ASO-ADC-16
User’s Guide

Revision A
Printed February, 1993
Part No. 24460
© Keithley Data Acquisition 1993

WARNING

Keithley Data Acquisition assumes no liability for damages consequent to the
use of this Product. This Product is not designed with components of a level
of reliability that is suitable for use in life support or critical applications.

The information contained in this manual is believed to be accurate and reliable.
However, Keithley Data Acquisition assumes no responsibility for its use; nor for
any infringements or patents or other rights of third parties that may resulc from
its use. No license is granted by implication or otherwise under any patent rights
of Keithley Data Acquisition.

Keithley Data Acquisition does not warrant that the Product will meet the
Customer’s requirements or will operate in the combinations which may be
selected for use by the Customer or that the operation of the Program will be
uninterrupted or error free or that all Program defects will be corrected.

Keithley Data Acquisition does not and cannot warrant the performance or results
that may be obtained by using the Program. Accordingly, the Program and is
documentarion are sold “as is” without warranty as to their performance
merchantability, or fitness for any particular purpose. The entire risk as to the
results and performance of the program is assumed by you.

All brand and product names mentioned in this manual are trademarks or
registered trademarks of their respective companies.

Reproduction or adaptation of any part of this documentation beyond that
permitted by Secrion 117 of the 1976 United States Copyright Act without
permission of Keithley Data Acquisition is unlawful,

Keithley Data Acquisition * 440 Myles Standish Blvd. ¢ Taunton, MA 02780
Telephone: (508) 880-3000 * Fax: (508) 880-0179

Contents

Chapter 1
1.1
1.2
1.3
1.4

Chapter 2
2.1
2.2
2.3
2.4
2.5

Chapter 3
3.1
3.2

Chaprer 4
4.1
4.2
4.3

Chapter 5
5.1
5.2

Appendix A

Appendix B

Introduction v ittt et
About the ASO-ADC-16
Prerequisites

...........................
...................................

Gerting additional help
Installing the ASO

...............................

The Function Call Driver

Available operations

..............................

Overview of programming with the Function Call Driver

General programming rasks

.........................

Operation-specific programming tasks

Language—speciﬁc programming notes

Callable Functions

Functional grouping

Function reference

...............................

File I/O Driver

Overview

.....................................

Loading and unloading the driver
Language-specific programming notes

File I/O Commands

Functional grouping

Command reference

..............................

Function Call Driver error messages

File I/0 Command Driver error messages

{ 9
11
11
17

25
25
29

65
65
66
70

81
81
84

103

Introduction l

About the ASO-ADC-16

The ASO-ADC-16 is the Advanced Software Option (ASO) for the
ADC-16 analog input and digital 1/O board. The ASO includes a set of
softwarc components that you can use, in conjuncrion with a programming

language, to create application programs that execute the operations
available on the ADC-16.

The two primary components of the ASO are the Function Call Driver
and the File 1/O Driver. These drivers represent two distinct methods of
providing your application program with high-level access to the
acquisition and control operations available on the ADC-16. The ASO also
includes support files, example programs, and a configuration uriliry.

The Function Call Driver and the File I/O Driver are independent of each
other; your application program will use one or the other, but not both.
The two drivers are implemented differently and provide slighely different
functionality. You should use whichever driver is appropriate for your
programming skills and your application’s requirements.

Chapter 1 — Introduction 1

Function Call Driver The Function Call Driver enables your program to define and execure
board operations via calls to driver-provided functions. For example, your
program can call the driver-provided K_ADRead funcrion to execute a
single-point, A/D) input operation.

The ASO includes several different versions of the Function Call

Driver. The .LIB and .TPU versions are provided for DOS application
development. The Dynamic Link Library (DLL) is provided for Windows
application development.

The ASO and this manual provide the necessary tools, example programs
and information to develop Function Call Driver programs in the
following languages:

» Borland C++ (version 2.0 and higher)

= Borland Turbo C (version 2.01)

= Borland Turbo Pascal (version 6.0)

= Borland Turbo Pascal for Windows {version 1.0)
» Microsoft C (version 5.1 and above)

= Microsoft Quick C for Windows {version 1.0)

= Microsoft Visual Basic (version 1.0 and higher)

File 1/O Driver The File /0 Driver enables your program to define, execure, and retrieve
the results of board operations by writing (to the driver) driver
-provided File /O Commands. For example, your program can write the
Read Channel 1 command to execute a single-point, A/D input operation,

You can use the File 1/O Driver to create DOS applications with any
language that supports file I/O. The ASO and this manual provide the
necessary tools, example programs and information to develop File 1/O
Driver programs in the following languages:

= Interpreted BASIC

» QuickBASIC

= Borland Turbo C

« Borland Turbo Pascal

= Microsoft C

» Microsoft Pascal

2 ASO-ADC-16 User's Guide — Rev. A

1.2

ll3

Prerequisites

The ASO is designed exclusively for use with the ADC-16. This manual
assumes that you understand the information presented in the ADC-16
Users Guide. Additionally, you must complete the board installation and
configuration procedutes ouclined in the ADC-16 Users Guide before you
attempt any of the procedures described in this manual.

The fundamental goal of this manual is to provide you with the
information you need to write ADC-16 application programs that use the
ASO drivers. It is recommended that you proceed through this manual
according to the sequence suggested by the table of contents; this

will minimize the amount of time and effort required to develop your
ASO-ADC-106 application programs.

Getting additional help

The following resources provide information about using the ASO:
= this manual

s the ADC-16 Users Guide

= the ASO example programs (these are copied to your system’s hard disk
during the installation procedure)

» the documentation for the programming language you are using

Call our Technical Support Department if you need additional assistance.
A Technical Support Engineer will help you diagnose and solve your
problem over the telephone.

Keithley Data Acquisition — Technical Support
508-880-3000
Monday — Friday, 8 AM. — 7 P.M.

Chapter 1 — Introduction 3

For the most efficient and helpful assiscance, please compile the following
information before calling our Technical Support Department:

ASO package Version

Invoice/Order #

ADC-16 Sertal #

Base address secting

A/D full-scale setting £3.2768 V. x5V

STA-EX3 Number installed

Computer Manufacturer

CPU cype 8088 286 386 4806 Other
Clock speed (MHz) 8 12 20 25 33 Other
Math co-processor? Yes No

Amount of RAM

Video system CGA Hercules EGA VGA

Compiler Language

Manufacturer

Version

A ASO-ADC-16 User’s Guide — Rev. A

Installing the ASO

The files on these ASO distribution diskettes are in compressed formar.
You must use the installation program included on the diskettes to install
the ASO software. Since the aggregate size of the expanded ASO files is
approximately 1.0 MB, check thar there is at least this much space
available on your PC’ hard disk before you attempr to install the ASO.

Perform the following procedure to install the ASO software (note that it
is assumed that the floppy drive is designated A:):

1. Make a back-up copy of the distribution diskette(s).
2. Insert ASO diskerte #1 into the floppy drive
3. Type the following commands at the DOS prompt:

A: {Enter]
inscall (Enter~}

The installation program prompts you for your installation preferences,
including the name of the directory into which the ASO files will be
copied. The installation program expands the files on the ASO diskette(s)
and copies them into the directory you specified; refer to the file
FILES.DOC in the ASO installation directory for the names and
descriptions of these files.

Chapter 1 — Introduction

5

2.1

Immediate-execution
operations

The Function Call Driver

Available operations

The Function Call Driver provides functions through which an application
program can perform the following operations:

Immediate-execution operations

» Single-value A/D input

» Single-value digital input

» Single-value digital output

Frame-based operations
» Multi-value, interrupt-mode A/D input

» Multi-value, synchronous-mode A/D input

Immediate-execution operations and frame-based operations are described
in the following subsections.

The three immediate-execution operations and the Callable Function
associated with each are as follows:

= Single-value A/D input: K_ADRead
« Single-value digital input: K_DIRead
= Single-value digital ourpur: K_DOWrite

The calling arguments for these functions define the attributes of the

associated operation. Upon receipt of a call to one of these functions, the
driver immediately exectites the associated operation.

Chapter 2 — The Function Call Driver 7

Frame-based The two frame-based operations and the Callable Function associated with
operations each are as follows:

« Muld-value, interrupt-mode A/D input: K_IntStart
= Multi-value, synchronous-mode A/D input: K_SyncStart

The description of frame-based operations requires the introduction of a
few new tertns.

A frame is a data structure whose elements correspond to the defining
ateributes of a board operation. The driver uses two different types of
frames: A/D and Digital Oucpue frames. The driver maincains a pool of
four A/D frames and four Digital Ourpur frames.

The values of a frames elements define the operation’s attributes. For
example, the elements contained in an A/D frame are as follows:

= Start Channel — defines the first channel in a scan
= Stop Channel — defines the last channel in a scan

» Gain element — defines the gain applied to all channels in the scan

The driver provides functions that set the value of one or more elements.
For example, K_SetG sets the value of a frame’s Gain element, and
K_SetStartStopChn sets the values of a frame’s Start Channel and Stop
Channe! elements.

8 ASO-ADC-16 User’s Guide — Rev. A

2,2

Defining the
application’s
requirements

A frame handle is a variable whose value identifies a frame. The sole
purpose of a frame handle is to provide a mechanism through which
different function calls can reference the same frame.

A device bandle is a variable whase value identifies an installed board. The
sole purpose of a device handle is to provide a mechanism through which
different function calls can reference the same board.

A frame-based operation is so-called because the function that performs the
operation uses a frame handle as its single calling argument. The frame
handle identifies a frame whose element values are the operation’s
actributes. The values of all of a frame’s elements must be ser before thar
frame’s handle can be used as a calling argument to a funcrion that
executes a frame-based operation.

Overview of programming with the Function Call Driver
The procedure to write a Function Call Driver program is as follows:

1. Define the application’s requirements.

2. Write the program code.

3. Compile and link the program.

The subsections that follow describe the details of each of these steps.

Before you begin writing the program code, you should have a clear idea
of the board operations you expect your program to execute. Additionally,
you should determine the sequence in which these operations must be
executed and the characteristics (number of channels, gains, and so on)
that define each operation. You may find it helpful to review the list of
available operations in Section 2.1 and to browse through the shorc
descriptions of the Callable Functions in Section 3.1.

Chapter 2 — The bunction Call Driver 9

Writing the
program code

Compiling and linking
the program

Several sources of information relate to this step:

» Section 2.3 explains the programming tasks that are common to all
Function Call Driver programs

= Section 2.4 describes the sequence of function calls required to execure
each of the available operations

s Section 3.2 provides detailed information on individual functions

s The ASO includes several example source code files for Function Call
Driver programs. The FILES.DOC file in the ASO installation directory
lists and describes the example programs.

The phrase general programming tasks, as it is used in this chaprer, refers to
the programming tasks that every Function Call Driver program must
execute. The task of obtaining a device handle, for example, qualifies as a
general programming task, since the sequence of funcrion calls required to
execute any of the available board operations includes at least one function
whose calling arguments include a device handle. Section 2.3 provides the
details of the general-programming tasks.

Each available operation also has an associated set of tasks chat the .
program must perform to execute the operation; these are referred to as
operation-specific programming tasks. Section 2.4 provides the derails of the
operation-specific programming tasks for each available operation.

Refer to Section 2.5 for compile and link instructions and other language-
specific considerations for each supported language.

10 ASO-ADC-16 Users Guide — Rev. A

2.3

24

General programming tasks

Every Function Call Driver program must execute the following
programming tasks:

1.

[dentify a function/variable type definition file

for additional information.

. Declare/initialize program variables

3. Call ADC16_DevOpen to initialize the driver
4, Call ADC16_GetDevHandle o inicialize the board and get a device

handle for the board

The tasks listed are the minimum rasks your program must complete
before it artempts to execute any operation-specific tasks. Your application
may require additional general-programming tasks. For example, if your
program requires access to two boards, then it musr call
ADC16_GertDevHandle for each board.

Operation-specific programming tasks
This section describes the set of programming tasks that your program
must perform to execute the following operations:

Single-value A/D inpuc

Single-value digital inpurt

Single-value digital output

Interrupt-mode A/D input using channel-gain array
Synchronous-mode A/D inpur using channel-gain array
Interrupt-mode A/D input using start/stop channels
Synchrenous-mode A/D input using start/stop channels

The set of tasks listed for each operation are valid only if the application
program has already completed the general-programming asks,

Chapter 2 = The Function Call Driver

The method o identify this file is language-specific; refer to Section 2.5

11

Single-value A/D input

To execute a single»value A/D input, your program must call K_ADRead.
The calling arguments identify the board that executes the operation, the
channel on which the value is acquired, the gain applied ro thar channel,
and the buffer in which the value is stored.

Single-value digital input

To execute a single-value digital input, your program must call K_DIRead.
The calling arguments identify the board that executes the operacion, the
channel on which the value is acquired, and the buffer in which the value
is stored.

Single-value digital output

To execute a single-value digital output, your program must call
K_DOWrite. The calling arguments identify the board thar executes the
operation, the channel on which the value is written, and the buffer from
which the value is written,

12 ASO-ADC-16 User’s Guide — Rev. A

Interrupt-mode A/D input using start/stop channels

Your program must perform the following tasks to execute an interrupe-
mode A/D input operation whose channel-scanning sequence is given by
the sequence’s start and stop channels:

Allocate a buffer in which the driver stores the A/D values. Use
K_INTAlloc if you want to allocate this buffer outside the program’s
memory area (you must use K_INTAloc if you are writing an application
thar will execute in Windows standard mode).

Call K_GetADFrame to get the handle to an A/D frame.

Call K_SetBuf to assign the buffer address obtained in step 1 to the Buffer
Address element in the frame associated with the frame handle obrained in
step 2.

Call K_SetStartStopG or K_SetStartStopChn and K_SetG to assign values
to the Start Channel, Stop Channel, and Gain elements in the frame
associated with the frame handle obtained in step 2.

Call K_INTStart to start the operation,

Call K_INTStatus to monitor the status of the operation.

{(Optional for C and Pascal programs)

Call K_MoveDataBuf to transfer the acquired data from the bufter 1o a

user-defined array.

If K_INTAlloc was used to allocate a buffer in step 1, call K_INTFree to
deallocate the buffer.

Call K_FreeFrame to return the frame {associated with the frame handle
from step 2} to the pool of available frames.

Chapter 2 = The Function Call Driver 13

Interrupt-mode A/D input using channel-gain array
Your program must perform the following tasks to execute an interrupt-

mode A/D input operation whose channel-scanning sequence is given by a
channel-gain array:

1. Define and assign values to a channel-gain array. The formac and other
information pertaining to channel-gain arrays is listed under the reference

entry for K_SetChnGAry on page 60.

2. Allocate a buffer in which the driver stores the A/D values. Use
K INTAlloc if you want to allocate this buffer outside the program’s
memory area (you must use K_INTAlloc if you are writing an application
that will execute in Windows standard mode).

3. Call K_GetADFrame to get the handle to an A/D frame.

4, Call K_SetBuf to assign the bufter address obtained in step 2 to the Buffer
Address element in the frame associated with the frame handle obrained in
step 3.

5. Call K_SetChnGAry to assign the channel-gain array from step 1 to the
Channel-Gain Array Address element in the frame associated with the
frame handle obtained in step 3.

6. Call K_INTStart to start the operation.

7. Call K_INTStatus to monitor the status of the operation.

8. (Optional for C and Pascal programs)

Call K_MoveDataBuf to transfer the acquired data from the buffer to a

user-defined array.

9. If K_INTAlloc was used to allocate a buffer in step 2, call K_INTFeee to
deallocate the buffer,

10. Call K_FreeFrame to return the frame (associated with the frame handle
from step 3) to the pool of available frames.

14 ASO-ADC-16 User's Guide — Rev. A

Synchronous-mode A/D input using start/stop channels

Your program must perform the following tasks to execute a synchronous-
mode A/D input operation whose channel-scanning sequence is given by
the sequence’s start and stop channels:

Allocate a buffer in which the driver stores the A/D values. Use
K_INTAHoc if you want to allocate this bufter outside the program’s
memory area.

Call K_GetADFrame to get the handle to an A/D frame.

Call K_SetBuf to assign the buffer address obtained in step 1 1o the Buffer
Address element in the frame associated with the frame handle obrained in
step 2.

Call K_SetStartStopG or K_SetStartStopChn and K_SetG ro assign values
to the Start Channel, Stop Channel, and Gain elements in the frame
associated with the frame handle obrained in step 2.

Call K_SyncStart to start the operation.
(Optional for C and Pascal programs)
Call K_MoveDataBuf to transfer the acquired data from the bufter to a

user-defined array.

If K_INTAlloc was used to allocate a buffer in step 1, call K_INTFree 10
deallocate the buffer.

Call K FreeFrame ro rerurn the frame (associated with the frame handle
from step 2) to the pool of available frames,

Chapter 2 — The Function Call Driver 15

Synchronous-mode A/D input using channel-gain array

Your program must perform the following tasks to execute a synchronous-
mode A/D input operation whose channel-scanning sequence is given by a
channel-gain array:

1. Define and assign values to a channel-gain array. The format and other
information pertaining to channel-gain arrays is listed under the reference

entry for K_SetChnGAry on page 60.

2. Allocate a bufter in which the driver stores the A/D values. Use
K_INTAlloc if you want to allocate this buffer outside the program’s
memory area.

3. Call K_GetADFrame w get the handle to an A/D frame.

4, Call K_SetBuf to assign the buffer address obtained in step 2 to the Buffer
Address element in the frame associated with the frame handle obrained in

step 3.

5. Call K_SetChnGAry to assign the channel-gain array from step 1 to the
Channel-Gain Array Address element in the frame associated with the
frame handle obrained in step 3.

6. Call K_SyncStart to start the operation.

7. {Optional for C and Pascal programs)

Call K_MoveDataBuf to transfer the acquired data from the buffer to a
user-defined array.

8. If KLINTAlloc was used to allocate a buffer in step 1, call K_INTFree to
deallocate the buffer.

9. Call K_FreeFrame to return the frame (associated with the frame handle
from step 3) to the pool of available frames.

16 ASO-ADC-16 Users Guide — Rev. A

2.5

Related files

Compile and Link
instructions

Language-specific programming notes

This section provides specific programming guidelines for each of the
supported languages. Additional programming information is available in
the ASO example programs, Refer to the FILES.DOC fle for names and
descriptions of the ASO example programs.

Borland C++, Microsoft C and Borland Turbo C

ADCI6.LIB
DASRFACE.LIB
USERPROT.H

Borand C++:
BCC -¢ -m? filename.c
TLINK c@1+filename,filename, , adclé+dasrface+cl;

Microsoft C:
CL /AL /¢ filename.c
LINK filename,, ADC16+DASRFACE;

Turbo C:
TCC -¢ -m1 filename.c
TLINK cO1+filename,filename, adclé+dasrface+ct;

Chapter 2 — The Function Call Driver

17

Example program Execute a single A/D conversion

/* C include files */
#include "stdio.h"
#include "stdlib.h"

/* ADC-16 driver include file */
#include "userprot.h”

/* Local variables */

DCH ADC16; /* Davice Handle */

char NumOfBoards; /* #boards in ADCl&.CFG */
int Err; /* Function ret err flag */
long Advalue; /* Storage for A/D value */

/* Begin main module */
main{)
{

/* Initialize the hardware/software */

if ({ Err = ADC16_DevOpen("ADCl6.CFG™, &NumofBoards)} !=0)
{

putch (7}; printf{ " Error %X during DevOpen ", Err J;
exit{krr);

]

/* Establish communication with the driver */

/* through a device handle */

if { (Err = ADCl6_GetDevHandle(0, &ADCl6)) !'= 0)

{

putch (7); printf("Error %X during GetDevHandle ",Err};
exit(Frr);

)

/* Read channel 0 at gain 1; store sample in Advalue */

if ({Err = K_ADRead (ADCl6, 0, 0, &ADvalue)) != 0}

{

putch(7); printf ("Error %X in K_ADRead operation ", Err);
exit{krr);

}

/* Display ADvalues */

printf ("A/D vaiue from channel 0 is : Zx\n", ADvalue);

)

T8 ASO-ADC-16 Users Guide — Rev. A

Borland C++

[f you want to compile a Borland C++ program as a standard C program,
refer to the information presented in the previous section. If you want to
compile your program as a Borland C++ program, refer to the information
presented in the previous section with the following exceptions:

1. Use the supplied file USERPROT.BCP instead of USERPROT.H.

2. Specify the C++ compilation in one of the following two ways:
a. Specify .CPP as the extension for your source file, or
b. Use the BCC —P command line switch.

Borland Turbo Pascal

Compile and Link TPC filename.pas
instructions
Example program Execute a single A/D conversion

Program TPEXAMPLE;

{ UNITS USED BY THIS PROGRAM |
Uses Crt, ADClé6:

{ LOCAL VARTABLES }

Var

Devhandle : Longint; | Device Handle }

ConfigFile : String; | String to hold name of configuration file |
NumOfBoards : Integer;

BoardNumber : Integer;

Frtn : Word; { Error flag }
Gain : Byte; { Overall gain }
ADvalue : Longint; { Holds A/D sample |
Chan : Byte; [A/D channel]
{ BEGIN MAIN MODULE)}
BEGIN
{ STEP 1: This step is mandatory; it initializes the
internal data tables according to the infermation
contained in the configuration file ADCI6.CFG.
}
ConfigFile := "ADC16.CFG + #0;
Ertn := ADC16_DevOpen{ ConfigFile{l], NumOfBoards);
IF Ertn <> 0 THEN
BEGIN
writein("Error ', Ertn, 'on Device open’ J;
Halt{1);
END;
[STEP 2: This step is mandatory: it establishes
communication with the driver through the
Device Handle.
}

Chapter 2 - The Funetion Call Driver 19

BoardNumber := 0;
Ertn := ADC16_GetDevHandle{ BoardNumber, Devhandle);
IF Ertn <> 0 THEN
BEGIN
writeln("Error °, Ertn, * getting Device Handle®);
Halt(l);
END;
{ STEP 3: Read A/D sample from channel 0 at gain 1
{Gain Code 0) and store in local variable.
}

Chan = 0;

Gain := 0;

Ertn := K_ADRead(Devhandle, Chan, Gain, ADvalue);:

IF Ertn <> 0 THEN

BEGIN
writeln(~G, "Error # *,Ertn, ‘Occurred during K _ADRead call’);
Halt(1l);

END;

writeIn("A/D VALUE : *, ADvalue);

END.

Borland Turbo Pascal for Windows

Related files ADCIGTPWINC
ADCI16.DLL
Notes If you use ADC16.DLL, the information presented for Borland Turbo

Pascal applies here with the following additions:

« Use the compiler directive {$1 ... } to include the supplied include file
ADCI6TPW.INC,

= Substitute "WinCrt’ for the *Crc’ unit; this is necessary in order that the
console [/O procedures (writeln, readln, etc...) operate properly.

The following code fragment illustrates these additions:

Program TPW_EX;
{ UNITS USED BY THIS PROGRAM }
Uses WinCrt;

" LOCAL VARIABLES }
Var

[ADC16 function prototypes that reference ,DLL }
{$1 ADCIGTPW.INC!}

{ BEGIN MAIN MODULE }

BEGIN

20 ASO-ADC-16 User's Guide — Rev. A

If you use ADCIGTPW.INC, the information presented for Borland
Turbo Pascal applies here with the following exceptions:

» Substitute ADCI6TPW.INC for the ADCI16 unit.

s Substitute "WinCrt’ for the ’Crt’ unit; this is necessary in order that the
console /O procedures (writeln, readln, etc...) operate properly.

The following code fragment illustrates these substitutions:

Program TPW_EX;
{ UNITS USED BY THIS PROGRAM)
lses WinCrt, ADC16TPW:

1 LOCAL VARIABLES 1}
Var

| BEGIN MAIN MCDULE)
BEGIN

Microsoft Quick C for Windows
Related files ADCI16.DLL

Compile and Link 1. Load filename.c into the Quick C for Windows environment.

instructions .
2. Create a project fle.
3. Selecr PROJECT » BUILD to create a stand-alone .EXE that can be
execured from within Windows.
Notes The programming procedure required to call the Callable Functions from

Quick C for Windows programs is identical to the procedure described for
Microsoft C.

Chapter 2 - The Function Call Driver 21

Microsoft Visual Basic for Windows

Related files ADCI16.DLL
ADCIGEX.BAS
Notes Before you begin coding your Visual Basic program, you must copy (from

inside the Visual Basic environment} the contents of ADCTGEX.BAS into
your application’s GLOBAL.BAS. Use the following procedure to add the
contents of ADCI6EX.BAS to GLOBAL.BAS (you should make a back-up
copy of GLOBAL.BAS before you modify it):

1. Select FILE » ADD FILE... from the Visual Basic main menu.

2. Select ADCIGEX.BAS.

3.

4. Select EDIT » COPY to copy the contents of ADCI6EX.BAS to the

Highlight the contents of the entire ADCIGEX.BAS fle.

Windows clipboard.

5. Double-click on GLOBAL.BAS in the Project window.

6. Select EDIT » PASTE,

7. Select FILE » SAVE PROJECT.

22 ASO-ADC-16 User's Guide — Rev. A

Example program

Execute a single A/D conversion,

Sub Commandl_Click ()
board% = 0
Cls

For x = 0 to 9° Clear our buffer
Thuffer(x}) =0
Next x

MyErr = ADC16_devopen(", \ADC16.CFG", board%}
If MyErr <> 0 Then
MsgBox "ADC16_devopen Error", 48, "Error”
GoTo exyl
End If

Print
Print "Scanning Channels "; strtch; "-"; stpch

MyErr = ADC16_getdevhandle(0d, adclb)

If MyErr <> 0 Then
MsgBox "ADC16_getdevhandle Error", 48, "Error”
GoTo exyl

End If

Print
Print "AD Data :"
Print

For x = strtch to stpch
MyErr = K _ADRead{adcl6, x., Chgain, retval)
1Buffer(x) = retval
Print " Channel "; x; " = "; Hex$(1Buffer(x))
Next x

Print
Print

exyl:

End Sub

Chapter 2 — The Function Call Driver

23

3.1

Callable Functions

Functional grouping
The Callable Functions can be classified according to the funcrionality that

each provides. This section lists each Callable Function as a member of
one of the following groups:

Initialization

Memory management

Frame management
Frame-element management
Frame-based operation control
Immediate-execution operations

Miscellaneous operations

This section provides short descriptions of each function; refer to Section
3.2 for additional information on each funcrion.

Initialization

ADCI16_DevOpen Initialize and configure the driver.
ADC16_GetDevHandle Obrain a device handle.

K_DASDevInit Reset and initialize the device and driver.

Chaprer 3 — Callable Functions 25

Memory management

K_IntAlloc Allocate a buffer suitable for an interrupt-
mode A/D operation.

K_IntFree De-allocate an interrupt buffer thac was
previously allocated with K_IncAlloc.

K_MoveDataBuf Transfer acquired A/D samples between a
memory buffer and an array.

Frame management

K_FreeFrame Free the memory used by a frame and
recurn the frame it to the pool of
available frames.

K_GetADFrame Obtain the handle to an A/D frame.
K_GetDOFrame Obtain the handle to a digital output
frame.

Frame-element management

K_ClearFrame Ser all the elements of an A/D frame to
their default values.

K_GetBuf Get che values of an A/D frame’s Buffer
Address and Number of Samples
elements.

K_GetChn Get the value of an A/D frame’s Starc

Channel element.

K_GetChnGAry Get the value of an A/[) frame’s
Channel-Gain Array Address element.

K_GetDOCurVal Gert the value of a digital output frame’s
Digital Queput Value element.

26 ASO-ADC-16 User's Guide — Rev. A

Frame-element management (cont’d)

K_GetG Ger the value of an A/D frame’s Gain

Code element.

K_GetStartStopChn Get the values of an A/D frame’s Start
Channel and Stop Channel elements.

K_GetStartStopG Get the values of an A/D frame’s Seart
Channel, Stop Channel, and Gain Code
elements.

K_InitFrame Initialize a board’s A/D circuitry and set
an A/D frame’s elements to their default
values.

K_SetBuf Set the values of an A/D frame’s Buffer
Address and Number of Samples

elements.

K_SetChn Set the value of an A/D frame’s Start
Channel element.

K_SetChnGAry Set the value of a frame’s Channel-Gain
Array Address element.

K_SetG Ser the value of an A/D frame’s Gain
Code element.

K_SetStartStopChn Ser the values of an A/D frame's Starc
Channel and Stop Channel elements.

K_SetStartStopG Set the values of an A/D frame’s Stant

Channel, Stop Channel, and Gain Code
elements.

Chaprer 3 - Callable Functions 27

Frame-based operation control

K_IntStart Start an interrupt-mode A/D operation.

K_IntScatus Determine the scatus of an interrupt-
mode A/D operation.

K_IntStop Abort an interrupt-mode A/D operation.

K_SyncStart Start a synchronous-mode A/D operation.

Immediate-execution operations

K_ADRead Read a single A/D value.
K_DIRead Read a single digital value.
K_DOWrite Write a single digital value.

Miscellaneous operations

K_GetErrMsg Ger the address of an error message string
(available only as C-language function).

K_GetVer Determine the driver revision and driver
specification.

28 ASO-ADC-16 User's Guide — Rev. A

3.2

A/D values and
corresponding
voltages

Function reference

This section contains reference entries for the Callable Functions. The
entries appear one per page and in ascending alphabetical order (by
function name). These reference entries provide the decails associated wich
the use of each function.

This section is not a good resource for general and conceprual information
about writing Function Call Driver programs. Moreover, much of the
information presented here requires a thorough understanding of the
concepts presented in Chapter 2. Do not expect to write a Function Call
Driver program merely by consulting the reference entries for the functions you
expect to use in your program.

The information related ro the following topics pertains o several Callable

Functions:

» the formar of A/D> values and the procedure to determine the voluage
that produced a specific A/D value

» the gain codes the driver uses to represent gains and the A/D input
ranges that correspond to each gain

» the return value for every call to a Callable Function

These topics are described in the next several paragraphs and referred to
throughout the reference entries that follow.

There are three Callable Functions through which your program can
acquire A/D values: K_ADRead, K_IntStart, and K_SyncStare. Although
the method to create/assign a storage buffer for the acquired value(s) is
different for each of these functions, they all store the A/D value in the
same format. Consequently, the interpretation of the A/D data is the same
regardless of the function with which it was acquired.

The driver configuration file specifies two attributes that affect how you
should interprer A/D values: the A/D Number Type and the A/D Full
Scale Range. The possible values for these atcributes are as follows:

» A/D Number Type: Sign/Magnitude or 2's Complement
= A/D Full Scale Range: +3.2767 Vor £5.0 V

Chapter 3 — Callable Functions 29

30

The procedure ro determine the volrage that produced a particular A/D
value depends on the A/D Number Type. The two cases are presented
below. The following variables are used in both cases:

w range is the maximum voltage in the range specified by the A/D Full
Scale Range, which is either 3.2767 V or 5.0 V.

= ADuvalue is the value acquired by the A/D operation

Case 1 A/D Number Type = Sign/Magnitude
Ifbit 15 = 0,

ADvalue AND 7FFEF
- 32,767

voltage = x range

Ifbit 15 =1,

ADvalue AND 7FFF
voltage = X Fange

32,767

Case 2 A/D Number Type = 2’s Complement

_ ADvalue
voltage = " x range
32,767
{f‘bit 15 = I)

(ADvalue)** AND 7FFF

voltage =
- 32,767

X range

where (ADvalue)** is the 2’s complement of ADuvalue.

ASO-ADIC-16 Users Guide — Rev, A

Gain codes

Return values

The Function Call Driver uses gain codes to indicate gains. The vahd gain

codes are 0, 1, 2. The rable below lists the gain thar corresponds to each
gain code. Additionally, this rable shows the A/D input range for both

settings of the A/D Full Scale Range (the A/D Full Scale Range is specified
by the driver configuration file).

ain A/D input range for | A/D input range for
f;o o | g +3.2767 V £5.0V
full-scale range full-scale range
0 1 +3.2767 V 15V
1 10 +327.67 mV £500 mV
2 100 +32.767 mV £50 mV

Every call to a Callable Function returns an integer-type (16-bir) return

value. A return value of 0 indicates that the function executed successfully;

a non-zero return value indicates an error. The non-zero return values

correspond to error codes; these error codes and their corresponding errorns

are listed in Appendix A. Your program should always check a function
call’s return value and, in the case of an error, perform an appropriate

acrion,

Chaprer 3 - Callable Functions

31

ADC16_DevOpen

Purpose

Prototype

Parameters

Notes

Initialize and configure the driver.

C
DASEir far pascal ADC16_DevOpen(char far * ¢fgFile,

char far * numDevices);

Pascal
Funcion ADC16_DevOpen(Var cfgFile : char;

Var numDevices : Integer) : Word;

Visual Basic for Windows
ADC16 _DevOpen Lib "ADC16.dIl" (ByVal cfeFile$,
numDevices As [nteger) As [nteger

cfoFile Driver configuration file

numDevices Number of devices defined in ¢fzFile. Valid values: 1, 2
ADCI16_DevOpen initializes the driver according to the information in ¢fgFile.
On return, numDevices contains the number of devices for which ¢fgFile conrains
configuration information.

ADC16_DevOpen writes a zero value to OP0O and OP1; this turns off che
ADC-16% relay 0 and relay 1.

Specify -1 for ¢fgFile to set the driver to its default configuration; the default
configurarion specifies that the device is set as follows:

Board number 0 1

Board name ADCI16 ADCI16

Base address 300 Hex 308 Hex
Range +3.2767 V +3.2767 V
A/D Number Type SignMagnitude SignMagnitude
Interrupr level A Hex F Hex
Installed STA-EX8s 0 0

32 ASO-ADC-16 Users Guide — Rev. A

ADC16_GetDevHandle

Purpose

Prototype

Parameters

Notes

Obrtain a device handle.

C
DASErr far pascal ADC16_GetDevHandle (int devNumber,
void far * far * devHandle);

Pascal
Function ADC16_GetDevHandle(devNumber : Integer;
Var devHandle : Longint) : Word;

Visual BASIC for Windows
ADC16_GetDevHandle Lib "ADC16.dIl" (ByVal devNumber As Integer,
devHandle As Long) As Integer

dev Number Device number. Valid values: 0, 1

devHandle Device handle

On return, devfandle contains the handle associated with the device idenrified
by devNumber.

The value returned in devHandle is intended to be used exclusively as an
argument to functions that require a device handle. Your program should not
modify the value returned in devHandle.

The driver supports up to two devices; a unique handle is associated with each
supported device.

In addition to obtaining a device handle, ADC16_GetDevHandle performs the
following tasks:

» aborts all in-progress A/D operations

» writes a 0 to OPO and OP1

» checks if device idencified by devHandle is present

= checks if sectings in configuration file match actual board setrings
= initializes the board to its defaulc state

Chaprer 3 — Callable Functions 33

K_ADRead

Purpose Read a single A/D value.

Prototype C
DASErr far pascal K_ADRead(DDH devHandle, unsigned char chan,
unsigned char gainCode, void far * ADvalue);

Pascal
Function K_ADRead(devHandle : Longing chan : Byte;
gainCode : Byte; Var ADuvalue : Longint) : Word;

Visual BASIC for Windows

K_ADRead Lib "ADCI16.dII" (ByVal devHandle As Long, ByVal chan As Integer,
ByVal gainCode As Integer, ADvalue As Long) As Integer

Parameters devHandle Handle to acquisition device

chan tnput channel. Valid values: 0, 1...., 7(m+1), where m is the
number of connected STA-EXS.

gainCode Gain code. Valid values: 0 = 1x, 1 = 10x, 2 = 100x
ADuvalue Storage location of acquired A/D value
Notes On recurn, ADvalue contains the value read from channel chan (at the gain

indicated by gain code) of the device identified by devHandle.

See page 29 for the procedure to determine the voltage that produced the value
returned in ADuvalue.

See page 31 for the A/D voltage ranges that correspond to each gain.

34 ASO-ADC-16 User's Guide — Rev. A

K_ClearFrame

Purpose

Prototype

Parameters

Notes

Set all the elements of an A/D frame to their default values.

C
DASErr far pascal K_ClearFrame(FRAMEH frameHandle };

Pascal
Function K_ClearFrame(frameHandle : Longint) : Word,

Visual Basic for Windows
K_ClearFrame Lib "ADC16.d1I" (ByVal frameHandle As Long) As Integer

frameHandle Frame handle

On recurn, the elements in the frame identified by flameHandle contain the
following values:

Buffer Address

Start Channel

Stop Channel

Gain Caode

Channel-Gain Array Address

oo O O O

Chapter 3 — Callable Funcrions 35

K_DASDevlnit

Purpose Reset and initialize the device and driver.
Prototype C
DASErr far pascal K_DASDevlnit{ DDH devHandle);

Pascal
Function K_DASDevInit{ devHandle : Longint) : Word;

Visuval BASIC for Windows
K_DASDevinit Lib "ADC16.dIlI" (ByVal devHandle As Long)

As Integer
Parameters dev Handle Device handle
Notes K_DASDevlInit performs the following rasks:

= Aborts all in-progress A/D operations

w Writes a 0 ro OPO and OP1

s Checks if device identified by devHandle is present

= Checks if sertings in configuration file macch actual board settings

= Initalizes the board to its default state

36 ASO-ADC-16 Users Guide — Rev. A

K_DIRead

Purpose Read a single digital value.

Prototype C
DASErr far pascal K_DIRead(DDH devHandle, unsigned char chan,
void far * Dfvalue);

Pascal
Function K_DIRead(devHandle : Longint chan : Byte
Var Dlvalue . Longint) : Word;

Visual Basic for Windows
K_DIRead Lib "ADC16.dll" (ByVal devHandle As Long,
ByVal chan As Integer, Dlvalue As Long) As Integer

Parameters devHandle Device handle
chan Digital input channel. Valid value: 0
Dlvalue Digital input value. Valid values: 0, 1, 2, 3
Notes On return, Dfvalue contains the digital value read from channel chan of the

device identified by devHandle.

Dlvalue is a 32-bit variable. The acquired digital value s stored in bits 0 and 1
the values in the remaining bits of D/value are not well-defined. The hgure
below illustrates the format of Divalue.

bit 2 bit 1 bit @

Chapter 3 — Callable Functions 37

K_DOWrite

Purpose Write a single digital value.

Prototype C
DASErr far pascal K_LDOWrite(DDH devHandle, unsigned char chan,
long DOvalue),

Pascal
Function K_DOWrite(devHandle : Longing chan : Byte;,
DOvalue : Longint) : Word;

Visual Basic for Windows
K_DOWrite Lib "ADC16.d11" (ByVal devHandle As Long,
ByVal chan As Integer, ByVal DOuvalue As Long) As Integer

Parameters devHandle Device handle
chan Digital output channel. Valid value: 0
DOuvalue Digital oucpur value. Valid values: 0, 1...., 31
Notes K_DOWrite outputs the value in DOvalue to channel chan on the device

identified by devHandle.

DOualue is a 32-bit variable; the significance of the bits in DOwvalue depends on
if cthere is a connection between the board and an STA-EXS:

If the board is not connected to an STA-EXS:
The outpur value comprises the values in bits 0 — 4; the values in bies 5 — 31
are not significant. This formar is illustrated in the following figure:

bit 31 bit & bit 4 bit 3 bit 2 bit 1 bit

If the board is connected to one or more STA-EXS:
The ourput value comprises the values in birs 0 and 1; the values in bits
2 — 31 are nor significant. This format is illustrated in the following figure:

38 ASO-ADC-16 User's Guide — Rev. A

K_FreeFrame

Purpose Free the memory used by a frame and return the frame it to the pool of available
frames.
Prototype C

DASEr far pascal K_FreeFrame(FRAMEH frameHandle);

Pascal
Function K_FreeFrame(frameHandle : Longint)} : Word;

Visval Basic for Windows
K_FreeFrame Lib "ADC16.dlI" (ByVal frameHandle As Long) As Integer

Parameters Sframetiandle Frame handle

Notes K_FreeFrame frees the memory used by the frame identified by frameHandle, the
frame is then returned to the pool of available frames. The pool of available
frames initially contains two A/D frames and two digital outpuc frames.

Chapter 3 — Callable Functions 39

K _GetADFrame

Purpose Obuain the handle to an A/D frame.

Prototype C
DASErr far pascal K_GetADFrame(DDH devHandle,
FRAMEH far * frameHandle);

Pascal
Function K GetADFrame(devHandle : Longing;
Var frameHandle - Longint) : Word;

Visual Basic for Windows
K_GetADFrame Lib "ADCI16.dII" (ByVal devHandle As Long,
frameHandle As Long) As Integer

Parameters devHandle Device handle

JrameHandle Handle to A/D frame

Notes On return, frameHandle contains the handle to an A/D frame associated with the
device identified by devHandle.

40 ASO-ADC-16 User’s Guide — Rev. A

K_GetBuf

Purpose

Prototype

Parameters

Notes

Get the values of an A/D frame’s Buffer Address and Number of Samples
elements.

C
DASErr far pascal K_GetBuf{ FRAMEH frameHandle, void far * far * bufAddr,

long far * samples);

Pascal

Function K_GetBuf(frameHandle : Longint, Var bufAddr : lnteger;
Var samples : Longint) : Word;

Visual Basic for Windows

K_GetBuf Lib "ADC16.dI" (ByVal frameHandle As Long, bufAddr As Long,
samples As Long) As Integer

SframeHandle Frame handle
bufAddr Buffer Address
samples Number of Samples

On return, the following parameters conrain the value of an element in the frame

identified by frameHandle:
o bufAddr contains the value of the Buffer Address element

= samples contains the value of the Number of Samples element

Chapter 3 — Callable Funcrions 41

K_GetChn

Purpose Get the value of an A/D frame’s Start Channel element.
Prototype C
DASErr far pascal K_GetChn{ FRAMEH frameHandle, short far * chan);

Pascal
Function K_GetChn{ frameHandle . Longing Var chan : Word) : Word;

Visual Basic for Windows

K_GetChn Lib "ADC16.d1" (ByVal frameHandle As Long, chan As Integer)
As Integer

Parameters SframeHandle Handle to A/D frame

chan Start Channel. Valid values: 0, 1,...,7(m+1), where m is the
number of connected STA-EXS.

Notes On return, chan contains the value of the Starc Channel element in the frame

identified by frameHandle.

42 ASO-ADC-16 User's Guide — Rev. A

K_GetChnGAry

Purpose

Prototype

Parameters

Notes

Ger the value of an A/D frame’s Channel-Gain Array Address element.

C
DASErr far pascal K_GetChnGAry(FRAMEH frameHandle,
void far * far * chanGainArray);

Pascal

Function K_GetChnGAry(frameHandle : Longint;

Var chanGainArray : Integer) : Word;

Visual Basic for Windows

K_GetChnGAry Lib "ADCI16.dI1" (ByVal frameHandle As Long,
chanGainArray As Long} As Integer

[frameHandle Handle o A/D frame

chanGainArray Channel-Gain Array Address

On rewurn, chanGainArray contains the value of the Channel-Gain Array Address

element in the frame identified by frameHandle.

Refer to K _SetChnGAry for a description of Channel-Gain arrays.

Chapeer 3 — Callable Punctions

43

K _GetDOCurVal

Purpose Get the value of a digital ourpur frame’s Digital Output Value element.

Prototype C
DASErr far pascal K_GetDOCurVal(FRAMEH frameHandle,
fong far * DOvalue);

Pascal
Function K_GetDOCurVal(frameHandle : Longint
Var DOuvalue : Longint) : Word;

Visual Basic for Windows
K_GetDOCurVal Lib "ADCI16.dI1" (ByVal frameHandle As Long,
DQuvalue As Long) As Integer

Parameters [frameHandle Handle to digital outpur frame
DOvalue Digital Output Value
Notes On recurn, DOvalne contains the value of the Digiral Output Value element in

the frame identified by framefandle. This value represents the value thar was
specified as the DOvalue parameter for the most recent call o K_DOWrite; it is
not necessarily the value currenty at che digital outpur pore.

44 ASO-ADC-16 Users Guide — Rev. A

K_GetDOFrame

Purpose

Prototype

Parameters

Notes

Obrain the handle to a digital outpur frame.

C
DASErr far pascal K_GetDOFrame(DDH devHandle,
FRAMEH far * frameHandle);

Pascal
Function K_GetDOFrame(devHandle : Longing
Var frameHandle : Longint) : Word;

Visual Basic for Windows
K_GetDOFrame Lib "ADC16.dII" (ByVal devHandle As Long,
ByVal frameHandle As Long) As Integer

devHandle Device handle

frameHandle Handle to digiral output frame

On return, frameHandle contains the handle to a digital outpur frame associated
with the device identified by devHandle.

Since the driver does not support frame-based digical outpur operations,
K_GetDOFrame serves a very specific and limited purpose in ADC-16 Function
Call Driver programs. K_GetDOCurVal requires the handle to a digital ourpuc
frame as one of its calling arguments, and the only way to obtain a handle o a
digital output frame is through K_GetDOFrame. Consequently, if you want to
use K_GetDOCurVal, you must first call K_GetDOFrame; this is the only
circumstance in which your program should call K_GetDOFrame.

Chapter 3 - Callable Functions 45

K_GetErrMsg

Purpose Get the address of an error message string, This function is available only as a
C-language function.

Prototype C
DASErr far pascal K_GetErrMsg(DDH devHandle, short msgNum,
char far * far * errMsg);

Parameters devHandle Device handle
msgNum Error message number
errMsg Error message string
Notes On return, errMsg contains a pointer to a string that corresponds to msgNum for

the device identified by devHandle.

Refer to Appendix A for error numbers and error messages.

48 ASO-ADC-16 User’s Guide — Rev. A

K_GetG

Purpose

Prototype

Parameters

Notes

Ger the value of an A/D frame’s Gain Code element.

C
DASErr far pascal K_GetG(FRAMEH fameHandle, short far * gainCode };

Pascal
Function K_GetG(frameHandle : Longing Var gainCode : Word) : Word;

Visual Basic for Windows
K_GetG Lib "ADC16.dll" (ByVal frameHandle As Long, gainCode As Integer)
As Integer

frameHandle Handle to A/D frame
gainCode Gain Code. Valid values: 0 = 1x, 1 = 10x, 2 = 100x
On return, gainCode contains the value of the Gain Code element in the frame

identified by frameHandle.

See page 31 for the A/D voltage ranges thac correspond to each gain.

Chapter 3 — Callable Funcrions 47

K_GetStartStopChn

Purpose Get the values of an A/D frame’s Start Channel and Stop Channel elements.

Prototype C
DASErr far pascal K_GetStartStopChn(FRAMEH frameHandle,
short far * szart, shore far * stop);

Pascal
Function K_GetStartStopChn(frameHandle : Longing Var start : Word;
Var stop : Word) : Word;

Visual Basic for Windows
K_GetStartScopChn Lib "ADC16.dlIt" (ByVal frameHandle As Long,
start As Integer, stop As Integer) As Integer

Parameters SframeHandle Handle o A/D frame

start Stare Channel. Valid values: 0, 1,...,7(m+1), where m is the
number of connected STA-EXS.

stop Stop Channel. Valid values: 0, 1,...,7(m+1), where m is the
number of connected STA-EXS.

Notes On return, the following paramerters contain the value of an element in the frame
identified by frameHandle:

» start contains the value of the Start Channel element

» stap contains the value of the Stop Channel element

48 ASO-ADC-16 Users Guide — Rev. A

K_GetStartStopG

Purpose

Prototype

Parameters

Notes

Get the values of an A/D frame’s Start Channel, Stop Channel, and Gain Code
elements.

C
DASErr far pascal K_GetStartStopG(FRAMEH frameHandle, short far * stare.
short far * stop, short far * gainCode),

Pascal
Function K_GetStartStopG(frameHandle : Longint; Var start : Word;
Var stop : Word; Var gainCode . Word) : Word;

Visual Basic for Windows
K_GetStartStopG Lib "ADC16.dII" (ByVal frameHandle As Long,
start As Integer, srop As Integer, gainCode As Integer) As Integer

frameHandle Handle to A/D frame

start Start Channel. Valid values: 0, 1,...,7{m+1), where m 1s the
number of connected STA-EXS.

stop Stop Channel. Valid values: 0, 1,....7(m+1), where m i the
number of connected STA-EXS,

gainCode Gain Code. Valid values: 0 = 1x, 1 = 10x, 2 = 100x

On return, the following parameters contain the value of an element in the frame
identified by frameHandle:

w start contains the value of the Start Channel element
= stop contains the value of the Stop Channel element

» gainCode contains the value of the Gain Code element

See page 31 for the A/D voltage ranges that correspond to each gain.

Chapter 3 — Callable Funcdons 49

K _GetVer

Purpose Determine the driver revision and driver specification.

Prototype C
DASErr far pascal K_GetVer(DDH devHandle, short far * spec,
short far * version);

Pascal
Function K_GetVer(devHandle - Longing Var spec : Word;
Var version : Word) : Word;

Visual Basic for Windows
K_GetVer Lib "ADC16.d1I" (ByVal devHandle As Long, spec As Integer,
version As Integer) As Integer

Parameters devHandle Device handle
spec Driver specification
version Driver version

Notes On return, spec contains the revision number of the Keithley DAS Driver
Specification to which the driver conforms; version contains the driver’s version
number,

spec and version are two-byte integers; the high byte conrains the major revision
level and the low byte contains the minor revision level (in the version number
2.1, for example, the major and minor revision levels are 2 and 1, respectively).

Use the following equations fo extract the major and minor revision levels from
the values returned in either spec and version:

veturned value
256

1i

major revision level

returned valye MOD 256

minor revision level

where rezurned value represencs either spec or version.

50 ASO-ADC-16 Users Guide — Rev. A

K_InitFrame

Purpose

Prototype

Parameters

Notes

[nitialize a board’s A/D circuitry and set an A/D frame’s elements to their default
values.

C
DASE:r far pascal K_InitFrame(FRAMEH frameHandle)

Pascal
Function K_InitFrame(frameHandle : Longint) : Word;

Visual Basic for Windows

K_InitFrame Lib "ADC16.dll" (ByVal frameHandle As Long) As Integer
frameHandle Handle to A/D frame

K_InitFrame inictalizes the A/D circuitry on the ADC-16 that is associated with
the frame identified by frametHandle.

If an interrupt-mode A/D operation is not active, then K_InitFrame checks the
validity of the board number associated with the frame idencified by frameHandle

and then enables A/D operations.

If an interrupt-mode A/D operation is active, then K_InitFrame returns an error
that indicates that the board is busy.

Chapter 3 — Callable Funetions 31

K_IntAlloc

Purpose Allocate a buffer suitable for an interrupt-mode A/D operation,

Prototype C

DASErr far pascal K_IntAlloc(FRAMEH frameHandle, DWORD samples,
void far * far * fntAddr, WORD far ¥ memHandle),

Pascal
Function K_IntAlloc(frameHandle : Longint ; samples : Longlng;
Var intAddr : Longint ; Var memHandle : Word) : Word;

Visual Basic for Windows

K_IntAlloc Lib "ADC16.dII" (ByVal frameHandle As Long,
ByVal samples As Long, intAddr As Long, memHandle As Integer) As Integer

Parameters SrameHandle Handle to A/D frame
samples Number of samples. Valid values: 0, 1,..., 32,767
intAddr Address of interrupt buffer
memHandle Handle to interrupt buffer

Notes On return, intAddr contains the address of a buffer thar is suitable for an

interrupt-mode A/D operation of samples samples; memHandle contains a handle
to the buffer thar chis funcrion allocartes.

52 ASO-ADC-16 User's Guide — Rev. A

K IntFree

Purpose

Prototype

Parameters

Notes

De-allocate an interrupt buffer that was previously allocated with K_IntAlloc.

C
DASErr far pascal K_IntFree(WORD memHandle);

Pascal
Function K_IntFree(memHandle : Word) : Integer;

Visual Basic for Windows
K_IntFree Lib "ADC16.d1" (ByVal memHandle As Integer) As Integer

memHandle Handle to interrupe buffer

K_IntFree de-allocates the interrupt buffer identified by memHandle.

Chaprer 3 — Callable Functions 53

K_IntStart

Purpose Start an interrupt-mode A/D operation.

Prototype o
DASErr far pascal K _IntStart(FRAMEH frameHandle);

Pascal
Function K_IntStard frameHandle - Longint) : Word;

Visual Basic for Windows
K_IntStart Lib "ADCI16.dI1" (ByVal frameHandle As Long) As Integer

Parameters frameHandle Handle to A/D frame

Notes K_IntScare starts the interrupt-mode A/D operation defined in the frame
identified by framehandle.

See page 29 for a description of the formar in which the driver stores the
acquired values.

See page 13 for a discussion of the programming tasks associated with interrupe-
mode A/D operations.

54 AS0-ADC-16 Users Guide — Rev. A

K_IntStatus

Purpose

Prototype

Parameters

Notes

Determine the status of an interrupt-mode A/D operation.

C
DASErr far pascal K_IntStatus(FRAMER frameHandle, short far * status,
long far * samples);

Pascal
Function K_[ntStatus(frameHandle : Longing Var starus : Word;
Var samples : Longint) : Word;

Visual Basic for Windows
K_IntStatus Lib "ADC16.d11" (ByVal frameHandle As Long, status As Integer,
samples As Long) As Integer

frameHandle Handle to A/D frame

Starus Code that indicates status of interrupt operation. Valid values:
0 = Interrupt-mode A/D operation idle
1 = Interrupr-mode A/D operation active

samples Number of samples already transferred to interrupt buffer
On return, szarus contains a code that indicates the status of the Interrupe
operation defined by the frame identified by frameHandle; samples contains the

number of samples already transferred to the Interrupt buffer ar the time the
function was called.

Chapter 3 — Callable Functions 55

K_IntStop

Purpose Abort an interrupt-mode A/D operarion,

Prototype C
DASErr far pascal K_intStop(FRAMEH frameHandle, short far * starus,
long far * samples);

Pascal
Function K_IntStop(frametHandle : Longing Var status : Word;
Var samples : Longine) : Word;

Visual Basic for Windows
K_IntStop Lib "ADC16.dI" (ByVal frameHandle As Long, status As Integer,
samples As Long) As Integer

Parameters [frameHandle Handle to A/D frame

StAtHs Code that indicates status of interrupt operation. Valid values:
0 = Interrupt operation idle
1 = Interrupt operation active
2 = Data overrun (see note below)

samples Number of samples already cransterred to interrupt buffer
Notes K_IntStop aborts the interrupt operation defined by the frame identified by

SframeHandle. On return, status contains a code that indicates what the status was

when the function was called; samples contains the number of samples already

transferred to the interrupt buffer when the function was called.

Data overrun occurs if data is lost when the transfer of daca becween the board

and the PC’s memory is slower than the rate at which the board is acquiring

data.

K_IneStop does nothing if an interrupt-mode A/D operation is noc in progress.

56 ASO-ADC-16 Users Guide — Rev. A

K_MoveDataBuf

Purpose

Prototype

Parameters

Notes

Transfer acquired A/D samples between a memory buffer and an array.

C
DASErr far pascal K_MoveDataBuf(inc far * dest, int far * sonrce,
unsigned int samples);

Pascal
Functon K_MoveDataBuf{ dest : Longint; source : Longing
samples - Word) : Integer;

Visual Basic for Windows
K_MoveDataBuf Lib "ADCI16.dIl" (dest As Any, source As Any,
ByVal samples As Integer) As Integer

dest Address of destination buffer
souree Address of source buffer
samples Number of samples to transfer

K_MoveDacaBuf moves samples samples from the buffer ac sonrce to the buffer

ar dest.

Although this function is valid for all of the supported languages, it is intended
primarily for use with those languages (such as Visual Basic) that do not provide
a convenient method to access memory directly. This function is not needed in
languages (such as C) that provide access to memory buffers through pointers.

Chaprer 3 — Callable Functions 37

K_SetBuf

Purpose Set the values of an A/D frame’s Buffer Address and Number of Samples
elements.
Prototype o

DASErr far pascal K_SetBuf{ FRAMEH frameHandle, void far * bufAddr,
long samples);

Pascal
Function K_SetBuf{ frameHandle : Longint bufAddr : Longing
samples : Longint) : Word;

Visual Basic for Windows
K_SetBuf Lib "ADC16.d1" (ByVal frameHandle As Long, bufAddr As Any,
ByVal samples As Long) As Integer

Parameters SframeHandle Handle to A/D frame
bufAddr Buffer Address
samples Number of Samples

Notes K_SetBuf assigns values to the following elements in the frame identified by
frameHandle:

» the Buffer Address element is assigned the value in bufAddr
= the Number of Samples element is assigned the value in samples

58 ASO-ADC-16 Users Guide — Rev. A

K_SetChn

Purpose

Prototype

Parameters

Notes

Set the value of an A/D frame’s Start Channel element.
C
DASE¢r far pascal K_SetChn(FRAMEH frameHandle, short chan);

Pascal
Function K_SetChn(frameHandle . Longint; chan : Word) : Word;

Visual Basic for Windows
K_SetChn Lib "ADC16.dII" (ByVal frameHandle As Long,
ByVal chan As Integer) As Integer

frameHandle Handle to A/D frame

chan Starc Channel. Valid values: 0, 1,...,7{m+1), where m is the
number of connected STA-EXS.

K_SetChn sets the value of the Start Channel element to chan in the frame

identified by frameHandle.

Chaprer 3 — Callable Functions 59

K_SetChnGAry

Purpose

Prototype

Parameters

Notes

Set the value of a frame’s Channel-Gain Array Address element.

C
DASErr far pascal K SetChnGAry(FRAMEH frameHandle,
void far * chanGainArray);

Pascal

Function K_SetChnGAry(framefiandle : Longing

Var chanGainArray : Integer) : Word;

Visual Basic for Windows

K_SetChnGAry Lib "ADC16.d1l" (ByVal frameHandle As Long,
chanGaindrray As Integer) As Integer

SframeHandle Handle to A/D frame

chanGainArray ~ Channel-Gain Array Address

K_SetChnGAry sets the value of the Channel-Gain Array Address element to

chanGainArray in the frame identified by frameHandle.

A Channel-Gain Array defines two characteristics of an A/D operation:

= the sequence in which the input channels are sampled and,

= the gain applied to each channel in that sequence.

A Channel-Gain Array can define up to 256 randomly sequenced channel-gain
pairs. Adjacent pairs can specify the same channel (with equal or unequal gains),

The figure below illuscrates the required format of a channel gain array.

The gain must be specified as a gain code. Refer to K_SetStartStopG on page 63
for valid gain codes and channel numbers.

Byte 0 o 3 4 5 2N-1 | 2N
Value N chan gain | chan | gain chan | gain
of paira pair 1 pair 2 pair N

60 ASO-ADC-16 User's Guide — Rev. A

\

W
o

"
)

Purpose

Prototype

Parameters

Notes

Set the value of an A/D frame’s Gain Code element.

C
DASErr far pascal K_SetG(FRAMEH frameHandle, short gainCode);

Pascal
Function K_SetG(framefandle . Longint; gainCode : Word) : Word:

Visual Basic for Windows
K_SetG Lib "ADC16.dIl" (ByVal frameHandle As Long,
ByVal gainCode As Integer) As Integer

SJrameHandle Handle to A/D frame

gainCode Gain Code. Valid values; 0 = 1x, 1 = 10x, 2 = 100x
K_SetG sets the Gain Code element to gainCode in the frame identified by
SframeHandle.

See page 31 for the A/D voltage ranges that correspond to each gain.

Chapter 3 ~ Callable Functions 61

Purpose Sec the values of an A/D frame’s Start Channel and Stop Channel elements.

Prototype C
DASErr far pascal K_SetStartStopChn(FRAMEH frameHandle, short start,

short szop);

Pascal
Function K_SetStartStopChn(framefiandle . Longing; starr : Word,

w1y wr o1
sgp o owora) o WOIL,

Visual Basic for Windows
K_SetStartStopChn Lib "ADC16.d11" (ByVal frameHandle As Long,

DALY o AL T T AL o A T N A
Dy val siarl AS i[llZCgC[', Dyval s2op AS INIEEET) AS INEECT

Parameters frameHandle Handle to A/D frame

start Start Channel. Valid values: 0, 1,....,7(m+1}, where m is the
number of connected STA-EX8.

sEnd Crmin (T hamsa T vValid aliiase N1 7
Ik \JLUIJ SAldCl,. vdilud VAdIUCs, U, 1o,/

number of connected STA-EXS8.

Notes K_SetStartStopChn assigns values to the following elements in the frame
Al

1ha o A1 .
(R U)’ JII&I-H-('J LEETECAAL .

= the Start Channel element is assigned the value in stars

» the Stop Channel element is assigned the value in stop

Use K_SetChnGAry to specify a non-sequential channel-scanning sequence.

62 ASO-ADC-16 User’s Guide — Rev. A

K_SetStartStopG

Purpose

Prototype

Parameters

Notes

Set the values of an A/D frame’s Starc Channel, Stop Channel, and Gain Code
elements.

C
DASErr far pascal K_SetStarcStopG{ FRAMEH frameHandle, short start,
short stop, short gainCode);

Pascal
Function K_SetStartStopG(frameHandle . Longint; start : Word;
stop « Word; gainCode . Word) : Word;

Visual Basic for Windows

K_SetStartStopG Lib "ADC16.d11" (ByVal frameHandle As Long,

ByVal starr As Integer, ByVal stop As Integer, ByVal gainCode As Integer)
As Integer

frameHandle Handle to A/D frame

start Start Channel. Valid values: 0, 1,....7(m+1), where m is the
number of connecred STA-EXS.

stop Stop Channel. Valid values: 0, 1,...,7(m+1), where m is the
number of connected STA-EXS.

gainCode Gain Code. Valid values: 0 = 1x, 1 = 10x, 2 = 100x

K_SetStartStopG assigns values to the following elements in the frame identified

by frameHandle:

= the Start Channel elemenc is assigned the value in start
« the Stop Channel element is assigned the value in szop

« the Gain Code element is assigned the value in gainCode

Use K_SetChnGAry to specify different gains for different channels or to specity
an un-ordered channel-scanning sequence.

See page 31 for the A/D voltage ranges that correspond to each gain.

Chapter 3 — Callable Funcrions 63

K_SyncStart

Purpose Start a synchronous-mode A/D operation.
Prototype C
DASErr far pascal K_SyncStart{ FRAMEH frameHandle);

Pascal
Function K_SyncStart(framelandle « Longint) : Word;

Visual Basic for Windows
K_SyncStart Lib "ADC16.d1" (ByVal frameHandle As Long) As lnteger
Parameters frameHandle Handle to A/D frame
Notes K_SyncStart stares the synchronous-mode A/D operation defined in the frame
identified by framebandle.

See page 29 for a description of the formart in which the driver stores the
acquired values.

See page 15 for a discussion of the programming tasks associated with
synchronous-mode A/D operations.

64 ASO-ADC-16 User's Guide — Rev, A

4.1

File 1/0O Driver

Overview

The File I/O Driver serves as an interface between your application
program and the board’s acquisition & control operations. The driver has
its own set of File I/O Commands. Each of these English-like commands
corresponds to a board operation. Your program can use these commands
to perform a variery of acquisition & control operations,

The driver acts like a file device; consequenty, your program can use ity
own file [/O functons (for example, INPUT and PRINT if you are
programming in BASIC) to communicate with the driver. To execute a
board operarion, your program outputs a File /O Command to the driver.
The driver interprets the command, executes the corresponding operation,
and stores the result in its internal buffer. Your program can then inpur
this result from the driver.

Frogram uges ite Drver interprete EXECULES COrresponding
output function command.. board operation..
to send command

to driver

File 1/O
Driver

application |
program

<l
-
Program uees ite
input function to

retrieve result ..Lhen stores result
from driver inite internal buffer

Chaprer 4 — File /O Driver 65

Driver components The File 1/O Driver consists of two components: the driver program
(MADC16.EXE) and one of the Virtual Instrument programs (VEEXE or
VITASK.EXE}, You can use either of the Virtual Instrument programs.
These two programs differ in the amount of memory each uses and in
their ability to provide access to the Pop Up Control Panel (refer to the
ADC-16 User’s Guide for a complete description of the Pop Up Conrrol
Panel).

VLEXE
VLEXE uses approximately 51 K of RAM. If your program requires access
to the Pop Up Control Panel, you must load VI.EXE.

VITASK.EXE

VITASK.EXE uses approximately 21 K of RAM. If your program does not
require access to the Pop Up Control Panel, you can load either
VITASK.EXE or VI.EXE.

4.2 Loading and unloading the driver
As described in the previous section, the driver consists of the driver
program (MADCI6.EXE) and one of the Vircual Inscrument programs
(VLEXE or VITASK.EXE). The order in which you load these programs is
significanc.

To load the driver, load the driver programs in the following order:
VI.EXE or VITASK.EXE
MADCT6.EXE,

To unload the driver, unload the driver programs in the following order:
MADC16.EXE
VI.LEXE or VITASK.EXE.

To load or unload the driver, you must execute two separate DOS
command lines {one for either VI.EXE or VITASK.EXE, one for
MADC16.EXE). There are two ways to execute these command lines:

» You can enter the command lines at the DOS prompt, or

= You can create a barch file that contains the command lines and then
run the bacch file.

In either case, make sure that you execure the commands in the correct
order,

66 ASO-ADC-16 Users Guide — Rev. A

Command line syntax

The command line syntax descriptions presented in this section use the
following typographic conventions:

[} — Entries enclosed between square brackets are mandarory. Do not
include the brackets in the command line.

{ } — Entries enclosed between curly brackets are optional. To include
the optional entry in the command line, specify only what is between
the brackets (do not include the brackets in the command line).

() — Entries enclosed in parentheses represent the valid values for a
command argument. The valid values are separated by commas. Specify
only one of the valid values from the group (do not include the
parentheses in the command line).

The case of the letters in an entry is not significant; entries can be
specified in uppercase, lowercase, or mixed case.

Entries shown in boldface type must be specified exactly as shown
(except for case).

Entries shown in /ralic describe the type of entry that should be
specified. For example, if the entry is given as filename, then the entry
you spectfy must be a valid filename (TEST.DAT, for example).

Chapter 4 — File [/0Y Driver &7

Vi syntax

VITASK syntax

{drive(:]HparA VI {[mono]} {[/HK=keyl} {{/MK=keylt {[/SK=key]} {[/U]}

[mono]
Specifies that VI will run in Monochromatic mode. If mono is not
specified, VI will assume that it is running on a color monitor,

[/HK=key]
(Help Key) Specifies the key that invokes the Pop Up Control Panel
Help screen. key must be one of the following;

AB, ... Z
01 ..,9

F1, F2, ..., F10
Tab, Esc, or ?

or any of the above preceded by Cutl or Curd Al

examples:
[HK=F2 specifies [F2] as the Help Key
{HK=Alt Tab specifies | Alt] — [Tab) as the Help Key

[/MK=fey]

(Mode Select Key) Specifies the key that switches the Pop Up Control
Panel to Keyboard Control Mode. See explanation of [/HK=| above for
valid £ey values.

[/SK=fey]
(Inscrument Select Key) Specifies the key that cycles through multiple
ADC-16 boards. See explanation of [/HK=] above for valid &ey values.

(/U]

Unloads VI from memory.

{drivel:]}{parMVITASK {[/U]}

[/U]
Unloads VI from memory.

68 ASO-ADC-16 Users Guide — Rev. A

MADCI16 syntax

Example

{drive[:1} {patht MADCIG6 {/F=cfgFile} {/PK=key} {/Name=boardName} {/U)}

{/F=cfeFile}

Specifies the board configuration file.

{PK=keyl

(Pop Up Control Panel Key) Specifies the key that invokes the Pop Up
Control Panel. See the description of [fHK=] under VI syntax for the valid
key values. The default Pop Up Control Panel Key is Ale F6.

{/Name=boardName}

(Board Name) Assigns a user-specified name to the board thac is at the
address specified in che driver configuration file. You must use /Name=
when you have two boards installed and you want to simultaneously
display the Pop Up Conrrol Panel for both of them. boardName must
contain one to eight characters; any character that is valid for a DOS hle
name can be used.

{1l
Unloads MADCI16 from memory.

Suppose the following conditions exist:
= your program needs access to the Pop Up Control Panel

= you want the driver configured according to the information in a
configuration file named CUSTOM.CFG

» VLEXE, MADCIG.EXE, and CUSTOM.CEFG are in the CAADC16
direcrory

The following command lines load the File 1/O Driver appropriately for
the conditions listed above:

C:VADCLIGAVI
C:VADCI6A\MADCL16 /F=C:\ADC16NCUSTOM. CFG

Chapter 4 — File VO Driver 69

4.3 Language-specific programming notes

This section provides specific programming guidelines for each of the
supported languages. Additional programming information is available in
the ASO example programs. Refer to the FILES.DOC file for names and
descriptions of the ASO example programs.
Borland Turbo C

Supported versions 2.0 and higher

Opening the driver The code listed below shows the correct procedure to open the driver and

clear its internal buffer. This code references the PrintError error handler
defined under Trapping Errors,

/* Open Driver for reading and writing */
ADC16 = fopen{ "$ADCIG","r+");

/* Check for Errcr */
if (ADC16 == NULL}) PrintError()

/* Clear the driver’'s internal buffer =/
fprintf{ ADClE, "Clear");
fflush (ADC16);
if (errno !=0) return{l):

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Borland Turbo C:

= Use fprincf() to send commands to the driver.
= Use fges() o retrieve resules from the driver.
» Call rewind{) between successive calls o fprinef() and fpues().

= Call fclose() and freopen() between successive calls to fgets() and
fprintf().

» Call flush{) after an fprintf() to insure that the command senc by
fprintf() is flushed from the DOS buffer.

70 ASO-ADC-16 Users Guide — Rev. A

Trapping errors

The following code demonstrates how to send a command and retrieve the

results:

/* Repeat until Status=0 (DONE) */
do
{
/* Check log status */
fprintf{ ADC16, "Read Logstat®);
ffiush (ADC16):
/* 1f error print it, then exit with error =/
if (errno != 0)
{
Printtrror{);
exit(l)
}
/* Rewind required between successive input and ocutput */
rewind(ADC16);
/* If error on read then exit */
if (!fgets (Str, 80, ADC16)) exit(l);
/* Convert data to integer */
sscanf(Str,"%d",Status)
}
while{ Status != 0);

The following code defines an error handler:

void PrintError(}
{
/* Rewind required between successive input and ocutput */
rewind(ADC16);
/* Get error number */
if (!fgets (Str, 80, ADC1G})
/* Convert data to integer */
sscanf(Str,"%d",ErrNum)
/* Get error number */
if (!fgets (Str, 80, ADCleM)
/* Convert data to integer */
sscanf(Str,"%s" . ErrStri)
/* Get errar number */
if (!'fgets (Str, 80, ADC16)}
/* Convert data to integer */
sscanf(Str,"%s",ErrStr2)
/* Print error results */
printf("Error Number A\n%x ErrNum);
printf({ "\nkrror About %#s", ErrStrl);
printf{ "\nTotal Line %s", ErrStr2);

Chaprer 4 — File /O Driver

71

Microsoft C

Supported versions 4.0 and higher

Opening the driver The code listed below shows the correct procedure to open the driver and
clear irs internal buffer. This code references the PrintError error handler

defined under Trapping Errors.

/* QOpen Driver for reading and writing */
ADC1E = fopen("$ADCIA","r+");

/* Check for Error */
if (ADC16 == NULL) PrintError{(};

/* Clear the driver’'s internal buffer */
fprintf(ADCl6, "Clear”);
if (fflush (ADC16) == EOF) return(l};

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Microsoft C:

s Use fprintf{ } to send commands o the driver.
» Use fgets() to retrieve results from the driver.

» Call rewind(} between successive calls to fprintf() and fpurs() and
between successive calls to fputs() and fprinef().

o Call fllush() after fprincf{) to insure that the command sent by
fprinef{) is flushed from the DOS buffer.

The following code demonstrates how to send a command and retrieve the
resules:

/* Repeat until Status=0 (DONE) */
do
{
/* Check log Status */
fprintf(ADC16, "Read Logstat");
/* If error print it, then exit with error */
if (fflush (ADC16) == EOF)
{
PrintError();
exit(l)
!
/* Rewind required between successive input and cutput */
rewind(ADC16);
/* 1If error on read then exit */
if (!fgets (Str, B0, ADC16)) exit(l);
/* Convert data to integer */
sscanf(Str,"%d",Status)
}
while(Status != 0 J);

72 ASO-ADC-16 User's Guide —— Rev. A

Trapping errors

Supported versions

Opening the driver

The following code defines an error handler:

void PrintError()

{
I

/*

/*

/‘*

/*

/*

/‘k

/1(

Rewind required between successive input and output */

rewind(ADC16);
Get error numher */

if (!fgets (Str, 80, ADCl6))

Convert data to integer */
sscanf(Str,"%d",ErrNum)
Get error number */

if (!fgets (Str, 80, ADCl6))

Cenvert data to integer */
sscanf(Str,"%s",ErrStrl)
Get error number */

if (!fgets (Str, 80, ADC16))

Convert data to integer */
sscanf(Str,"%s",ErrStr2)
Print error results */

printf{ "Errcr Number \n%x

ErrhNum):

printf("\nError About %s", ErrStrl);

printf("\nTotal Line %s",

Borland Turbo Pascal

4.0 and higher

Errstr2);

The code listed below shows the correct procedure to open the driver and

clear its internal buffer. This code references the GetError error handler

defined under Trapping Errors.

(*

Main =}
BEGIN

Assign(ADCLI6IN, “$ADC167):
Assign(ADCLEOUT, "$ADC16'};

{* Input, PASCAL has no read/write text files *)

Reset(ADC1EIN);

{* OQutput, PASCAL has no read/write text files *)

Rewrite(ADC160UT);

Chapter 4 - File O Diriver

73

Sending commands/
Retrieving results

Trapping errors

The following notes provide general guidelines for sending commands and
retrieving results with Borland Turbo Pascal:

Use Writeln() to send commands to the driver.
Use ReadIn() ro retrieve results from the driver.

All strings used for retrieving data from the driver must be declared as

STRINGI[255]).

The following code demonstrates how to send a command and retrieve the

resulrs:
Status = 1;
(* Wait for status to be DONE *)

(‘k

WHILE Status <> 0 DC

BEGIN

writeln(ADC160UT, "Read Logstat’'};
IF (I0Result <> 0} THEN GetError ;
Status was declared as integer *)
Readln(ARC16IN,Status);

END

The following code defines an error handler:

PROCEDURE GetErrcr ;

BEGIN

readln(ADCL6IN,ErrNum);
readln(ADCI6IN,AStr);
readIn(ADCLGIN,BStr);

writeln('Driver Error Has Occurred !!');
writeln(*MADCL1E Error Number => 7, ErrNumj;
writeln{ Error => ",BStr):

writeln{’0On Command Line of => ’,Astr);
Halt (1)

END:

74 ASCO-ADC-16 User's Guide — Rev. A

Supported versions

Opening the driver

Microsoft Pascal

3.0 and higher

Microsoft Pascal programs communicate with the driver via a file handle of
the Pascal type TEXT. This type of file handle allows files to
simultaneously be open for input and output. Consequently, only one file
handle is required and should be ASSIGNed for both input and ourput.

The code listed below shows the correct procedure to open the driver and
clear its internal buffer. This code references the GetError error handler
defined under Trapping Errors.
(* Main *)
BEGIN
{* Open device driver for 1/0 randem access *)
Assign(ADC16 , $ADCl6");
(* Direct Made insures flush after WritelLn *;
ADC16.MODE := DIRECT;
{* Rewrite opens and rewinds the file *)
Rewrite{ADC16);

Chapter 4 — File /O Driver 73

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Microsoft Pascal:

= Use Writeln{) to send commands to the driver.
= Use Readln() to retrieve results from the driver.

= All strings used for retrieving data from the driver muse be declared as
STRINGI[255].

The following code demonstrates how to send a command and retrieve the
results:

Status := 1;

(* Wait for status to be DONE *}
WHILE status <> 0 DO
BEGIN

(* Rewinds file and flushes previous contents *)}
Seek(ADC16,1);

(* Clear I/0 error flag before all file ops *)
ARC16,ERRS := 0 ;

{(* Trap Errors Instead of Exit To Dos *)
ADC16.TRAP = TRUE ;
writeln(ADC16, 'Read Logstat’};
Seek(ADC16,1);

IF (ADCl6.ERRS <> 0} THEN
GetError ;

(* Rewrite opens and rewinds the file *}

Rewrite{ADC16};
ADC16.ERRS := 0
ADC16.TRAP := TRUE ;

Seek(ADC16,1)

(* Status was declared as intager *)
Readln(ADC16,Status);

Rewrite(ADCL6)
END

786 ASO-ADC-16 Users Guide — Iev. A

Trapping errors The following code defines an error handler:

PROCEDURE GetError;

BEGIN

{* Rewinds file and flushes previous contents *)
Seek(ADCLG,1);
ADCL16.ERRS := 0 ;

(* Clear I/0 Error Flag Before A1l File Ops. *)

(* Trap errors instead of exit To DOS =)
ADC16.TRAP := TRUE;

(* Read error number string from driver *
readln(ADC16,EN);

(* Read original command Yine from driver *;
readln(ADCLS , AString);

(* Read Error Description From Driver =}
readln(ADC16,BString};
writeln(chr{/7)); {* BELL =)
writeln{'Driver Error Has Occurred !!°);
writeln(ADC-16 Error Number => ', EN);
writeln('Error => ",BString);
writeln ('0n Command Line => ', Astring);
Abort('Program terminated due to error. . .',0.0:

Interpreted BASIC

Supported versions All

Opening the driver The following code shows the correct procedure to open the driver and
clear its internal buffer:

150 ° Give Line number to goto 1f an error occurs
200 ON ERROR GOTO 5000

250 " Establish File Token #1 with $ADClé for cutput
260 ' A1l commands will be output using Token #1

300 OPEN "$ADCL6" FOR OQUTPUT AS {1

350 ' Clear ADCl6 File I[/0 return buffer

400 PRINT #1, "CLEAR"

450 Establish File Token #Z with $SABCLE for input
460 " A1l inputs will be read using Token #2

500 OPEN "$ADCL6"™ FOR INPUT AS #2

Chapter 4 — Fite /O Priver

Sending commands/
Retrieving results

The following notes provide general guidelines for sending commands and
retrieving results with Interpreted BASIC:

a Use PRINT to send commands to the driver.

= Use INPUT to rerrieve results from the driver.

The following code demonstrates how to send a command and retrieve the

resules:

1600

1010
1020

Trapping errors

5000
5010
5020
5030
5040

5050

5060
5070

5080
5090
5100
5110
5120

5130
5140

78 ASO-ADC-16 Users Guide —

PRINT #1,"READ LOGSTAT"

INPUT #2, ST$
IF VAL(ST$)<>0 goto 1010

The following code defines an error handler:

Beep

IF ERR=75 GOTO 5060
IF ERR=68 GOTO 5060
IF ERR=57 GOTO 5060
[F ERR = 62 GOTO 5130

Print ERR : RESUME

INPUT #2,EN
LINE INPUT #2,A%

LINE INPUT 42, B
PRINT "Error number ":EN

PRINT "ERROR - "Bf

PRINT "On command tine of ";AS%

STGP
PRINT "Data Not Available"
STGP

Rev. A

" Send command which will

fill Device’'s Return Buffer

" wWith Status.

Read status into string.
If the VYalue of Status is
not zero, then AD is busy.

" Wait for status to be done.

" START OF ERROR HANDLER
" Signal error.

GWBASIC may return

75, 68, or A7 for

a SYNTAX error.

Error 62 is an attempt

" to read from a device that

has no data to read.
If none of the above, then

" error is not from driver.

Read driver error #.
Read part of line that
contained error.

" Read entire line as

received.
Print info received from
from syntax error.

" Stop execution

Print error 62 message

Supported versions

Opening the driver

Sending commands/
Retrieving results

QuickBASIC
All

The following code shows the correct procedure to open the driver and
clear its internal buffer:

ON ERROR GOTO ErrHandler " Give line number to gote
" if an error occurs,
OPEN "$ADC16" FOR OUTPUT AS #1 " Establish file token {1

"with $ADCI6 for output.
" A1l commands will be output
" using token {1,

PRINT #1, "CLEAR" " Clear ADC16 file 1/0
" return buffer.
OPEN "$ADC16" FOR INPUT AS #2 ' Establish file token #2

" with $ADC16 for input.
" A1l inputs will be read
usirg token #2.

The following notes provide general guidelines for sending commands and
retrieving results with Quick BASIC:

» Use PRINT to send commands to the driver.
» Use INPUT to retrieve results from the driver.

The following code demonstrates how to send a command and retrieve the
results:

WaitForDone:
PRINT #1,"READ AD STATUS" * Send command which will
> fi11 device return buffer
" with Status.
INPUT #2, ST$ * Read Status into string.
IF VAL(ST$3<>0 goto WaitForDone *If the value of status
" i3 not zero then AD
is busy; wait for Status
to be done.

Chapter 4 — File /O Diriver 79

Trapping errors The following code defines an error handier:

ErrHandler:

Beep

IF ERR=75 GOTO SyntaxError
IF ERR=68 GOTO SyntaxErraor
IF ERR=57 GOTO SyntaxError

" Signal error.

QuickBASIC may return

75, 58, or 67 for
" a SYNTAX error.

[F ERR = 62 GOTC DataQutError Error 62 is an attempt to
read from a device that has
" no data to read.

If none of the above, then

error is not from driver.

Print ERR : RESUME

SyntaxError:
INPUT #2,EN Read driver error .
LINE INPUT #2,A$ ' Read part of line that
" contained error.
Read entire line as
received.
Print info received from
from syntax error.

LINE INPUT {2, B
PRINT "Errer number ";EN

PRINT "ERROR - "B$%
PRINT "On command 1ine of ";A$

STOP " Stop execution.
DataQutError:

PRINT "Data Mot Available" * Print error 62 message.

STCP

80 ASO-ADC-16 Users Guide — Rev. A

3.1

Setup and
Initialization

A/D operations

File /O Commands 5

Functional grouping

The File [/O Commands can be logically grouped according to the
functionality that each provides. This section lists each command as a
member of one of the following groups:

« Setup and Initialization
« A/D operations
= Pop Up Control Panel

Clear
Clears all daca that the driver has prepared for your program’s next input
operation.

ADStart
Enables A/D acquisition.

ADStop
Disables A/D acquisition.

Read ADType
Returns the A/D transfer mode in which the next A/D operation will
exectite,

Chapter 5 — File /O Commands 81

A/D operations
(cont’d)

Read Channel
Returns the A/D value acquired on a specified channel.

Read Gain

Returns a code thart indicates the current global gain.

Read Level

Returns the current interrupe level.

Read {Mode/LogFile/Date/Block/LogStat}
Returns the conditions that define the nexr StartLog,

Read Range
Returns the current full-scale A/D range.

Read Startchannel
Returns the channel number of the first channel in the current
channel scan.

Read Stopchannel
Returns the channel number of the last channel in the current
channel scan,

Set ADType
Specifies the A/D cransfer mode in which the next A/D operation will
exectte.

Set Gain
Sets the global gain.

Set Level
Sets the interrupe level to be used for the next A/D operation.

Set {Mode/LogFile/Date/Block/LogStat}
Sets conditions that define the next StartLog,

82 ASO-ADC-16 User's Guide — Rev. A

A/D operations
(cont’d)

Pop Up Control Panel

Set Saartchannel
Specifies the first channel that will be scanned during the next

A/D operation.

Set Stopchannel

Specifies the last channel that will be scanned during the next A/D
operation.

StartLog
Writes the current A/D dara into a file.

StopLog
Stops current logging operation.

Hide
Hides the Pop Up Control Panel.

Lock
Disables keyboard and mouse control of the Pop Up Control Panel.

Read Units
Returns the units that the Pop Up Control Panel will use to display data.

Set Units
Sets the units that the Pop Up Control Panel will use to display data.

Show
Causes the display of a specified panel of the Pop Up Control Panel.

Unlock
Enables keyboard and mouse control of the Pop Up Control Panel.

Chapter 5 — File HO Commands 83

5.2 Cdm mand reference

The following notes describe the conventions and standard terminology
used in the remainder of this chapter:

About Syntax entries = The Syntax heading for each command lists two lines. The first line is
the standard form of the command. The second line is the abbreviared
form of the command. The abbreviated form shows the minimum
characters in each keyword that must be present in order for the driver
to recognize the command. The driver recognizes both forms; the
abbreviated form is provided as a convenience.

= Se is shown as the minimum abbreviation for Set keyword. However,
Set (or its abbreviation Se) can be omitted from any command whose
standard form includes the Set keyword. For example, Set ADType can
be specified as ADType.

= {1} - Curly brackets enclose a set of command keywords from which
one must be selected to define the command; keywords are separated by
a backslash. For example, Read {Mode/LogFile/Date/Block/LogStat}
represents five commands: Read Mode, Read LogFile, Read Date,
Read Block, and Read LogStat.

= () — Entries enclosed in parentheses are constant arguments (see note
about variable arguments below). The constant arguments are separated
by commas. The constant arguments must be specified exactly as they
are shown. For example, Set Units (ADcodes,Volts) indicates thar the
Set Units command takes a single argument, and thar argument must
be either ADcodes or Volts,

» Variable arguments are shown in 7zalic and describe the type of value
that should be specified. For example, filename indicates that the
argument should represent a valid hlename.

84 ASO-ADC-16 Users Guide — Rev. A

Format of
returned values

Gain Codes and
A/D input ranges

“Returns” means that the driver executes the command and stores the
result in its internal buffer. Your program can retrieve this result from the
driver by using one of your programming language’s input functions.

All of these results are returned as ASCII text strings. Many of these text
strings, however, represent decimal integers. You should wrire your
program so that it interprets each result appropriately.

The gain and the A/D full-scale range determine the A/D inpuc range (the
A/D full scale range is specified by the driver configuration file). The table
shown below lists the A/D inpur range that corresponds to each gain/full-
scale range combination.

. A/D input range for A/D input range for
s +3.2767 V full-scale range +5.0 V full-scale range
1 +3.2767 V 5V

10 +327.67 mV +500 mV
100 +32.767 mV +50 mV

Chaprer 5 — File /O Commands 85

ADStart

Syntax ADStart
ADStart
Description Enables A/D acquisition.
ADStop
Syntax ADStop
ADStop
Description Disables A/[D acquisition.
Clear
Syntax Clear
Cl
Description Clears all data that the driver has prepared for your program’s nexc input
operation,
Notes Since some versions of DOS do not call the driver when your program

issues an Open, the driver might contain input-ready data that was
prepared by a previous program. Consequently, you should issue a Clear
immediately following any Open.

86 ASO-ADC-16 Users Guide — Rev. A

Hide

Syntax Hide
Hi

Description Hides the Pop Up Control Panel.

Notes Hide is ignored if VITASK (instead of VI) was loaded immediately before
MADCI16 was loaded; refer to page 66 for a description of the differences
between V1 and VITASK.

Show cancels the effect of Hide.

Lock

Syntax Lock
lo

Description Disables keyboard and mouse control of the Pop Up Control Panel.

Notes Use Unlock to cancel the effect of Lock.

Read ADType

Syntax

Description

Return codes

Notes

Read ADType
Re ADT

Returns a code that indicates the currenc A/D transfer mode.

0 = Synchronous-mode
1 = Interrupt-mode

The current A/D transfer mode is the mode specified by the most recently
issued Set ADType.

Chapter 5 — File /O Commands 87

Read Channel

Syntax Read Channel channef
Re Ch channel

Description Rerurns the A/D value acquired on the channel specified by channel. The
valid values for channel are 0, 1,...,7.

Notes The curtrent units and the current gain (as specified by the most recently
issued Set Units and Set Gain, respectively) determine the implied units of
the returned value as follows:
= If the current units = Volts and the current gain = 1, then che value is

returned in units of Volts.
= If the current units = Volts and the currenc gain = 10 or 100, then the
value is returned in units of MilliVoles.

Read Gain

Syntax Read Gain
Re Ga

Description Returns the current global gain.

Return codes

Read Level

1, 10, 100. Refer to the table on page 85 for the A/[) input ranges that
correspond to each of these gains,

Syntax

Description

Notes

Read Level
Re Lev

Returns the current interrupe level.

The current interrupt level is defined by the value of the level argument
specified in the most recently issued Set Level.

88 ASO-ADC-16 Users Guide — Rev. A

Read {Mode/LogFile/Date/Block/LogStat)}

Syntax Read Mode
Re Mo

Read LogFile
Re Logfile

Read Date
Re Da

Read Block
Re Bl

Read LogStat
Re Logstat

Description Read Mode
Returns the value of the mode argument specified in the most recently
issued Ser Mode. The value of mode represents the mode (New, Append or
Overwrite} in which the data will be written ro the data file by the next

Surtl.og,

Read LogFile

Returns the filename argument specified in the most recently issued

Set LogFile. filename represents the name of the dara file that will be used
by the next SuartLog.

Chapter 5 — File I/0 Commands 89

Read {Mode/LogFile/Date/Block/LogStat} (cont’d)

Return codes

Read Date
Returns the date argument specified in the most recently issued Set Date.
date indicates if date stamping is enabled.

Read Block

Returns the block argument specified in the most recently issued Set Block.
block represents the number of data blocks that will be logged by the next
Sart Log,

Read LogStat
Returns thC current lOg status.

Read Mode
0 = New

1 = Qverwrite
2 = Append

Read Date
0 = Date stamping Off
1 = Date stamping On

Read LogStat
0 = Logging Off
1 = Logging On

Read Range
Syntax Read Range
Re Ran
Description Returns a code that indicates the current A/D full-scale range.

Return codes

+3.2768 V
+5.0V

- o
I

Q0 ASO-ADC-16 Users Guide — Rev. A

Read Startchannel

Syntax

Description

Notes

Read Startchannel
Re Sta

Returns the channel number of the first channel in the current channel
scan.

The first channel in the current scan is defined by the most recently issued
Set Startchannel.

Read Stopchannel

Syntax

Description

Notes

Read Units

Read Stopchannel
Re Sto

Retums the channel number of the last channel in che current channel
scan.

The last channel in the current scan is defined by the most recently issued

Set Stopchannel.

Syntax

Description

Return codes

Read Units
Re Un

(Applies only if the Pop Up Control Panel is visible). Returns a code that
indicates the current display units on the Pop Up Control Panel.

0 = A/D codes
1 = Volts

Chapter 5 — File [/O Commands 91

Set ADType

Syntax Set ADType (Interrupt,Synchronous)
Se ADT {(Int,Syn)

Description Specifies the A/D transfer mode in which the next A/D operation will
execute.
Notes Interrupt mode allows for the acquisition and transfer of dara using the

interrupt level set by the most recently issued Set Level. The driver detects
the interrupt that the ADC-16 issues at the conclusion of a conversion and
then reads the acquired data into memory. Because of the driver and CPU
involvement required to read the data into memory, the maximum
conversion rate in interrupt mode is limited to approximately 5 Khz.

Operations that execute in interrupt mode must use a single gain for each
channel in the scan. Interrupt-mode operations execute entirely in the

background.

Synchronous mode operates in the foreground. When an AD command
begins executing, no other board functions are available until the A/D
operation terminates. The maximum conversion throughput available in
synchronous mode is machine dependent.

92 ASO-ADC-16 Users Guide — Rev. A

Set Gain

Syntax Set Gain gain
Se Ga gain
Description Specifies gain as the current global gain.
Arguments channel
0.1,..7
gain
1, 10, 100
Set Level
Syntax Set Level {2,3,4,5,7,10,11,15)
Se lev {2,3,4,5,7,10,11,15)
Description Sets the interrupe level to be used for the next A/D operation.

Chapter 5 — File /O3 Commands

93

Set {Mode/LogFile/Date/Block/LogRate}

Syntax Set Mode (Append,New,Overwrite)
Se Mo {Ap,Ne,Ov)

Set LogfFile fileName
Se Logfile fileName

Set Date (On,Off)
Se Da [On,Off)

Set Block numBlocks
Se Bl numBlocks

Set LogRate rate
Se Lograte rate

Description Set Mode {Append,New,Overwrite)
Specifies the mode in which the data will be written to the file by the next
StartLog.

Set LogFile fileNome
Specifies fileName as the name of file that will be used by the next
StardLog,

Set Date (On,Off)
Specifies if date stamping is enabled.

Set Block numBlocks
Specifies numBlocks as the number of blocks that will be saved by the next
SuaritLog. The valid values for numBlocks are 0, 1,...,99999.

Set LogRate rate
Specifies rate as the number of seconds berween successive A/D
acquisitions. The valid values for rate are as follows:

= 20, 2.1,..,999, or
= 102, 108,...,102 + 6m,...,5994 with m an integer in the range [0,982]

94 ASO-ADC-16 User's Guide — Rev. A

Set StartChannel

Syntax Set StartChannel channe!
Se Sta channel
Description Specifies channel as the first channel to be scanned during the next A/D
operarion,
Set StopChannel
Syntax Set StopChannel channe!
Se Sto channel
Description Specifies channel as the last channel to be scanned during the nexe A/D
operation.
Set Units
Syntax Set Units (ADcodes,Volts)
Se Un [ADco, Vo)
Description Sets the units that the Pop Up Control Panel will use to display daca.
Show
Syntax Show (1,2}
sh{1,2)
Description Causes the display of the specified panel of the Pop Up Control Panel.
Arguments 1 = Main panel
2 = LogFile panel
Notes This command is ignored if VITASK (instead of VI) was loaded

immediately before MADCI16 was loaded.

Chapter 5 — File /O Commands 95

Startlog

Syntax Startlog
Startlog
Description Writes the current A/D dara into a file according to
the conditions specified by the most recently issued
Set {Mode/LogFile/Date/Block/LogStat}.
Stoplog
Syntax Stoplog
Stoplog
Description Stops current logging operation.
Unlock
Syntax Unlock
Un
Description Enables keyboard and mouse control of the Pop Up Control Panel.
Notes Use Lock to cancel the effect of Unlock.

96 ASO-ADC-16 Users Guide — Rev, A

Error 6000H

Caise

Solution

Error 6001H

Error 6004H

Error 6005H

Cause

Solution

Function Call Driver A
error messages

Error In Configuration File

The configuration file supplied to ADC16_DevOpen(} is corrupr or does
not exist. If file is known to be good, then it probably contains one or
more undefined keywords.

Check if the file exists at the specified path. Check for illegal keywords in
file; the best way to fix illegal keywords is to let the supplied
ADCI16CFG.EXE utility do ir.

Hlegal Base Address in Configuration File

Error Opening Configuration File

lllegal Channel Number

The specified 1/O operation channel is out of range. For A/D operations,
the legal channel numbers are 0, 1,..., 7(m+1), where m is the number of
STA-EX8s connected to the board. For digital operations, 0 is the only
valid channel.

Specify legal channel number.

Appendix A — Function Call Driver crror messages 97

98

Solution

Error 6008H

Case

i

g

wtion

n
=

Error 6009H

Error 600AH

Carise

Selution

Error 600CH

Cause

Solution

Error 600eH

Error 600fH

Error 6010H

[] | |PRgPpi [y iy
Hiegu guin

The specified Analog Inpur (A/D) operation gain code is out of range. The
allowed codes are: 0, 1, 2. Refer to the appropriate function call
description for more detail,

Specify legal gain code.

Bad Number in Configuration File

An illegal specification of a number is detected in the Configuration file.
Note that if specifying a hexadecimal number for the Base Address, that
number must proceeded with "&H’.

Incorrect Version Number

Configuration file not found

This error is returned by the ADC16_DevOpen() function whenever the
specified configuration file is not found.

Check the configuration file name (spelling!), path, etc...

Error in returning INT Buffer

This error occurs during K_IntFree() whenever DOS returns an error in
INT 21H function 49H.

L. SN U ISP RUNPI FARN SR o SUSRPIY & NPTV SR S
IVIAKE SUIC 1i1dl uIc Pdldl 1CLCL pd.\acu 1O I HILPICC) wWds PICV!UUMy

obtained via K_IntAlloc().

This error is usually returned by Frame Management or an Operation
Function whenever an illegal Frame handle is passed to one of these
functions.

Check the Frame Handle,

No more Frame Handles

Requested Int Buffer Too Large

Cannot Allocate Int Buff

ASO-ADC-16 User’s Guide — Rev. A

Error 6011H

Error 6012H

Error 6013H

Error 7000H

Cause

Solution

Error 7001H

Cauise

Solution

Error 7002H

Cause

Solution

Error 7003H

Cause

Solution

Error 7005H

Canse

Solution

Int Buffer Already allocated

Int Buffer De-Allocation Error

Int Buffer Never Allocated

No board name

ADC16_DevOpen() function did not find a board 'Name’ in the specified
conhguration file.

Make sure that a name is specified in your configuration file. The legal
name is ADCI16.

Bad board name

ADCI16_DevOpen() function found the board 'name’ in the specified
configuration file to be illegal. The legal name is ADCI6.

Check the keyword following "Name’ in your configuration fle.

Bad board number

ADCI16_DevOpen() function found the "Board’ number in the specified
configuration file to be illegal. The legal board numbers are 0 and 1.

Check the number following "Board’ in your configuration file.

Bad base address

ADC16_DevOpen() function found the board’s base 1/O *Address’ in the
specified configuration file to be illegal. The legal address are 200H (512)
through 3FOH (1008) in increments of 10H (16) inclusive.

Check the number following "Address’ in your configuration file. NOTE
that to specify a Hex number, the number must be preceded by "&H’.

Bad interrupt Level

ADC16_DevOpen() function found the Interrupt Level in the specifed
configuration file w be illegal. The legal Interrupt levels are 2, 3, 4, 5, 7,
10, 11, 15.

Check the number following 'Intlevel’ in your configuration file.

99

Appendix A — Function Call Driver error messages

Error 7006H

Canse

Solution

Error 7018H

Canse

Solution

Error 701bH

Error 8001H

Cause

Solution

Error 8002H

Carse

Solution

Error 8003H
Cause

Solution

Error 8004H

Cause

Solution

Bad number of EXPs

ADC16_DevOpen() function found the number of EXPs in the specified
configuration file to be illegal. The legal number of EXPs is O through 8
incltusive.

Check the number following STAEX8’ in your configurarion file.

No board name

ADC16_DevOpen() function found the board '"Name’ in the specified
configuration file to be illegal. The legal name is ADCI16.

Check the keyword following "Name in your configuration file.

Resource Busy

Function not supported

A request is made to a function not supported by the ADCI16 driver. This
error should not oceur in a standard release software.

Contact Keithley Data Acquisition Technical Support.

Function out of bounds

Illegal function number is specified. This error should not occur in a
standard release sofcware.

Contact Keithley Data Acquisition Technical Support.

lliegal board number
The ADCI16 driver supports up to two boards: 0 and 1.

Check the board number parameter in your call to ADC16_
GetDevHandle().

Bad error

An illegal error number was passed to function K_GetErrMsg(). The legal
error numbers are listed in this appendix.

Check the error number.

100 ASO-ADC-16 Users Guide — Rev. A

Error 8005H

Cause

Solution

Error 8006H
Error 8008H
Error 8009H

Cause

Solution

Error 801AH

Cause

Solution

Error 8020

Case

Error 8021

Cause

Error 8022

Error FFFFH

No board

This error is issued during K_DASDevlnit() whenever the board presence
test fails. This is normally caused by a conflict in the specified board /0O
address and the actual I/O address the board is configured for. Also, this

error is issued when the board is not present in the system.

Check the board’s base 1/O address dip switch and make sure it matches

the base address in your configuration file.

A/D not initialized
Digital Input not initialized
Digital Output not initialized

An accempt to start the particular operation without first initializing che

associated Frame,

Use K_InitFrame() ro initialize the particular frame you wish 1o use.

Interrupts active

An attempt is made ro start an Interrupt-based operation while another is

already acrive.

Stop current interrupt-mode operation first and retry.

Bad Revision

Specified DAS revision number is nor valid.

Error - Resource Busy

Illegal handle for frame.

Unknown error

User aborted operation by pressing |Curi| = [Breakj or {Ctr: = C .

Appendix A — Function Call Driver crror messages

101

Error 850

Error 851
Cause

Solution

Error 852
Canse
Solution

Error 853
Cause
Solution

Error 854

Error 855

File 1/0O Driver B

error messages

lllegal character encountered.

lllegal ADC-16 Command
The driver does not recognize the command.

Refer to the File /O Command Reference to check the syntax and spelling
of the command.

ADC-16 SEt Command Error
Keyword specified in a SET command is not valid.

Refer to the File [/O Command Reference to check which keywords are
valid for the command.

ADC-16 REad Command Error
Keyword specified in 2 READ command is not valid.

Refer to the File 1/O Command Reference to check which keywords are
valid for the command.

lllegal ADType, Should be SYNChronous or INTerrupt

lllegal Gain, should 1, 10, or 100.

Appendix B — File /O Driver error messages 103

Error 857

Error 858

Error 859

Error 861

Error 862

Error 863

Error 866

Error 867

Error 868

Error 869

Error 870

Error 871

i H | =1 B 1L s A au = e WA T
iliegai interrupt level, shovia be 2, 3,4, 5,7, 10, 11,

=
we

Interrupt mode NOT Enabled.

lllegal unit selection, should be ADCOdes or VOIts.

lllegal Start Channel Selection, should be O to 7.

il .1 PN] T [. g
Hegal MTUp Wianmnei ac

Error, STOP Device before using this command.

Error, Channel must he 0 to 7.

Error, START acquisitions before Reading Channel Data.

litegal Command MUST be SHow, SHow 1, or SHow 2.

Log File Name Error.

Hllegal File Mode, MUST be NEw, OVerwrite or APpend

lllegal Date Mode, MUST be OFf or ON.

lllegal Number of Blocks, MUST be 1-99999,

lllegal Log Rate Setting.

Start Acquisitions before Logging.

104 ASO-ADC-16 Users Guide — Rev. A

	TOC:

