Not applicablé

Edge (for digital) | Not applicablé

Trigger Level 0 K_SetADTrig
About-Trigger Disabled K_SetAboutTrig
Acquisition K_CIrAboutTrig3
Post-Trigger Delay | 0 K_SetPostTrigDelay
Notes

L This element must be set.

2The default value of this element cannot be changed.
Use this function to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame. Whenever

you clear a frame or get a new frame, this frame element is set to its default
value automatically.

Note: The DAS-4100 Series Function Call Driver provides many other
functions that are not related to controlling frames or defining the
elements of frames. These functions include initialization functions,
memory management functions, and miscellaneous functions.

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DAS-4100 Series Function
Call Driver, perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

3-4 Programming with the Function Call Driver

Write your application program. Refer to the following for additional
information:

— Preliminary Tasks, the next section, which describes the
programming tasks that are common to all application programs.

— Analog Input Programming Tasks on page 3-6, which describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

— Chapter 4, which contains detailed descriptions of the FCD
functions.

— The example programs in the ASO-4100 software package. The
FILES.TXT file in the installation directory lists and describes
the example programs.

Compile and link the program. Refer to the language-specific
programming information (page 3-12 to page 3-16 for C/C++ or
page 3-16 for Visual Basic for Windows), or to the
EXAMPLES.TXT file in the installation directory for compile and
link statements and other language-specific considerations for each
supported language.

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1.

Include the function and variable type definition file for your
language. This file is included in the ASO-4100 software package.

Declare and initialize program variables.
UseK_OpenDriver to initialize the driver.

UseK_GetDevHandleto specify the board you want to use and to
initialize the board. If you are using more than one board, use the
board initialization function once for each board you are using.

After completing the preliminary tasks, perform the analog input
programming tasks described in the following section.

Preliminary Tasks

3-5

Analog Input Programming Tasks

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use theK_GetADFrame function to access an A/D frame.

2. Dimension a local array within your program’s memory area or use
theK_IntAlloc function to allocate a buffer dynamically outside your
program's memory area.

3. If you are programming in Visual Basic for Windows and are using a
local array, use the_SetBufl functionto assign the starting address
of the array and to specify the number of samples in the array.

Otherwise use theK_SetBuf functionto assign the starting address
of the array or buffer and to specify the number of samples in the
array or buffer.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-2.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-3 for a list
of the default values of A/D frame elements.

Table 3-2. Setup Functions for Interrupt-Mode
Analog Input Operations

Attribute Setup Function(s)
Channel K_SetChn

K_SetStartStopChn
Input Range K_SetG
Channel-Gain Queue | K _SetChnGAry
Clock Source K_SetClk

3-6 Programming with the Function Call Driver

Table 3-2. Setup Functions for Interrupt-Mode
Analog Input Operations (cont.)

Attribute Setup Function(s)
Pacer Clock Rafe K_SetClkRate
Trigger Source K_SetTrig
Trigger Type K_SetADTrig
K_SetDITrig
Trigger Channel K_SetADTrig
K_SetDITrig
Trigger Polarity K_SetADTrig
K_SetDITrig
Trigger Level K_SetADTrig
About-Trigger K_SetAboutTrig
Acquisition K_CIrAboutTrig
Post-Trigger Delay K_SetPostTrigDelay

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use thel_IntStart function to start the interrupt-mode operation.

Use theK_IntStatus function to monitor the status of the
interrupt-mode operation.

7. Use theK_IntStop function to stop the interrupt-mode operation
when the appropriate number of samples has been acquired.

8. If you are programming in Visual Basic for Windows and you are
using a dynamically allocated memory bufigse the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to a local array that your program can use.

9. If you used a dynamically allocated memory buffiee the
K_IntFree function to free the memory.

Analog Input Programming Tasks 3-7

C/C++ Programming Information

The following sections contain information you need to dimension an
array or dynamically allocate a memory buffer when programming in C
or C++, as well as language-specific information for Microsoft C/C++
and Borland C/C++ for DOS and Windows.

Note: When programming in C/C++, proper typecasting may be required
to avoid C/C++ type-mismatch warnings. Make sure that linker options
are set so that case-sensitivity is disabled.

Dimensioning and Assigning a Local Array

You can use a single, local array for an interrupt-mode analog input
operation. The following code fragment illustrates how to dimension an
array of 8,192 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

int Data[8192]; /[Dimension array of 8,192 samples

wDasErr = K_SetBuf (hFrame, Data, 8192);

Refer to the example programs on disk for more information.

3-8 Programming with the Function Call Driver

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to dynamically
allocate and assign a memory buffer when programming in C or C++ and
how to access the data in the buffer. Refer to the example programs on
disk for more information.

Note: If you are programming in Windows Enhanced mode, you may be
limited in the amount of memory you can allocate. It is recommended that
you install the Keithley Memory Manager before you begin programming
to ensure that you can allocate a large enough buffer; refer to the
DAS-4100 Series User’s Guifter more information.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for an
interrupt-mode analog input operation. The following code fragment
illustrates how to usk_IntAlloc to allocate a buffer of size Samples for
the frame defined by hFrame and how tokis8etBuf to assign the
starting address of the buffer.

void far *AcqBuf; /[Declare pointer to buffer
WORD hMem; //Declare word for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, &AcqgBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqgBuf, Samples);

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store& biyntAlloc .

wDasErr = K_IntFree (hMem);

C/C++ Programming Information 3-9

Accessing the Data

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

int huge *pData; //Declare a pointer called pData

pData = (int huge *) AcqBuf; //Assign pData to buffer
for (i=0;i<10; i++)
printf ("Sample #%d %X", i, *(pData+i));

Note: Declaring pData as a huge pointer allows the program to directly
access all data within the computer's memory buffer, regardless of the
buffer size.

Creating a Channel-Gain Queue

3-10

The DASDECL.H and DASDECL.HPP file define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable

{
WORD num_of_codes;

struct {
BYTE Chan;
chan Gain;
} GainChanAry[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue

called MyChanGainQueue for a DAS-4100 board by declaring and
initializing a variable of type GainChanTable.

Programming with the Function Call Driver

GainChanTable MyChanGainQueue =
{

2, Il number of entries
0, 7 // Channel 0, gain of 7
1, 3// Channel 1, gain of 3

k

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (uKinigtStart),
channel 0 is sampled at a gain of 7, and channel lis sampled at a gain of
3.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function.

if (WDASErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf (“Error %X during K_GetDevHandle”, wDASEtr);

exit (1);
}

The following code fragment illustrates how to usekKh&etErrMsg
function to access the string corresponding to an error code.

if (WDasErr = K_SetChn (hAD, 0) ! =0)
{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf (“%s”, pMessage);
exit (1);
}

C/C++ Programming Information 3-11

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-4100 software package.

File Description

DAS4100.LIB Linkable driver
DASRFACE.LIB | Linkable driver

DASDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++
USE4100.0BJ Linkable object

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note thbgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements 1

C CL /cfilenamec
LINK filename&-use4100.0bj,,,das4100+dasrface

C++ CL /cfilenamecpp
LINK filename-use4100.0bj,,,das4100+dasrface

Notes

1 These statements assume a large memory model; in DOS, only the large
memory model is acceptable.

3-12 Programming with the Function Call Driver

Programming in Microsoft C/C++ (for Windows)

To program in Microsoft C/C++ (for Windows), including Microsoft
Visual C++, you need the following files; these files are provided in the
ASO0-4100 software package.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS4100.DLL Dynamic Link Library
DASDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASIMP.LIB DAS Shell Imports

To create an executable file in Microsoft C/C++ (for Windows), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C CL /cfilenamec

LINK filename,,dasimpfilenamedef;
RC -rfilenamerc

RC filenameres

C++ CL /cfilenamecpp

LINK filename,,dasimpfilenamedef;
RC -rfilenamerc

RCfilenameres

C/C++ Programming Information 3-13

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Add all necessary files to the project make file by choosing Edit from
the Project menu. Make sure that you inclitlmamec (or
filenamecpp),filenamerc, filenamedef, and DASIMP.LIB, where
filenameindicates the name of your application program.

3. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

3-14

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-4100 software package.

File

Description

DAS4100.LIB

Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H

Include file when compiling in C

DASDECL.HPP

Include file when compiling in C++

USE4100.0BJ

Linkable object

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note thbgnameindicates the
name of your application program.

Type of

Compile Compile and Link Statements !

C BCCfilenamec use4100.0bj das4100.lib dasrface.lib
C++ BCCfilenamecpp use4100.0bj das4100.lib dasrface.
Notes

lib

1 These statements assume a large memory model; in DOS, only the large
memory model is acceptable.

Programming with the Function Call Driver

Programming in Borland C/C++ (for Windows)

To program in Borland C/C++ (for Windows), you need the following
files; these files are provided in the ASO-4100 software package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DAS4100.DLL Dynamic Link Library
DASDECL.H Include file when compiling in C
DASDECL.HPP Include file when compiling in C++
DASIMP.LIB DAS Shell Imports

To create an executable file in Borland C/C++ (for Windows), use the
following compile and link statements. Note tfilgnameindicates the
name of your application program.

Type of Compile Compile and Link Statements

C BCC -cfilenamec
TLINK filename,,dasimpfilenamedef;
BRC -rfilenamerc
BRC filenameres

C++ BCC -cfilenamecpp

TLINK filename,,dasimpfilenamedef;
BRC -rfilenamerc

BRC filenameres

To create an executable file in the Borland C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Inside the Project window, select the project name and click on the
right mouse button.

3. Select the Add node option and add all necessary files to the project
make file. Make sure that you inclufienamec (orfilenamecpp),
filenamerc, filenamedef, and DASIMP.LIB, wher@lenamendicates
the name of your application program.

C/C++ Programming Information 3-15

4. From the Options menu, select Project.

From the Project Options dialog box, select Linker\General and make
sure that you turn OFF both the Case sensitive link and Case sensitive
exports and imports options.

6. From the Project menu, choose Build All to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

Microsoft Visual Basic for Windows
Programming Information

The following sections contain information you need to dimension an
array or dynamically allocate a memory buffer when programming in
Microsoft Visual Basic for Windows, as well as language-specific
information for Microsoft Visual Basic for Windows.

Dimensioning and Assigning a Local Array
You can use a single, local array for an interrupt-mode analog input
operation. The following code fragment illustrates how to dimension an

array of 8K samples for the frame defined by hFrame and how to use
K_SetBufl to assign the starting address of the array.

Global Data(8191) As Integer " Allocate array

wDasErr = K_SetBufl (hFrame, Data(0), 8192)

Refer to the example programs on disk for more information.

3-16 Programming with the Function Call Driver

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to dynamically
allocate and assign a memory buffer and how to access the data in the
buffer when programming in Microsoft Visual Basic for Windows. Refer
to the example programs on disk for more information.

Note: If you are programming in Windows Enhanced mode, you may be
limited in the amount of memory you can allocate. It is recommended that
you use the Keithley Memory Manager before you begin programming to
ensure that you can allocate a large enough buffer. Refer to your
DAS-4100 Series User’s Guifter more information.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for an
interrupt-mode analog input operation. The following code fragment
illustrates how to usk_IntAlloc to allocate a buffer of size Samples for
the frame defined by hFrame and how tokis8etBuf to assign the
starting address of the buffer.

Global AcgBuf As Long ' Declare pointer to buffer
Global hMem As Integer ' Declare integer for memory handle

wDasErr = K_IntAlloc (hFrame, Samples, AcgBuf, hMem)
wDasErr = K_SetBuf (hFrame, AcqgBuf, Samples)

The following code illustrates how to uke IntFree to later free the
allocated buffer, using the memory handle store& biyntAlloc .

wDasErr = K_IntFree (hMem)

Microsoft Visual Basic for Windows Programming Information 3-17

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
useK_MoveBufToArray to move a subset (up to 32,766 samples) of the
data into a local array as required. The following code fragment illustrates
how to move 100 samples from the buffer described in the previous
section (AcqBuf) to a local array.

Dim Buffer(1000) As Integer ' Declare local array

wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf, 100)

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. Next, you fill the
array with the channel-gain information. After you create the
channel-gain queue, uke FormatChnGAry to reformat the

channel-gain queue so that it can be used by the DAS-4100 Series
Function Call Driver.

The following code fragment illustrates how to create a two-entry
channel-gain queue called MyChanGainQueue for a DAS-4100 board and
how to useK_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

Global MyChanGainQueue(5) As Integer

MyChanGainQueue(0) = 2 ' Number of channel-gain pairs
MyChanGainQueue(1) = 0 ' Channel 0
MyChanGainQueue(2) = 7 ' Use gain of 7 on channel 0
MyChanGainQueue(3) = 1 ' Channel 1
MyChanGainQueue(4) = 3 ' Use gain of 3 on channel 1

wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))

3-18 Programming with the Function Call Driver

Once the channel-gain queue is formatted, your Visual Basic for Windows
program can no longer read it. To read of modify the array after it has
been formatted, you must uke RestoreChnGAry as follows:

wDasErr = K_RestoreChnGAry (MyChannelGainQueue(0))

When you start the next analog input operation (uKinigtStart),
channel 0 is sampled at a gain of 7, and channel 1 is sampled at a gain of

3.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value ofkh&etDevHandle

function:

WDASETrr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (WDASETrr <> 0) Then
MsgBox “K_GetDevHandle Error: " + Hex$ (WDASErr),
MB_ICONSTOP, “DAS-4100 SERIES ERROR”
End
End If

Microsoft Visual Basic for Windows Programming Information 3-19

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-4100 software
package.

File Description

DASSHELL.DLL Dynamic Link Library
DASSUPRT.DLL Dynamic Link Library

DAS4100.DLL Dynamic Link Library

DASDECL.BAS Include file; must be added to the project

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the File menu.

3-20 Programming with the Function Call Driver

A

Function Reference

The FCD functions are organized into the following groups:

Initialization functions
Operation functions

Frame management functions
Memory management functions
Buffer address functions
Channel and gain functions
Clock functions

Trigger functions

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-1

4-2

Table 4-1. Functions

Function Type Function Name Page Number
Initialization K_OpenDriver page 4-31
K_CloseDriver page 4-6
K_GetDevHandle page 4-16
K_FreeDevHandle page 4-10
K_DASDevInit page 4-8
Operation K_IntStart page 4-25
K_IntStatus page 4-26
K_IntStop page 4-28
Frame Management | K_GetADFrame page 4-12
K_FreeFrame page 4-11
K_ClearFrame page 4-5
Memory Management K_IntAlloc page 4-22
K_IntFree page 4-24
K_MoveBufToArray page 4-30
Buffer Address K_SetBuf page 4-38
K_SetBufl page 4-40
Channel and Gain K_SetChn page 4-42
K_SetStartStopChn page 4-53
K_SetChnGAry page 4-43
K_FormatChnGAry page 4-9
K_RestoreChnGAry page 4-33
K_SetG page 4-50
Clock K_SetClk page 4-45
K_SetClkRate page 4-46
K_GetClkRate page 4-14

Function Reference

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

Trigger K_SetTrig page 4-54
K_SetADTrig page 4-36
K_SetDITrig page 4-48
K_SetAboutTrig page 4-34
K_ClIrAboutTrig page 4-7
K_SetPostTrigDelay page 4-52

Miscellaneous K_GetErrMsg page 4-18
K_GetVer page 4-20
K_GetShellVer page 4-19

Keep the following conventions in mind throughout this chapter:

. The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

. Variable names are shown in italics.

« The return value for all DAS-4100 Series FCD functions is the
error/status code. A value of 0 indicates that the function executed
successfully. A non-zero value indicates that an error occurred. Refer
to Appendix A for more information.

. The description shows the prototype for the function.
. Inthe Usage section, the variables are not defined. It is assumed that
the variables are defined as shown in the prototype.

The name of each function argument in the Prototype and Usage sections
includes a prefix that indicates the associated data type. These prefixes are
described in Table 4-2.

4-3

Table 4-2. Data Type Prefixes

Prefix |Data Type Comments
sz Pointer to string terminated by | This data type is typically used for variables that
Zero specify the driver's configuration file name.
h Handle to device, frame, and | This data type is used for handle-type variables. You
memory block declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variabl{ This data type is used when calling the FCD functions
to get a device handle, a driver handle, a frame handle,
or a memory handle. The actual variable is passed to
the driver by reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a humber,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for exammaVardenotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an

unsigned long to the driver by value.

4-4

Function Reference

K_ClearFrame

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Sets the elements of a frame to their default values.

C/C++
DASErr far pascal K_ClearFrame (DWORiBrame;

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.
This function sets the elements of the frame specifidoFogmeto their

default values.

Refer to Table 3-1 on page 3-3 for the default values of the elements of an
A/D frame.

K_GetADFrame

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_ClearFrame (hAD)

K_CloseDriver

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Closes a previously initialized Keithley DAS Function Call Driver.

C/C++
DASETr far pascal K_CloseDriver (DWORDrv);

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

hDrv Driver handle you want to free.
Error/status code. Refer to Appendix A.

This function frees the driver handle specifiechByv and closes the
associated use of the Function Call Driver. This function also frees all
device handles and frame handles associatedniitia

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

K_FreeDevHandle

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_CloseDriver (hDrv)

Function Reference

K_ClrAboutTrig

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Disables the about trigger for an analog input operation.

C/C++
DASErr far pascal K_ClrAboutTrig (DWORDBFrame;

Visual Basic for Windows
Declare Function K_CIrAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function disables the about trigger for the operation defined by
hFrame

K_GetADFrame andK_ClearFrame also disable the about trigger.
K_ClearFrame, K_GetADFrame, K_SetAboutTrig

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_CIrAboutTrig (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_ClIrAboutTrig (hAD)

K_DASDevInit

Purpose Reinitializes a board.

Prototype C/C++
DASErr far pascal K_DASDevInit (DWORBDeV);

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

Parameters hDev Handle associated with the board.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops all current operations on the board specifia®éy

and verifies that the board identified by the device handle is the board
specified in the configuration file associated with the board.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_DASDevInit (hDev)

4-8 Function Reference

K_FormatChnGAry

Purpose Converts the format of a channel-gain queue.
Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function converts a channel-gain queue created in Visual Basic for

Windows using 16-bit values to a channel-gain queue of 8-bit values that
theK_SetChnGAry function can use, and stores the starting address of
the converted channel-gain queu@irray.

After you use this function, your program can no longer read the
converted queue. You must use kheRestoreChnGAry function to
return the queue to its original format. Refer to page 4-33 for more
information.

See Also K_SetChnGAry, K_RestoreChnGAry
Usage

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) =7
wDasErr = K_FormatChnGAry (ChanGainArray(0))

K_FreeDevHandle

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-10

Frees a previously specified device handle.

C/C++
DASErr far pascal K_FreeDevHandle (DWORDeV);

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDevAs Long) As Integer

hDev Device handle you want to free.
Error/status code. Refer to Appendix A.

This function frees the device handle specifiethbgvas well as all
frame handles associated witbev

K_GetDevHandle

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeDevHandle (hDev)

Function Reference

K_FreeFrame

Purpose Frees a frame.

Prototype C/C++
DASErr far pascal K_FreeFrame (DWORIBrame;

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

Parameters hFrame Handle to frame you want to free.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the frame specifiedifyrame making the frame

available for another operation.
See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_FreeFrame (hAD)

4-11

K_GetADFrame

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-12

Accesses an A/D frame for an analog input operation.

C/C++
DASErr far pascal K_GetADFrame (DWORiDey
DWORD far *phFramg;

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDevAs Long,phFrameAs Long) As Integer

hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function specifies that you want to perform an interrupt-mode analog
input operation on the board specifiediiyevy and accesses an available
A/D frame with the handlphFrame The frame is initialized to its default
settings; the default settings are given in Table 3-1 on page 3-3.

The value stored iphFrameis intended to be used exclusively as an
argument to functions that require a frame handle. Your program should
not modify the value stored phFrame

K_ClearFrame, K_FreeFrame

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hAD;

wDasErr = K_GetADFrame (hDev, &hAD);

Function Reference

K_GetADFrame (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hAD As Long

wDasErr = K_GetADFrame (hDev, hAD)

4-13

K_GetClkRate

Purpose Gets a count value that represents the conversion rate.
Prototype C/C++
DASErr far pascal K_GetClkRate (DWORiFrame
DWORD far*pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pRateAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pRate Count value.
Value stored256to 32768 described as follows:

Sample Count
Conversion Rate Period Value

64 Msamples/s 15.625 ns | 256

32 Msamples/s 31.25ns |512

16 Msamples/s 62.5 ns 1024

8 Msamples/s 125 ns 2048
4 Msamples/s 250 ns 4096
2 Msamples/s 500 ns 8192
1 Msamples/s 1lpus 16384
500 Ksamples/s 2us 32768
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined Irame this function stores the number of

clock ticks between conversionspRate
ThepRatevariable contains the value of the Pacer Clock Rate element.

See Also K_SetCIkRate

4-14 Function Reference

K_GetClkRate (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD dwRate;

wDasErr = K_GetClkRate (hAD, &dwRate);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global dwRate As Long

wDasErr = K_GetClkRate (hAD, dwRate)

4-15

K_GetDevHandle

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

4-16

Initializes any Keithley DAS board.

C/C++
DASErr far pascal K_GetDevHandle (DWORIDrv,
WORD nBoardNum DWORD far *phDeV;

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByValnBoardNumAs IntegerphDevAs Long)
As Integer

hDrv Driver handle of the associated Function Call
Driver.
nBoardNum Board number.

Valid values: 0to 1

phDev Handle associated with the board.
Error/status code. Refer to Appendix A.

This function initializes the board associated viibrv and specified by
nBoardNum and stores the device handle of the specified bogrdDev

The value stored iphDevis intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored phDev

K_FreeDevHandle

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDev;

wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Function Reference

K_GetDevHandle (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global hDev As Long

wDasErr = K_GetDevHandle (hDrv, 0, hDev)

4-17

K_GetErrMsg

Purpose Gets the address of an error message string.

Prototype C/C++
DASETr far pascal K_GetErrMsg (DWORIDey shortnDASETrt
char far * far *pErrMsg);

Visual Basic for Windows

Not supported
Parameters hDev Handle associated with the board.
NDASErr Error message number.
pErrMsg Address of error message string.
Return Value Error/status code. Refer to Appendix A.
Remarks For the board specified ey this function stores the address of the

string corresponding to error message numiEkSErrin pErrMsg

Refer to page 2-3 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

Usage CIC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

char far *pErrMsg;

wDasErr = K_GetErrMsg (hDev, wDASETrr, &pErrMsg);

4-18 Function Reference

K_GetShellVer

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

C/C++

Gets the current DAS shell version.

C/C++
DASErr far pascal K_GetShellVer (WORD fgVersion);

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersionAs Integer) As Integer

pVersion A word value containing the major and minor
version numbers of the DAS shell.

Error/status code. Refer to Appendix A.

This function stores the current DAS shell versiopVersion To obtain
the major version number of the DAS shell, diviidéersionby 256. To
obtain the minor version number of the DAS shell, perform a Boolean
AND operation withpVersionand 255 (OFF hex).

#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wShellVer;
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wShellVer As Integer

wDasErr = K_GetShellVer (wShellVer)

ShellVer$ = LTRIM$(STR$(INT(wShellVer / 256))) + "." + :
LTRIM$(STR$(wShellVer AND &HFF))

MsgBox "Shell Ver: " + ShellVer$

4-19

K_GetVer

Purpose

Prototype

Parameters

Return Value

Remarks

4-20

Gets revision numbers.

C/C++
DASETr far pascal K_GetVer (DWORBDey short far *pSpecVer
short far *pDrvVel);

Visual Basic for Windows

Declare Function K_GetVer Lib "DASSHELL.DLL"

(ByVal hDevAs Long,pSpecVeAs IntegerpDrvVerAs Integer)
As Integer

hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.
Error/status code. Refer to Appendix A.

For the board specified lpDey this function stores the revision number
of the DAS-4100 Series Function Call DriverpBrvVerand the revision
number of the driver specification a@SpecVer

The values stored pSpecVeandpDrvVerare two-byte (16-bit) integers;

the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version

number is 2.1, the major revision level is 2 and the minor revision level is
10; therefore, the high byte pDrvVercontains the value & (512) and

the low byte ofpDrvVercontains the value df0; the value of both bytes

is 522.

To obtain the major version number of the Function Call Driver, divide
pDrvVerby 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation wpidrvVerand 255 (OFFh).

To obtain the major version number of the driver specification, divide
pSpecVeby 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation witBpecVeand 255
(OFFh).

Function Reference

K_GetVer (cont.)

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

short nSpecVer, nDrvVer;

wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global nSpecVer As Integer
Global nDrvVer As Integer

wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)

DrvVer$ = LTRIM$(STR$(INT(nDrvVer / 256))) + "." + :
LTRIM$(STR$(nDrvVer AND &HFF))

MsgBox "Driver Ver: " + DrvVer$

4-21

K_IntAlloc

Purpose Dynamically allocates a buffer for an interrupt-mode operation.

Prototype C/C++
DASETr far pascal K_IntAlloc (DWORMDFrame DWORDdwSamples
void far * far*pBuf, WORD far*phMenm);

Visual Basic for Windows

Declare Function K_IntAlloc Lib "DASSHELL.DLL"

(ByVal hFrameAs Long, ByValdwSample#s Long,pBufAs Long,
phMemAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
dwSamples Number of samples.
Valid values:
Board Number of Samples

DAS-4101/64K 1to 65536
DAS-4101/256K 1to 262144
DAS-4101/1M 1to 1048526
DAS-4101/2M 1to 2097150

DAS-4102/64K 1to 131072

DAS-4102/256K 1 to 524288

DAS-4102/1M 1to 2097150
pBuf Starting address of the allocated buffer.
phMem Handle associated with the allocated buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined yrrame this function dynamically allocates

a buffer of the size specified dywSamplesand stores the starting address
of the buffer inpBufand the handle of the buffer ghMem

4-22 Function Reference

K_IntAlloc (cont.)

The value stored iphMemis intended to be used exclusively as an
argument to functions that require a memory handle. Your program
should not modify the value storedphMem

The data in the allocated buffer is stored as counts. Refer to Appendix B
for information on converting a count value to voltage.

See Also K_IntFree, K_SetBuf

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer

wDasErr = K_IntAlloc (hAD, 8192, &pBuf, &hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf As Long
Global hMem As Integer

wDasErr = K_IntAlloc (hAD, 8192, pBuf, hMem)

4-23

K_IntFree

Purpose Frees a buffer dynamically allocated for an interrupt-mode operation.

Prototype C/C++
DASETr far pascal K_IntFree (WOREMen)j;

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMemAs Integer) As Integer

Parameters hMem Handle to interrupt buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks This function frees the buffer specified lhylem the buffer was

previously allocated dynamically usikg IntAlloc .
See Also K_IntAlloc

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntFree (hMem)

4-24 Function Reference

K_IntStart

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

Usage

Starts an interrupt-mode operation.

C/C++
DASErr far pascal K_IntStart (DWORBFrame);

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrameAs Long) As Integer

hFrame Handle to the frame that defines the operation.
Error/status code. Refer to Appendix A.

This function starts the interrupt-mode operation defineldHogme
Refer to page 3-6 for a discussion of the programming tasks associated
with interrupt-mode operations.

K_IntStatus, K_IntStop

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_IntStart (hAD)

4-25

K IntStatus

Purpose Gets the status of an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStatus (DWORi-rame short farpStatus
DWORD far*pCouny;

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation; sBemarks for
value stored.
pCount Current number of samples transferred into the
array or buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks For the interrupt-mode operation definedhityame this function stores

the status ipStatusandthe current number of samples transferred into
the array or buffer ipCount

The value stored ipStatusdepends on the settings in the Status word, as
shown below:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

About-trigger

00 = Disabled 0 = Buffer not filled
01 =Armed 1 = Buffer filled

11 = Done

0 = Interrupt operation inactive
1 = Interrupt operation active

4-26 Function Reference

K_IntStatus (cont.)

See Also

Usage

The bits are described as follows:

. Bit O0: This bit indicates whether an interrupt-mode operation is in
progress.

. Bits 1 to 3: Not used.

. Bit 4: This bit is set when the array or buffer that is assigned to the
active operation has been filled with data.

. Bits 6 and 7: These bits indicate the state of the about trigger.
. Bits 8 to 15: Not used.

K_IntStart, K_IntStop

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStatus (hAD, wStatus, dwCount)

4-27

K_IntStop

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORBFrame short farpStatus
DWORD far*pCouny;

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pStatusAs IntegerpCountAs Long)

As Integer
Parameters hFrame Handle to the frame that defines the operation.
pStatus Status of interrupt operation. Refer to page 4-26
for more information on the status word returned.
pCount Current number of samples transferred into the
array or buffer.
Return Value Error/status code. Refer to Appendix A.
Remarks This function stops the board from acquiring data, disables the

interrupt-mode operation, and returns the status of the operation when
your program called this function. No data is transferred into the array or
buffer in computer memory.

If you are using an external start or about trigger, call this function if the
trigger event does not occur.

See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD wStatus;
DWORD dwCount;

wDasErr = K_IntStop (hAD, &wStatus, &dwCount);

4-28 Function Reference

K_IntStop (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global wStatus As Integer
Global dwCount As Long

wDasErr = K_IntStop (hAD, wStatus, dwCount)

4-29

K_MoveBufToArray

Purpose Transfers data from a buffer allocated throkghntAlloc to a locally
dimensioned array.

Prototype C/C++
Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" pDestAs Integer, ByVapSourceAs Long,

ByVal nCountAs Integer) As Integer

Parameters pDest Address of destination array.
pSource Address of source buffer.
nCount Number of samples to transfer.

Valid values: 1t0 32768
Return Value Error/status code. Refer to Appendix A.

Remarks This function transfers the number of samples specifieddnuntfrom
the buffer at addregsSourceto the array at addrep®est

In Visual Basic for Windows, the buffer allocated throwghntAlloc is
not accessible to your program; you must Kis&loveBufToArray to
move the data from the allocated buffer to the program’s local array.

See Also K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

Dim ADArray(10000) As Integer
wDasErr = K_IntAlloc (hAD, 8192, pBuf, hMem)

wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 8192)

4-30 Function Reference

K_OpenDriver

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype C/C++
DASETr far pascal K_OpenDriver (char faszDrvName
char far *szCfgNameDWORD far *phDrv);

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvNameAs String, ByValszCfgNamds String,
phDrvAs Long) As Integer

Parameters szDrvName Board name.
Valid value: "DAS4100" (for DAS-4100
Series boards)

szCfgName Driver configuration file.
Valid values: The name of a configuration file;
0 if driver has already been

opened
phDrv Handle associated with the driver.
Return Value Error/status code. Refer to Appendix A.
Remarks This function initializes the DAS-4100 Series Function Call Driver

according to the information in the configuration file specified by
szCfgNameand stores the driver handleghDrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board. For DAS-4100 Series boards,
the string stored iszDrvNamenust be DAS4100. Refer to other

Function Call Driver user’s guides for the appropriate string to store in
szDrvNamdor other Keithley MetraByte DAS boards.

The value stored iphDrvis intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored phDrv.

You create a configuration file using the CFG4100.EXE utility. Refer to
your DAS-4100 Series User’s Guifla more information.

4-31

K_OpenDriver (cont.)

If szCfgName= 0,K_OpenDriver checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment.

Usage

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

DWORD hDrv;

wDasErr = K_OpenDriver ("DAS4100", "DAS4100.CFG", &hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

DIM hDrv As Long

wDasErr = K_OpenDriver("DAS4100", "DAS4100.CFG", hDrv)

4-32 Function Reference

K_RestoreChnGAry

Purpose Restores a converted channel-gain queue.
Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

Parameters pArray Channel-gain queue starting address.
Return Value Error/status code. Refer to Appendix A.
Remarks This function restores the channel-gain queue at the address specified by

pArray to its original format so that it can be used by your Visual Basic
for Windows program. The channel-gain queue was converted using
K_FormatChnGAry .

Refer to page 4-9 for more information about khd-ormatChnGAry

function.
See Also K_FormatChnGAry, K_SetChnGAry
Usage Visual Basic for Windows

(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer ' Chan/Gain array

wDasErr = K_RestoreChnGAry (ChanGainArray(0))

4-33

K_SetAboutTrig

Purpose

Prototype

Parameters

Return Value

Remarks

See Also

4-34

Enables the about trigger and specifies the number of post-trigger
samples.

C/C++
DASErr far pascal K_SetAboutTrig (DWORIFrame
DWORD dwSamples

Visual Basic for Windows
Declare Function K_SetAboutTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwSampleés Long) As Integer

hFrame Handle to the frame that defines the operation.
dwSamples Number of post-trigger samples.
Valid values:
Board Number of Sample

DAS-4101/64K 210 65534

DAS-4101/256K 210 262142

DAS-4101/1M 2101023998

DAS-4101/2M 2102047998
DAS-4102/64K 210131070
DAS-4102/256K 2 t0 524286
DAS-4102/1M 2102047998

Error/status code. Refer to Appendix A.

This function enables the about trigger and specifies the number of
post-trigger samples idwSamplesAt least one pre-trigger sample must
be in the buffer.

Note that you cannot use an about trigger with an external start trigger.

K_CIrAboutTrig

Function Reference

K_SetAboutTrig (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetAboutTrig (hAD, 100);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetAboutTrig (hAD, 100)

4-35

K_SetADTrig

Purpose Sets up an external analog start or about trigger.

Prototype C/C++
DASErr far pascal K_SetADTrig (DWORDBFrame shortnOpt
shortnChan DWORD dwLeve);

Visual Basic for Windows

Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVablwLevelAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity.
Valid values: 0 for Positive edge
2 for Negative edge

nChan Trigger channel.

Valid values: 0 for £4 V signal from
Channel A connector
1 for £4 V signal from
Channel B connector
(Valid for DAS-4102 boards only)
2for £16 V signal from
Analog Trigger In connector

dwLevel Level at which the trigger event occurs, specified
in counts.
Valid values: -128to 127

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Iyrrame this function specifies the channel
used for an analog trigger iMChan the level used for the analog trigger
in dwLeve] and the trigger polarity and trigger sensitivityni@pt

You specify the value falwLevelin counts. Refer to Appendix B for
information on converting the actual voltage to a count value.

4-36 Function Reference

K_SetADTrig (cont.)

Usage

ThenOptvariable sets the value of the Trigger Polarity and Trigger
Sensitivity elements; theChanvariable sets the value of the Trigger
Channel element; trewwLevelvariable sets the value of the Trigger Level
element.

K_SetADTrig does not affect the operation definechbByameunless the
Trigger Source element is set to External (by a cdl t8etTrig) before
hFrameis used as a calling argumentqolntStart .

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetADTrig (hAD, 0, 1, 127);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetADTrig (hAD, 0, 1, 127)

4-37

K_SetBuf

Purpose Specifies the starting address of a previously allocated array or buffer and
the number of samples in the array or buffer.

Prototype C/C++
DASETr far pascal K_SetBuf (DWORDBFrame void far*pBuf,
DWORD dwSamples

Visual Basic for Windows

Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValpBufAs Long,

ByVal dwSample#s Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of array or buffer.
dwSamples Number of samples.
Valid values:
Board Number of Samples

DAS-4101/64K | 1 to 65536
DAS-4101/256K | 1to 262144
DAS-4101/1M 1to 1048526
DAS-4101/2M 1to 2097150
DAS-4102/64K | 1to 131072
DAS-4102/256K | 1 to 524288
DAS-4102/1M 1to 2097150

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined tyrame this function specifies the starting
address of a previously allocated array or buffeyBafand the number
of samples (the size of the array or bufferflimSamples

4-38 Function Reference

K_SetBuf (cont.)

See Also

Usage

For Visual Basic for Windows, use this function only for dynamically
allocated buffers. For locally dimensioned arrays,Kis8etBufl.

For C application programs, make sure that you use proper typecasting to
prevent C/C++ type-mismatch warnings.

ThepBufvariable sets the value of the Buffer elementdiwSamples
variable sets the value of the Number of Samples element.

K_IntAlloc, K_SetBufl

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

void far *pBuf; // Pointer to allocated buffer

wDasErr = K_IntAlloc (hAD, 8192, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 8192);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global pBuf As Long

wDasErr = K_IntAlloc (hAD, 8191, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 8192)

4-39

K_SetBufl

Purpose Specifies the starting address of a locally dimensioned integer array and
the number of samples in the array.

Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_SetBufl Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrameAs Long,pBufAs Integer, ByVadwSizeAs Long) As

Integer
Parameters hFrame Handle to the frame that defines the operation.
pBuf Starting address of the locally dimensioned
integer array.
dwSize Number of samples.
Valid values: 1 t0 32768
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined Ifrrame this function specifies the starting

address of a locally dimensioned integer arrgyBufand the number of
samples stored in the arraydwSize

Do not use this function for C; instead, seSetBuf.

For Visual Basic for Windows, use this function only for locally
dimensioned arrays. For buffers allocated dynamically usirigtAlloc ,
useK_SetBuf.

ThepBufvariable sets the value of the Buffer elementpiiv8izevariable
sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBuf

4-40 Function Reference

K_SetBufl (cont.)

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ADData(8191) As Integer

wDasErr = K_SetBufl (hAD, ADData(0), 8192)

4-41

K_SetChn

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

4-42

Specifies a single channel.

C/C++
DASErr far pascal K_SetChn (DWORFrame shortnChar);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnChanAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform the operation.
Valid values: O for signal from Ch A connector
1 for signal from Ch B connector

Error/status code. Refer to Appendix A.

For the operation defined yrame this function specifies the single
channel used inChan

Software channel 0 corresponds to the analog input signal from the
Channel A connector on the board; software channel 1 corresponds to the
analog input signal from the Channel B connector on the board.

ThenChanvariable sets the Channel element.

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetChn (hAD, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetChn (hAD, 0)

Function Reference

K_SetChnGAry

Purpose Specifies the starting address of a channel-gain array.

Prototype C/C++
DASETr far pascal K_SetChnGAry (DWORtFrame void far *pArray);

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrameAs Long,pArray As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.
pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Irame this function specifies the starting

address of the channel-gain queupAaray.
ThepArray variable sets the Channel-Gain Queue element.
Refer to Chapter 3 for information on setting up a channel-gain queue.

If you created your channel-gain queue in Visual Basic for Windows, you
must uséK_FormatChnGAry to convert the channel-gain queue before
you specify the address wikh SetChnGAry.

See Also K_FormatChnGAry, K_RestoreChnGAry

Usage CIC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

//IDECLARE AND INITIALIZE CHAN/GAIN PAIRS
//(GAINCHANTABLE-TYPE IS DEFINED IN dasadecl.h)
GainChanTable ChanGainArray = {2. // # of entries

0, 3, /l chan 0, gain 3

1,7); /l chan 1, gain 7

wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

4-43

K_SetChnGAry (cont.)

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global ChanGainArray(16) As Integer

'Create the array of channel/gain pairs
ChanGainArray(0) = 2 '# of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) =0
ChanGainArray(3) = 1: ChanGainArray(4) =7
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

4-44 Function Reference

K_SetClk

Purpose Specifies the pacer clock source.

Prototype C/C++
DASErr far pascal K_SetClk (DWORBFrame shortnModse;

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: O for Internal
1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined yrame this function specifies the pacer
clock source imMode

ThenModevariable sets the Clock Source element.

K_GetADFrame andK_ClearFrame specify internal as the default
clock source.

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetClk (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetClk (hAD, 1)

4-45

K_SetClkRate

Purpose Specifies a count value that represents the conversion rate.
Prototype C/C++

DASErr far pascal K_SetClkRate (DWORibrame

DWORD dwDivisop);

Visual Basic for Windows
Declare Function K_SetCIlkRate Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValdwDivisorAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Count value.
Valid values:256to 32768 described as follows:

Sample Count
Conversion Rate Period Value

64 Msamples/s 15.625 ns | 256
32 Msamples/s 31.25ns |512
16 Msamples/s 62.5 ns 1024

8 Msamples/s 125 ns 2048
4 Msamples/s 250 ns 4096
2 Msamples/s 500 ns 8192
1 Msamples/s 1lpus 16384
500 Ksamples/s 2us 32768
Return Value Error/status code. Refer to Appendix A.
Remarks For the operation defined Iyrrame this function specifies the count

value, which is divided into 16.384 Gsamples/s, for the internal pacer
clock indwDivisor.

ThedwDivisorvariable sets the Pacer Clock Rate element.
Refer to page 2-9 for more information on the internal pacer clock.

4-46 Function Reference

K_SetClkRate (cont.)

See Also K_GetClkRate

Usage CIC++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetClkRate (hAD, 256);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetClkRate (hAD, 256)

4-47

K_SetDITrig

Purpose Sets up an external digital start or about trigger.

Prototype C/C++
DASErr far pascal K_SetDITrig (DWORBFrame shortnOpt,
shortnChan DWORD nPattern;

Visual Basic for Windows

Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnOptAs Integer,

ByVal nChanAs Integer, ByVahPatternAs Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Trigger polarity and sensitivity.
Valid values: 0 for Positive edge
2 for Negative edge

nChan Digital input channel.
Valid value: 0

nPattern Trigger pattern.
Valid value: 0

Return Value Error/status code. Refer to Appendix A.
Remarks This function specifies the use of a digital trigger for the operation defined
by hFrame

Since an external digital trigger is always connected to the Trigger I/O
connector on the board, the valuen@hanis meaningless. In addition,

the DAS-4100 Series Function Call Driver does not support digital pattern
triggering; therefore, the value oPatternis meaningless. The&Chanand
nPatternparameters are provided for future compatibility.

ThenOptvariable sets the value of the Trigger Polarity element; the
nChanvariable sets the value of the Trigger Channel element; the
nPatternvariable sets the value of the Trigger Pattern element.

4-48 Function Reference

K_SetDITrig (cont.)

Usage

K_SetDITrig does not affect the operation definedhfyameunless the
Trigger Source element is set to External (by a cadfl t8etTrig) before
hFrameis used as a calling argumenttolntStart .

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetDITrig (hAD, 0, 0, 0)

4-49

K SetG

Purpose

Prototype

Parameters

Return Value

Remarks

4-50

Sets the input range.

C/C++
DASETr far pascal K_SetG (DWORBFrame shortnGain);

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnGainAs Integer) As Integer

hFrame Handle to the frame that defines the operation.
nGain Gain code.
Valid values: 0 to 15, described as follows:
Analog Gain ||Analog Gain
Input Range | Code ||Input Range | Code
+100 mV 12 +800 mV 15
+125 mV 8 1.0V 5,11
+250 mV 4 +1.25V 6
+400 mV 13 2.0V 1,7
+500 mV 0,9, 14|25V 2
+625 mV 10 40V 3

Error/status code. Refer to Appendix A.

For the operation defined byrame this function specifies the gain code,
which represents the input voltage range, for a single chann€lam

Refer to Appendix C to understand the effect of input voltage ranges on
the bandwidth of the DAS-4100 Series board.

ThenGainvariable sets the Gain element.
K_GetADFrame andK_ClearFrame specify 0 as the default gain code.

Function Reference

K_SetG (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetG (hAD, 1)

4-51

K_SetPostTrigDelay

Purpose

Prototype

Parameters

Return Value

Remarks

Usage

4-52

Sets the number of post-trigger delay samples.

C/C++
DASErr far pascal K_SetPostTrigDelay (WORBrame
DWORD nDelay);

Visual Basic for Windows
Declare Function K_SetPostTrigDelay Lib "DAS4100.DLL"
(ByVal hFrameAs Long,nDelayAs Long) As Integer

hFrame Handle to the frame that defines the operation.

nDelay Post-trigger delay samples.
Valid values: 0 to 8388608

Error/status code. Refer to Appendix A.

For the operation defined byfframe this function specifies the number of
post-trigger delay samplesielay.

You cannot specify a post-trigger delay if you are using an about trigger.

C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

WORD nDelay;

wDasErr = K_SetPostTrigDelay (hFrame, hDelay);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

Global Delay As Long

wDasErr = K_SetPostTrigDelay (hFrame, nDelay)

Function Reference

K_SetStartStopChn

Purpose Set the channel to be acquired.

Prototype C/C++
DASETr far pascal K_SetStartStopChn (DWORErame shortnStart,
short nStoj

Visual Basic for Windows

Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnStartAs Integer,

ByVal nStopAs Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nStart Start channel.
Valid values: 0 or 1

nStop Stop channel.
Valid values: 0 or 1

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined Wrame this function specifies the two
channels which will be used. WheBtartequalsnStopthen only that
channel is acquired. ifStartdoes not equalStop thennStartmust be
less thamStop

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetStartStopChn (hAD, 0, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetStartStopChn (hAD, 0, 1)

4-53

K_SetTrig

Purpose

Prototype

Parameters

Return Value

Remarks

4-54

Specifies the start trigger source.

C/C++
DASETr far pascal K_SetTrig (DWORDBFrame shortnMods);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrameAs Long, ByValnModeAs Integer) As Integer

hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: O for Internal start trigger
1 for External start or about trigger

Error/status code. Refer to Appendix A.

For the operation defined yframe this function specifies the trigger
source imMode

An internal trigger is a software trigger; conversions begin when your
application program callé_IntStart . An external trigger is either an
analog trigger or a digital trigger. Refer to page 2-11 for more information
on trigger sources.

You can specify an internal start triggaMode= 0) for post-trigger,
pre-trigger, and about-trigger acquisitions. You can specify an external
start trigger iMode= 1) for post-trigger acquisitions only. If you want to
use an external start trigger, ensure that the about trigger is disabled by
using theK_CIrAboutTrig function. Refer to page 2-14 for more
information on trigger acquisitions.

If nMode= 1, an external digital trigger is assumed. Bs&etDITrig to
change the conditions of the digital trigger. Bs&SetADTrig to specify
the conditions for an external analog trigger.

K_GetADFrame andK_ClearFrame set the trigger source to internal.

Function Reference

K_SetTrig (cont.)

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++

wDasErr = K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

wDasErr = K_SetTrig (hAD, 1)

4-55

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-4300
Series Function Call Driver, possible causes for error conditions, and
possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Code

Hex Decimal Cause Solution

0 0 No error has been detected. Status only; no action is necessalry.

6000 24576 Error in configuration file: The | Check that the file exists at the
configuration file you specified in| specified path. Check for illegal
the driver initialization function is| keywords in file; you can avoid
corrupt, does not exist, or containdllegal keywords by using the
one or more undefined keywords. configuration utility to create and

modify configuration files.

6001 24577 lllegal base address in Use the configuration utility to
configuration file: The board's change the base 1/0 address to one
base 1/0 address in the that matches the base address
configuration file is illegal and/or | switches on the board.
does not match the base addresg
switches on the board.

6002 24578 lllegal IRQ level in configuration | Use the configuration utility to
file: The interrupt level in the change the interrupt level to a legal
configuration file is illegal. one for your board. Refer to the

user’s guide for legal interrupt
levels.

A-1

Table A-1. Error/Status Codes (cont.)

-

(=]

Error Code
Hex Decimal Cause Solution
6005 24581 lllegal channel number: The Specify a legal channel number.
specified channel number is illeg{ Refer to the user’s guide or to the
for the board and/or for the range description oK_SetChnin
type (unipolar or bipolar). Chapter 4 for legal channel
numbers.
6006 24582 lllegal gain code:The specified | Specify a legal gain code. Refer to
channel gain code is illegal for thighe user’s guide or to the
board. description oK_SetGin
Chapter 4 for a list of legal gain
codes.
6008 24584 Illegal number in configuration | Use the configuration utility to
file: The configuration file contain| check and then change the
one or more numeric values that| configuration file.
are illegal.
600A 24586 Configuration file not found: The | Check that the file exists at the
driver cannot find the specified path. Check that the file
configuration file specified as an | name is spelled correctly in the
argument to the driver initializationdriver initialization function
function. parameter list.
600C 24588 Error returning interrupt Check the memory handle storeqg
buffer: The memory handle by K_IntAlloc and make sure that
specified irK_IntFree is invalid. | it was not modified.
600D 24589 lllegal frame handle: The Check that the frame handle exists.
specified frame handle is not validCheck that you are using the
for this operation. appropriate frame handle.
600E 24590 No more frame handles:No UseK_FreeFrameto free a frame
frames are left in the pool of that the application is no longer
available frames. using.
600F 24591 Requested buffer size too large: | Specify a smaller buffer size; refe
The requested buffer cannot be | to the description df_IntAlloc in
dynamically allocated because of Chapter 4 for the legal range. If in
its size. Windows Enhanced mode with the
Keithley Memory Manager
installed, use KMMSETUP.EXE to
increase the reserved buffer hea
size.
A-2 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6010 24592 Cannot allocate interrupt buffer: | Remove some Terminate and Stay
(Windows-based languages only] Resident programs (TSRs) that 3
K_IntAlloc failed because there | no longer needed.
was not enough available DOS
memory.

6012 24594 Interrupt buffer deallocation Make sure that the memory hand
error: (Windows-based languagegpassed as an argument to
only) An error occurred when K_IntFree was previously
K_IntFree attempted to free a | obtained usind<_IntAlloc .
memory handle.

6016 24598 VDS - Region not contiguousAn | Refer to the user’s guide for
error occurred while using information on how to install and
Windows Virtual DMA Services. | set up the Keithley Memory
You tried to us&k_DMAAlloc in | Manager.
Windows Enhanced mode and th
Keithley Memory Manager was n¢
installed

6017 24599 VDS - DMA wraparound: See See error 6016.
error 6016.

6018 24600 VDS - Unable to lock region:See | See error 6016.
error 6016.

6019 24601 VDS - No buffer available:See | See error 6016.
error 6016.

601A 24602 VDS - Region too largeSee error| See error 6016.
6016.

601B 24603 VDS - Buffer in use: See error See error 6016.
6016.

601C 24604 VDS - lllegal region: See error | See error 6016.
6016.

601D 24605 VDS - Region not locked:See See error 6016.
error 6016.

601E 24606 VDS - lllegal page:See error See error 6016.
6016.

A-3

re

le

Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
601F 24607 VDS - lllegal buffer: See error | See error 6016.
6016.
6020 24608 VDS - Copy out of range:See See error 6016.
error 6016.
6021 24609 VDS - lllegal DMA channel: See | See error 6016.
error 6016.
6022 24610 VDS - Count overflow: See error | See error 6016.
6016.
6023 24611 VDS - Count underflow: See See error 6016.
error 6016.
6024 24612 VDS - Function not supported: | See error 6016.
See error 6016.
6025 24613 lllegal OBM mode: The mode Refer to the description of
number specified in K_SetOBMMode in Chapter 4 for
K_SetOBMMode is illegal. legal mode values.
602A 24618 DMA free error; See error 6026.| See error 6026.
602B 24619 Not enough memory to Specify a smaller number of
accommodate requestThe samples. Free a previously
number of samples you requestedallocated buffer. Use the
in the Keithley Memory Manager| KMMSETUP utility to expand the
is greater than the largest reserved heap.
contiguous block available in the
reserved heap.
602C 24620 Requested buffer size exceeds | Specify a value within the legal
maximum: The number of range when calling{_DMAAlIloc
samples you requested from the | or K_IntAlloc in Windows
Keithley Memory Manager is Enhanced mode. Refer to the
greater than the allowed maximurn description ok _DMAAIloc or
K_IntAlloc in Chapter 4 for legal
values.
A-4 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

602D 24621 lllegal device handle:A bad Check the device handle value.
device handle was passed to a
function such ak_GetADFrame.

The handle used was not initialized
usingK_GetDevHandleor it was
corrupted by your program.

602E 24622 lllegal Setup option: An illegal Check the option value passed tg
option was specified to a functior the function where the error
that accepts a user option, such { occurred.

K_SetDITrig .

6031 24625 Illegal memory handle: A bad Restart your program and monitg
memory handle was passed to | the memory handle value(s).
K_IntFree orK_DMAFree. The
handle used was not initialized
through a call t&_IntAlloc or
K_DMAAlloc , or it was corrupted
by you program.

6032 24626 Out of memory handles:An UseK_IntFree orK_DMAFree to
attempt to allocate a memory blog free previously allocated memory
usingK_IntAlloc or blocks before allocating again.
K_DMAAlloc failed because the
maximum number of handles has
already been assigned.

6034 24628 Memory corrupted: Int 21H Recheck the parameters set by
function 48H, used to allocate a | K_DMAAIloc and
memory block from the DOS far | K_SetDMABUf. If a fatal system
heap, returned the DOS error 7; | error, restart your computer.
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

A-5

Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
6035 24629 Driver in use: The driver To continue using the driver with
attempted to configure a device | the same configuration, pass a null
that had already been configured string as the second argument to
by a call toK_OpenDriver. (This | K_OpenDriver. To use the driver
can occur since, under Windows,| with a different configuration,
is possible to open the same driv close any application programs
from multiple programs that are | currently accessing the driver, and
running simultaneously.) then open the driver again (using
K_OpenDriver).
6036 24630 lllegal driver handle: The Someone may have closed the
specified driver handle is not validdriver; if so, usd&_OpenDriver to
reopen the driver with the desired
driver handle. Try again using
another driver handle.
6037 24631 Driver not found: The specified | Check your link statement to make
driver cannot be found. sure the specified driver is
included. Make sure that the device
name string is entered correctly in
K_OpenDriver.
6038 24632 Invalid source pointer: Check the pointer to the source
(Windows-based languages only) buffer and the number of samples
The pointer to the source buffer | to transfer that you specified in
that you passed as an argument té&_MoveBufToArray .
K_MoveBufToArray is invalid for
the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

A-6 Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

6039 24633 Invalid destination pointer: Check the dimension of the local
(Windows-based languages only] array and the number of samples
The pointer to the destination transfer that you specified in
buffer (local array) that you pass¢ K_MoveBufToArray .
as an argument to
K_MoveBufToArray is invalid for
the specified count. (The
destination pointer, when added
the number of samples, exceeds
dimension of the local array.)

603A 24634 lllegal setup value:An illegal Check the legal ranges of all
value was passed to the function|iparameters passed to this functig
which the error occurred.

603B 24635 Error freeing buffer selector: Check that the memory buffer
K_DMAFree orK_IntFree failed | being freed was previously
because one or more of the obtained througi_DMAAIlloc or
selectors that reference the K_IntAlloc.
memory buffer could not be freeg

603C 24636 Error allocating buffer selector: | Close all applications and restart
K_DMAAlloc orK_IntAlloc Windows. If the error continues,
failed because a selector could natontact the Keithley MetraByte
be allocated from Window’s Local Applications Engineering
Descriptor Table. Department.

603D 24637 Error allocating memory buffer: | Close all applications and restart
K_DMAAlloc orK_IntAlloc Windows. If the error continues,
failed because a necessary intery contact the Keithley MetraByte
buffer could not be allocated to | Applications Engineering
complete the operation. Department.

7000 28672 No board number. The board Specify the board number in the
number field was missing or out otonfiguration file.
place in the specified configuration
file.

7002 28674 lllegal board number: The driver | Specify a legal board number:
initialization function found an Oto1l
illegal board number in the
specified configuration file.

A-7

n.

Table A-1. Error/Status Codes (cont.)

Error Code
Hex Decimal Cause Solution
7003 28675 lllegal base addressThe driver | Specify a base I/O address in the
initialization function found an inclusive range &H240 (576) to
illegal base 1/0 address in the | &H2F8 (760) in increments of 8H
specified configuration file. (8). Make sure that &H precedes
hexadecimal numbers.
7004 28676 lllegal memory address The Specify a memory address in the
driver initialization function found inclusive range &HAOO0O to
an illegal memory address in the| &HDCOO in increments of 400H.
specified configuration file. Make sure that &H precedes
hexadecimal numbers.
7005 28677 Illegal interrupt level : The driver | Specify a legal interrupt level: 2, 5,
initialization function found an 7,10, 11,12, 0r 15
illegal interrupt level in the
specified configuration file.
7007 28679 lllegal zero wait state The driver | Specify enabled or disabled.
initialization function found an
illegal input in the specified
configuration file.
7009 28681 lllegal A/D channel: The specified Make sure that the specified analpg
analog input channel is illegal. | input channel is 0 (Channel A
connector) or 1 (Channel B
connector).
700A 28682 lllegal start- and about-trigger Either set the start trigger to
combination: The start trigger internal usingk_SetTrig, or
must be internal when the about | disable the about trigger using
trigger is enabled. K_ClIrAboutTrig .
700B 28683 lllegal channel scan sequence | In the channel-gain queue, make
You specified the channels and | sure that you specify channel O
gains in the channel-gain queue j{Channel A connector) and the
the wrong order. gain for channel 0 before you
specify channel 1 (Channel B
connector) and the gain for channel
1.

A-8

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

to

=

Error Code

Hex Decimal Cause Solution

700C 28684 lllegal about- and post-trigger Either disable the about trigger
delay combination The about usingK_ClIrAboutTrig or do not
trigger cannot be enabled while th specify a delay with
post-trigger delay is specified. | K_SetPostTrigDelay

700D 28685 lllegal DAS Specification revision| Contact Keithley MetraByte for a
number: This version of the DAS| upgrade.
shell is not supported

700E 28686 Resource busyThe application | UseK_IntStop to stop the
program attempted to start an in-progress operation before
operation while a similar operatio initiating the second operation.
was in progress.

7010 28688 lllegal number of post-trigger UseK_SetPostTrigDelayto
delay samplesYou specified an | specify a valid number of
invalid number of post-trigger post-trigger delay samples
delay samples. (between 0 and 8,388,608).

7012 28690 lllegal channel-gain array size | Shorten the channel-gain queue
The channel-gain queue cannot | one or two entries.
have more than two channels.

7015 28693 lllegal number of about-trigger | Ensure that the number of
samples The number of about-trigger samples specified i
about-trigger samples exceeds th&_SetAboutTrig is less than or
buffer size. equal to the size of your array or

buffer as specified iK_SetBuf or
K_SetBufl.

7017 28695 lllegal calibration on board: The | Contact the Keithley MetraByte
EEPROM settings are not giving | Applications Engineering
consistent value. Department.

7018 28696 Memory map conflict or Configure the jumpers on the boa
inconsistency The board could | to choose another memory addre
not map into the memory address
configured.

rd
2SS,

A-9

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

7019 28697 Windows could not supply Check to make sure that your
memory map: Windows did not | memory manager excludes the
return the selector for the memorn memory your board is using. For
location of the board requested. | example, if you are using

EMM386, your CONFIG.SYS file
should contain a line similar to the
following:
DEVICE=C:\DOS\EMM386.EXE
X=CCO00-CFFF

(Note this should be typed on one
line.)

7022 28706 No interrupt generated: The DAS | Make sure the board’s internal
driver could not detect any jumper matches the settings in the
interrupts from the 4100 board. | configuration file. Also, make sure

no other devices in the computer
share the IRQ level.

7023 28707 Illegal coupling specified The Specify a legal setting: DC or AC
DC/AC coupling setting in the
configuration file is illegal.

7024 28708 lllegal impedance specifiedThe | Specify a legal setting: 50 to
input impedance setting in the | 1 MQ
configuration file is illegal.

7025 28709 lllegal number of samples You Make sure that you specify a legal
requested more samples than th¢ number of samples.
board supports.

8004 32772 lllegal error number: The error | The error number must be one the
message number specified in error numbers listed in this
K_GetErrMsg is invalid. appendix.

8005 32773 Board not found at configured Make sure that the base address
address:The board initialization | setting of the switches on the board
function does not detect the matches the base address setting in
presence of a board. the configuration file.

8006 32774 A/D not initialized: You attempted Always callK_ClearFrame
to start a frame-based analog inpuiefore setting up a new
operation without the A/D frame | frame-based operation.
being properly initialized.

A-10

Error/Status Codes

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

800B 32779 Conversion overrun: Data was | Adjust the clock source to slow
overwritten before it was down the rate at which the board
transferred to the computer’s acquires data. Remove other
memory. application programs that are

running and using computer
resources.

8016 32790 Interrupt overrun : The board Check the maximum throughput
communicated a hardware event|tmate for your computer's
the software by generating a programming environment and use
hardware interrupt, but the K_SetClkRate to specify an
software was still servicing a appropriate rate.
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

801A 32794 Interrupts already active: You UseK_IntStop to stop the first
have attempted to start an operat| operation before starting the
whose interrupt level is being us¢ second operation.
by another system resource.

801C 32796 Timer channel already active Stop the first operation before
This error appears when you try testarting the next operation, or waljt
perform an operation and the timeuntil the first operation stops before
channel is already in use by starting the next operation.
another system resource.

8020 32800 FIFO Overflow event detected: | The conversion rate is too fast for
During data acquisition, the your computer’'s programming
temporary onboard data storage | environment; us&_SetClkRate
(FIFO) overflowed. to reduce the conversion rate. If

you are using DMA-mode and
your board supports dual-DMA,
use the configuration utility to
reconfigure your board to use
dual-DMA.

A-11

Table A-1. Error/Status Codes (cont.)

Error Code

Hex Decimal Cause Solution

8021 32801 lllegal clock sync mode The two | Check the synchronizing clock
operations you are trying to source that you specified in
synchronize cannot be K_SetSync Make sure that your
synchronized on your board. board supports clock

synchronization.

FFFF 65535 User aborted operation:You Start the operation again, if
pressedCtrl +Break during a desired.
synchronous-mode operation or
while waiting for an analog trigge
event to occur.

A-12

Error/Status Codes

B

Data Formats

The DAS-4100 Series Function Call Driver can read and write counts
only. When reading a value, you may want to convert the count to a more
meaningful voltage value; when writing a value (aKirsetTrig), you

must convert the voltage value to a count value.

The remainder of this appendix contains instructions for converting
counts to voltage and for converting voltage to counts.

Converting Counts to Voltage

You may want to convert counts to voltage when reading an analog input
value.

To convert an analog input value to a voltage, use the following equation,
wherecountis the count value, arspanis the appropriate value from
Table B-1 on page B-2:

countx span

Voltage = 556

Converting Counts to Voltage B-1

B-2

Table B-1. Some Span Values For Analog Input Data
Conversion Equations

Gain

Code |Input Range Span (V)
0 +500 mV 1

1 2V 4

2 2.5V 5

3 4V 8

4 +250 mV 0.5
5 X1V 2

6 +1.25V 2.5
7 2V 4

8 +125 mV 0.25
9 +500 mV 1
10 625 mV 1.25
11 1V 2
12 +100 mV 0.2
13 +400 mV 0.8
14 +500 mV 1

15 +800 mV 1.6

For example, assume that you want to read analog input data from a
channel on a DAS-4100 Series board with an input range of £1 V (span of
2V); the count value is 72. The voltage is determined as follows:

72%x 2V

Data Formats

Converting Voltage to Counts

You must convert voltage to a count value when specifying an analog
trigger level.

To convert a voltage to a count value when specifying an analog trigger
level, use one of the following equations, Wh‘é{r% is the desired
voltage, andgpanis the appropriate value from Table B-1 on page B-2:

For £4 V trigger signal from Channel A or Channel B connector:

\Y,

Count = —9 X 256

span
For £16 V trigger signal from Analog Trigger In connector:

\Y

. x 256
Count = 19

32

For example, assume that you want to specify an analog trigger level of
125 mV for the input signal coming into the Channel A connector on a
DAS-4100 Series board configured for an input range type of +£200 mV
(span of 0.4 V). The count value is determined as follows:

0.125V x256 _

0.4V 80

Alternatively, assume that you want to specify an analog trigger level of
5V for the trigger input signal coming into the Analog Trigger In
connector on a DAS-4100 Series board. The count value is determined as
follows:

5V x256 _

32V 40

Converting Voltage to Counts B-3

Index

A

about-trigger acquisitio2-16
allocating memory
dynamically in C/C++3-9
dynamically in Visual Basic for
Windows3-17
locally in C/C++3-8
locally in Visual Basic for Windows
3-16
analog input operations
channel2-7
converting analog input values to
voltagesB-1
input range-8
memory allocatior2-4
operation mode2-4
pacer clock-9
programming task8-6
triggers2-11

B

board initialization2-2
Borland C/C++
compile and link statements for DOS
3-14
compile and link statements for
Windows3-15

creating an executable file for DG3S14
creating an executable file for Windows

3-15
dimensioning a local array-8

dynamically allocating a memory buffer

3-9

files required for DOS3-14
files required for Window8-15
handling errors3-11

buffer addres2-7

buffer address functioé-2

C

C/C++:seeBorland C/C++, Microsoft
C/C++
channel and gain functiodls 2
channel2-7
clock functions4-2
clock sourcesseepacer clocks
compile and link statements
Borland C/C++ (for DOS3-14
Borland C/C++ (for Windows3-15
Microsoft C/C++ (for DOSB-12
Microsoft C/C++ (for Windows8-13
convention#4-3
conversion rat@-10 4-14 4-46
converting
counts to voltageB-1
voltages to countB-3
creating an executable file
Borland C/C++ (for DOS3-14
Borland C/C++ (for Windows3-15
Microsoft C/C++ (for DOSB-12
Microsoft C/C++ (for WindowsB-13
Visual Basic for Windows-20

D

data conversions
converting counts to voltagés1
converting voltages to counig3
data type<-4
default values of A/D frame elemer8s3
device handl@-2, 3-1

digital trigger2-13
dimensioning a local array
C/C++3-8
Visual Basic for WindowsS-16
driver handle?-1
driver initialization2-1
dynamically allocating a memory buffer
C/C++3-9
Visual Basic for Windows-17

E

elements of fram8-3
error code#A-1
error handling2-3
Borland C/C++3-11
Microsoft C/C++3-11
Visual Basic for WindowsS-19
external pacer clocR-10

F

files required
Borland C/C++ (for DOS3-14
Borland C/C++ (for Windows3-15
Microsoft C/C++ (for DOSB-12
Microsoft C/C++ (for WindowsB-13
Visual Basic for Windows-20

frame element8-3

frame handle3-2

frame management functiods2

frame types3-2

functions
buffer addresd-2
channel and gaid-2
clock4-2
frame managemedt-2
initialization 4-2
K_ClearFrame3-3, 4-5

X-2

K_CloseDriver2-2, 4-6
K_CIrAboutTrig4-7
K_DASDevInit2-2, 4-8
K_FormatChnGAr4-9
K_FreeDevHandl2-2, 4-10
K_FreeFrame-3,4-11
K_GetADFrame3-2, 4-12
K_GetClkRate2-10, 4-14
K_GetDevHandlel-16
K_GetErrMsg2-3, 4-18
K_GetShellver2-3, 4-19
K_GetVer2-3, 4-20
K_IntAlloc 2-6, 4-22
K_IntFree2-6, 4-24
K_IntStart2-4, 4-25
K_IntStatus2-4, 4-26
K_IntStop2-4, 4-28
K_MoveBufToArray2-6, 4-30
K_OpenDriver2-1, 4-31
K_RestoreChnGAryl-33
K_SetAboutTrig2-16, 4-34
K_SetADTrig2-13 4-36
K_SetBuf2-7, 4-38
K_SetBufl2-7, 4-40
K_SetChn2-7, 4-42
K_SetChnGAn4-43
K_SetClk2-9, 4-45
K_SetClkRatet-46
K_SetDITrig2-13 4-48
K_SetG2-8, 4-50
K_SetPostTrigDelap-14, 4-52
K_SetStartStopCh#d-53
K_SetTrig2-11, 4-54
memory manageme#dt2
miscellaneoud-3
operatiord-2

trigger4-3

Index

H

handle
device2-2, 3-1
driver2-1
frame3-2
memory2-6

initialization functions4-2
initializing a board2-2
initializing the driver2-1
input rangex-8

internal pacer clocR-9
internal trigger2-12
interrupt-mode operatiors-4

K

K_ClearFrame3-3, 4-5
K_CloseDriver2-2, 4-6
K_ClIrAboutTrig4-7
K_DASDevInit2-2, 4-8
K_FormatChnGAry4-9
K_FreeDevHandl2-2, 4-10
K_FreeFrame-3,4-11
K_GetADFrame3-2, 4-12
K_GetClkRate2-10, 4-14
K_GetDevHandlel-16
K_GetErrMsg2-3, 4-18
K_GetShellver2-3, 4-19
K_GetVer2-3, 4-20
K_IntAlloc 2-6, 4-22
K_IntFree2-6, 4-24
K_IntStart2-4, 4-25
K_IntStatus2-4, 4-26
K_IntStop2-4, 4-28
K_MoveBufToArray2-6, 4-30

K_OpenDriver2-1, 4-31
K_RestoreChnGAryl-33
K_SetAboutTrig2-16, 4-34
K_SetADTrig2-13 4-36
K_SetBuf2-7, 4-38
K_SetBufl2-7, 4-40
K_SetChn2-7, 4-42
K_SetChnGAn4-43
K_SetClk2-9, 4-45
K_SetClkRatet-46
K_SetDITrig2-13 4-48
K_SetG2-8, 4-50
K_SetPostTrigDelag-14, 4-52
K_SetStartStopCh#é-53
K_SetTrig2-11, 4-54

M

maintenance operationseesystem
operations
memory allocatior2-4
memory handl@-6
memory management functiods2
Microsoft C/C++
compile and link statements for DOS
3-12
compile and link statements for
Windows3-13
creating an executable file for DGS12
creating an executable file for Windows
3-13
dimensioning a local arra3-8
dynamically allocating a memory buffer
3-9
files required for DOS3-12
files required for Window$8-13
handling errors3-11
Microsoft Visual Basic for Windows
seeVisual Basic for Windows

miscellaneous functiord-3
miscellaneous operatiorseesystem
operations

O

operation functiong-2
operations
analog inpu-4
system2-1

P

pacer clock-9
post-trigger acquisitio2-14
pre-trigger acquisitio2-15
programming information
C/IC++3-8
Visual Basic for Windows3-16
programming overvieva-4
programming tasks
analog input operatiori3-6
preliminary3-5

R

ranges2-8

return value-3
revision level2-3
routines:seefunctions

X-4

S

software triggerseeinternal trigger
starting an operatioB-4

status?2-4

status code®-3

stopping an operatio2-2, 2-4
system operation2-1

T

tasks:seeprogramming tasks

trigger functions4-3

triggers2-11
about-trigger acquisitio2-16
external analog trigger sour2el2
external digital trigger sourcg-13
internal trigger sourcg-12
post-trigger acquisitio2-14
pre-trigger acquisitio2-15

Vv

Visual Basic for Windows
creating an executable fig20
dimensioning a local arra§-16
dynamically allocating memory buffers

3-17

files required3-20
handling error$8-19

voltage input range2-8

Index

