

DAS-Scan
Function Call Driver

U S E R ’ S G U I D E

DAS-Scan
Function Call Driver

User’s Guide

Revision A – July 1996
Part Number: 94890

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

vii

Preface

The

DAS-Scan Function Call Driver User’s Guide

 provides information
to help you write application programs for the DAS-Scan system using
the DAS-Scan Function Call Driver. The DAS-Scan Function Call Driver
supports the following Windows



-based languages:

●

Microsoft



Visual C++



 (up to Version 1.52)

●

Borland



 C/C++ (Version 4.0 and 4.5)

●

Microsoft Visual Basic



 for Windows (Version 3.0 and Version 4.0)

The manual is intended for application programmers using a DAS-Scan
system with an IBM



 PC AT



 or compatible computer. It is assumed that
you have read the

DAS-Scan User’s Guide

 to familiarize yourself with the
system’s features, and that you have completed the appropriate hardware
installation and configuration. It is also assumed that you are experienced
in programming in your selected language and that you are familiar with
data acquisition principles.

The

DAS-Scan Function Call Driver User’s Guide

 is organized as
follows:

●

Chapter 1 contains the information needed to install the DAS-Scan
Function Call Driver, a summary of the DAS-Scan Function Call
Driver functions typically used when programming a DAS-Scan
system, a series of flow diagrams illustrating the procedures typically
used when programming a DAS-Scan system, and information on
how to get help.

●

Chapter 2 contains conceptual information about the DAS-Scan
Function Call Driver functions typically used when programming a
DAS-Scan system.

viii

●

Chapter 3 contains conceptual information about additional
DAS-Scan Function Call Driver functions you can use when
programming a DAS-Scan system.

●

Appendix A contains instructions for converting counts to voltage and
for converting counts to temperature.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

●

References to Windows apply to Windows 3.1, Windows 3.11 for
Workgroups, and Windows 95. When a feature applies to a specific
Windows version, the complete version name is used.

●

Keyboard keys are represented in bold.

Table of Contents

iii

Preface

1

Getting Started

Overview .1-2
Setup and Installation. .1-2
Summary of Functions .1-4
Programming Flow Diagrams .1-6

Preliminary Steps for All Analog Input Operations 1-7
Steps for a Single-Mode Analog Input Operation.1-8
Steps for a DMA-Mode Analog Input Operation1-9

Getting Help. .1-14

2

Available Operations

System Operations .2-1
Initializing the Driver .2-1
Initializing a Board .2-2
Generating a Windows Event .2-3
Retrieving Revision Levels .2-4
Handling Errors. .2-4

Analog Input Operations .2-5
Operation Modes. .2-5

Single Mode .2-5
DMA Mode .2-5

Accessing a Frame .2-7
Memory Allocation and Management.2-9
Gains .2-11
Channels .2-12

Addressing Channels .2-12
Specifying a Single Channel .2-17
Specifying a Group of Consecutive Logical Channels. . .2-17
Specifying Channels in a Channel-Gain Queue.2-18

Pacer Clock .2-19
Internal Pacer Clock .2-20
External Pacer Clock .2-21

iv

Triggers .2-22
Internal Trigger. .2-23
External Digital Trigger .2-23

Hardware Gate. .2-24

3

Additional Features

Summary of Additional Functions .3-2
Additional Programming Flow Diagrams3-3

Preliminary Steps for All Analog Input Operations 3-4
Steps for a Single-Mode Analog Input Operation.3-5
Steps for an Interrupt-Mode Analog Input Operation3-6
Steps for a DMA-Mode Analog Input Operation3-12

Performing an Interrupt-Mode Operation 3-19
Accessing a Frame .3-20
Reserving Memory .3-20
Specifying Channels and Gains .3-22
Specifying a Pacer Clock .3-23
Specifying a Trigger .3-23
Enabling a Hardware Gate .3-23

Specifying Continuous Mode. .3-23
Reserving Large or Multiple Memory Buffers 3-24
Specifying Burst Mode .3-25
Using the Burst Mode Conversion Clock 3-26
Specifying Pre-Trigger Acquisition .3-26
Specifying About-Trigger Acquisition.3-28

A

Data Formats

Converting Counts to Voltage. A-1
Converting Counts to Temperature . A-3

Index

v

List of Figures

Figure 2-1. Frame-Based Operation .2-7
Figure 2-2. Digital Trigger Conditions.2-23

List of Tables

Table 1-1. Summary of Functions. .1-4
Table 2-1. A/D Frame Elements .2-9
Table 2-2. Analog Input Ranges .2-11
Table 2-3. Virtual Boards and Logical Channels2-13
Table 3-1. Summary of Additional Functions.3-2
Table 3-2. Functions Used to Assign Starting Addresses

in Interrupt Mode .3-22
Table A-1. Span Values For Data Conversion Equations . . . A-2

Table 1-1. Summary of Functions. .1-3
Table 2-1. A/D Frame Elements .2-5
Table 2-2. Functions Used to Assign Starting Address 2-14
Table 2-3. Analog Input Ranges .2-15
Table 2-4. Virtual Boards and Logical Channels2-16
Table 3-1. Functions Used to Assign Starting Addresses3-4
Table A-1. Span Values For Data Conversion Equations . . . A-2

Figure 2-1. Interrupt-Mode Operation2-4
Figure 2-2. Analog Trigger Conditions 2-27
Figure 2-3. Using a Hysteresis Value.2-29
Figure 2-4. Digital Trigger Conditions.2-30

1-1

1

Getting Started

This chapter contains the following sections:

●

Overview

 - a description of the DAS-Scan Function Call Driver.

●

Setup and Installation

 - a list of the tasks you should perform before
using the DAS-Scan Function Call Driver.

●

Summary of Functions

 - a brief description of the DAS-Scan
Function Call Driver functions that are typically used when
programming a DAS-Scan system.

●

Programming Flow Diagrams

 - an illustration of the procedures
you will typically follow when programming a DAS-Scan system
using the DAS-Scan Function Call Driver.

●

Getting Help

 - information on how to get help when installing or
using the DAS-Scan Function Call Driver.

1-2 Getting Started

Overview

The DAS-Scan Function Call Driver is a library of data acquisition and
control functions that is part of the ASO-SCAN software package. The
ASO-SCAN software package includes the following:

●

Dynamic Link Libraries (DLLs) of Function Call Driver functions for
Microsoft Visual C++, Borland C/C++, and Microsoft Visual Basic
for Windows.

●

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by the
Function Call Driver functions.

●

Utility programs that allow you to configure, calibrate, and test the
functions of the DAS-Scan system.

●

Language-specific example programs.

Setup and Installation

Before you use the DAS-Scan Function Call Driver to program your
DAS-Scan system, make sure that you have performed the following
tasks. Refer to the

DAS-Scan User’s Guide

 for more information.

1. Unpack and inspect the components of your DAS-Scan system.

2. Create a channel map indicating the input signals you want to attach
to each of the channels in your DAS-Scan system.

3. Configure the hardware components, as follows:

– On the SCAN-AD-HR board, set the base I/O address switch
(S1) to indicate the appropriate base I/O address, and, if
appropriate, set the J6 jumper to indicate an external pacer clock
or an external digital trigger/hardware gate.

– On each SCAN-BRD assembly, set the address thumbwheels to
indicate the appropriate assembly address.

– If you are using SCAN-STP-TC screw terminal panels, set the J2
jumpers on each panel to indicate whether you are using cold
junction compensation (CJC).

Setup and Installation 1-3

4. Mount the SCAN-STP screw terminal panels on DIN rails.

5. Attach the input signals to the appropriate SCAN-STP screw terminal
panels.

6. Mount the SCAN-CH chassis in a 19-inch rack.

7. Attach one end of each SCAN-CAB-64 cable to the appropriate
position in the SCAN-CH chassis. (Do not attach the other end of the
SCAN-CAB-64 cables at this point.)

8. Attach a power cord to the power-supply panel of each SCAN-CH
chassis.

9. Check the operation of the power supply in each SCAN-CH chassis.

10. Install the SCAN-BRD assemblies in the appropriate SCAN-CH
chassis.

11. Make sure that power to the computer is turned OFF.

12. Install the SCAN-AD-HR board in your computer.

13. Attach the SCAN-AD-HR board to your first SCAN-CH chassis
using the S-1802/M cable.

14. Daisy-chain multiple SCAN-CH chassis, if required, using
S-1802/MM cables.

15. Attach the other end of each SCAN-CAB-64 cable to the appropriate
SCAN-STP screw terminal panel.

16. Connect an external pacer clock, external digital trigger, or hardware
gate, if required, to the J5 connector on the SCAN-AD-HR board
using a CAB-SMA-BNC cable.

17. Plug the power cords into the wall, and then power up your computer,
the SCAN-CH chassis, and any equipment attached to the
SCAN-STP screw terminal panels.

18. Install the ASO-SCAN software package.

19. Specify the configuration options for your DAS-Scan system in the
DAS-Scan Configuration Utility.

20. Test the functions of the DAS-Scan system using the DAS-Scan
Control Panel.

21. Look at the example programs provided with the ASO-SCAN
software package. Refer to the FILES.TXT file in the installation
directory for a list and description of the example programs.

1-4 Getting Started

Summary of Functions

Table 1-1 describes the functions in the DAS-Scan Function Call Driver
that are typically used to program a DAS-Scan system. For more detailed
information about the functions, refer to Chapter 2 of this manual and to
the DAS-Scan Function Call Driver online help file (SCANFCD.HLP).

Table 1-1. Summary of Functions

Type of Function Name of Function Description

Initialization K_OpenDriver Initializes a Function Call Driver.

K_CloseDriver Closes a Function Call Driver.

K_GetDevHandle Initializes a virtual board.

K_FreeDevHandle Frees a device handle.

K_DASDevInit Reinitializes a virtual board.

Operation K_ADRead Reads a single analog input value.

K_DMAStart Starts a DMA-mode operation.

K_DMAStatus Gets the status of a DMA-mode operation.

K_DMAStop Stops a DMA-mode operation.

DASSCAN_EventEnable Enables the generation of a Windows event
(C/C++).

DASSCAN_EventDisable Disables the generation of a Windows event
(C/C++).

Frame management K_GetADFrame Accesses a frame for an analog input operation.

K_FreeFrame Frees a frame.

K_ClearFrame Sets all frame elements to their default values.

Summary of Functions 1-5

Memory
management

K_DMAAlloc Dynamically allocates a memory buffer for a
DMA-mode operation.

K_DMAFree Frees a memory buffer that was dynamically
allocated for a DMA-mode operation.

K_MoveBufToArray Transfers data from a dynamically allocated
memory buffer to a local array (Visual Basic
for Windows).

Buffer address K_SetDMABuf Specifies the address of a dynamically
allocated memory buffer.

Channel and gain K_SetChn Specifies a single logical channel.

K_SetStartStopChn Specifies the first and last logical channels in a
group of consecutive logical channels.

K_SetG Specifies the gain for a group of consecutive
logical channels.

K_SetStartStopG Specifies the first and last logical channels in a
group of consecutive logical channels and the
gain for all channels in the group.

K_SetChnGAry Specifies the starting address of a channel-gain
queue.

K_FormatChnGAry Converts the format of a channel-gain queue
(Visual Basic for Windows).

K_RestoreChnGAry Restores a converted channel-gain queue
(Visual Basic for Windows).

K_SetADMode Specifies the input range type (bipolar or
unipolar).

K_GetADMode Gets the input range type (bipolar or unipolar).

Clock K_SetClk Specifies the pacer clock source.

K_SetClkRate Specifies the clock rate for the internal pacer
clock.

K_GetClkRate Gets the clock rate for the internal pacer clock.

K_SetExtClkEdge Specifies the active edge of an external pacer
clock.

Table 1-1. Summary of Functions (cont.)

Type of Function Name of Function Description

1-6 Getting Started

Programming Flow Diagrams

This section contains a series of programming flow diagrams illustrating
the procedures you will typically follow when programming a DAS-Scan
system using the DAS-Scan Function Call Driver. For more detailed
information about the programming procedures, refer to the DAS-Scan
Function Call Driver online help file (SCANFCD.HLP).

Although error checking is not shown in the flow diagrams, it is
recommended that you check the error/status code returned by each
function used in your application program.

Trigger K_SetTrig Specifies the trigger source.

K_SetDITrig Sets up a digital start trigger.

Gate K_SetGate Specifies the status of a hardware gate.

Miscellaneous K_GetErrMsg Gets the address of an error message string
(C/C++).

K_GetVer Gets revision numbers.

K_GetShellVer Gets the current DAS shell version.

Table 1-1. Summary of Functions (cont.)

Type of Function Name of Function Description

Programming Flow Diagrams 1-7

Preliminary Steps for All Analog Input Operations

Using another
virtual board?

Install all required files,
including the function and
variable type definition file

Declare and initialize program
variables

Initialize the driver
(K_OpenDriver)

Initialize a virtual board
(K_GetDevHandle)

No

Yes

Perform the steps appropriate to your
operation (see the operation-specific

flow diagrams)

1-8 Getting Started

Steps for a Single-Mode Analog Input Operation

Declare a variable in which
to store a single analog

input value

Operation complete

Read the count value
(K_ADRead)

Convert the count value
to voltage or degrees

Programming Flow Diagrams 1-9

Steps for a DMA-Mode Analog Input Operation

Access a frame for a virtual board
(K_GetADFrame)

Specify the starting address
of the buffer

(K_SetDMABuf)

Continued on next page

Allocate a buffer
(K_DMAAlloc)

1-10 Getting Started

Steps for a DMA-Mode Analog Input Operation (cont.)

Modify the
channel-

gain
queue?

Yes

Using a
channel-

gain

No

Yes Define the
channel-gain

queue

Using
Visual
Basic?

Yes Format the
channel-gain queue
(K_FormatChnGAry)

Continued from previous page

Specify the starting address
of the channel-gain queue

(K_SetChnGAry)

No

Restore the
channel-gain queue

(K_RestoreChnGAry)

Using a
group of

consecutive
channels?

No

Yes
Specify the first and last channels

and the gain for all channels
(K_SetStartStopG or

K_SetStartStopChn and K_SetG)

Specify a single channel
(K_SetChn)

Specify the gain
for the single channel

(K_SetG)

Continued on next page

No

Programming Flow Diagrams 1-11

Steps for a DMA-Mode Analog Input Operation (cont.)

Using an
external

digital start
trigger?

Using a
hardware

gate?

Continued from previous page

Continued on next page

Specify the clock source
(K_SetClk)

Using
internal
clock?

Yes Set the clock rate
(K_SetClkRate)

No

Specify the external clock edge
(K_SetExtClkEdge)

Specify an internal start trigger
(K_SetTrig)

No

Yes Specify an external start trigger
(K_SetTrig)

Specify digital
trigger conditions

(K_SetDITrig)

Disable the gate
(K_SetGate)

Specify the gate polarity
(K_SetGate)

Yes

No

1-12 Getting Started

Steps for a DMA-Mode Analog Input Operation (cont.)

Scanning
another

virtual board?

Continued from previous page

Start the DMA-mode operation
(K_DMAStart)

Monitor the status of the operation
(K_DMAStatus)

Yes

Continued on next page

No

Setting up
another

virtual board?

Yes Access a frame for the virtual board;
go to the top of page 1-9

No

Programming Flow Diagrams 1-13

Steps for a DMA-Mode Analog Input Operation (cont.)

Continued from previous page

Free each frame

Using
Visual
Basic?

Yes Transfer data from each
buffer to a local array
(K_MoveBufToArray)

No

Free each buffer
(K_DMAFree)

Read data
from each buffer

Convert data
from each buffer

Operation complete

Read data
from each array

Convert data
from each array

1-14 Getting Started

Getting Help

If you need help installing or using the DAS-Scan Function Call Driver,
call your local sales office or call the following number for technical
support:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone. Please make sure that you have the following
information available before you call:

SCAN-AD-HR
board configuration

Serial #
Revision code
Base address setting
Interrupt level setting
DMA channel(s)
External clock, trigger, or gate

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

Getting Help 1-15

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

1-16 Getting Started

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

SCAN-BRD
assembly
configuration

Model
Serial #
Revision code
Address setting (0h to 3Fh)
Unipolar or bipolar mode

Computer

Manufacturer
CPU type
Clock speed (MHz)
KB of RAM
Video system
BIOS type

Operating system

Windows version _______________________

Compiler

Language
Manufacturer
Version

System Operations 2-1

2

Available Operations

This chapter contains conceptual information about the DAS-Scan
Function Call Driver functions typically used when programming a
DAS-Scan system. It includes the following sections:

●

System Operations

 - information on initializing the Function Call
Driver, initializing a virtual board, generating a Windows event,
retrieving revision levels, and handling errors.

●

Analog Input Operations

 - information on operation modes,
accessing a frame, memory allocation and management, gains,
channels, the pacer clock, and triggers.

System Operations

This section describes the miscellaneous operations and general
maintenance operations that apply to the entire DAS-Scan system and to
the DAS-Scan Function Call Driver. It includes information on
initializing the Function Call Driver, initializing a virtual board,
generating a Windows event, retrieving revision levels, and handling
errors.

Initializing the Driver

You must initialize the DAS-Scan Function Call Driver and any other
Keithley DAS Function Call Drivers you are using in your application
program. To initialize the drivers, use the

K_OpenDriver

 function.
Specify the driver you are using and the configuration file that defines the
use of the driver. The driver returns a unique identifier for the driver; this
identifier is called the driver handle.

2-2 Available Operations

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, use the

K_CloseDriver

 function to free a
driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. The DLLs associated with
the Function Call Driver are shut down and unloaded from memory.

Initializing a Board

Each DAS-Scan system contains one physical SCAN-AD-HR board that
you plug into your computer. You can attach up to 64 physical
SCAN-BRD assemblies to the SCAN-AD-HR. Each SCAN-BRD
assembly contains 64 physical channels.

The DAS-Scan Function Call Driver treats each group of four
SCAN-BRD assemblies as a virtual board. Each virtual board contains
256 logical channels (four SCAN-BRD assemblies multiplied by 64
physical channels on each). Refer to page 2-12 for information on how
the logical channels map to the virtual board.

The driver supports 16 virtual boards for a total of 4,096 logical channels
(16 virtual boards multiplied by 256 logical channels on each). You must
use the

K_GetDevHandle

 function to initialize each virtual board you
want to use. Specify the driver handle and the virtual board number (0 to
15).

K_GetDevHandle

 verifies that the SCAN-AD-HR board is present
at the base address specified in the configuration file, stops any operations
currently in progress, initializes the SCAN-AD-HR board to its default
state, and calibrates the analog-to-digital converter on the SCAN-AD-HR
board.

K_GetDevHandle

 returns a unique identifier for each virtual board; this
identifier is called the device handle. Device handles allow you to
communicate with more than one virtual board. Use the device handle
returned by

K_GetDevHandle

 in subsequent function calls related to the
virtual board.

You can specify a maximum of 30 device handles for all the Keithley
DAS products accessed from all your application programs. If you are no
longer using a Keithley DAS product and you want to free some memory

System Operations 2-3

or if you have used all 30 device handles, use the

K_FreeDevHandle

function to free a device handle.

Use

K_GetDevHandle

 the first time you initialize a board only. To
reinitialize a virtual board after you have called

K_GetDevHandle

, use
the

K_DASDevInit

 function.

Generating a Windows Event

If you are performing a DMA-mode operation and programming in
C/C++, you can program your DAS-Scan system to generate an interrupt
when the operation stops (either because the specified number of samples
was read or because an error, such as an overflow, occurred). You can then
use the interrupt to generate a Windows event.

By default, the generation of Windows events is disabled. Use the

DASSCAN_EventEnable

 function to enable the generation of Windows
events. When an interrupt is generated, a Windows event is generated and
a message is sent to your application program. Your application program
can then take the appropriate action. Use the

DASSCAN_EventDisable

function to disable the generation of Windows events.

Notes:

Always disable the generation of Windows events (using

DASSCAN_EventDisable

) before closing your application program.

The DAS-Scan Function Call Driver does not support the generation of
Windows events when programming in Visual Basic for Windows.

If a Windows event is generated, the

wParam

 parameter of the message
structure specifies the status of the operation as returned in the

pStatus

variable of

K_DMAStatus

. Refer to the DAS-Scan Function Call Driver
online help file (SCANFCD.HLP) for more information about

K_DMAStatus

.

You can generate a Windows event only if you are performing an
operation in single-cycle buffering mode (the default buffering mode). If
you change the buffering mode to continuous mode, the generation of
Windows events is no longer supported. Refer to page 3-23 for

information on when you can use continuous buffering mode.

2-4 Available Operations

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are used by the DAS-Scan system.

The

K_GetVer

 function allows you to get both the revision number of the
DAS-Scan Function Call Driver and the revision number of the Keithley
DAS Driver Specification to which the driver conforms.

The

K_GetShellVer

 function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all Keithley DAS products).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to the DAS-Scan Function Call Driver online
help file (SCANFCD.HLP) for a complete list of error codes.

Each supported programming language uses a different procedure for
error checking. Refer to the DAS-Scan Function Call Driver online help
file (SCANFCD.HLP) for language-specific information.

For C/C++ application programs only, the DAS-Scan Function Call
Driver provides the

K_GetErrMsg

 function, which gets the address of
the string corresponding to an error code.

Analog Input Operations 2-5

Analog Input Operations

This section describes analog input operations. It includes information on
the operation modes available, how to access a frame, how to allocate and
manage memory, and how to specify channels and gains, the pacer clock
source, and the trigger source for an analog input operation.

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the
SCAN-AD-HR board to computer memory. You can perform analog input
operations in single mode or DMA mode, as described in the following
sections.

Single Mode

In single mode, the SCAN-AD-HR board acquires a single sample from a
single logical channel. The driver initiates the conversion; you cannot
perform any other operation until the single-mode operation is complete.

Use the

K_ADRead

 function to perform an analog input operation in
single mode. You specify the virtual board that the logical channel is
associated with, the logical channel, the gain at which you want to read
the signal, and the variable in which to store the converted data.

The data in the variable is stored as a count value. Refer to Appendix A
for information on converting the count value to voltage or degrees.

DMA Mode

DMA mode is the recommended way to transfer data. In DMA mode, the
SCAN-AD-HR board acquires a single sample or multiple samples from
one or more logical channels (up to a maximum of 256) on the same
virtual board. A hardware clock initiates conversions. Once the analog
input operation begins, control returns to your application program. The
hardware temporarily stores the acquired data in the FIFO (first-in,
first-out data buffer) on the SCAN-AD-HR board and then transfers the
data to a user-defined DMA buffer in the computer.

2-6 Available Operations

Use the

K_DMAStart

 function to start the DMA-mode operation on the
first virtual board, specifying the handle of the frame that defines the first
operation. After the SCAN-AD-HR board reads a sample from each
logical channel associated with the virtual board and stores the samples in
the user-defined buffer, the operation stops. (Use the

K_DMAStatus

function to monitor the status of the operation and determine when the
operation stops.) Then, use

K_DMAStart

 again to start the DMA-mode
operation on the next virtual board, specifying the handle of the frame
that defines the next operation.

Refer to page 1-9 for the procedure to follow when performing a
DMA-mode operation. In addition, example programs 1 and 3, provided
in the ASO-SCAN software package, illustrate how to acquire data in
DMA mode.

The data in the user-defined DMA buffer is stored as count values. Refer
to Appendix A for information on converting the count value to voltage or
degrees.

Notes:

Because of the overhead required to stop one DMA-mode
operation and start another, a slight delay occurs before the DAS-Scan
system begins acquiring data on each subsequent virtual board.

If DMA resources are not available, you can also perform an analog input
operation in interrupt mode, using interrupts to indicate when data should
be transferred from the FIFO. Refer to page 3-19 for more information.

Typically, you want the operation to stop automatically after one sample
from each logical channel on the virtual board has been read; this is
referred to as single-cycle buffering mode. However, if you are acquiring
data from 256 logical channels or fewer, you can also use continuous
buffering mode; this allows you to continuously acquire data, overwriting
any values already stored in memory. Refer to page 3-23 for more
information.

You can perform an analog input operation in single-DMA mode or
dual-DMA mode, depending on whether you specified one or two DMA
channels in your configuration file. Refer to the

DAS-Scan User’s Guide

for more information.

Analog Input Operations 2-7

Accessing a Frame

A frame is a data structure whose elements define the attributes of a
DMA-mode analog input operation. For each virtual board in your
DAS-Scan system, use the

K_GetADFrame

 function to access an A/D
(analog-to-digital) frame. The driver returns a unique identifier for each
frame; this identifier is called the frame handle.

Specify the attributes of each operation by using a separate setup function
to define each element of the A/D frame. Use the frame handle returned
by the driver in each setup function to ensure that you always define the
operation for the same virtual board. For example, assume that you access
an A/D frame with the frame handle ADFrame1. To specify the logical
channel on which to perform the operation, use the

K_SetChn

 setup
function, referencing the frame handle ADFrame1; to specify the gain at
which to read the logical channel, use the

K_SetG

 setup function, also
referencing the frame handle ADFrame1.

When you are ready to perform the operation you set up, use the

K_DMAStart

 function to start the operation, again referencing the
appropriate frame handle. Figure 2-1 illustrates the use of an A/D frame
where the frame handle is ADFrame1.

Figure 2-1. Frame-Based Operation

Start Channel

Stop Channel

Clock Source

Trigger Source
.
.
.

First analog input channel

Last analog input channel

Pacer clock source

Trigger source
.
.
.

Attributes of OperationADFrame1

K_DMAStart (ADFrame1)

2-8 Available Operations

Frames help you create structured application programs. They are useful
for operations that have many defining attributes, since providing a
separate argument for each attribute could make a function’s argument list
unmanageably long. In addition, some attributes, such as the clock source
and trigger source, are only available for operations that use frames.

You must use as least as many frames as you have virtual boards. For
example, if you are using 16 virtual boards (the maximum number), you
must use at least 16 frames. The maximum number of frames that you can
use in your application program is 32 (two for each virtual board).

Note:

To acquire data from all the virtual boards in your DAS-Scan
system as smoothly as possible, make sure that you define the elements of
each frame consistently. For example, to use the same pacer clock rate for
all the virtual boards in your DAS-Scan system, specify the same number

of clock ticks for each frame.

If you want to perform a DMA-mode operation on a virtual board and all
frames have been accessed, use the

K_FreeFrame

 function to free a
frame that is no longer in use. You can then redefine the elements of the
frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the

K_ClearFrame

 function to reset all the elements of a
frame to their default values.

Table 2-1 lists the elements of an A/D frame that are typically defined for
a DAS-Scan system. This table also lists the default value of each
element, the setup functions used to define each element, and the page(s)
in this manual on which to find additional information. Refer to the
DAS-Scan Function Call Driver online help file (SCANFCD.HLP) for
more detailed information about the setup functions.

Analog Input Operations 2-9

Memory Allocation and Management

A DMA-mode analog input operation requires memory in which to store
the acquired data.

To reserve memory, use the

K_DMAAlloc

 function to dynamically
allocate a memory buffer for each virtual board. Specify the number of
samples to store in the buffer (typically, one sample for each logical
channel associated with the virtual board). The driver returns the starting

Table 2-1. A/D Frame Elements

Element Default Value Setup Function Page Number

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetDMABuf page 2-9

Number of Samples 0 K_SetDMABuf page 2-9

Start Channel 0 K_SetChn page 2-17

K_SetStartStopChn page 2-17

K_SetStartStopG page 2-17

Stop Channel 0 K_SetStartStopChn page 2-17

K_SetStartStopG page 2-17

Gain 0 (gain of 1) K_SetG page 2-17

K_SetStartStopG page 2-17

Channel-Gain Queue 0 (NULL) K_SetChnGAry page 2-18

Clock Source Internal K_SetClk page 2-20, page 2-21

Pacer Clock Rate

1

 0 K_SetClkRate page 2-20

External Clock Edge Negative K_SetExtClkEdge page 2-21

Trigger Source Internal K_SetTrig page 2-23

Trigger Polarity Positive K_SetDITrig page 2-23

Hardware Gate Disabled K_SetGate page 2-24

2-10 Available Operations

address of the buffer and a unique identifier for the buffer (this identifier
is called the memory handle).

When you no longer require the buffer, you can free the buffer for another
use by specifying the memory handle in the

K_DMAFree

 function.

After you allocate your buffer, use the

K_SetDMABuf

 function to assign
the starting address of the buffer and the number of samples to store in the
buffer.

Notes:

For Visual Basic for Windows, data in a dynamically allocated
buffer is not directly accessible to your program. You must use the

K_MoveBufToArray

 function to move the data from the dynamically
allocated buffer to the program’s local array.

If you are writing Windows 95, 32-bit programs, you must install the
Keithley Memory Manager. Refer to your board user’s guide for
information.

Typically, a single buffer that can hold one sample for each logical
channel associated with the virtual board is sufficient. However, if you are
acquiring data from 256 logical channels or fewer, you can also allocate a
larger buffer or multiple buffers, allowing you to sample each logical
channel multiple times. Refer to page 3-24 for more information.

The area used for dynamically allocated memory buffers is referred to as
the global heap. This area of memory is left unoccupied as your
application program and other programs run. The

K_DMAAlloc

 function
calls the

GlobalAlloc

 API function to allocate the desired buffer size
from the global heap. Dynamically allocated memory is guaranteed to be
fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’s 8237 DMA
controller,

K_DMAAlloc

 may allocate an area twice as large as actually
needed. Once the data in this buffer is processed and/or saved elsewhere,

use

K_DMAFree

 to free the memory for other uses.

Analog Input Operations 2-11

Gains

Each logical channel of your DAS-Scan system can measure analog input
signals in one of eight, software-selectable unipolar or bipolar analog
input ranges. You initially set the input range type (unipolar or bipolar) for
each virtual board in your configuration file; refer to the

DAS-Scan User’s
Guide

 for more information. To reset the input range type for a virtual
board in your application program, use the

K_SetADMode

 function.

Table 2-2 lists the analog input ranges supported by the DAS-Scan system
and the gain and gain code associated with each range. (The gain code is
used by the Function Call Driver to represent the gain.)

For a single-mode operation, you specify the gain code in the

K_ADRead

 function.

For a DMA-mode operation, you specify the gain code in the

K_SetG

 or

K_SetStartStopG

 function; the function you use depends on how you
specify the logical channels, as described in the following section.

Table 2-2. Analog Input Ranges

Analog Input Range

Gain
Gain
CodeBipolar Unipolar

±10 V 0 to 10 V 1 0

±5 V 0 to 5 V 2 1

±2.5 V 0 to 2.5 V 4 2

±1.25 V 0 to 1.25 V 8 3

±0.2 V 0 to 0.2 V 50 4

±0.1 V 0 to 0.1 V 100 5

±50 mV 0 to 50 mV 200 6

±25 mV 0 to 25 mV 400 7

2-12 Available Operations

Channels

A DAS-Scan system can contain a maximum of 4,096 analog input
channels. You can perform an analog input operation on a single channel
or on a group of multiple channels called a scan. The following sections
describe how to address and specify the channels you are using.

Addressing Channels

As mentioned previously, each DAS-Scan system contains one physical
SCAN-AD-HR board that you plug into your computer. You can attach up
to 64 physical SCAN-BRD assemblies to the SCAN-AD-HR. You give
each SCAN-BRD assembly a unique address (from 0h to 3Fh, 0 to 63
decimal) by setting a thumbwheel on the board. Each SCAN-BRD
assembly contains 64 physical channels, numbered from 0 to 63 on each
assembly.

The DAS-Scan Function Call Driver treats each group of four
SCAN-BRD assemblies as a virtual board. Because duplicate physical
channel numbers can be associated with a virtual board, the driver uses a
logical channel number (from 0 to 255) to uniquely identify each physical
channel

.

 The channel number that you specify in Function Call Driver
functions is always a logical channel number.

Table 2-3 illustrates the mapping of logical channels to virtual boards for
the maximum configuration of 4,096 channels. Table 2-3 assumes that
when you set the address thumbwheels on the SCAN-BRD assemblies
and specified the addresses in the configuration file, you assigned the
SCAN-BRD assemblies sequential addresses, as recommended.
However, you can assign any address to any SCAN-BRD assembly, as
long as no two SCAN-BRD assemblies have the same address.

Analog Input Operations 2-13

Table 2-3. Virtual Boards and Logical Channels

Virtual
Board SCAN-BRD Assemblies

Logical
Channels

0 SCAN-BRD0 (Address 0h) 0 to 63

SCAN-BRD1 (Address 1h) 64 to 127

SCAN-BRD2 (Address 2h) 128 to 191

SCAN-BRD3 (Address 3h) 192 to 255

1 SCAN-BRD0 (Address 4h) 0 to 63

SCAN-BRD1 (Address 5h) 64 to 127

SCAN-BRD2 (Address 6h) 128 to 191

SCAN-BRD3 (Address 7h) 192 to 255

2 SCAN-BRD0 (Address 8h) 0 to 63

SCAN-BRD1 (Address 9h) 64 to 127

SCAN-BRD2 (Address Ah) 128 to 191

SCAN-BRD3 (Address Bh) 192 to 255

3 SCAN-BRD0 (Address Ch) 0 to 63

SCAN-BRD1 (Address Dh) 64 to 127

SCAN-BRD2 (Address Eh) 128 to 191

SCAN-BRD3 (Address Fh) 192 to 255

4 SCAN-BRD0 (Address 10h) 0 to 63

SCAN-BRD1 (Address 11h) 64 to 127

SCAN-BRD2 (Address 12h) 128 to 191

SCAN-BRD3 (Address 13h) 192 to 255

5 SCAN-BRD0 (Address 14h) 0 to 63

SCAN-BRD1 (Address 15h) 64 to 127

SCAN-BRD2 (Address 16h) 128 to 191

SCAN-BRD3 (Address 17h) 192 to 255

2-14 Available Operations

6 SCAN-BRD0 (Address 18h) 0 to 63

SCAN-BRD1 (Address 19h) 64 to 127

SCAN-BRD2 (Address 1Ah) 128 to 191

SCAN-BRD3 (Address 1Bh) 192 to 255

7 SCAN-BRD0 (Address 1Ch)0 to 63

SCAN-BRD1 (Address 1Dh) 64 to 127

SCAN-BRD2 (Address 1Eh) 128 to 191

SCAN-BRD3 (Address 1Fh) 192 to 255

8 SCAN-BRD0 (Address 20h) 0 to 63

SCAN-BRD1 (Address 21h) 64 to 127

SCAN-BRD2 (Address 22h) 128 to 191

SCAN-BRD3 (Address 23h) 192 to 255

9 SCAN-BRD0 (Address 24h) 0 to 63

SCAN-BRD1 (Address 25h) 64 to 127

SCAN-BRD2 (Address 26h) 128 to 191

SCAN-BRD3 (Address 27h) 192 to 255

10 SCAN-BRD0 (Address 28h) 0 to 63

SCAN-BRD1 (Address 29h) 64 to 127

SCAN-BRD2 (Address 2Ah) 128 to 191

SCAN-BRD3 (Address 2Bh) 192 to 255

11 SCAN-BRD0 (Address 2Ch)0 to 63

SCAN-BRD1 (Address 2Dh) 64 to 127

SCAN-BRD2 (Address 2Eh) 128 to 191

SCAN-BRD3 (Address 2Fh) 192 to 255

Table 2-3. Virtual Boards and Logical Channels (cont.)

Virtual
Board SCAN-BRD Assemblies

Logical
Channels

Analog Input Operations 2-15

For each virtual board, you can determine the logical channel number
corresponding to a particular physical channel number by using the
following equation:

12 SCAN-BRD0 (Address 30h) 0 to 63

SCAN-BRD1 (Address 31h) 64 to 127

SCAN-BRD2 (Address 32h) 128 to 191

SCAN-BRD3 (Address 33h) 192 to 255

13 SCAN-BRD0 (Address 34h) 0 to 63

SCAN-BRD1 (Address 35h) 64 to 127

SCAN-BRD2 (Address 36h) 128 to 191

SCAN-BRD3 (Address 37h) 192 to 255

14 SCAN-BRD0 (Address 38h) 0 to 63

SCAN-BRD1 (Address 39h) 64 to 127

SCAN-BRD2 (Address 3Ah) 128 to 191

SCAN-BRD3 (Address 3Bh) 192 to 255

15 SCAN-BRD0 (Address 3Ch)0 to 63

SCAN-BRD1 (Address 3Dh) 64 to 127

SCAN-BRD2 (Address 3Eh) 128 to 191

SCAN-BRD3 (Address 3Fh) 192 to 255

Table 2-3. Virtual Boards and Logical Channels (cont.)

Virtual
Board SCAN-BRD Assemblies

Logical
Channels

LogicalChn# PhysicalChan# 64 SCAN-BRD#×()+=

2-16 Available Operations

where

PhysicalChan# is an integer from 0 to 63 that indicates the physical
channel number on the SCAN-BRD assembly specified by SCAN-BRD#,
and

SCAN-BRD# is an integer from 0 to 3 that indicates on which
SCAN-BRD assembly the physical channel is located (0 indicates the first
SCAN-BRD assembly associated with the virtual board, 1 indicates the
second SCAN-BRD assembly associated with the virtual board, 2
indicates the third SCAN-BRD assembly associated with the virtual
board, and 3 indicates the fourth SCAN-BRD assembly associated with
the virtual board).

For example, the logical channel that identifies physical channel 15 on
SCAN-BRD2 (the third SCAN-BRD assembly associated with the virtual
board) is determined as follows:

By using a combination of the virtual board number and the logical
channel number in software, you can uniquely identify each channel in
your DAS-Scan system. For example, assume you have eight
SCAN-BRD assemblies connected to your SCAN-AD-HR board.
Physical channel number 51 on the fourth SCAN-BRD assembly
(SCAN-BRD3, Address 3) is identified as virtual board 0, logical
channel 243 (51 + (64 x 3)); physical channel 51 on the eighth
SCAN-BRD assembly (SCAN-BRD3, Address 7) is identified as virtual
board 1, logical channel 243.

Note: In the configuration file, the SCAN-BRD assemblies are addressed
sequentially from 0h to 3Fh (0 to 63 decimal), as shown in Table 2-3.
However, for the purposes of determining the logical channel number,
always use the number of the SCAN-BRD assembly in relation to a
virtual board (0, 1, 2, or 3).

LogicalChan# 15 64 2×()+ 15 128+ 143= = =

Analog Input Operations 2-17

Specifying a Single Channel

For a single-mode analog input operation, you can acquire a single
sample from a single logical channel. Use the K_ADRead function to
specify the virtual board, the logical channel, and the gain code.

For a DMA-mode analog input operation, you can acquire a single
sample or multiple samples from a single logical channel. Use the
K_SetChn function to specify the logical channel and the K_SetG
function to specify the gain code.

Refer to Table 2-2 on page 2-11 for a list of the analog input ranges
supported by the DAS-Scan system and the gain code associated with
each range.

Note: If you are measuring steady-state signals, you can reduce the
effects of noise by performing a separate DMA-mode operation on each
logical channel and then averaging the results of each operation. For
example, you can perform one DMA-mode operation in which you
acquire 1,000 samples from logical channel 0 at a gain of 1 and another
DMA-mode operation in which you acquire 2,000 samples from logical
channel 1 at a gain of 200.

Specifying a Group of Consecutive Logical Channels

For a DMA-mode analog input operation, you can acquire samples from a
group of up to 256 consecutive logical channels associated with the same
virtual board. Use the K_SetStartStopChn function to specify the first
and last logical channels. The channels are sampled in order from first to
last.

The first logical channel can be higher than the last logical channel. For
example, if the first logical channel is 255 and the last logical channel is
2, your program reads data first from logical channel 255, then from
logical channels 0, 1, and 2.

Use the K_SetG function to specify the gain code for all logical channels
in the group. (All logical channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the first logical
channel, and the last logical channel in a single function call.

2-18 Available Operations

Refer to Table 2-2 on page 2-11 for a list of the analog input ranges
supported by the DAS-Scan system and the gain code associated with
each range.

Note: If you are measuring temperature with a SCAN-BRD-TC or
SCAN-BRD-TC-ISO assembly, you can use physical channels 31 and 63
as CJC sensors to measure the temperature of the screw terminals. If you
enable a CJC channel, the CJC channel should be read at a gain of 1.
Unless you intend to read all your channels at a gain of 1, you must either
disable the CJC channels or specify your measurement channels in a
channel-gain queue. Refer to the next section for information about
channel-gain queues.

Specifying Channels in a Channel-Gain Queue

For a DMA-mode analog input operation, you can use a hardware
channel-gain queue to acquire samples from up to 256 logical channels
associated with the same virtual board. You specify the logical channels
you want to sample, the order in which you want to sample them, and a
gain code for each logical channel.

You can set up the logical channels in a channel-gain queue either in
consecutive order or in nonconsecutive order. You can also specify the
same logical channel more than once. The channels are sampled in order
from the first logical channel in the queue to the last logical channel in the
queue.

Refer to Table 2-2 on page 2-11 for a list of the analog input ranges
supported by the DAS-Scan system and the gain code associated with
each range.

The way that you specify the logical channels and gains in a channel-gain
queue depends on the language you are using. Refer to the DAS-Scan
Function Call Driver online help file (SCANFCD.HLP) for
language-specific information.

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the staring address of the
channel-gain queue.

Analog Input Operations 2-19

Notes: The throughput of the DAS-Scan system is reduced when using a
channel-gain queue, particularly when the SCAN-AD-HR board must
switch the gain between each logical channel. Therefore, it is
recommended that you keep all logical channels you are reading at a
particular gain together, even if you must arrange the channels out of
sequence.

For example, assume that you are measuring temperature on a
SCAN-BRD-TC or SCAN-BRD-TC-ISO assembly and you are using
physical channels 31 and 63 as CJC sensors to measure the temperature of
the screw terminals. Since the CJC channels should be read at a gain of 1,
arrange the channel-gain queue so that you read all the measurement
channels first and then read the CJC channels. Example program 4,
provided in the ASO-SCAN software package, illustrates the use of a
channel-gain queue with the CJC channels enabled.

If you are not using all 256 logical channels on a virtual board, you can
allow for settling time by specifying the same logical channel twice and
then ignoring the reading from the first logical channel.

If you are not using all 256 logical channels on a virtual board, you can
reduce the effects of noise by specifying the same logical channel
multiple times and then averaging the readings from each channel. For
example, you can specify logical channel 0 for the first five entries in the
channel-gain queue, logical channel 1 for the next five entries, and so on.

Pacer Clock

For a DMA-mode operation, you can use a pacer clock to determine the
period between the conversion of one logical channel and the conversion
of the next logical channel in a scan of multiple logical channels. You can
specify an internal or an external pacer clock, as described in the
following sections.

2-20 Available Operations

Notes: The rate at which the computer can reliably read data from the
SCAN-AD-HR board depends on a number of factors, including your
computer, the operating system/environment, the types of SCAN-BRD
assemblies you are using, the gains of the channels, and other software
issues. If your data appears to be invalid, you may have to use a slower
clock rate. Refer to the DAS-Scan User’s Guide for the maximum
throughput rates supported for each SCAN-BRD assembly at each gain.

Typically, using the pacer clock to control the period between conversions
of individual logical channels in a scan is sufficient; this is referred to as
paced conversion mode. However, if you are acquiring data from 256
logical channels or fewer, you can use both the pacer clock (to control the
period between individual logical channels in a scan) and the burst mode
conversion clock (to control the period between conversions of the entire
scan); this is referred to as burst conversion mode. Refer to page 3-25 for
more information about specifying burst conversion mode. Refer to page
3-26 for more information about using the burst mode conversion clock.

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the counter/timer
circuitry on the SCAN-AD-HR board. The counters are normally in an
idle state. When you start the analog input operation (using
K_DMAStart), a conversion is initiated. Note that a slight time delay
occurs between the time the operation is started and the time the
conversion is initiated.

After the first conversion is initiated, the counters are loaded with a count
value and begin counting down. When the counters count down to 0,
another conversion is initiated and the process repeats.

Because the counters use a 5 MHz time base, each count represents
0.2 µs. Use the K_SetClkRate function to specify the number of counts
(clock ticks) between conversions. For example, if you specify a count of
300, the period between conversions is 60 µs (16.67 ksamples/s); if you
specify a count of 87,654, the period between conversions is 17.53 ms
(57 samples/s).

Analog Input Operations 2-21

You can specify a count value from 50 (100 kHz) to 4,294,836,255
(0.0012 Hz). The period between conversions ranges from 10 µs to
14.3 minutes.

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

For example, if you want a conversion rate of 10 ksamples/s, specify a
count of 500, as shown in the following equation:

If you want to use the same conversion rate for all the virtual boards in
your DAS-Scan system, call K_SetClkRate once for each virtual board
and specify the same number of counts for each.

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to the internal pacer clock, use the K_SetClk function. (If
you want to reset all the virtual boards in your DAS-Scan system to use
the internal pacer clock, call K_SetClk once for each virtual board and
specify the internal pacer clock for each.)

External Pacer Clock

You connect an external pacer clock to the J5 connector on the
SCAN-AD-HR board. When you start an analog input operation (using
K_DMAStart), conversions are armed. At the next active edge of the
external pacer clock (and at every subsequent active edge of the external
pacer clock), a conversion is initiated.

Use the K_SetClk function to specify an external pacer clock. Then, use
the K_SetExtClkEdge function to specify the active edge (rising or
falling) of the external pacer clock. A falling edge is the default active
edge.

If you are using an external pacer clock, make sure that the clock initiates
conversions at a rate that the analog-to-digital converter can handle.

counts 5 MHz time base
conversion rate

---=

5 000 000, ,
10 000,

--------------------------- 500=

2-22 Available Operations

If you want to use an external pacer clock source for all the virtual boards
in your DAS-Scan system, call

K_SetClk

once for each virtual board and
specify an external pacer clock for each. If you want to use the same
active edge for all the virtual boards in your DAS-Scan system, call

K_SetExtClkEdge

once for each virtual board and specify the same
active edge for each.

 Note: You cannot use an external pacer clock if you are using either an
external digital trigger or a hardware gate.

Triggers

A trigger is an event that occurs based on a specified set of conditions. If
you are performing DMA-mode analog input operations on a series of
virtual boards, you can specify a start trigger for the first virtual board to
determine when acquisitions start.

The start trigger can be an internal trigger or an external digital trigger, as
described in the following sections.

The trigger event is not significant until the operation has been started
(using

K_DMAStart

). The point at which conversions begin relative to
the trigger event depends on the pacer clock; refer to page 2-19 for more
information.

Note:

Typically, you want to acquire data after the trigger event occurs;
this is referred to as post-trigger acquisition. However, if you are
performing a DMA-mode operation and acquiring data from 256 logical
channels or fewer, you can also use an optional second trigger, the about
trigger, to acquire data before the trigger event occurs (referred to as
pre-trigger acquisition) or both before and after the trigger event occurs
(referred to as about-trigger acquisition). Refer to page 3-26 for more
information about specifying pre-trigger acquisition. Refer to page 3-28

for more information about specifying about-trigger acquisition.

Analog Input Operations 2-23

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the operation. Note that a slight delay occurs between the time
you start the operation and the time the trigger event occurs.

If you want to use an internal start trigger, specify an internal trigger for
all the virtual boards in your DAS-Scan system.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use the

K_SetTrig

 function.

External Digital Trigger

An external digital trigger event occurs when an active edge is detected
on the digital trigger signal connected to the J5 connector on the
SCAN-AD-HR board.

Use the

K_SetTrig

 function to specify an external trigger. Then, use the

K_SetDITrig

 function to specify whether you want the trigger event to
occur on a rising edge (positive-edge trigger) or on a falling edge
(negative-edge trigger). The trigger conditions are illustrated in
Figure 2-2.

Figure 2-2. Digital Trigger Conditions

If you want to use an external digital start trigger, specify an external
trigger (using

K_SetTrig

) and call

K_SetDITrig

 for the first virtual
board only. For all subsequent virtual boards, use

K_SetTrig

 to specify
an internal trigger and do not call

K_SetDITrig

.

Trigger signal

Positive-edge
trigger event occurs

Negative-edge
trigger event occurs

2-24 Available Operations

Note:

You cannot use an external digital trigger if you are using either an

external pacer clock or a hardware gate.

Hardware Gate

A hardware gate is an externally applied digital signal that determines
when conversions can occur. You connect the gate signal to the J5
connector on the SCAN-AD-HR board.

If you start a DMA-mode analog input operation (using

K_DMAStart

)
and the hardware gate is enabled, the state of the gate signal determines
whether conversions occur, as follows:

●

If you specify a positive gate, conversions occur only if the signal to
the J5 connector is high; if the signal to the J5 connector is low,
conversions are inhibited.

●

If you specify a negative gate, conversions occur only if the signal to
the J5 connector is low; if the signal to the J5 connector is high,
conversions are inhibited.

Use the

K_SetGate

 function to enable and disable a hardware gate and to
specify the gate polarity (positive or negative).

If you want to use a hardware gate for all the virtual boards in your
DAS-Scan system, call

K_SetGate

once for each virtual board and
specify the same polarity for each.

The default state of the hardware gate is disabled. If you enable a
hardware gate for all the virtual boards in your DAS-Scan system and
later want to disable the hardware gate, call

K_SetGate

once for each
virtual board and specify disabled for each.

Note:

You cannot use a hardware gate if you are using either an external

pacer clock or an external digital trigger.

3-1

3

Additional Features

This chapter contains conceptual information about additional features of
the DAS-Scan Function Call Driver. It includes the following sections:

●

Summary of Additional Functions

 - a brief description of the
additional DAS-Scan Function Call Driver functions that you can use
when reading 256 logical channels or fewer or when performing an
interrupt-mode analog input operation.

●

Additional Programming Flow Diagrams

 - an illustration of the
procedures to follow when using all of the DAS-Scan Function Call
Driver functions.

●

Performing an Interrupt-Mode Operation

 - information on
performing an interrupt-mode analog input operation.

●

Specifying Continuous Mode

- information on specifying
continuous buffering mode.

●

Reserving Large or Multiple Memory Buffers

- information on
dynamically allocating a large memory buffer or dynamically
allocating multiple memory buffers.

●

Specifying Burst Mode

- information on specifying burst conversion
mode.

●

Using the Burst Mode Conversion Clock

- information on using the
burst mode conversion clock to acquire data in burst mode.

●

Specifying Pre-Trigger Acquisition

- information on using the about
trigger to acquire data before a trigger event occurs.

●

Specifying About-Trigger Acquisition

- information on using the
about trigger to acquire data both before and after a trigger event
occurs.

3-2 Additional Features

Summary of Additional Functions

Table 3-1 describes the additional functions in the DAS-Scan Function
Call Driver that you can use when reading 256 logical channels or fewer
or when performing an interrupt-mode analog input operation. For more
detailed information about the functions, refer to the information in this
chapter beginning on page 3-19 and to the DAS-Scan Function Call
Driver online help file (SCANFCD.HLP).

Table 3-1. Summary of Additional Functions

Type of Function Name of Function Description

Operation K_IntStart Starts an interrupt-mode operation.

K_IntStatus Gets the status of an interrupt-mode operation.

K_IntStop Stops an interrupt-mode operation.

Memory
management

K_IntAlloc Dynamically allocates a memory buffer for an
interrupt-mode operation.

K_IntFree Frees a memory buffer that was dynamically
allocated for an interrupt-mode operation.

Buffer address K_SetBuf Specifies a local array (C/C++) or a
dynamically allocated memory buffer (C/C++
or Visual Basic for Windows) for an
interrupt-mode operation.

K_SetBufI Specifies a local array (Visual Basic for
Windows) for an interrupt-mode operation.

K_BufListAdd Adds a buffer or array to the list of multiple
buffers or arrays.

K_BufListReset Clears the list of multiple buffers or arrays.

Buffering mode K_SetContRun Specifies continuous mode.

K_ClrContRun Specifies single-cycle mode.

Conversion mode K_SetADFreeRun Specifies burst mode.

K_ClrADFreeRun Specifies paced mode.

Additional Programming Flow Diagrams 3-3

Additional Programming Flow Diagrams

This section contains a series of programming flow diagrams illustrating
the procedures to follow when using all of the DAS-Scan Function Call
Driver functions. For more detailed information about the programming
procedures, refer to the DAS-Scan Function Call Driver online help file
(SCANFCD.HLP).

Although error checking is not shown in the flow diagrams, it is
recommended that you check the error/status code returned by each
function used in your application program.

Clock K_SetBurstTicks Specifies the burst mode conversion rate.

K_GetBurstTicks Gets the burst mode conversion rate.

Trigger K_SetAboutTrig Enables the about trigger and specifies the
number of post-trigger samples.

K_ClrAboutTrig Disables the about trigger.

Table 3-1. Summary of Additional Functions (cont.)

Type of Function Name of Function Description

3-4 Additional Features

Preliminary Steps for All Analog Input Operations

Using another
virtual board?

Install all required files,
including the function and
variable type definition file

Declare and initialize program
variables

Initialize the driver
(K_OpenDriver)

Initialize a virtual board
(K_GetDevHandle)

No

Yes

Perform the steps appropriate to your
operation (see the operation-specific

flow diagrams)

Additional Programming Flow Diagrams 3-5

Steps for a Single-Mode Analog Input Operation

Declare a variable in which
to store a single analog

input value

Operation complete

Read the count value
(K_ADRead)

Convert the count value
to voltage or degrees

3-6 Additional Features

Steps for an Interrupt-Mode Analog Input Operation

Scanning
256 channels

or fewer?

Using
multiple

buffers or
arrays?

Access a frame for a virtual board
(K_GetADFrame)

No

Yes

No Specify the
starting address

of the buffer
(K_SetBuf)

Specify the starting address of
the local array

(K_SetBuf for C/C++,
K_SetBufI for Visual Basic)

Continued on next page

Using a
dynamically

allocated
memory
buffer?

Yes Allocate a buffer
(K_IntAlloc)

Declare and dimension
a local array

Yes

Using
dynamically

allocated
memory
buffers?

Allocate each buffer
(K_IntAlloc)

Add each buffer
to the list of

multiple buffers
(K_BufListAdd)

Declare and
dimension

each local array

Add each array to the
list of multiple arrays

(K_BufListAdd)

Yes

No No

Additional Programming Flow Diagrams 3-7

Steps for an Interrupt-Mode Analog Input Operation (cont.)

Modify the
channel-

gain
queue?

Yes

Using a
channel-

gain

No

Yes Define the
channel-gain

queue

Using
Visual
Basic?

Yes Format the
channel-gain queue
(K_FormatChnGAry)

Continued from previous page

Specify the starting address
of the channel-gain queue

(K_SetChnGAry)

No

Restore the
channel-gain queue

(K_RestoreChnGAry)

Using a
group of

consecutive
channels?

No

Yes
Specify the first and last channels

and the gain for all channels
(K_SetStartStopG or

K_SetStartStopChn and K_SetG)

Specify a single channel
(K_SetChn)

Specify the gain
for the single channel

(K_SetG)

Continued on next page

No

3-8 Additional Features

Steps for an Interrupt-Mode Analog Input Operation (cont.)

Scanning
256 channels

or fewer?

Using
paced
mode?

Yes

Continued from previous page

Specify paced conversion mode
(K_ClrADFreeRun)

Continued on next page

Specify the clock source
(K_SetClk)

Using
internal
clock?

Yes Set the clock rate
(K_SetClkRate)

No

Specify the external clock edge
(K_SetExtClkEdge)

Specify burst conversion mode
(K_SetADFreeRun)

Set the burst mode conversion rate
(K_SetBurstTicks)

No

Specify the buffering mode
(K_SetContRun for continuous mode,
K_ClrContRun for single-cycle mode)

Yes

No

Additional Programming Flow Diagrams 3-9

Steps for an Interrupt-Mode Analog Input Operation (cont.)

Using an
external

digital start
trigger?

Yes

Continued from previous page

Continued on next page

No
Specify the digital
trigger conditions

(K_SetDITrig)

Specify an external start trigger
(K_SetTrig)

Specify an internal
start trigger
(K_SetTrig)

Setting up
another

virtual board?

Yes Access a frame for the virtual board;
go to the top of page 3-6

No

Using a
hardware

gate?

Disable the gate
(K_SetGate)

Specify the gate polarity
(K_SetGate)

Yes

No

3-10 Additional Features

Steps for an Interrupt-Mode Analog Input Operation (cont.)

Scanning
another
virtual
board?

Scanning
256 channels

or fewer?

Using
continuous
buffering
mode?

Continued from previous page

Start the interrupt-mode operation
(K_IntStart)

Monitor the status of the operation
(K_IntStatus)

Yes Stop the operation
(K_IntStop)

No

Yes

Continued on next page

No

Yes

No

Additional Programming Flow Diagrams 3-11

Steps for an Interrupt-Mode Analog Input Operation (cont.)

Scanning
256 channels

or fewer?

Using
multiple buffers

or arrays?

Using
dynamically

allocated
buffers?

Continued from previous page

Operation complete

Yes Using
Visual
Basic?

Yes Transfer data from each
buffer to a local array
(K_MoveBufToArray)

No
No

Free each buffer
(K_IntFree)

Yes

No

Clear list of multiple
buffers or arrays
(K_BufListReset)

Read data
from each array

Convert data
from each array

Read data
from each buffer

Convert data
from each buffer

Yes

No

Free each frame

Read data
from each array

Convert data
from each array

3-12 Additional Features

Steps for a DMA-Mode Analog Input Operation

Using
multiple
memory
buffers?

Scanning
256 channels

or fewer?

Access a frame for a virtual board
(K_GetADFrame)

No

Yes

No

Specify the starting address
of the buffer

(K_SetDMABuf)

Continued on next page

Yes

Allocate a buffer
(K_DMAAlloc)

Allocate each buffer
(K_DMAAlloc)

Add each buffer to list
of multiple buffers
(K_BufListAdd)

Additional Programming Flow Diagrams 3-13

Steps for a DMA-Mode Analog Input Operation (cont.)

Modify the
channel-

gain
queue?

Yes

Using a
channel-

gain

No

Yes Define the
channel-gain

queue

Using
Visual
Basic?

Yes Format the
channel-gain queue
(K_FormatChnGAry)

Continued from previous page

Specify the starting address
of the channel-gain queue

(K_SetChnGAry)

No

Restore the
channel-gain queue

(K_RestoreChnGAry)

Using a
group of

consecutive
channels?

No

Yes
Specify the first and last channels

and the gain for all channels
(K_SetStartStopG or

K_SetStartStopChn and K_SetG)

Specify a single channel
(K_SetChn)

Specify the gain
for the single channel

(K_SetG)

Continued on next page

No

3-14 Additional Features

Steps for a DMA-Mode Analog Input Operation (cont.)

Scanning
256 channels

or fewer?

Using
paced
mode?

Yes

Continued from previous page

Specify paced conversion mode
(K_ClrADFreeRun)

Continued on next page

Specify the clock source
(K_SetClk)

Using
internal
clock?

Yes Set the clock rate
(K_SetClkRate)

No

Specify the external clock edge
(K_SetExtClkEdge)

Specify burst conversion mode
(K_SetADFreeRun)

Set the burst mode conversion rate
(K_SetBurstTicks)

No

Specify the buffering mode
(K_SetContRun for continuous mode,
K_ClrContRun for single-cycle mode)

Yes

Additional Programming Flow Diagrams 3-15

Steps for a DMA-Mode Analog Input Operation (cont.)

Using an
internal start

trigger?

Scanning
256 channels

or fewer?

Using
pre-trigger

acquisition?

Using an
external

digital start
trigger?

Yes

Continued from previous page

Specify an internal start trigger
(K_SetTrig)

Continued on next page

No
Specify digital

trigger conditions
(K_SetDITrig)

Using
post-trigger
acquisition?

Yes Disable the
about trigger

(K_ClrAboutTrig)

No

Yes
Enable the

about trigger
and specify
1 sample

(K_SetAboutTrig)

No

No

Specify active
edge of the

about trigger
(K_SetDITrig)

Enable the
about trigger
and specify

the number of
post-trigger

samples
(K_SetAboutTrig)

Yes

Specify an external start trigger
(K_SetTrig)

Yes

No

3-16 Additional Features

Steps for a DMA-Mode Analog Input Operation (cont.)

Setting up
another

virtual board?

Continued from previous page

Yes Access a frame for the virtual board;
go to the top of page 3-12

No

Using a
hardware

gate?

Disable the gate
(K_SetGate)

Specify the gate polarity
(K_SetGate)

Yes

No

Continued on next page

Additional Programming Flow Diagrams 3-17

Steps for a DMA-Mode Analog Input Operation (cont.)

Scanning
another
virtual
board?

Scanning
256 channels

or fewer?

Using
continuous
buffering
mode?

Start the DMA-mode operation
(K_DMAStart)

Monitor the status of the operation
(K_DMAStatus)

Yes Stop the operation
(K_DMAStop)

No

Yes

Continued on next page

No

Yes

No

Continued from previous page

3-18 Additional Features

Steps for a DMA-Mode Analog Input Operation (cont.)

Scanning
256 channels

or fewer?

Using
multiple buffers

or arrays?

Continued from previous page

Free each frame

Using
Visual
Basic?

Yes Transfer data from each
buffer to a local array
(K_MoveBufToArray)

No

Free each buffer
(K_DMAFree)

Yes

No

Clear list of multiple
buffers or arrays
(K_BufListReset)

Read data
from each buffer

Convert data
from each buffer

Yes

No

Operation complete

Read data
from each array

Convert data
from each array

Performing an Interrupt-Mode Operation 3-19

Performing an Interrupt-Mode Operation

If DMA resources are not available, you can perform an analog input
operation in interrupt mode. In interrupt mode, the SCAN-AD-HR board
acquires a single sample or multiple samples from one or more logical
channels (up to a maximum of 256) on the same virtual board. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. The hardware
temporarily stores the acquired data in the FIFO on the SCAN-AD-HR
board and then transfers the data to a user-defined buffer in computer
memory using an interrupt service routine.

Use the

K_IntStart

 function to start the interrupt-mode operation on the
first virtual board, specifying the handle of the frame that defines the first
operation. After the SCAN-AD-HR board reads a sample from each
logical channel associated with the virtual board and stores the samples in
the user-defined buffer, the operation stops. (Use the

K_IntStatus

function to monitor the status of the operation and determine when the
operation stops.) Then, use

K_IntStart

 again to start the interrupt-mode
operation on the next virtual board, specifying the handle of the frame
that defines the next operation.

Refer to page 3-6 for the procedure to follow when performing an
interrupt-mode operation. In addition, example program 1, provided in
the ASO-SCAN software package, illustrates how to acquire data in
interrupt mode.

The data in the user-defined buffer is stored as count values. Refer to
Appendix A for information on converting the count value to voltage or
degrees.

3-20 Additional Features

Notes:

Because of the overhead required to stop one interrupt-mode
operation and start another, a slight delay occurs before the DAS-Scan
system begins acquiring data on each subsequent virtual board.

Typically, you want your interrupt-mode operation to stop automatically
after one sample from each logical channel has been read; this is referred
to as single-cycle buffering mode. However, like DMA mode, if you are
acquiring data from 256 logical channels or fewer, you can also perform
the operation in continuous buffering mode. Continuous buffering mode
allows you to continuously acquire data, overwriting any values already

stored in memory. Refer to page 3-23 for more information.

In most cases, the information in Chapter 2 that applies to a DMA-mode
operation also applies to an interrupt-mode operation. The following
sections describe additional considerations and exceptions to keep in
mind when performing an interrupt-mode operation.

Accessing a Frame

Like a DMA-mode operation, an interrupt-mode operation requires an
A/D frame. Refer to page 2-7 for information about accessing a frame.

For interrupt mode, use the

K_IntStart

 function (instead of the

K_DMAStart

 function) to start the operation you set up.

Reserving Memory

Like a DMA-mode operation, an interrupt-mode operation requires
memory in which to store the acquired data. The recommended way to
reserve memory for an interrupt-mode operation is to dynamically
allocate a memory buffer for each virtual board. Refer to page 2-9 for
more information.

For interrupt mode, use the

K_IntAlloc

 function (instead of the

K_DMAAlloc

 function) to allocate the buffer. When you no longer
require the buffer, use the

K_IntFree

 function (instead of the

K_DMAFree

 function) to free the buffer for another use.

Performing an Interrupt-Mode Operation 3-21

Notes:

If you dynamically allocate a buffer of 256 samples (the typical
size), an interrupt is generated after each sample and the samples are
transferred one-by-one from the FIFO to the user-defined buffer in
computer memory. If your computer cannot service interrupts fast
enough, a FIFO overflow error may occur. If you dynamically allocate a
buffer of 512 samples (half of a FIFO), or any multiple of 512 samples, an
interrupt is generated after 512 samples are acquired and the entire block
of 512 samples is transferred from the FIFO to the user-defined buffer in
computer memory. To optimize an interrupt-mode operation, make sure
that the size of your buffer is a multiple of 512 samples.

If you are writing Windows 95, 32-bit programs, you must install the
Keithley Memory Manager. Refer to the

DAS-Scan User’s Guide

 for

information.

For interrupt mode, in addition to reserving memory by dynamically
allocating a buffer, you can reserve memory by dimensioning an array
within your application program’s memory area for each virtual board. A
local array is directly accessible to your application program; for Visual
Basic For Windows, you do not have to use the

K_MoveBufToArray

function to move the data from the dynamically allocated buffer to the
program’s local array. However, unlike dynamically allocated buffers,
which can be freed to make them available to other programs or
processes, local arrays occupy permanent memory areas and cannot be
freed. In addition, you cannot use local arrays with Windows 95, 32-bit
programs.

Typically, a single array or buffer that can hold one sample for each
logical channel associated with the virtual board is sufficient. However,
like DMA mode, if you are acquiring data from 256 logical channels or
fewer, you can dimension a larger array/buffer or multiple arrays/buffers
(up to a maximum of 150), allowing you to sample each logical channel
multiple times. Use the

K_IntAlloc

 function to dynamically allocate a
memory buffer of up to 5,000,000 samples.

3-22 Additional Features

If you are using large or multiple dynamically allocated memory buffers,
you may be limited in the amount of memory you can allocate. It is
recommended that you install the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers. Refer to the

DAS-Scan User’s Guide

 for more information
about the Keithley Memory Manager.

Table 3-2 lists the functions used in interrupt mode to assign the starting
addresses of local arrays or dynamically allocated buffers and to specify
the number of samples to store in the buffers or arrays.

Specifying Channels and Gains

Like a DMA-mode operation, for an interrupt-mode operation, you can
specify the logical channels on which to perform the operation and the
gain at which to read the logical channels. Refer to page 2-11 for
information about specifying the gain; refer to page 2-12 for information
about specifying the logical channels.

Table 3-2. Functions Used to Assign Starting Addresses
in Interrupt Mode

Language Type of Arrays or Buffers Function

C/C++ Single local array K_SetBuf

Multiple local arrays K_BufListAdd

Single dynamically allocated buffer K_SetBuf

Multiple dynamically allocated buffers K_BufListAdd

Visual Basic
for Windows

Single local array K_SetBufI

Multiple local arrays K_BufListAdd

Single dynamically allocated buffer K_SetBuf

Multiple dynamically allocated buffers K_BufListAdd

Specifying Continuous Mode 3-23

Specifying a Pacer Clock

Like a DMA-mode operation, for an interrupt-mode operation, you can
use a pacer clock to determine the period between the conversion of one
logical channel and the conversion of the next logical channel in a scan of
multiple logical channels. Refer to page 2-19 for more information.

Typically, using the pacer clock alone is sufficient. However, like DMA
mode, if you are acquiring data from 256 logical channels or fewer, you
can use both the pacer clock and the burst mode conversion clock to
perform your operation in burst conversion mode. Refer to page 3-25 for
more information about specifying burst conversion mode. Refer to page
3-26 for more information about using the burst mode conversion clock.

Specifying a Trigger

Like a DMA-mode operation, for an interrupt-mode operation, you can
specify a start trigger for the first virtual board to determine when
acquisitions start. Refer to page 2-22 for more information.

Note that unlike DMA mode, in interrupt mode, you cannot use the about
trigger to perform pre-trigger or about-trigger acquisitions.

Enabling a Hardware Gate

Like a DMA-mode operation, for an interrupt-mode operation, you can
enable a hardware gate to determine when conversions can occur. Refer to
page 2-24 for more information.

Specifying Continuous Mode

If you are reading 256 logical channels or fewer, you can specify
continuous buffering mode. In continuous mode, the SCAN-AD-HR
board continuously converts samples and stores them in memory until it
receives a stop function. Any values already stored in memory are
overwritten. Use the

K_SetContRun

 function to specify continuous
buffering mode.

3-24 Additional Features

If you specify the logical channels you want to read in either a group of
consecutive logical channels or in a channel-gain queue, the specified
channels are continuously sampled until the specified number of samples
is read. For example, in a group of consecutive logical channels, the first
logical channel is 14, the last logical channel is 17, and you want to
acquire five samples. Your program reads data first from logical channel
14, then from logical channels 15, 16, and 17, and finally from logical
channel 14 again.

Notes:

If you specify continuous buffering mode for an operation on a
virtual board and later want to reset the buffering mode to single-cycle
mode, use the

K_ClrContRun

 function. In single-cycle mode, after the
SCAN-AD-HR board converts one sample from each logical channel on
the virtual board and stores the samples in memory, the operation stops
automatically.

You cannot use continuous mode if you enable the generation of
Windows events. Refer to page 2-3 for more information about generating

a Windows event.

Reserving Large or Multiple Memory Buffers

Reserving a large memory buffer or multiple memory buffers is useful if
you want to read each logical channel on a virtual board multiple times to
average the data read from the channels.

If you are performing a DMA-mode analog input operation and you are
reading 256 logical channels or fewer, you can use the

K_DMAAlloc

function to dynamically allocate a memory buffer of up to 65,536
samples. You can also dynamically allocate multiple memory buffers (up
to a maximum of 150).

If you are using large or multiple dynamically allocated memory buffers,
you may be limited in the amount of memory you can allocate. It is
recommended that you install the Keithley Memory Manager before you
begin programming to ensure that you can allocate a large enough buffer
or buffers. Refer to the

DAS-Scan User’s Guide

 for more information
about the Keithley Memory Manager.

Specifying Burst Mode 3-25

Use the

K_SetDMABuf

 function to assign the starting address of a single
dynamically allocated buffer.

Use the

K_BufListAdd

 function to assign the starting addresses of
multiple dynamically allocated buffers. Use the

K_BufListReset

function to clear the list of multiple buffers or arrays when you are
through with them.

Specifying Burst Mode

If you are reading 256 logical channels or fewer, you can specify burst
conversion mode. Burst mode is useful if you want a single external event
(such as the pulse of an external pacer clock) to start conversions of all the
channels in a scan.

In burst mode, you use both the pacer clock and the burst mode
conversion clock. The pacer clock determines the period between the
conversions of one scan and the conversions of the next scan; the burst
mode conversion clock determines the period between the conversion of
one logical channel in a scan and the conversion of the next logical
channel in the scan. Refer to page 2-19 for information about the pacer
clock; refer to the next section for information about the burst mode
conversion clock. Use the

K_SetADFreeRun

 function to specify burst
mode.

Notes:

It is recommended that you do not use burst mode if a virtual
board includes SCAN-BRD-V-ISO or SCAN-BRD-TC-ISO isolated
assemblies.

If you specify burst conversion mode for an operation on a virtual board
and later want to reset the conversion mode to paced mode, use the

K_ClrADFreeRun

 function. In paced mode, the pacer clock determines
the period between the conversion of one logical channel in a scan and the

conversion of the next logical channel in the scan.

3-26 Additional Features

Using the Burst Mode Conversion Clock

If you are reading 256 logical channels or fewer in burst conversion
mode, you use the burst mode conversion clock to determine the period
between the conversion of one logical channel in a scan and the
conversion of the next logical channel in the scan.

Because the burst mode conversion clock uses a 1 MHz time base, each
clock tick represents 1

µ

s. Use the

K_SetBurstTicks

 function to specify
the number of clock ticks between conversions. For example, if you
specify 30 clock ticks, the period between conversions is 30

µ

s
(33.33 ksamples/s).

You can specify from 10 clock ticks (100 kHz) to 64 clock ticks
(15.625 kHz). The period between conversions ranges from 10

µ

s to
64

µ

s.

When using the burst mode conversion clock, use the following formula
to determine the number of clock ticks to specify:

For example, if you want a burst mode conversion rate of 10 ksamples/s,
specify 100 clock ticks, as shown in the following equation:

Specifying Pre-Trigger Acquisition

If you are performing a DMA-mode analog input operation and you are
reading 256 logical channels or fewer, you can use pre-trigger acquisition
to acquire data before a specific trigger event.

clock ticks 1 MHz time base
burst mode conversion rate
---=

1 000 000, ,
10 000,

--------------------------- 100=

Specifying Pre-Trigger Acquisition 3-27

You specify both a start trigger and an about trigger. The start trigger
determines when acquisitions start on a virtual board and can be either an
internal trigger or an external digital trigger. The about trigger is always
an external digital trigger; acquisitions stop on the virtual board when the
about-trigger event occurs. Refer to page 2-23 for information about an
internal trigger; refer to page 2-23 for information about an external
digital trigger.

To specify pre-trigger acquisition, perform the following steps:

1. Specify the start trigger.

– Use

K_SetTrig

 to specify an internal or an external trigger
source.

– If you specify an external start trigger in

K_SetTrig

, use

K_SetDITrig

 to specify the active edge for the digital trigger.

2. Use

K_SetAboutTrig

 to enable the about trigger and to set the
number of samples to 1.

Note:

The minimum number of samples that you can specify in

K_SetAboutTrig

 is 1.

3. Specify the active edge for the about trigger, if necessary.

– If the start trigger is an internal trigger, use

K_SetDITrig

 to
specify the active edge for the about trigger.

– If the start trigger is an external digital trigger, the active edge
used for the start trigger is also used for the about trigger. It is not
necessary to use

K_SetDITrig

 again.

Notes:

If you specify pre-trigger acquisition for an operation on a virtual
board and later want to reset the operation for post-trigger acquisition, use
the

K_ClrAboutTrig

 function to disable the about trigger.

Pre-trigger acquisition is not available with interrupt-mode operations.

3-28 Additional Features

Specifying About-Trigger Acquisition

If you are performing a DMA-mode analog input operation and you are
reading 256 logical channels or fewer, you can use about-trigger
acquisition to acquire data both before and after a specific trigger event.

You specify both a start trigger and an about trigger. The start trigger
determines when acquisitions start on a virtual board and can be either an
internal trigger or an external digital trigger. The about trigger is always
an external digital trigger; acquisitions stop after a specified number of
samples has been acquired on the virtual board after the about-trigger
event occurs. Refer to page 2-23 for information about an internal trigger;
refer to page 2-23 for information about an external digital trigger.

To specify about-trigger acquisition, perform the following steps:

1. Specify the start trigger.

– Use

K_SetTrig

 to specify an internal or an external trigger
source.

– If you specify an external start trigger in

K_SetTrig

, use

K_SetDITrig

 to specify the active edge for the digital trigger.

2. Use

K_SetAboutTrig

 to enable the about trigger and to specify the
desired number of post-trigger samples.

3. Specify the active edge for the about trigger, if necessary.

– If the start trigger is an internal trigger, use

K_SetDITrig

 to
specify the active edge for the about trigger.

– If the start trigger is an external digital trigger, the active edge
used for the start trigger is also used for the about trigger. It is not
necessary to use

K_SetDITrig

 again.

Notes:

If you specify about-trigger acquisition for an operation on a
virtual board and later want to reset the operation for post-trigger
acquisition, use the

K_ClrAboutTrig

 function to disable the about
trigger.

About-trigger acquisition is not available with interrupt-mode operations.

Converting Counts to Voltage A-1

A

Data Formats

This appendix contains the following sections:

●

Converting Counts to Voltage

 - instructions for converting a count
value returned by the DAS-Scan Function Call Driver to a voltage
value.

●

Converting Counts to Temperature

 - instructions for converting a
count value returned by the DAS-Scan Function Call Driver to a
temperature value.

Converting Counts to Voltage

The DAS-Scan Function Call Driver can read count values only. When
reading an analog input value (as in

K_ADRead

), you can convert the
count value returned by the DAS-Scan Function Call Driver to a voltage
value. If you are using a SCAN-BRD-TC or SCAN-BRD-TC-ISO
assembly and want to express the value in degrees, you can then convert
the voltage value to a temperature value; refer to the next section for
information.

To convert an analog input value to a voltage, use the following equation,
where

count

 is the count value and

span

 is the span in volts (refer to
Table A-1):

 Voltage count span×
65536

---------------------------------=

A-2 Data Formats

For example, assume that you want to read analog input data from a
channel configured for a bipolar input range type; the channel collects the
data at a gain of 2. The count value is 1024. The voltage is determined as
follows:

Table A-1. Span Values For Data Conversion Equations

Input Range
Type Gain

Analog Input
Range

Span (V)

Unipolar 1 0 to 10 V 10

2 0 to 5 V 5

4 0 to 2.5 V 2.5

8 0 to 1.25 V 1.25

50 0 to 0.2 V 0.2

100 0 to 0.1 V 0.1

200 0 to 50 mV 0.05

400 0 to 25 mV 0.025

Bipolar 1

−

10 to 10 V 20

2

−

5 to 5 V 10

4

−

2.5 to 2.5 V 5

8

−

1.25 to 1.25 V 2.5

50

−

0.2 V to 0.2 V 0.4

100

−

0.1 V to 0.1 V 0.2

200

−

50 mV to 50 mV 0.1

400

−

25 mV to 25 mV 0.05

1024 10× V
65536

------------------------------ 0.156 V=

Converting Counts to Temperature A-3

Converting Counts to Temperature

If you are using a SCAN-BRD-TC or SCAN-BRD-TC-ISO assembly,
you can convert the count value returned by the DAS-Scan Function Call
Driver to a temperature value. Refer to example program 4, provided in
the ASO-SCAN software package, as you perform the procedure
described in this section.

To convert a count value to a temperature value, perform the following
steps:

1. Convert the thermocouple count value returned by the DAS-Scan
Function Call Driver to thermocouple voltage. Refer to page A-1 for
information.

2. If you are using the CJC channels, convert the CJC count value
returned by the DAS-Scan Function Call Driver to CJC voltage, using
a gain of 1. Refer to page A-1 for information.

3. Convert the CJC voltage to

°

K by dividing the CJC voltage by 0.010,
and then convert the

°

K to

°

C.

Note:

Because the CJC sensors used on the DAS-Scan system

generate 10 mV per

°

K, you must divide the CJC voltage by 0.010.

A-4 Data Formats

4. Adjust the thermocouple voltage to take into account the CJC
temperature value, using the appropriate intercept and slope values.

Notes:

The thermocouple voltage is a relative value, based on the
difference between the voltage at the end of the wire and the voltage
at the screw terminal panel; the CJC temperature is an absolute value.
You must first convert the CJC temperature to mV, based on the
thermocouple type you are using, and then add the two voltage values
together.

The intercept and slope values used in the example program assume
that the temperature of the CJC sensor is approximately 25

°

C. If the
temperature of your CJC sensor is different, use the appropriate
N.I.S.T thermocouple table to determine the appropriate intercept

value, and substitute an appropriate slope value.

5. Calculate the index into the thermocouple lookup table, using the
voltage step interval (mV) and starting voltage (mV) from the
[header] section of the appropriate table. Lookup tables for J, K, T, E,
R, S, and B type thermocouples are provided in the ASO-SCAN
software package.

6. Interpolate between the two nearest entries in the lookup table to
determine the true reading in

°

C.

X-1

Index

A

A/D frame elements

2-9

about-trigger acquisition

3-28

accessing a frame

2-7

,

3-20

address of memory buffer

2-10

,

3-22

address of SCAN-BRD assembly

2-12

allocating memory

2-9

,

3-20

analog input operations

2-5

analog input range

2-11

array

3-21

ASO-SCAN software package

1-2

B

bipolar range type

2-11

board initialization

2-2

buffer

2-9

buffer address

2-10

,

3-22

buffer address functions

1-5

,

3-2

buffering mode

2-6

,

3-24

buffering mode functions

3-2

burst mode

3-25

burst mode conversion clock

3-25

,

3-26

C

channel

2-12

,

3-22

channel-gain queue

2-18

CJC

2-18

,

2-19

group of consecutive logical channels

2-17

channel functions

1-5

channel-gain queue

2-18

CJC channel

2-18

,

2-19

,

A-3

clock functions

1-5

,

3-3

clock:

see

 burst mode conversion clock,
pacer clock

commands:

see

 functions
continuous mode

3-23

conversion mode

2-20

,

3-25

conversion mode functions

3-2

conversion rate

2-21

,

3-26

converting
counts to temperature

A-3

counts to voltage

A-1

D

DAS-Scan Function Call Driver:

see

Function Call Driver

DASSCAN_EventDisable

2-3

DASSCAN_EventEnable

2-3

data transfer modes:

see

 operation modes
device handle

2-2

digital trigger

2-23

DMA mode

1-9

,

2-5

,

3-12

driver handle

2-1

driver:

see

 Function Call Driver

E

elements of frame

2-9

error handling

2-4

event

2-3

external digital trigger

2-23

external pacer clock

2-21

X-2 Index

F

flow diagrams

1-6

,

3-3

frame

2-7

,

3-20

elements

2-9

handle

2-7

frame management functions

1-4

Function Call Driver
initialization

2-1

functions

1-4

,

3-2

buffer address

1-5

,

3-2

buffering mode

3-2

channel

1-5

clock

1-5

,

3-3

conversion mode

3-2

DASSCAN_EventDisable

2-3

DASSCAN_EventEnable

2-3

frame management

1-4

gain

1-5

gate

1-6

initialization

1-4

memory management

1-5

, 3-2
miscellaneous 1-6
operation 1-4, 3-2
trigger 1-6, 3-3

G
gain code 2-11
gain functions 1-5
gain: see analog input range
gate 2-24, 3-23
gate functions 1-6
generating a Windows event 2-3
group of consecutive logical channels 2-17

H
handle

device 2-2
driver 2-1
frame 2-7
memory 2-10

handling errors 2-4
hardware gate 3-23
hardware gate: see gate
help 1-14

I
initialization functions 1-4
initializing

board 2-2
driver 2-1

input range type 2-11
installation tasks 1-2
internal pacer clock 2-20
internal trigger 2-23
interrupt mode 3-6, 3-19
interrupts 2-3, 3-21

K
K_ADRead 2-5, 2-17
K_BufListAdd 3-25
K_BufListReset 3-25
K_ClearFrame 2-8
K_CloseDriver 2-2
K_DASDevInit 2-3
K_DMAAlloc 2-9, 3-24
K_DMAFree 2-10
K_DMAStart 2-6
K_DMAStatus 2-6
K_FreeDevHandle 2-3
K_FreeFrame 2-8

X-3

K_GetADFrame 2-7
K_GetDevHandle 2-2
K_GetErrMsg 2-4
K_GetShellVer 2-4
K_GetVer 2-4
K_IntAlloc 3-20
K_IntFree 3-20
K_IntStart 3-19
K_IntStatus 3-19
K_MoveBufToArray 2-10
K_OpenDriver 2-1
K_SetADFreeRun 3-25
K_SetADMode 2-11
K_SetBurstTicks 3-26
K_SetChn 2-17
K_SetChnGAry 2-18
K_SetClk 2-21
K_SetClkRate 2-20
K_SetContRun 3-23, 3-24
K_SetDITrig 2-23
K_SetDMABuf 2-10, 3-25
K_SetExtClkEdge 2-21
K_SetG 2-17
K_SetGate 2-24
K_SetStartStopChn 2-17
K_SetStartStopG 2-17
K_SetTrig 2-23
Keithley Memory Manager 3-22

L
large array 3-21
large buffer 3-21, 3-24
local array 3-21
logical channel 2-2, 2-12

M
maintenance operations: see system

operations
managing memory: see allocating memory
memory 2-9
memory address 2-10, 3-22
memory allocation: see allocating memory
memory handle 2-10
memory management functions 1-5, 3-2
message 2-3
miscellaneous functions 1-6
miscellaneous operations: see system

operations
multiple arrays 3-21
multiple buffers 3-21, 3-24

O
operation

analog input 2-5
DMA-mode 1-9, 2-5, 3-12
interrupt-mode 3-6, 3-19
single-mode 1-8, 2-5, 3-5
system 2-1

operation functions 1-4, 3-2
operation modes 2-5

P
paced mode 2-20, 3-25
pacer clock 2-19, 3-23, 3-25
physical channel 2-2, 2-12
post-trigger acquisition 2-22
pre-trigger acquisition 3-26
procedures 1-6, 3-3
programming flow diagrams 1-6, 3-3

X-4 Index

R
reinitializing a board 2-3
return values 2-4
revision levels 2-4
routines: see functions

S
scan 2-12, 2-17, 3-26
SCAN-AD-HR board 2-2, 2-12
SCAN-BRD assembly 2-2, 2-12
setup tasks 1-2
single mode 1-8, 2-5, 3-5
single-cycle mode 2-6, 3-20, 3-24
software trigger: see internal trigger
start trigger 2-22
starting analog input operations 2-5
status codes 2-4
summary of functions 1-4, 3-2
system operations 2-1

T
tasks

installation 1-2
setup 1-2

technical support 1-14
time base

burst mode conversion clock 3-26
internal pacer clock 2-20

trigger 2-22, 3-23
trigger functions 1-6, 3-3
troubleshooting 1-14

U
unipolar range type 2-11

V
virtual board 2-2, 2-12

W
Windows event 2-3

