Using the Direct I/0O COM API of DriverLINX for the KPCI-P1024 or KPCI-
P1096 with LabWindows/CVI

DriverLINX drivers for digital I/O boards provides two programming interfaces:
1. Service Request API for hardware independence with other KPCI or PIO boards
2. Direct /0O COM API for simple, fast interaction with the registers of the digital I/O hardware

COM objects are easily used from Visual Basic or from C++. Use of a COM object from a purely
C language such as CVI requires a bit more work to build a proper interface layer into the object.
Luckily, LabwWindows/CVI provides an automated tool to greatly simplify creation of the interface
layer. The resulting function panel file, *.fp, can then be used in conventional ways by CVI to
make use of the function calls of the exposed object.

Below is a step-by-step guide. The completed project is also available as an example program in
the download center.

Step 1: In the Tools menu, select 'Create ActiveX Automation Controller....'

irectI0 DirectI0_APILprj 3 i | I:Ilii-(_l:
Library [

File Edit Window Options  Help

MHarme

Wiew Build Run  Instrument

Cls ¢ o Create Activel Automation Controller, .,

Create IVT Instrurnent Driver, ..

Source Zode Control r

I to Code Converter., ..
ser Interface Localizer, ..




Step 2: Scroll down the list until you see the Keithley Digital I/O Library

Next.

o ActiveX Automation Controller Wizard - Choose Seryver

ActiveX
Automation
c

ontroller
Wizard

ichives Automation Server

145 Pipeline 1.0 Tvpe Library

145 Policy 1.0 Type Libray

145 500 1.0 Type Librany

145 Uzer Restictions Handler Component 1.0
iextaq 1.0 Type Library

Irmpart 1.0 Type Library

Indeo® video custom control twpe library
Indexing Service Administration Type Library 1.0
InzReplkd 1.0 Type Library

Intel Procedural Effect Library

imzen Control Librar

JET Expression Service Type Librar

K.eithley K.PCI-PIO Direct 120 Library

K.evaeneration 1.0 Tvpe Libram

LabWIEW 6.0 Type Library

Legacy Microzoft Tranzaction Server Type Libran
Legacy MTSEwentz 1.0 Tupe Library

Legacy MtxGrp 1.0 Type Libramy

|

. Select it and then click

Browse. .. |

[ Show Al

¢ Back

MHest >

Cancel




Step 3: Fill in a name for the target .fp file. Any name is fine; | used KPCIDIO (be sure to
include the path to the location). Then click the Next button.

ou ActiveX Automation Controller Wizard - Configure

Automation Server:  Keithley KPCI-PIO Direct 10 Library |

Ac‘-"-d .........................................
Automation Yrstiurment Prefi::
ontroller

Wizard Target .fp File: | Browse. .. |

Froperty Acceszs Functions

Fer Property [faster]—il

| abWindows "/ CVI

Per Object-
Per Server—

¢ Back MHest > Cancel




Step 4: the object will be analyzed by CVI and several output files will be built and placed into the

directory location you specified. If any other dialogs present, accept the default values and click
Next. When complete, the screen below will appear.

o ActiveX Automation Controller Wizard - Finish

Congratulations!

Y'ou have successfully generated an instrument driver to control
the zelected Active Automation Server.  The instrurment driver
has been lnaded and can be acceszed fram the Instrument men.

The Actives Automation Libramny containg functions that you uze

ifl conjunction with the functiohz in the generated ingtrument
driver.




Step 5: Now to use the object. From this same session of CVI, the function panel will already be
loaded in the Instrument Driver menu drop down. If starting a new session of CVI, first load the fp
file.

21 Untitled1.prj =]

Hame 1 O Direck IO Library. .,

Unload...
Edit...




Step 6: Notice the object has two classes: IKPCIPIO and IHardware. IKPCIPIO provides an
8255 interface: a control register and one register for each of three 8-bit digital ports. The
IHardware class provides 32-bit register access to the KPCI-PIOxx card. The balance of this
application note will refer to the IKPCIPIO class only. Highlight that class as shown below and
then click the Select button.

1 Select Function Panel

[nztument: Keithles EPCI-PIO Direct 1AO Libran fe

“Window or Class

T T - |
[Hardware. .
Select
Cancel
Help...
=

I Function Mames
[ Flatten




Once the IKPCIPIO class has been selected, the member functions are visible. The important
ones are New, OpenDevice, CloseDevice, Read and Write. This was just a preview of where we
will be going, so hit the Cancel button for now.

i1 Select Function Panel

[nztrument; Keithlep EPCI-PIO Direct 1/0 Libran =]
Clazz |KPCIPIO 5

“Window or Class

et e - |

Open IKFCIPIO
Active [KPCIPIO Select
Dpenlevice
Clozelevice
Read Up
Wit | el
GetdpenCount
GetDevice
Cancel
Help...

I Function Mames
[ Flatten




Step 7. Create a project called testDirectlO. Add the KPCIDIO.fp file to the project. Add also a

uir file to the project. Place several buttons onto the user interface as shown below and create all
the callback code stubs (a *.c file is created).

f:, C¥I5.5' kpcipio'DirectI0' testDirectI0.uir -0 x|
File Edit Create Yew Arrange Code FRun Library  Tools Window  Qplic

&l Al

=———

Direct 1/0 COM for KPCI-Pl0xx

KEITHLEY

Dpen Diiver )
Port A ¥alue

Head Part A ) ;EI

Exit )
~,

Kl b

In the call back for the Open Driver button, the Direct 10 API will be initialized and a session

opened for the installed board (the device number used in the DriverLINX Configuration Panel will
be used).

-

o

-

In the Read Port A button, the register corresponding to Port A will be read to obtain the logic O or
1 state of the 8-line channel. A value between 0 and 255 will result.

In the Exit button, the driver will be closed.



Step 8: Here is what the project will look like with it's three files.

kpcipio', DirectI0% testDirectI0.prj = |EI|£|
File Edit Yew Buld Run Instrument Library Tools Window  Opkions  Help
Name Cls ¢ o | Diate
testDirectlD.c = Z 111952002, 2:23 PM -l
testDirectlO.uir | 111952002, 2:25 PM

11011952002,

Step 9: Let's use the fp file to add code to our .c file. Select the NewlKPCIPIO function of the

IKPCIPIO class (not the IHardware class) and then click the Select button on the right.

1 Select Function Panel

Ingtrument; Feithley KPCI-FIO Direct /0 Library

Clazz |KPCIFIO

Windaw or Class

Qpen IKFCIFIO
Active [KPCIPIO
Openlevice
Clozelevice
Read

Wfrike
GetdpenCount
GetDevice

e - |

[ Function Mames

™ Flatten

Select

Up

Cancel

Help...




Step 10: the screen below is presented to aid in the use of the function. Notice the variable
Object Handle is not filled in with a value. This indicates it needs to be declared by you. Select
this object with the mouse, and then ask CVI to declare the variable (Ctrl+D, or menu structure of
Code or the short cut buttons). (The Status variable could also be declared for a more robust
implementation that includes error checking, but for brevity, this is skipped in this application
note.)

i Keithley KPCI-PIO Direct I/0 Library - New IKPCIPIO _ = | Elll(]

File Code Wiew Instrument Library Tools Window Cptions Help

A28 2ol ®l2s] «lg Bl &l

- {PCIDIOLb_NewlKPCIPIO -
Cerver Support tultithreading Locale Reszerved
HULT | 1 | LOCALE_NEUT] 0
Object Handle
| ‘
Status
|
KPCIDIOLib WNewIKPCIPIO (NULL, 1, LOCALE_WEUTRAL, 0. ) 4
" "




Step 11: The following dialog is presented for declaring our object handle variable. Fill in a
variable name; | used myPIO. Also check the box indicating the declaration should be added to
the top of the target .c file for our project. Then click the OK button.

v Declare Yariable

“Wariable Type: CAObjHandle
Wariable Mame: -mt.,rPIlfil

[T Execute declaration in Interactive "Window

¥ i&dd declaration bo top of target file "testDirect 0.

[ &dd declaration bo current black in target file "testDirect0. ¢

Set Target File. . ok Cancel |

Step 12: Notice the field is now filled in with the proper calling syntax (address of operator). In
the .c file, verify the curser is within the callback function for the Open button, and then back on
the screen below ask CVI to "insert function call" using the Code menu structure.

& Keithley Digital 170 Library - New IKDigitallo i 10| x|

File Code Mew Instrument Library Tools Window  Opkions  Help

£ 8| &l RS vl B gl

EDIGIOLIE MewlkDigitallo -
Server Suppart Multithreading Locale Reserved
HULL | 1 | LOCALE NEUT, D i
Object Handle
EnyP IO
|

FDIGIOLib_HewIKDigitalID (NULL. 1., LOCALE NEUTRAL. 0. &myPIQ): -

I -

A ;;r'




Step 13: Below is a screen shot of the callback for the open button in the .c file after two
functions of the Direct IO COM object have been used. All subsequent methods of the Direct I/O
object require the Object Handle obtained from the NewlKPCIPIO method. Notice the syntax
used with the OpenDevice method (no & operator).

H <1= i\C¥I15.5 kpcipio® DirectI0h test DirectI0.c
File Edit “iew Buld PRun Instrument Library Tools indow  Options  Help

g ]

-+

N e e o

int CVICALLBACKE cmdOPEN (int panel. int control. int event.
vold #callbackData,. int eventDatal. int ewventDatal)

switch (event)

1
caze EVENT_COMMIT:
£ instanciate the object

<« open the driver for device 0 of this= object
KPCIDIOLib IKPCIPICOpenDevice (myPIO, HULL, 03):
breal;

return 0;

30.58 | 13c | | |Ins=/EE 4l ]

KPCIDICLib NewIKPCIFIO (NULL. 1. LOCALE NEUTRAL. 0. &mwPIO):

=

a4

Once the object has been created and the driver opened for the installed device, the Read and
Write functions can be used to get data into and out of the KPCI card. You will need to know
something of the 8255 architecture to know at what offsets (address) and what values to write.
Below is a brief summary:

Port A is at an offset of O
Port B is at an offset of 1
Port C is at an offset of 2

The control register is at an offset of 3. Individual bits of this register control the input or output
direction of the individual ports. Write a 0 to the bit to make the corresponding Port an output;
write a 1 to make it an input. All ports are inputs by default at PC power-up or reset. If using only
digital inputs, then the control register is not important for your application.

bit O....... 4 lower bits of Port C
bit 1....... Port B

bit 2....... not used, always zero
bit 3....... 4 upper bits of Port C
bit 4....... Port A

bit 5....... not used, always zero
bit 6....... not used, always zero
bit 7....... not used, always 1

To make all ports outputs, write a hex value of 80 to the control register and then write to the
registers for the individual ports to control their logic O or 1 state.

Consult chapter 7 of the DriverLINX Tutorial Manual or the Using DriverLINX with your KPCI-PIO
Series manual for more information.

A complete CVI project is available in the download center of the www.keithley.com web site.



