Using the Direct I/0O COM API of DriverLINX for the KPCI-P1024 or KPCI-
P1096 with LabWindows/CVI

DriverLINX drivers for digital I/O boards provides two programming interfaces:
1. Service Request API for hardware independence with other KPCI or PIO boards
2. Direct /0O COM API for simple, fast interaction with the registers of the digital I/O hardware

COM objects are easily used from Visual Basic or from C++. Use of a COM object from a purely
C language such as CVI requires a bit more work to build a proper interface layer into the object.
Luckily, LabwWindows/CVI provides an automated tool to greatly simplify creation of the interface
layer. The resulting function panel file, *.fp, can then be used in conventional ways by CVI to
make use of the function calls of the exposed object.

Below is a step-by-step guide. The completed project is also available as an example program in
the download center.

Step 1: In the Tools menu, select 'Create ActiveX Automation Controller....'
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Step 2: Scroll down the list until you see the Keithley Digital I/O Library

Next.
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Step 3: Fill in a name for the target .fp file. Any name is fine; | used KPCIDIO (be sure to
include the path to the location). Then click the Next button.
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Step 4: the object will be analyzed by CVI and several output files will be built and placed into the

directory location you specified. If any other dialogs present, accept the default values and click
Next. When complete, the screen below will appear.
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Step 5: Now to use the object. From this same session of CVI, the function panel will already be
loaded in the Instrument Driver menu drop down. If starting a new session of CVI, first load the fp
file.
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Step 6: Notice the object has two classes: IKPCIPIO and IHardware. IKPCIPIO provides an
8255 interface: a control register and one register for each of three 8-bit digital ports. The
IHardware class provides 32-bit register access to the KPCI-PIOxx card. The balance of this
application note will refer to the IKPCIPIO class only. Highlight that class as shown below and
then click the Select button.
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Once the IKPCIPIO class has been selected, the member functions are visible. The important
ones are New, OpenDevice, CloseDevice, Read and Write. This was just a preview of where we
will be going, so hit the Cancel button for now.
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Step 7. Create a project called testDirectlO. Add the KPCIDIO.fp file to the project. Add also a

uir file to the project. Place several buttons onto the user interface as shown below and create all
the callback code stubs (a *.c file is created).
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In the call back for the Open Driver button, the Direct 10 API will be initialized and a session

opened for the installed board (the device number used in the DriverLINX Configuration Panel will
be used).

-

o

-

In the Read Port A button, the register corresponding to Port A will be read to obtain the logic O or
1 state of the 8-line channel. A value between 0 and 255 will result.

In the Exit button, the driver will be closed.



Step 8: Here is what the project will look like with it's three files.
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Step 9: Let's use the fp file to add code to our .c file. Select the NewlKPCIPIO function of the

IKPCIPIO class (not the IHardware class) and then click the Select button on the right.
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Step 10: the screen below is presented to aid in the use of the function. Notice the variable
Object Handle is not filled in with a value. This indicates it needs to be declared by you. Select
this object with the mouse, and then ask CVI to declare the variable (Ctrl+D, or menu structure of
Code or the short cut buttons). (The Status variable could also be declared for a more robust
implementation that includes error checking, but for brevity, this is skipped in this application
note.)
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Step 11: The following dialog is presented for declaring our object handle variable. Fill in a
variable name; | used myPIO. Also check the box indicating the declaration should be added to
the top of the target .c file for our project. Then click the OK button.

v Declare Yariable

“Wariable Type: CAObjHandle
Wariable Mame: -mt.,rPIlfil

[T Execute declaration in Interactive "Window

¥ i&dd declaration bo top of target file "testDirect 0.

[ &dd declaration bo current black in target file "testDirect0. ¢

Set Target File. . ok Cancel |

Step 12: Notice the field is now filled in with the proper calling syntax (address of operator). In
the .c file, verify the curser is within the callback function for the Open button, and then back on
the screen below ask CVI to "insert function call" using the Code menu structure.
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Step 13: Below is a screen shot of the callback for the open button in the .c file after two
functions of the Direct IO COM object have been used. All subsequent methods of the Direct I/O
object require the Object Handle obtained from the NewlKPCIPIO method. Notice the syntax
used with the OpenDevice method (no & operator).
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Once the object has been created and the driver opened for the installed device, the Read and
Write functions can be used to get data into and out of the KPCI card. You will need to know
something of the 8255 architecture to know at what offsets (address) and what values to write.
Below is a brief summary:

Port A is at an offset of O
Port B is at an offset of 1
Port C is at an offset of 2

The control register is at an offset of 3. Individual bits of this register control the input or output
direction of the individual ports. Write a 0 to the bit to make the corresponding Port an output;
write a 1 to make it an input. All ports are inputs by default at PC power-up or reset. If using only
digital inputs, then the control register is not important for your application.

bit O....... 4 lower bits of Port C
bit 1....... Port B

bit 2....... not used, always zero
bit 3....... 4 upper bits of Port C
bit 4....... Port A

bit 5....... not used, always zero
bit 6....... not used, always zero
bit 7....... not used, always 1

To make all ports outputs, write a hex value of 80 to the control register and then write to the
registers for the individual ports to control their logic O or 1 state.

Consult chapter 7 of the DriverLINX Tutorial Manual or the Using DriverLINX with your KPCI-PIO
Series manual for more information.

A complete CVI project is available in the download center of the www.keithley.com web site.



