ASO-TC

User’s Guide

Revision A
Printed June, 1993
Part No. 24469
© Keithley Data Acquisition 1993

WARNING

Keithley Data Acquisition assumes no liability for damages
consequent to the use of this Product. This Product is not designed
with components of a level of reliability that is suitable for use in
life support or critical applications.

The information contained in this manual is believed to be accurate and reliable.
However, Keithley Data Acquisition assumes no responsibility for its use; nor for any
infringements or patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent rights of Keithley
Data Acquisition.

Keithley Data Acquisition does not warrant that the Product will meet the Customer’s
requirements or will operate in the combinations which may be selected for use by the
Customer or that the operation of the Program will be uninterrupted or error free or
that all Program defects will be corrected.

Keithley Data Acquisition does not and cannot warrant the performance or results that
may be obtained by using the Program. Accordingly, the Program and its
documentation are sold “as is” without warranty as to their performance
merchantability, or fimess for any particular purpose. The entire risk as to the results
and performance of the program is assumed by you.

All brand and product names mentioned in this manual are trademarks or registered
trademarks of their respective companies.,

Reproduction or adaptation of any part of this docunentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of
Keithley Data Acquisition is unlawful,

Keithley Data Acquisition + 440 Myles Standish Blvd. « Taunton, MA (02780
Telephone: (508) 880-3000 « Fax: (508) 880-0179

Contents

Chapter 1
1.1
1.2
1.3
1.4
1.5

Chapter 2
2.1
2.2

23
24
2.5

Chapter 3
3.1
32

Appendix A
A.l
Al

Introduction e 1

About the ASO-TC |1
Prerequisites 2

Getting help e 2

Installing the ASO forDOS | 2|
Installing the ASO for Windows | 4]
The Function Call Driver 7]
Aviailable operations | 7]
Overview of programming with

the Function Call Driver E
Board/Driver initialization tasks 13 |
Operation-specific programming tasks E
Language-specific programming notes i
Functions N X

Functional grouping i 43

Function reference

Function Call Driver error messages [85

Error Codes ... e 85
Error Conditions

1.1

Introduction 1

About the ASO-TC

The ASQ-TC is the Advanced Software Option (ASO) for the DAS-TC analog
input board. The ASO includes a set of software components that you can use,
in conjunction with a programming language, to create application programs
that execute the operations available on the DAS-TC.

The primary component of the ASO is the Function Call Driver. This driver
provides your application program with high-level access to the acquisition and
control operations available on the DAS-TC. The ASO also includes support
files, example programs, a configuration utility, and a data logging utility.

For information on the configuration and data logging utilities, refer to the
DAS-TC User's Guide.

The Function Call Driver enables your program to define and execute board
operations by using calls to driver-provided functions. For example, your
program can call the driver-provided K_ADRead function to execute a single-
point, A/D input operation,

The ASO includes several different versions of the Function Call Driver. The
.LIB and .TPU versions are provided for DOS application development in *C”
and Pascal languages, The Dynamic Link Library (DLL) is provided for
Windows application development.

The ASO and this manual provide the necessary (ools, example programs
and information to develop Function Call Driver programs in the following

languages:

« Borland C/C++ (version 2.0} and higher)

Chapter 1 — Introduction 1

+ Borland Turbo Pascal (version 6.0)
» Borland Turbo Pascal for Windows (version 1.0)
« Microsoft C (version 5.1 and above)
« Microsoft C++ (version 7.0)
« Microsoft Quick C for Windows (version 1.0)
« Microsoft Visual Basic for Windows (version 1.0 and higher)
Note If you are using a version of Turbo Pascal higher than version 6.0, see section

2.5 for the procedure required to make a Turbo Pascal unit compatible with
your version.

1.2 Prerequisites

The ASO is designed exclusively for use with the DAS-TC. This manual
assumes that you understand the information presented in the DAS-TC User’s
Guide. Additionally, you must complete the board installation and
configuration procedures outlined in the DAS-TC User’s Guide before you
attempt any of the procedures described in this manual.

The [undamental goal of this manual is to provide you with the information
you need to write DAS-TC application programs that use the ASO driver, It iy
recommended that you proceed through this manual according o the sequence
suggested by the table of contents; this will minimize the amount of time and
effort required to develop your ASO application programs for the DAS-TC.

1.3 Getting help
The following resources provide information about using the ASO:

« this manual
« the DAS-TC User's Guide

+ the ASO example programs (these are copied to your system’s hard disk
during the installation procedure)

« the documentation for the programming language you are using
Call our Applications Engineering Departiment il you need additional

assistance. An applications engineer will help you diagnose and solve your
problem over the telephone.

2 ASO-TC User's Guide — Rev. A

Keithley Data Acquisition
Applications Engineering
508-880-3000
Monday - Friday, 8 AM. - 7 P.M.

For the most efficient and helplul assistance, please compile the following
information before calling our Applications Engineering Departinent:

ASO package

DAS-TC

Computer

Compiler

Version

Invoice/Order #

Serial #

Base address setting

Manufacturer

CPU type

Clock speed (MHz)
Math co-processor?
Amount of RAM

Video system

Language
Manufacturer

Version

RORK 2¥6 386 486 Other
8 12 20 25 33 Other
Yes No

CGA Hercules EGA VGA

Chapter 1 — Introduction

3

1.4 Installing the ASO for DOS

To code ASO applications programs in a DOS-based language, load the
software using the ASO-DOS distribution diskettes.

The files on the ASO-DOS distribution diskettes are in compressed format.
You must use the installation program included on the diskettes to install the
ASO software. Since the aggregate size of the expanded ASO files iy
approximately 1.5 MB, check that there is at least this much space available on
yvour PC’s hard disk beforc you attempt to install the ASO.

Perform the following procedure to install the ASO software (note that it is
assumed that the floppy drive is designated as drive A):

1. Make a back-up copy of the distribution diskette(s).
2. Insert ASO-DOS disketle #1 into the floppy drive
3. Type the following commands at the DOS prompt:

A [Enter]
install [Enter]

The installation program prompts you for your installation preferences,
including the name of the subdirectory into which the ASO-DOS files are
copied. The installation program expands the files on the ASO diskette(s) and
copics them into the ASO-TC subdirectory you specified; refer to the file
FILES.DOC in your ASO-TC subdirectory for the names and descriptions of
these files.

1.5 Installing the ASO for Windows

To code ASO applications programs in a Windows-based language, load the
software using the ASO-Windows distribution diskettes.

The files on the ASO-Windows diskette are in compressed format. You must
use the setup program included on the diskette to install the software, Since
the aggregate size of the expanded files is approximately 2 MB, check that
there is at least this much space available on your PC’s hard disk before you
attempt to install the files,

Perform the following procedure to install the Windows-based software
(assume that the floppy drive is designated as drive A):

1. Make a back-up copy of the ASO-Windows diskette.

2. Starl Windows.

3. Insert the ASO-Windows diskette into the floppy drive.

4, From the Program Manager menu, choose File then Run....
5

At the Command Line type A: \SETUP.EXE

4 ASQO-TC User’s Guide — Rev. A

The setup program prompts you for your installation preferences, including the
name of the subdirectory into which the ASO-Windows files are copied. If you
press Continue alfter you type in the pathname, the setup program cxpands the
files and copies them into the ASO-TC subdirectory you specitied; refer to the
file FILES.DOC in your ASO-TC subdirectory for the names and descriptions of
these files.

The installation process also creates a DAS-TC icon. This icon includes a C
example program, the WDASTCCEEXE configuration utility, the datalogger
utility, and FILES.DOC, The configuration utility and the datalogger are
described in the DAS-TC User Guide.

Chapter 1 — Introduction 5

2.1

Single-caill A/D input

operations

Note

The Function Call Driver

Available operations
The ASO-TC provides you with two types of analog-to-digital (A/D) input
operations:

« Single-call

« Frame-based
The following subsections describe these operations in more detail.

Both types of operations are implemented with functions, to which you pass
parameters. As with any function, you declare the corresponding arguments
hefore making the call.

In a single-call A/D input operation, you read an analog input value using 4
single call to a function. Analog-to-Digital conversion is performed
automatically.

You specify the attributes of the operation, such as the board that executes the
operation, the channel from which to read data, and the buffer in which to
store the data, as arguments 1o the function. The data is retumed as a single
voltage or temperature value in engineering units.

The Function Call Driver reads the configuration file to determine the gain,
therefore, the gain parameter is ignored.

Use the K_ADRead function 1o read a single analog input value from a
specified analog input channel.

Chapter 2 — The Function Call Driver 7

The DASTC_GETCJC function is a special-purpose single-call function for
reading the value of the CJIC (Cold Junction Compensation) channel. You can
use the resulting value (o correct a temperature reading in cases where you
want to perform your own linearization.

If you wish, you can use K_ADRead or DASTC_GETCJC with soltware
looping to acquire more than one value from one or more channels. Typically,
when you are acquiring more than one value you may want o exercise more
control over the data transfer than is possible with single-call operations. In
such cases, use a frame-based operation, described next.

Frame-based A/D input A frame-based input operation is normally used to sample more than one value

operations from one or more channels. In the case of the DAS-TC, the dara returned
consists of as many voltage or temperature values as there are analog input
samples. The values are returned in engineering units,

A frame-based operation uses a single data structure called a frame to
represent the controllable atiributes of the operation for a particular board. You
request a frame by calling the function, K_ADFrame.

A [rame-based operation is realized as a sequence of function calls. At a
minimumn, a frame-based sequence includes functions that manage and set
frame elements, followed by a function that performs the actual transfer of
values,

The controllable attributes of the operation, such as the start channel, stop
channel, and number of samples, arc known as frame elements. The following
table lists the frame elements available for the ASO-TC and the corresponding
function used to set each element. Refer to the appropriate function description
in Section 3.2 for the valid settings of a frame’s elements.

8 ASO—TC User’'s Guide — Rev. A

Note

Element Function Page

Start/Stop Channe! K_SetStartStopChn 82
K_FormatChnGAry 57

Channel-Gain Array
Address K_RestoreChnGAry 75
K_SetChnGAry 79
K_SctBuf 76
K_SetBufL 77

Number of Samples
K_SetBufR 7
K_IntAlloc 6Y
K_SeciBuf 76
Data Buffer Address K_SetBufL, 77
K_SetBufR 7%
K_SetContRun 81

Buffering Mode

K_ClrContRun 55

One frame corresponds to one set of element values. Once you set the frame’'s
clements, you can pass all of the settings to the function that starts the A/D
operarion, using only the frame handfe, which identifies the frame (and the

board from which you called K_GetADFrame).

If several operations acquiring data from a particular board use the same

clement settings, they can pass the same frame handle. Afterwards, you should

release the frame by calling K_FreeFrame. The Function Call Driver allows
you to request up to eight frames, regardless of which board you are using
when you call K_GetADFrame. For example, you could use five frames for

hoard 1 and three frames for board 2. Similarly, you could use cight frames for

board 1; however, no frames would he available for hoard 2 in this example,

Each of the programming languages is supported by a file that contains a
definition of the FRAMEH variable type. Therefore, you must declare all

frame handles to be of this type.

Chapter 2 — The Function Call Driver

9

Operation Modes

For the DAS-TC, frame-based A/D operations are available in two modes:
« Synchronous

+ Interrupt

In Synchronous mode, the frame-based sequence passes control to the Function
Call Driver, which acquires and converts data in the foreground. After the
specified number of samples is acquired, the driver returns control to the
application program. This operation mode is easier to program than interrupt
mode operations. It should not be used if some procedure requires a block of
data before executing and/or teeds to monitor or control the transter. Use the
K_SyneStart tunction to start a frame-based operation in synchronous mode.

Interrupt mode allows the board to acquire and convert data in the background
while the application program retains control. The DAS-TC interrupts the
application when an acquired block of samples is ready to be transferred to a
user-defined buffer. The Function Call Driver’s interrupt handler gets control
just long enough to complete a block transfer; this period is sufficiently brict
as to be imperceptible. Interrupt mode is useful when monitoring and control
over the transfer is desired, concurrent processing (without loss of data
integrity) is desired, or when blocks of acquired data must be partially
processed before the requested transter is completed. Use the K_IntStart
function to start a frame-based operation in interrupt mode.

Note On the DAS-TC, data is transferred in blocks, where block size = the number
of channels specified. Suppose, for example, you have requested 43 samples
using ten channels. The Function Call Driver actually acquires 50 values in
five blocks of ten samples each. The first 40 values are transferred from the
first four blocks that have been acquired, and the remaining three samples are
transferred from the fifth acquired block of ten samples.

Input Buffers

The Function Call Priver stores acquired samples in a buffer that you define
with one of two methods:

« Locally defined (user-defined)

+ Dynamically allocated

Once you have defined a bulfer by one of the two methods, use a K_SetBuf
call to pass the buffer address 1o the Function Call Driver.

10 ASO-TC User’s Guide — Rev. A

Note

You must define a local buffer as an array before you call K_SetBuf. You can
also use a local buffer for more permanent storage by using K_MoveDataBuf
to move acquired data into your local buffer.

Use K_IntAlloc to dynamically allocate memory outside of your program areq
for later release with K_IntFree. If you are running in Windows standard
mode and transferring data using interrupts, you must use a dynamically
allocated buffer to receive the acquired data, since your program’s memory
pointers may shift,

You can use a combination of local and dynamically allocated buffers for
storing blocks of acquired samples, The function, K_MoveDataBuf, provides a
convenient method, particularly in Visual Basic, for moving acquired data from
a dynamically allocated butfer into a local buffer.

Buffering Mode

You can specify either SINGLE-CYCLE or CONTINUOUS buffering mode for
interrupt operations. In Single-Cycle maode, the specitied number of samples is
stored in the buifer and the operation stops automatically. Use the
K_ClrContRun function to specify Single-Cycle buffering mode.

In Continwous mode, the board keeps acquiring the same number of new
values, placing the data in the buffer until it receives the stop function,
K_IntStop. The transfer index and buffer pointers are reset before another
transfer cycle is initiated, and acquired values in the buffer are overwritten,
Use the K_SetContRun function to specity Continuous buffering mode.

If you do not specify Continous huffering mode, the DAS-TC defaults 10
Single-Cycle mode.

It you are acquiring data using interrupts and Continuous buffering, as soon as
the last block of samples is transferred,
« the transfer count and buffer pointer are reset to zero,

« K_IntStatus returns zero instead of the requested sample size in the index
parameter, and

+ the driver begins to averwrite your buffer’s data.
If your application requires consecutive blocks of data, you should begin
processing your buffer before your butfer is full, using K_IntStatus to

determine how many blocks have been transferred (this function’s index
parameter increments by the block size).

Chapter 2 ~ The Function Call Driver 11

2.2 Overview of programming with the Function Call Driver
The procedure to write a Function Call Driver program is as follows:

. Define the application’s requirements.
2. Write the program code.
3. Compile and link the program.

The subsections that follow describe the details of each of these steps.

Defining the Before you begin writing the program code, you should have a clear idea of
application’s the operations you expect your program to execute. Additionally, you should
requirements determine the order in which these operations must be executed and the

characteristics (number of samples, start and stop channels, and so on} that
define each operation. You may find it helpful to review the list of available
operations in Section 2.1 and to browse through the short descriptions of the
Functions in Section 3.1.

Writing the Several sources of information relate to this step:

rogram code . . N . .
prog + Section 2.3 explains the initial programming tasks that all Function Call

Driver programs must execute

» Section 2.4 describes typical frame-based sequences of function calls

+ Section 3.2 provides detailed information on individual functions

+ The ASO includes several example source code files for Function Call
Driver programs. The FILES.DOC file in the ASO-DOS installation directory
lists and describes the example programs. The FILES.DOC in the ASO-

Windows installation directory lists and discribes the example programs
that run in Windows only,

Compiling and linking Refer to Section 2.5 for compile and link instructions and other language-
the program specific considerations for each supported language.

12 ASO-TC User’s Guide — Rev. A

2.3 Board/Driver initialization tasks

Every Function Call Driver program must execute the following programming
tasks:
1. Identify a function/variable type definition file
The method to identify this file is language-specific; refer to Section 2.5
for additional information.
2. Declare/initialize program variables
3. Call DASTC_DevOpen (o initiatize the driver

4. Call DASTC_GetDevHandle to initialize the board and get a device
handle for the board.

The tasks listed are the minimum tasks your program must complete before it
attempts to execute any operation-specific tasks. Your application may require
additional board/driver initialization tasks. For example, if your program
requires access to two hoards, then it must call DASTC_GetDevHandle for
each board.

Note A device handle is a variable whose value identifies an installed board. The
purpose of a device handle is to provide a mechanism through which the
Function Calt Driver can access a board. A device handle is also a convenient
method for ditferent function calls to reference the same board. Each board
must have a unique device handle.

Each of the programming languages is supported by a file that contains

definition of the DDH (for DAS Device Handle) variable type: you should
declare all device handles to be of this type.

Chapter 2 - The Function Call Driver 13

2.4 Operation-specific programming tasks

After you perform the board/driver initialization tasks, perform the appropriate

operation-specific tasks, as follows:

+ For Single-Call A/D Operations - The only operation-specific task required
is using the appropriate single-call A/D function (K_ADRead or
DASTC_GETCJCO).

» For Frame-Based A/D Operations - The operation-specific tasks required
for frame-based A/D operations depend on whether you are using
synchronous or interrupt mode, whether you are using Start and Stop
channels or Channet-Gain arrays, and whether you are using local buffers,
dynamically allocated buffers, or both. For the page number that
corresponds to the operation you want to perform, see the table shown
below.

i f ifyi S
Operation Meth.o(.l of specifying Buffer type ee
mode acquisition channels page..
Synchronous Start/Stop channels Local 15
Synchronous Start/Stop channels Dynamic 15
Synchronous Channel-Gain array Local 16
Synchronous Channel-Gain array Dynamic L6
Interrupt Start/Stop channels Local ! 17
Interrupt Start/Stop channels Dynamic 17
Interrupt Start/Stop channels Both 18
Interrupt Channel-Gain array Local ' I8
Interrupt Channel-Gain array Dynamic 19
Interrupt Channel-Gain array Both 20)
' Do not use this sequence if you are running in Windows standard mode.
Note If you do not use the functions that set a frame’s elements, the Function Call

Driver defaults to the values that resulted from frame initialization.

You must pass the address of the buffer that is receiving the data, by calling
K_SetBuf, K_SetBufL, or K_SetBufR. The choice of K_SetBuf, K_SetBufl,,
or K SetBufR depends on the programming language and buffer type. See
Section 3.2 for more information on these functions. No ¢rror message occurs
if this function is not included; however, the frame element, BufAddr, has a
default value of zero, and no samples are returned.

14 ASO-TC User’s Guide — Rev. A

Synchronous, Start/Stop channels, local butfer only

Use this calling sequence to perform a synchronous transfer, using Stan/stop
channels and a local buffer only. Before calling the functions in the sequence,
define a local buffer as an array of four-byte elements,

Call K_GetADFrame to get the handle 10 an A/D frame.

Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the buffer address
previously obtained to the Butfer Address element in the frune,

Call K_SetStartStopChn (o assign values to the Start and Stop Channel
elements in the frame.

Call K_SyncStart to start the operation. Data is stored in the local butfer.
Call K_FreeFrame to retumn the frame to the pool of available frames

obtained, unless you are starting another sequence that uses the sumne trume,

Synchronous Start/Stop channels, dynamically alliocated
buffer only

Use this calling sequence to perform a synchronous transfer using Start/Stop
channels and a dynamically allocated buffer only.

Call K_GetADFrame to get the handle to an A/D frame.

Call K_IntAllec to allocate the buffer into which the driver stores the A/D
values outside of the program’s memory areq.

Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the buffer address
previously obtained to the Buffer Address element in the frame.

Call K_SetStartStopChn to assign values to the Start and Stop Channel
clements in the frame,

Call K_SyncStart to start the operation. Data is accessed via the pointer
returned by K_IntAlloc.

Call K_IntFree to deallocate the buffer.

Call K_FreeFrame to return the frame to the pool of available frames
obtained, unless you are starting another sequence (hat uses the same frame.

Chapter 2 — The Function Call Driver 15

Synchronous, Channel-Gain array, local buffer only

Use this calling sequence to perform a synchronous transter using a Channel-
Gain array and a local buffer only. Before calling the functions in the
sequence, define a local buffer as an array of four-byte elements.

I. Call K_GetADFrame to get the handle to an A/D frame.
2. Define and assign values to a Channel-Gain array.

3. Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the buffer address
previously declared to the Buffer Address element in the frame,

4, Call K_SetChnGAry to assign the Channel-Gain array to the Channel-Gain
Array Address element in the frame.

5. Call K_SyncStart to start the operation. Data is stored in the local buller.
6. Call K_FreeFrame to retumn the frame to the pool of avgilable frames.

Synchronous, Channel-Gain array, dynamically allocated
buffer only

Use this calling sequence (o perform a synchronous transfer using a Channel-
Gain array and a local buftfer only.

I, Call K_GetADFrame to get the handle to an A/D frame.
2. Define and assign values to a Channel-Gain array.

3. Call K _IntAlloc to allocate the buffer into which the driver stores the A/D
values outside of the program’s memory area.

4. Call K_SetBuf, K_SetBufL,, or K_SetBufR to assign the address of the bufter
previously declared (o the Buffer Address element in the frame.

5. Call K_SetChnGAry to assign the Channel-Gain array to the Channel-Gain
Array Address element in the frame.

6. Call K_SyncStart to start the operation. Data is accessed via the pointer
returned by K_IntAlloc.

7. Call K_IntFree to deallocate ihe bufler,

8. Call K_FreeFrame to retumn the frame to the pool of available frames, unless
you are starting another sequence that uses the same frame.

16 ASO-TC User’s Guide — Rev, A

Interrupt, Start/Stop channels, local buffer only

Use this calling sequence to perform an interrupt transfer using Start/Stop
channels and a local buffer only. Before calling the functions in the sequence,
define a local buffer as an array of four-byte elements.

I. Call K_GetADFrame to get the handle to an A/D frame,

2. Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the buffer address
previously declared to the Buffer Address element in the frame.

3. Call K_SetStartStopChn to assign values to the Start and Stop Channel
clements in the frame associated with the frame handle previously obtained.

4. Call K_IntStart to start the operation,

5. Call K_IntStatus to monitor the status of the operation. When comptetion is
detected, the data is available in the local buffer.

6. Call K_FreeFrame to retum the frame to the pool of available frames, unless
you are starting another sequence that uses the same frame.

Interrupt, Start/Stop channels, dynamically allocated buffer

only

Use this calling sequence to perform an interrupt transfer using Start/Stop
channels and a dynamically allocated buffer only.

1. Call K_GetADFrame to get the handie to an A/D frame.

2. Call K_IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of the program’s memory area.

3. Call K_SetBuf, K_SetBufl., or K_SetBufR to assign the buffer address
previously declared to the Buffer Address element in the frame.

4. Call K_SetStartStopChn (o assign values to the Start and Stop Channel
elements in the frame associated with the frame handle previously obtained.

5. Call K_IntStart to start the operation.

6. Call K_IntStatus 1o monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returmed by K_IntAlloc.

7. Call K_IntFree to deallocate the buffer.

Chapter 2 — The Function Call Driver 17

8. Call K FreeFrame to retumn the frame to the pool of available frames, unless
you are starting another sequence that uses the same frame.

Interrupt, Start/Stop channels, dynamically allocated and local
buffers

Use this calling sequence to perform an interrupt transfer using Start/Stop
channels and both buffers. Before calling the functions in the sequence, define
a local buffer as an array of four-byte elements.

1. Call K_GetADFrame to get the handle to an A/D frame.

2. Call K_IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of the program’s memory area.

w2

Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the buffer address
previously declared to the Buffer Address element in the frame.

4. Call K_SetStartStopChn to assign values to the Start and Stop Channel
elements in the frame associated with the frame handle previously obtained.

5. Call K_IntStart to start the operation.

6. Call K_IntStatus to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returned by K_IntAlloc.

7. Call K_MoveDataBuf to transfer the acquired data from a buffer allocated by
K_IntAlloc to the user-defined array.

8. Call K_IntFree to deallocate the buffer.

9. Call K_FreeFrame 1o return the frame to the pool of available frames, unless
you are starting another sequence that uses the same frame.

Interrupt, Channel-Gain array, local buffer only

Use this calling sequence to perform an interrupt transter using a Channel-Gain
array and a local buffer only. Before calling the functions in the sequence,
define a local buffer as an array of four-byte elements.

l. Call K_GetADFrame to get the handle to an A/D frame, unless you are
starting another sequence that uses the same frame.

2. Define and assign values to a Channel-Gain array.

18 ASO-TC User’s Guide — Rev. A

Call K_SetBuf, K_SetBufl, or K_SetBufR to assign the address of the buffer
previously declared to the Buffer Address element in the frame.

Call K_SetChnGAry to assign the Channel-Gain array previously obtained to
the Channel-Gain Array Address clement in the frame.

Call K_IntStart to start the operation.

Call K_IntStatus to monitor the status of the operation. When completion is
detected, data is available in the local buffer.

Call K_FreeFrame to retum the frame to the pool of available frames, unless

you are starting a another sequence that uses the same frame.

Interrupt, Channel-Gain array, dynamically allocated buffer
only

Use this calling sequence to perform an interrupt transfer using a Channel-Gain
array and a dynamically allocated buffer only.

Call K_GetADFrame to get the handle to an A/D frame.
Define and assign values to a Channel-Gain array.

Call K_IntAlloc to allocate the buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the address of the huffer
previously declared to the Buffer Address element in the frame.

Call K_SetChnGAry to assign the Channel-Gain array previously obtained to
the Channel-Gain Array Address element in the frume.

Call K_IntStart 1o start the operation,

Call K_IntStatus to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returmed by K_IntAlloc.

Call K_IntFree to deallocate the buffer.

Call K_FreeFrame to retum the frame to the pool of available frames, unless
you are starting a sequence that uses the same frame.

Chapter 2 — The Function Call Driver 19

9,

10.

Interrupt, Channel-Gain array, dynamically allocated and local
buffers

Use this calling sequence to perfornin an interrupt transfer using a channel-Gain
array and both a local and a dynamically allocated bufter. Before calling the
functions in the sequence, define a local buffer as an array.

Call K_GetADFrame to get the handle to an A/D frame.
Define and assign vatues to a Channel-Gain array.

Call K_IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K_SetBuf, K_SetBufL, or K_SetBufR to assign the bulfer address
previously declared to the Buffer Address element in the frame.

Call K_SetChnGAry to assign the channel-gain array previously obtained to
the: Channel-Gain Array Address element in the frame.

Call K_IntStart to start the operation.

Call K_IntStatus to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returned by K_IntAlloc.

Call K_MoveDataBuf to transfer data from a buffer you have allocated by
K IntAlloc to the array.

Call K_IntFree o deallocate the buffer.

Call K_FreeFrame to retum the frame to the pool of available frames.

20 ASO-TC User’s Guide — Rev. A

2.5

Note

Related Files

Complle and Link
instructions

Code example

Language-specific programming notes

This section provides specific programming guidelines for each of the
supported languages. Additional programming information is available in the
ASO example programs. Refer to the FILES.DOC file for names and
descriptions of the ASO example programs,

The example programs in this section are not actual programs but are
fragments that are designed to illustrate an interrupt-mode A/D input sequence
that uses a Channel-Gain array.

Borland C/C++ and Microsoft C/C++

DASTC.LIB
DASRFACE.LIB
USERPROT.H
USERPROT.BCP

Borland C;
BCC -mi filename.c dastc.lib dasrface,lib

Borland C++
If you want to compile your program as a Borland C++ program,

1. Use the supplied file USERPROT.BCP instead of USERPROT.H.
2. Specify the C++ compilation in one of the following two ways:
a. Specify .CPP as the extension for your source file, or
h. Use the BCC -P command line switch,

Microsoft C/C++:
CL /AL /¢ filename.c
LINK filename,, ,DASTC+DASRFACE;

This example executes an interrupt-mode A/D sequence using a Channel-Gain
aITay.

/*********'Jr**'k******************‘ﬂ****‘k********t*****t*****k i

/* CEXAMP2.C DASTC *
/* x
/* 'C’ - Interrupt Mode A/D transfer */
/* with Channel/Gain Array *
/* */
/* To create an EXE using Microsoft C: *
/* LIy
Iad CL /¢ CEXAMP2.C (use /Tp<FileName- for C++ compile)*/s
/* LINK CEXaMP2,,,DASTC+DASRFACE; v
/* *
/* To create an EXE using Borland C++ (Ver 2.0 and upl: *
/* x,

Chapter 2 — The Function Call Driver 21

/* BCC ~-ml ~¢ CEXAMP2.C daste.lib dasrface.lib */
/* */

/*********'k‘*****‘R**‘k***************************************/

//use this include file statement for MS C
#include "userprot.h"

//use this include file statement for MS C++
/*

extern "C" {

#include "userprot.h*

1

*/

//use this include file for Borland C++ and use -P switch
//for C++ compile

/‘k

extern "C" {

#include "userprot._bcep"

}

*/

#include «stdio.h=

#define Samples 16

DWORD LocalBuffer[Samples];

GainChanTable ChanGainArray =

{
16,
0,0,
2,0,
4,0,
6,0,
8,0,
10,0,
12,0,
14,0,
1,0,
3,0,
5,0,
7,0,
9,0,
11,0,
13,0,
15,0

Yo

main()

22 ASO-TC User’s Guide — Rev. A

{
DDH DASTC_brdC ; // handle for board 0
FRAMEH AD_brd¢ ; // frame for board 0 A/D operations

long Index;

short BoardNumber, Err, Status, m;
chatr NumberOfBoards;

float CJC=0;

// initialize board hardware and driver

printf("\n");
printf{"Initializing the board - - - PLEASE walt\n"};

if ({ Err = DASTC_DevOpen("DASTC.CFG", &LNumberOfBoards)
1=0)

{

printf(" Error %x on Device open ", Err) ;

return Err ;

// The DEVICE Handle must be obtained in order to work with
// a specific board
// 1t is used subsequently to obtain FRAME Handles

BoardNumber = 0;
if ((Err = DASTC_GetDevHandle({ BoardNumber, &DASTC brd0 i
) = 0}
{
printf("Error getting Device Handle");
return 1 ;

}

if ({ Err=DASTC_GETCJC(BoardNumber, &CJC}) != 0)
{
printf("Error getting CJC Temperature" };
return 1 ;

)
printf ("CJC Temperature = %fi\n", CJIC);
// The FRAME Handle must be cbtained using the DEVICE Handle
// in order to make each type of function call,
// in this case, Analog Input.

// The wvariable is suffixed with a "0" to reference board 0.

if {((Err = K_GetADFrame(DASTC_brd0, &AD_brd0)) '= 0)

Chapter 2 — The Function Call Driver 23

{
printf{ "Error getting Frame Handle");
return 1 ;

// The FRAME Handle is now used in Analog Input calls.
printf{"\n\nInterrupt Mode with Chan Gain Array\nin\n");

if ({ Err = K_SetBuf(AD_brd0, LocalBuffer, Samples } } l=
0)

{

printf (*Error %x Occurred during K_SetBuf call. . .\n",
Err);

return 1;

}

if ((Err = K_SetChnGAry(AD_brdl, &ChanGainArray)) !'= 0
)

{

Printf {"Error %x Occurred during K_SetChnGAry call.
.An", Err};

return 1;

)

// un-comment this block of cade for centinucus run
//printf{"Continucus Run Selected.\n"):

//71if ((Err = K_SetContRun{ AD_brd0) } = 0)
s {
/7 Printf{"Error %x Occurred during K_SetContinRun call.

//.A\n", EBrr);
’f return 1;

7/ 1
if ((Erxrr = E_IntStart(AD_brdl)) =0)

{

Printf {"Error %x Occurred during K_IntStart call. . .\n",
Err});

return 1;

)

printf ("TYPE any key to stepin\n');

do
if ((Err = K_IntStatus(AD_brd0 , &Status, &Index)})
I—O)
{
Printf{"Error %x Occurred during K_IntStatus call.
-An", Err);

24 ASO-TC User’s Guide — Rev. A

return 1;

]
printf ("Conversions completed= %6d\1", Index);
1
while ({Status & 1) && !_kbhit{});
if { (Err = K_IntStop{ AD_brd0 , &Status, &Index)) != 0
{
Printf ("Error %x Occurred during K_IntStop call. . ..n",
Exr};
return 1;

}
printf{("\n");

for (m = 0; m <« Samples ; m++)
printf("Sample No. %d %$1d\n*, m+1l, LocalBuffer{m!);

printf("\n");

S m e e e oo
// Release memory used by the frame.
if ((Err = K_FreeFrame(AD_brd0)) = 0
{
Printf {"Error %x Occurred during K_FreeFrame call.
An', Err);

return 1;

)

Borland Turbo Pascal

Related Files DASTC.TPU

Complle and Link TPC/$E+ /SN+ filename.pas
instructions

In the Turho environment

Options\CompileANumeric
Processing:

[x] BOKZ/BO287

[x] Emulation

Note If you are using a version of Turbo Pascal higher than 6.0: Before compiling

Chapter 2 — The Function Call Driver 25

Code example

the example program shown below, you must create a TPU (Turbo Pascal unit)
file that is compatible with your version. In FILES.DOC you will find a
reference to DASTCTPU.BAT. Run this batch file in order to create the
compatible TPU. The file, DASTCTPU.BAT contains the DOS command:

tpc DASTC.PAS

This file also includes the sources for the TPU, and a description of this
procedure.

This example executes an interrupt-mode A/D sequence using a Channcl-Gain
array.

Program tpexamp?;

{

Interrupt Mode A/D transfer with Channel/Gain Array

For this example ONLY;
the configuration file must specify FLOATING POINT.

uses Crt, DASTC;

Type
GainChanTable = Record
num_cof_codes : Integer;
queue : Array[0..31] of Byte;
end;
Const

ChanGainArray : GainChanTable = {
num_of_ codes

[
[e2}
o —

queue

O O = = = = - m =

D = 0 sl AU W N~ o~
oo~ ~
- c o o oo oo o

= e
Wb
<

’ ¥

[}

I

14,0,
15,0)

I

26 ASO-TC User’s Guide — Rev. A

) :

var

BufbPtr “Integer;
BeardNumber, m
NunmberOfBoards
Status, Ertn
Samples, Index,
ConfigFile sString:;
DataBuffer Array({0..
CJC Real;

Word;

DASTC_brdo,

20]

Integer;
Integer ;

AD_brd0 Longint;

of Real;

initialize beard hardware and driver }

BufPtr := @DataBuffer|
ConfigFile :=

Ertn := DASTC_DevOpen/|

if Ertn <= 0 then
begin
writeln(
Halt (1) ;
end;

The DEVICE Handle must be obtained in order

"DASTC.CFG’ +

‘Error ',

0);
#0 ;

ConfigFile[1l], NumberOfBoards 1

Ertn, ‘on Device open’ };

specific board It is used subsequently to obtain FRAME

Handles 3}
BoardNumber := 0;
Ertn
if Ertn <= 0 then
begin

writein(

Halt (1) ;
end;

Ertn := DASTC_GETCJIC({

if Ertn <= 0 then
begin
writeln(
Halt {1);

:= DASTC_GetDevHandle (

'Error getting Device Handle’

BoardNumber, DASTC brd0d };

)

BoardNumber, CJC };

‘Error getting CJC Temperature’ j;

Chapter 2 — The Function Call Driver

to work with

a

27

end;

writeln('CJC Temperature = ', CJC };

The FRAME Handle must be obtained using the DEVICE Handle
in order to make sach type of function call, in this case,
Analog Input. The variable is suffixed with a "0" to
reference board 0. }

BErtn := K_QGetADFrame(DASTC_brd0, AD_brd0)

if Brtn <> ¢ then
begin
writeln('Error getting Frame Handle’ };
Halt (1) ;
end;

The FRAME Handle is now used in Analoyg Input calls. }
writeln{ 'Interrupt Mcde with Chan Gain Array’);

Samples := 20;
Ertn := K_SetBuf({ AD_brd0, longint (BufPtr), Samples)

i

if Ertn <> 0 then

begin
writeln('BError in K_SetBuf call’);
Halt (1) ;
end;
Ertn := K_SetChnGAry (AD_brd0, ChanGainArray.num_of_codes)

;

if Ertn <> 0 then

begin
writeln(‘Error in K_SetChnGAry call’' };
Halt (1) ;
end;
Ertn := EK_IntStart{ AD_brd0) ;

if Ertn <> 0 then
begin
writeln{ ‘Error in K_IntStart call®);
Halt (1) ;
end;

28 ASO-TC User’s Guide — Rev. A

repeat

Ertn := K_IntStatus{ AD_brd0 , Status, Index)

if Ertn <= 0 then

begin
writeln{ 'Error in K_IntStatus call’ };
Halt(1);
end;
writeln('Conversions Completed = ', Index };

until (Status AND 1) = 0;

writeln(’'*);

for m := 0 to Samples-1 Do

writeln{ DataBuffer[m] }:
Release memory used by the frame. }
Ertn := K_FreeFrame(AD_brd0) ;
if Ertn <> 0 then
begin
writeln("Error in K_FreeFrame call*’ };

Halt(1l);
end;

end.

Borland Turbo Pascal for Windows

Related files DASTCTPW.INC
DASTC.DLL
Notes For Windows use DASTC.DLL. The information presented for Borland Turbo
Pascal applies here with the following additions:
+ Use the compiler directive {$I ... } to include the supplied include file
DASTCTPW.INC,

+ Substitute "WinCrt’ for the "Crt” unit; this is necessary in order that the
console 1/O procedures (writeln, readln, etc...) operate properly.

Chapter 2 — The Function Call Driver 29

The following code fragment illustrates these substitutions:

Program TPW_EX;
{ UNITS USED BY THIS PROGRAM)}
Uses WinCrt;

{ LOCAL VARIABLES }
Var

{ BEGIN MAIN MODULE }
BEGIN

“{ $I DASTCTPW.INC}

Code example This example executes an interrupt-mode A/D sequence using & channel-gain
array.

Program TPWEX2;
{

LR R R S O R R R R R R I R i e S I o S S S R S

TPWEXZ2 . PAS
DASTC

Turbo Pascal for Windows

The following is an example program that demcnstrates the
use of AD interrupt conversions using a channel/gain gueue.

ke kdkkhdbkdhhdhhkkkhhkhhrhhrhhhhhhhhrohhrhdhdhdhdohddhbhdbrhhhhhhrxrxdi

}
{ The WinCrt unit allows Windows to handle "writeln’ and
‘readln’ the same

way as in DOS)

usges WinCrt;

Type
GainChanTable = Record
num_of_codes : Integer;
queue : Array(0..31] of Byte;
aend;
Const

ChanGainArray : GainChanTable = (

num_ocf_codes : (16);

queue : (0,0,
1,0,
2,0,
3,0,

30 ASO-TC User's Guide — Rev. A

var

ButfPtr : “Integer;

BoardNumber, m : Integer;

MNumberCfBoards : Integer ;

Ertn, chan, Status : Word;

Sanples, Index, InbPort, DASTC _brdld, AD_brd0 : Longint:
ConfigPile : String;

DataBuffer : Array|[0..20] cof Longint;

CJC : Single;

{81 DASTCTPW. INC} { DLL function prototypes.)

begin

initialize beoard hardware and driver }

BufPtr := @DataBuffer[0];
ConfigFile := “‘DASTC.CFG' + #0 ;
Ertn := DASTC_DevOpen(CenfigPile(l], NumberOfEcards);

:f Ertn <= 0 then
begin
writeln{ 'BError ', Brtn, ‘on Device open’);
Halt(l);

e e e
The DEVICE Handls must be obtained in order to work with a

specific board It 1is used subseguently to obtain FRAME
Handles)

Chapter 2 — The Function Call Driver 31

BoardNumber := (;
Ertn := DASTC_GetDevHandle({ BoardNumber, DASTC brd0);

if Ertn <> 0 then
begin
writeln(‘Error getting Device Handle’ });
Halt (1) ;

The FRAME Handle must be cbtained using the DEVICE Handle in
order to make esach type of function call, in this case,
Analog Input. The variable iz suffixed with a "0" to
reference board 0. }

Ertn := K_GetADFrame{ DASTC_brd0, AD bkrdl } ;
1f Ertn <> 0 then
begin
writeln('Error getting Frame Handle' };

Halt (1) ;
end;

The FRAME Handle is now used in Analog Input calls. }
writeln(‘Interrupt Mode with Chan Gain Arvay'):

Samples := 20;
Ertn := K_SetBuf{ AD brdl, longint{bufptr), Samples)} ;

if Ertn <> 0 then

begin
writeln{ 'Error in K_SetBuf call’ };
Halt{1l);
end;
Ertn := K_SetChnGAry(AD_brd0, ChanGainArray.num_of_codes }

.

if Ertn <> 0 then

beygin
writeln('Error in K_SetChnGAry call’ i;
Halt (1) ;
end;
Ertn := K_IntStart(AD_brd0d) ;

if Ertn <> 0 then

32 ASO-TC User’s Guide — Rev. A

begin
writeln('Error in K_IntStart call’ };

Hale(1l};
and ;
repeat
Ertn := K_IntStatus{ AD_brd0 , Status, Index) ;

if BErtn <> 0 then
begin
writeln{('Error in K_IntStatus call’ j;
Halt (1) ;
end;

until (Status AND 1) = 0;
writeln("');
writeln(‘Interrupts Completed '} ;

writeln(’*});

for m := 0 to Samples-1 Do
writeln{ ‘Channel [,m, ‘] = ‘,DataBuffer[m)

Release memory used by the frame. }
Ertn := K_FreeFrame(AD_brd0)} ;
if Ertn <> 0 then
begin
writeln('Error in K FreeFrame call’ };

Halt{1l);
end;

end.

Chapter 2 — The Function Call Driver 33

Related files

Complle and Link
instructions

Notes

Code example

Microsoft Quick C for Windows

DASTC.DLL

b Load filename.C into the Quick C for Windows environment if you arc
editing this file.

2. Create a project file, that includes filename.C, filename DEF, filename RC
and filename H.

3. Select PROJECT » BUILD 10 create a stand-alone .EXE that can be cxecuted
from within Windows.

The .DEF file must be included to import functions from DASTC.DLL.

The programming procedure required to call the functions [rom Quick C for
windows programs is identical to the procedure described for Microsott C.

This example executes an interrupt-mode A/D sequence using a Channel-Gain
array.

/*‘k*‘k***‘k'k'k*')r'k'k'k*****'k**-.\-*-k-k*********t*********************‘k
*

*

* Keithley/Metrabyte DASTC Example Program for

*

* Microsoft Windows 2.0 and 3.1

This Program Accesses the DASTC functions through
* DASTC.DLL.

* this is fragment taken from the "WINEXAMP.C" program

*
*****************‘k****'A“k*'k'k'k*'k'k****'k'k‘k*'k****'k'k**'k***'k*'k****/

#include "winexamp.h"
#include "userprot.h"

long LocalBuffer[20}; // Declare a buffer for out
AD Data

long far *FirstElement; // Pointer to Interrupt
Buffer

WORD MemHandle; // Handle of the above
Pointer

34 ASO-TC User’s Guide — Rev. A

char NumberGfBocards; // Number of boards to
configure

short Done = 0; // Operation Done Flag
short Status; // Status variable for
Interrupt

long Index; // Index variable for
Interrupt

short Err; // Return values from the

functions

DDE DASTC; // Device Handle
FRAMEH AD; // Frame Handle
float CJC;

J/**** Open the config file and read it...

if ({Err=DASTC_DevOpen ("DASTC.cfqg*, &NumberOfBoards)) '= 0}

wsprintf (szEryr, "DASTC Error = %4x", Err);

MessageBox (NULL, szErr," Error ", MB_CK |
MB_ICONEXCLAMATION} ;
return 1;

}
f/**** Now det a Device Handle
1f ({(Err=DASTC_GetDevHandle (0, &DASTC)} 1= 0)
{
waprintf (szErr, "DASTC Error = %4x*, Err);

MessageBox (NULL, szErr," Error ", MB_OK |
MB_ICONEXCLAMATION} ;
return 1;

}

//**** Now get the CJC Temperature
1f{{Ery=DASTC_GETCJIC(0,&CJC)} != 0}

{
waprintf {gszErr, YDASTC Error = %4x", Err);

MessageBox (NULL, szErr," Error ", MB_OK |}
MB_ICONEXCLAMATION) ;
return 1;

}

weprintf (szData, "CJC Temperature = %f*, CJC);

Chapter 2 — The Function Call Driver

35

36

//**** getup for INTERRUPT AD Conversions
J/**** Get a AD Frame
if{{EBry = K_GetADFrame {(DASTC, &AD)) != 0)

{
waprintf {szErr, "DASTC Error = %4x", Err);

MessageBox (NULL, szErr," Error ", MB_CK |
MB_ICONEXCLAMATION) ;
return 1;

)

J/**** Allocate a Buffer
if((Err = K_IntAllcc(AD, 16, &FirstElement, &MemHandle))
1=0)
{
wsprintf{szErr, "DASTC Error = %4x", Err);
MessageBox (NULL, szErr,® Error ", MB_OK |
MB__TICONEXCLAMATION) ;
return 1;
)
//**** Tall the Frame about the Buffer
if{(Err = K_SetBuf(AD, FirstElement, 16)} != 0)
{
wsprintf (szErr, "DASTC Error = %4x"“, Err);
MessageBox (NULL, szErr," Erreor ", MB_OK |
MB_ICONEXCLAMATION) ;
return 1;

}
//**** Set the Start/Stop Channels and Gain

if({Err = K_SetStartStopChn(AD, ¢, 15)) != 0}
{
wsprintf {(szErr, "DASTC Error = %4x", Brr);:
MessageBox (NULL, szErr,* Error ", MB_CK |
MB_ICONEXCLAMATION) ;
return 1;

]

IrgOP = 1; // Set Operation Flag

Done = 0; // Clear Done Flag

Status = 0; // Clear Interrupt Status Flag
UpdateWindow{(hWndMain}; // Print Running

//**** Ztart Interrupt MCDE AD
1f((Err = ¥X_IntStart(aD)) != 0)

{
wgprintf (szErr, "DASTC Error = %4x", Err):

MessageBox (NULL, szErr," Error ", MB_OK |
MB_ICONEXCLAMATION) ;
return 1;

}

ASO-TC User’s Guide — Rev. A

J/EEEY QEart a 10ms timer to monitor status
if({SetTimer {hWndMain,

ID_TIMER, 10, NULL})
{
MessageBox (NULL, “TIMER ERROR..."," Error *, MB_OK |
MB,_TCONEXCLAMATICN) ;
return 1;
J

BHAHHAAHHHH IR BUHB R ARG BB A R U N IR BRI A AR DB RN TR AR RS
// timer routine that pells for interrupt completion

if({Err = K_IntStatus(AD, &Status, &Index)) 1= 0}
{

KillTimer (hWndMain, ID_TIMER);
wsprintf (szErr, "DASTC Errvor
MessageBox (NULL, szEyrr,"

MB_ICONEXCLAMATION) ;

= %¥4dx", Err);
Error ", MB_OK |

if ((Err = K_IntStop(AD, &Status, &Index)) != 0)
{ // Free the frame
wsprintf (szErr, "DASTC Ervor = %4x*, Errj;
MessageBox (NULL, szErr," Error ", MB_OK |
MB_ICONEXCLAMATION) ;
)
if((Brr = K_IntFree (MemHandle)) !'= 0)
{

// Free the frame
= %dx", Err);
szErr, " Error "

wsprintf (szErr, "DASTC Error
MessageBox (NULL,

, MB_OK |
MB__ICCNEXCLAMATICN) ;
}
1f((Err = K_FreeFrame{AD)) != 0}
{

// Free the frame
wsprintf (szErr, "DASTC Error = %4x", Err};

MessageBox (NULL, szErr," Error *, MB_OK |

MB_ICONEXCLAMATION) ;
}

break;

InvalidateRgn (hWwndMain, hRgn, FALSE); // Update client Area
7/

with count
if((Status & 1)==0)

{
KillTimer (hWndMain, ID_TIMER);
if({(BErr = K_IntSteop(AD, &Status, &Index)) != 0}
{ // Free the frame
waprintf (gzEry, "DASTC Error = %4x*, Err);
MessageBox (NULL, szErr," Error “, MB_COK |

Chapter 2 — The Function Call Driver 37

MB_ICONEXCLAMATION) ;
)

// Move Data to our Local Buffer
K_MoveDataBuf (LocalBuffer, FirstElement, l6);

if ({BErr = K_IntFree (MemHandle)) !'= 0}

{ // Free the frame
weprintf{gazEryr, "DASTC Error = %4x", Err);
MessageBox (NULL, szErr,* Error ", MB_CK |

MB_TCONEXCLAMATION) ;
}
if{(Exr = K_FreeFrame(AD)) != 0)

{ // Free the frame
waprintf(szErr, *DASTC Error = %4x", Err);
MessageBox (NULL, szErr," Error ", MB_OK |

MB_ICONEXCLAMATION) ;

Microsoft Visual Basic for Windows

Related files DASTC.DLL
DASTCGLB.BAS
Q4IFACE.BI
Notes Before you begin coding your Visual Basic program, you must copy (from

inside the Visual Basic environment) the contents of DASTCGLB.BAS into
your application’s GLOBAL.BAS. Use the following procedure to add the
contents of DASTCGLB.BAS to GLOBAL.BAS (you should make a back-up
copy of GLOBAL.BAS before you modify it);

1. Select FILE » ADD FILE... from the Viseal Basic main menu.

2. Select DASTCGLB.BAS,
3. Highlight the contents of the entire DASTCGLB.BAS file.
4. Select EDIT » COPY to copy the contents of DASTCGLB.BAS to the
Windows cliphoard.
5. Double-click on GLOBAL.BAS in the Project window.
6. Select EDIT » PASTE.
7. Select FILE » SAVE PROJECT,
Code example Thig example executes an inferrupt-mode A/D input operation using a Channel-

Gain array.

38 ASO-TC User’s Guide — Rev. A

R EE RS EE RIS EE TSI R E NIRRT AR TN Y
DAS-TC Visual Basic Example:

Interrupt transfer using Gain/Channel array with local
buffer.

This is a code fragment taken from DASTCEXL.FRM.
EER ARSI BRI IEEE RS ET Y T

RUGHHHARHAHHBHABHAR AR BB AU B R G S R B RshunnRadnEng
Chamnmel / Gain Interrupt Event routine

(double c¢lick on the "Channel / Gain Queue" START button in
the "Interrupt Mode A/D" frame to see this code}
BHAHHHAAARBHEHHAHAHHN B RS EH AR R AR R B AR BB napEnn s

Sub StartQInt_Click ()

scalemode = 2
timer2.enabled = Palse ‘Disable our Timer
Cls

SSFlag = False

Print
Print "Scan 1is using Channel / Gian Queue"
Print

MyErr = DASTC_devopen ("DASTC.cfg", board%)

If MyErr <> 0 Then

MagBox "“DASTC_devopen Error", 48, “"Error"
Exit Sub

End If

MyErr = DASTC_ getdevhandle (0, DASTC}

If MyErr <> 0 Then

MagBox “"DASTC_getdevhandle Error®, 48, “Error"
Exit Sub

End If

MyErr = K_GetADFrame (DASTC, ad)

If MyErr <> 0 Then

MsgBox "K_GetADFrame Error", 48, “Error"
Exit Sub

End If

Chapter 2 — The Function Call Driver 39

MyErr k_clearframe (ad)
If MyErr <= 0 Then

MsgBox "K_ClearFrame Errcr", 48, "Error”
Exit Sub
End If
MyErr = K_IntAlloc{ad, samples, GBuffer, HANDLE)

If MyErr <> 0 Then

MyErr = K_Freeframe{ad)
0% = "K_IntAlloc Error = " + Hex$ (MyErr)
MsgBox of%, 48, "Error"
Exit Sub
End If
Print " Buffer Handle = "; Hex$ (HANDLE}
Print " AD Interrupt Buffer = "; Hex§(GBuffer)
MyErr = K_SetBuf (ad, ByVal GBuffer, samples)
If MyErr <= 0 Then
MyErr = K_FreeFrame {ad)
MyErr = K_IntFree (HANDLE)
MsgBox “K_SetBuf Error", 48, "Error"
Exit Sub
End If
MyErr = K_SetChnGAry (ad, ChanGainArray (0))

If MyErr <> 0 Then

MyErr = K_FreeFrame(ad)

MsgBox "K_SetChnGAry Error",
Exit Sub

End If

MyErr = K_IntStart{ad)

If MyErr <> 0 Then

MyErr = X_FreeFrame {ad}

MsgBox "K_IntStart Error",
Exit Sub

End If

Status = 1

timer2.,enabled True

End Sub

40 ASO-TC User’s Guide — Rev. A

48, "Error"

48, "Error"

" Enable Status Flag

‘

Enable our Timer

FHABGEARHBHBHRAHHB B A NG H U RS H B H AR B hannas
Timer routine used to detect interrupt completion and then

to transfer data.

{double <click on timer icon to see this code)

HHEABHHRARFAAHHAAHGARH AR AR R BB U A G A BB S i nn R nanny

Sub TimerZ_Timer ()

MyErr = K_IntStatus{ad, Status, Index)
If MyErr <= 0 Then
MyErr = K_IntStop{ad, Status, Index)
MyErr = K_FreePrame{ad)
MsgBox "K_IntStatus Error", 48, “"Error”
Exit Sub
End If

PSet {0, 55)
ch = "Count = " + FormatS({Index, "###&##4")
Print oS

If (Status And 1} = 0 Then

timer2.enabled = False

MyErr = K_IntStoplad, Status, Index)
MyErr = K_MoveDataBuf (Buffer(0), ByVal GBuffer,
* 2)

MyErr = K_IntFree (HANDLE)

If MyErr <> ¢ Then
of = "K_IntFree Error = " + Hex5(MyEr:m)
MsgBox of%, 48, "Error"
Exit Sub

End If

Print : Print " Interrupt Operation Complete...

MyErr = K_FreeFrame{ad)

Print

For x = 0 To samples - 1

Print * Buffer("; x; ") = "; Buffer(x}
Next x
End If
End Sub

sampyles

Chapter 2 — The Function Call Driver

41

3.1

Functions

Functional grouping

The function calls can be classified according to the functionality that each
provides. This section lists each function as a member of one of the following
groups:

« Initialization

+ Memory management

+ Frame management

« Frame-element management

+ Frame-based operation control
+ Single-call [/O

+ Miscellaneous operations

This section provides short descriptions of each function; refer to Section 3.2
for additional information on each function.

Initialization

DASTC_DevOpen Initialize and configure the driver.
DASTC_GetDevHandle Obtain a device handle,

K_DASDevInit Reset and initialize the device and driver.

Chapter 3 — Callable Functions 43

Memory management

K_IntAlloc Allocate a buffer suitable for an interrupt-
mode A/D operation,

K_IntFree De-allocate an interrupt buffer that was
previously allocated with K_IntAlloc.

K_MoveDataBuf Transfer acquired A/D samples between a
memory butfer and an array.

Frame management

K_FrecFrame Free the memory used by a frame and
retum the frame 10 the pool of available
frames.

K_GetADFrame Obtain the handle to an A/D [rame.

Frame-element management

K_ClearFrame Clears all the elements of an A/D frame.

K_CirContRun Set the vitlue ol a frame’s Buffering Mode
element to SINGLE-CYCLE.

K_FormatChnGAry Convert a Visual Basic Channel-Gain array
into an equivalent Function Call Driver
Channel-Gain array (Visual Basic Only).

K_GetBuf Get the values of an A/D frame’s Buffer
Address and Number of Samples elements.

K_GetChnGAry Get the value of an A/D frame’s Channel-
Gain Array Address element.

K_GetContRun Get the value of a frame’s Buffering Mode
element,
K_GetStartStopChn Get the values of an A/D frame’s Start

Channel and Stop Channel elements.

44 ASO-DAS-TC User’s Guide — Rev. A

K_InitFrame Initialize a board’s A/D circuilry and set an
A/D frame's elements to their default
values.

K_RestoreChnGAry Convert a Function Call Driver Channel-
Guain array into an equivalent Visual Basic
Channel-Gain array (Visual Basic only).

K_SetBuf Set the values of an A/D frame’s Buffer
Address and Number of Samples elements
{Pascal and C languages only).

K_SetBufL Set the values of & frame’s Buffer Address
and Number of Samples clements for user-
defined long integer arrays (Visual Basic for
Windows only).

K_SetBulR Set the values of a frame’s Butfer Address
and Number of Samples elements for user-
defined floating-point arrays (Visual Basic

for Windows only),

K_SetChnGAry Set the valuc of a frame’s Channel-Gain
Array Address clement.

K_SetContRun Set the value of a frame’s Buffering Mode
element to CONTINUOUS.

K_SetStartStopChn Set the values of an A/D frame’s Start
Channet and Stop Channel elements.

Frame-based operation control

K_IntStart Start an interrupt-mode A/D operation.

K_IniStatus Determine the status of an interrupt-mode
A/D operation.

K_IntStop Abhort an interrupt-maode A/D operation,

K_SyncStart Start a synchronous-mode A/D operation.

Chapter 3 — Callable Functions 45

Single-call 1/0

K_ADRead

DASTC _GETCIC

Miscellaneous operations

K_GetErrMsg

K_GetVer

46 ASO-DAS-TC User’s Guide — Rev. A

Read a single A/D value,

Returns the value of the CJC on the DAS-
TC in degrees Celsius; this value is used to
correct temperature input values,

Get the address of an error message string
(available only as C-language tunction).

Determine the driver revision and driver
specilication.

3.2

Gains

Return values

Note

Function reference

This section contains reference entries cach function. The entries appear in
alphabetical order by function name. These reference entries provide the details
associated with the use of cach function.

The information related to the following topics pertains to several functions:

+ the gain codes the driver uses to represent gains and the A/D input ranges
that correspond to each gain

» the return value for every call to a Function

These topics are described in the next several paragraphs and referred to
throughout the reference entries that follow,

The ASO drivers use gain codes to represent gains. The valid gain codes are O,
1, 2, 3; the table below lists the gains that correspond 1o these gain codes, as
well as the A/D input ranges affected by each gain,

Table 1 DAS-TC gains and A/D volltage gains

gain code DAS-TC gain DAS-TC voltage input range
0 1 2510410V
1 125 =20 to 80 mV
2 166.67 -15 to 60 mV
3 400 -6.25 to 25 mV

Gains are only available when a channe! is configured as a voltage input. You
can program the gain only through an A/D input operation thit uses a
Channel-Gain array. If you are acquiring data by either o K_ADRead, or an
A/D input operation that uses Start/Stop channels, the gain from the .CFG file
is used.

Strictly speaking, the function return value is of type error. "Retums” is also
used (0 mean that the driver executes the function and stores the result in user-
defined variables or allocated buffers. Whether used as placeholder, to pass a
vilue, or to contain results from a function return, a variable must be declared
with a type consistent with the corresponding paramcter.

Chapter 3 — Callable Functions 47

Number type The number type that is returned is either Integer or Floating Peint, and is
determined by one of the following:

« the built-in default {(which is the same as the configuration file at
distribution time);

« the default configuration file {DASTC.CFG); or,

« the specified configuration file.

Buffers When the number type is integer, a twos complement 32-bit number is
returned. If a particular channel is configured as & temperature input, the value
returned is in .01 degrees. If a particular channel is configured as a voltage
input, the value returned in in microvolts. To convert .01 degrees to degrees,
divide the value by 100; 1o convert microvolts to volts, divide the value by
1,000,000,

When the number type is {loating point, an {IEEE 32-bit real number is
returned. The value returned is in volts or degrees.

Declare a user-defined data buffer with a type appropriate to the number type
that was configured.

A single sample is four bytes long. Therefore, you should declare a tocal
bulfer ag an array of four-byte elements, the size of which is at least equal to

the number of samples you are requesting.

Declare pointers to buffers allocated by K_IntAlloc with a type
that is appropriate to the number type that was configured.

48 ASO-DAS-TC User’s Guide — Rev. A

DASTC_DevOpen

Purpose Initialize and configure the driver.

Prototype c
DASErr far pascal DASTC_DevOpen(char far * ¢fgFile,
char far * numDevices),

Pascal
Function DASTC_DevOpen{ Var ¢fgFile : char;
Var numDevices : Integer) : Word;

Visual Basic for Windows
DASTC_DevOpen Lib "DASTC.dI" (ByVal cfgFile,
numDevices As Integer) As Integer

Parameters cfeFile Driver configuration file
numbevices Number of devices defined in ¢fgFile. Valid values: 1, 2
Notes DASTC_DevOpen initializes the driver according to the information in ¢fgFife. On

retumn, numDevices contains the number of devices for which ¢fgFile contains
configuration information.

If ¢fgfile is -1, the built-in defaults are used. They are identical to the defaults in the
DASTC.CFG file when this file is initially distributed. This file specifies that the
device is set as follows:

Board Number 0 |
Base Address 300nh 308h
Interrupt Level 7 5

Chapter 3 — Cailable Functions 49

The following parameters have the same defaults for both TC

boards:
Normal Mode Rejection 60 Hz
Frequency
Number Type Integer
Units Cc
Number of Readings to l
average
CJC Correction ON

Specify 0 for ¢fgFile to cause the driver to search for DASTC.CFG.

50 ASO-DAS-TC User’s Guide -— Rev. A

DASTC_GETCJC

Purpose

Prototype

Parameters

Notes

Returns the value of the CIC on the DAS-TC in degrees Celsius; this value is
used to correct temperature input values.

c
DASErr far pascal DASTC_GETCIC (int devNumber, flowt tar * CJCtemp ;

Pascal
Function DASTC_GETCIC (devNumber : Integer, Var CICremp - Single)
Word;

Visual BASIC for Windows
DASTC_GETCIC Lib "DASTC.dII" (ByVal devNumber As Integer, C/Clemp
As Single) As Integer

devNumber Board number, Valid values: 0, 1

CJCtemp CIC sensor temperature value in degrees Celsius,

This function call reads temperature at the STA-TC or STC-TC terminals.

Upon retum, CJCtemp contains the CJC (Cold Junction Compensation)
temperature associated with the device identified by devNumber. The value
stored in CS/Ctemp is floating point regardless of the format specified in the
configuration file.

In order to obtain a temperature reading from a thenocouple type not
recognized by the Driver, you need to perform your own linearization. For a
corrected temperature reading, you can call DASTC_GETCJC and use the
resulting value to correct the linearization.

Depending upon the volatility of the ambient temperature where the CJC
resides, the more samples you take, the more often you should call
DASTC_GETCJC.

This call does not use a frame.

An error is returned {f an Interrupt operation is in progress.

Chapter 3 — Callable Functions 81

DASTC_GetDevHandle

Purpose Obtain a device handle.

Prototype C
DASErr far pascal DASTC_GetDevHandle (int devNumber, void far * far *
devHandle);

Pascal
Function DASTC_GetDevHandle(devNumber : Integer; Var devHandle : Longint)
Word;

Visual Basic for Windows
DASTC_GetDevHandie Lib "DASTC.dII" (ByVal devNumber As Integer,
devHandle As Long) As Integer

Parameters devNumber Device number. Valid values: 0, 1
devHandle Device handle

Notes On retum, devHandle containg the handle associated with the device identificd by
devNumber,

The value retumed in devHandle is intended to be used exclusively as an argument
to functions that require a device handle. Your program should not modify the value
retumed in devHandle.

The driver supports up to two DAS-TC hoards; a4 unique handle must be associated
with cach supported board.

In addition to obtaining a device handle, DASTC_GetDevHandle performs the
following tasks:

» aborls all in-progress A/D operations

» checks if device identified by devHancdle is present

» checks if settings in configuration file match actual board settings

» initializes the board to its delault stale

52 ASO-DAS-TC User’s Guide - Rev. A

K_ADRead

Purpose Read a single A/D value.

Prototype c
DASErr far pascal K_ADRead(DDH devHandle, unsigned char chan,
unsigned char gainCode, void far * ADvalue),

Pascal
Function K_ADRead(devHandle ; Longint; chan : Byte;
gainCode : Byte; Var ADvalue : Longint) : Word;

Visual BASIC for Windows
K_ADRead Lib "DASTC.dII" (ByVal devHandle As Long, ByVal chan As Integer,
ByVal gainCode As Integer, ADvalue As Long) As Integer

Parameters devHandle Device handle
chan Input channel. Valid values: 0, 1..... 15
gainCode Gain code is ignored. A value of (0 must be passed even though it
is not used. The reading is retumed according to the configured
gain,
ADvalue Storage location of acquired A/D value
Notes On return, ADvalue contains the value read from channel ciran of the device

identified by devHandle,
See Table 1, page 47 for the A/D voltage ranges and their corresponding gains.

The retum values are in microvolts or .01 degrees for integer types, and are not
scated for floating point,

This tfunction returns an error if an Interrupt operation is in progress.

Chapter 3 — Callable Functions 53

K_ClearFrame

Purpose Clears all the elements of an A/D frame.
Prototype C
DASEr far pascal K_ClearFrame(FRAMEH frameHandle),

Pascal
Function K_ClearFrame(frameHandle : Longint) ;. Word,

Visual Basic for Windows
K_ClearFrame Lib "DASTC.dI" (ByVal frameHandle As Long) As Integer

Parameters SframeHandle Frame handle
Notes K_ClearFrame initializes to zero all of the elements in the frame identified by
frameHandle,

54 ASO-DAS-TC User's Guide — Rev. A

K_ClrContRun

Purpose Set the value ol a frame’s Buffering Mode element 0 SINGLE-CYCLE.
Prototype C
DASE;rr far pascal K_ClrContRun{ FRAMEH frameHandle);

Pascal
Function K_ClrContRun(frameHandle : Longint) : Word,

Visual Basic for Windows
K_ClIrContRun Lib "DASTC.dN" (ByVal frameHandie As Long) As Integer

Parameters frameHandle Frame handle
Notes K_CirContRun sets the Buffering Mode to SINGLE-CYCLE in the frame identified hy
SframeHandle.

Chapter 3 — Callable Functions 55

K_DASDeviInit

Purpose Reset and initialize the device and driver.

Prototype C
DASErr far pascal K_DASDevInit(DDH devHandle);

Pascal
Function K_DASDevInit(devHandle ; Longint) : Word,

Visual BASIC for Windows
K_DASDevInit Lib "DASTC.dII" (ByVal devHandle As Long)
As Integer

Parameters devHandle Device handle

Notes K_DASDevlnit performs the following tasks:
= Aborts all in-progress A/D operations
» Checks if device identified by devHandle is present
+ Checks if settings in configuration file match actual board settings

+ Initializes the board 1o its internal delaults or (o the configuration file values.

56 ASO-DAS-TC User’s Guide — Rev, A

K_FormatChnGAry

Purpose

Prototype

Parameters

Notes

Convert a Visual Basic Channel-Gain array into an equivalent Function Call Driver
Channel-Gain array (Visual Basic Only).

Visual Basic for Windows
K_FormatChnGAry Lib "DASTC.AI" (chanGainArray As Integer) As Integer

chanGainArray Storage location for Channel-Gain Array

A Channel-Gain Array defines two characteristics of an A/D operation;

» the sequence in which the input channels are sampled and,

+ the gain applied to cach of the channels configured for voltage in that sequence.
A Channel-Gain Array can define up to 16 randomty sequenced channel-gain pairs.
Adjacent pairs can specify the same channel (with equal or unequal gains). The

following table illustrates the required format of a Channel-Gain array for Visual
Basic.

Intcger 0 1 2 3 4 v | 2N-1 2N

Value N chan gain chan = gain | .. | chan . gain
of pair 1 pair 2 pair N
pairs

The gain must be specified as a gain code. Refer to Table 1 on page 47 for the input
range affected by each gain.

Gain Code 0 l 2 3
Gain 1 125 166.67 400)

Chapter 3 — Callable Functions 57

K_FormatChnGAry converts the Visual Basic Channel-Gain array identified by
chanGainArray into an equivalent Channel-Gain array but formatted for use by the
Function Call Driver. On retumn, chanGainArray identifies the resulting array, which
replaces the Visua! Basic array. The function, K_SetChnArray, requires you to pass
a reference to the resulting array, which is unreadable in Visual Basic. To resore the
array so that it is readable from Visual Basic, use the complementary function,
K_RestoreChnGary.

A Channel-Gain array enables you o specify different gains for different input
channels.

58 ASQ-DAS-TC User’s Guide — Rev. A

K_FreeFrame

Purpose

Prototype

Parameters

Notes

Free the memory used by a frame and return the frame it (0 the pool of available
frames.

C
DASErr far pascal K_FreeFrame(FRAMEH frameHandle),

Pascal
Function K_FreeFrame(frameHandle : Longint) | Word;

Visual Basic for Windows
K_FreeFrame Lib "DASTC.I" (ByVal frameHandle As Long) As Integer

SframeHandle Frame handie

K_FreeFrame frees the memory used hy the frame identified by frameHandle; the
frame is then retumed to the pool of available frames. The frame elements are
automatically cleared to zero.

Do not use this function if you plan to use the same frame for future calls 1o the
driver.

Chapter 3 — Callable Functions 59

K_GetADFrame

Purpose Obtain the handle to an A/D frame.

Prototype C
DASErr far pascal K_GetADFrame(DDH devHandle,
FRAMEH far * frameHandle ¥,

Pascal
Function K_GetADFrame{ devHandle : Longint;
Var frameHandle ; Longint } : Word;

Visual Basic for Windows
K_GetADFrame Lib "DASTC.dI" (ByVal devHandle As Long,
frameHandle As Long) As Integer

Parameters devHandle Device handle
JrameHandle Handle to A/D frame
Notes On retum, frameHancdle contains the handle to an A/D frame associated with the

device identified by devHandle.

60 ASO-DAS-TC User’s Guide — Rev. A

K_GetBuf

Purpose

Prototype

Parameters

Notas

Get the values of an A/D frame’s Buffer Address and Number of Samples elements,

Cc
DASErr far pascal K_GetBuf(FRAMEH frameHandle, void far * far * bufAddr,
long far * samples);

Pascal
Function K_GetBul(frameHandle : Longint; Var bufAddr ;. Integer,
Var samples : Longint } . Word;

Visual Basic for Windows
K_GetBuf Lib "DASTC.dUI" (ByVul frameHandle As Long, bufAddr As Long,
samples As Long) As Integer

SframeHandle Frame handle
bufAddr Buffer Address
samples Number of Sampies

On return, the following parameters contain the value of an element in the frume
identified by frameHandle:

» bufAddr contains the value of the Buffer Address clement

o samples contains the value of the Number of Samples element

Chapter 3 — Callable Functions 61

K_GetChnGAry

Purpose Get the value of an A/D frame’s Channel-Gain Array Address clement.

Prototype c
DASE! far pascal K_GetChnGAry(FRAMEH frameHandle,
void far * far * chanGainArray);
Pascal
Function K_GetChnGAry(frameHandle : Longint,
Var chanGainArray : Integer) : Word,
Visual Basic for Windows
K_GetChnGAry Lib "DASTC.dUI" (ByVal frameHandle As Long,
chanGainArray As Long) As Integer
Parameters SframeHandle Handle 10 A/D frame
chanCGainArray Channel-Gain Array Address
Notes On returmn, chanGainArray contains the value of the Channel-Gain Array Address

¢lement in the frame identified by frameHandle,

Refer to K_SetChnGAry for a description of Channel-Gain arrays.

62 ASO-DAS-TC User’s Guide — Rev. A

K_GetContRun

Purpose

Prototype

Parameters

Notes

Get the value of a frame’s Buffering Mode element.

C
DASErr far pascal K_GetContRun{ FRAMEH frameHandle,
shott far * mode),

Pascal
Function K_GetContRun(frameHandle . Longint,
Var mode : Word) : Word,

Visual Basic for Windows
K_GetContRun Lib "DASTC.dlI" (ByVal frameHandle As Long,
Mode As Integer) As Integer

SframeHandle Handle to A/D frame

mode Code that indicates Buffering Mode,
0=Single-cycle, 1=Continuous

On retum, mode contains a code that indicates the Buftering Mode in the frame

identified by frameHandle.

Chapter 3 — Callable Functions

63

K_GetErrMsg

Purpose Get the address of an error message string. This function is available only as 4
C-language function.

Prototype C
DASErr far pascal K_GetErrMsg{ DDH devHandle, short msgNum,
char far * far * errMsg),

Parameters devHandle Device handle
msgNum Error message number
errMsy Error message string
Notes On retumn, errMsg contains a pointer to o string that corresponds 1o msgNum for (he

device identificd by devHandle.

Reter to Appendix A for error numbers and error messages.

64 ASO-DAS-TC User’s Guide — Rev. A

K_GetStartStopChn

Purpose Get the values of an A/D frame’s Start Channel and Stop Channel elements.

Prototype c
DASErr far pascal K_GetStartStopChn(FRAMEH frameHandle,
short far * start, short far * stop);

Pascal
Function K_GetStartStopChn(frameHandle : Longint Var start © Word;
Var stop : Word) : Word;

Visual Basic for Windows
K_GetStartStopChn Lib "DASTC.dII" (ByVal frameHandle As Long,
start As Integer, stop As Integer) As Integer

Parameters SframeHandle Handle to A/D frame
start Start Channel. Valid values: 0, 1....,15
stop Stop Channel, Valid values:; 0, 1....,15
Notes On return, the following parameters contain the value of an element in the frame

identified by frameHandle:
« grart containg the value of the Start Channel element

« stop contains the value of the Stop Channel element

Chapter 3 — Callable Functions 65

K_GetVer

Purpose Determine the driver revision and driver specification.

Prototype C
DASErr far pascal K_GetVer(DDH devHuandle, short far * spec,
short far * version),

Pascal
Function K_GetVer(devHandle : Longint; Var spec : Word;
Var version : Word) : Word;

Visual Basic for Windows
K_GetVer Lib "DASTC.AII" (ByVal devHandle As Long, spec As Integer,
version As Integer) As Integer

Parameters devHandle Device handle
spec Driver specification
version Driver version

Notes On retumn, spec containg the revision number of the Keithley DAS Driver
Specification to which the driver conforms; version contains the driver’s version
number.

spec and version are two-byte integers; the high byte containg the major revision
level and the low byte contains the minor revision level (in the version number 2.1,
for example, the major and minor revision levels are 2 and 1, respectively).

On return, use the following equations to extract the major and minor revision levels
from either spec or version:

rerurned value

major revision level =
256

66 ASO-DAS-TC User’s Guide — Rev. A

The remainder is dropped.

minor revision level = returned value MOD 256

where returned value represents cither spec or version.

Chapter 3 — Cullable Functions 67

K_InitFrame

Purpose Initialize a board’s A/D circuitry and set an A/D frame’s elements to their default
vilues.
Prototype Cc

DASErr far pascal K_InitFrame(FRAMEH frameHandle),

Pascal
Function K_InitFrame{ frameHandle : Longint) | Word;

Visual Basic for Windows
K_InitFrame Lib "DASTC.AII" (ByVal frameHandle As Long) As Integer
Parameters frameHandle Handle to A/D [rame
Notes K InitFrame initializes the A/D circuitry on the DAS-TC that is associated with the
frame identified by frameHandle.
If an interrupt-mode A/D operation is not active, K_InitFrame checks the validity of
the board number associated with the frame identified by frameHandle and enables

A/D operations,

If an interrupt-mode A/D operation is active, K_InitFrame retumns an error that
indicates that the board is busy.

68 ASO-DAS-TC User’s Guide — Rev. A

K_intAlloc

Purpose

Prototype

Parameters

Notes

Allocate a buffer suitable for an interrupt-mode A/D operation.

c
DASErr far pascal K_IntAlloc(FRAMEH frameHandle, DWORD samples.
void far * far * intAddr, WORD far * memHandle),

Pascal
Function K_IntAlloc(frameHandle © Longint ; samples © LongInt;
Var intAddr ; Longint ; Var memHandle : Word) : Word,;

Visual Basic for Windows
K_IntAlloc Lib "DASTC.AII" (ByVal frameHandle As Long,
ByVal samples As Long, intAddr As Long, memHandle As Integer) As Integer

JrameHandle Handle to A/D frame

samples Number of samples. Valid values: 0-65,535
intAddr Address of interrupt huffer

memHandle Handle to interrupt buffer

On retumn, intAddr contains the address of a buffer that is suitable for an interrupt-
mode A/D operation of samples sanples; memHandle contains a handle 1o the buffer
that this function allocates.

Chapter 3 - Callable Functions 69

K_IntFree

Purpose De-allocate an interrupt buffer that was previously allocated with K_IntAlloc,

Prototype C
DASErr far pascal K_IntFree(WORD memHandle);

Pascal
Function K_IntFree(memHandle : Word) . Integer;

Visual Basic for Windows
K_IntFree Lib "DASTC.AU" (ByVal memHandle As Integer) As Integer

Parameters memHandle Handle to interrupt buffer

Notes K_IntFree de-allocates the interrupt buffer identified by memf{andie.

70 ASO-DAS-TC User’s Guide — Rev. A

K_IntStart

Purpose Start an interrupt-mode A/D operation,
Prototype C
DASErr far pascal K_IntStart(FRAMEH frameHandle);

Pascat
Function K_lntStart(frameHandle : Longint) ;. Word,

Visual Basic for Windows
K_IntStart Lib "DASTC.dII" (ByVal frameHandle As Long) As Integer
Parameters SframeHandle Handle to A/D frame
Notes K_IntStart starts the interrupt-mode A/D operation defined in the frame identified
by framehandle. An crror is returned if an Interrupt operation is in progress.

Acquired samples are stored at o location identified by the Buffer Address element of
the frame identified by frameHandle.

The values acquired are in microvolts or .01 degrees for integer types, and are not
scaled for floating point.

Chapter 3 — Callable Functions 71

K_IntStatus

Purpose Determine the status of an interrupt-mode A/D operation.

Prototype C
DASErr far pascal K_IntStatus(FRAMEH frameHandle, short tar * status,
long Tar * index),

Pascal
Function K_IntStatus(frameHandle : Longint; Var stawus @ Word;
Var index @ Longint) : Word,

Visuat Basic for Windows
K_IntStatus Lib "DASTC.dII" (ByVal frameHandle As Long, status As Integer,
index As Long) As Integer

Parameters frameHandle Handle to A/D frame
Status Code that indicates status ol interrupt operation. Valid values:

0 = Interrupt-mode A/D operation idle
1 = Interrupt-mode A/D operation active

index Buffer array index. Used by this function to store (he buffer array
index.
Notes On return, sratus contains a code that indicates the status of the Interrupt operation

detined by the frame identified by frameHandle, index contains the number of the
next buffer element, at the time the function was called, which is 10 be written with
the next sample.

For Continuous buffer mode, index is reset to zero when the last block transter is
completed and another acquisition cycle has been initiated.

72 ASO-DAS-TC User’s Guide — Rev. A

K_IntStop

Purpose

Prototype

Parameters

Notes

Abort an interrupt-mode A/D operation,

C
DASErr far pascal K_IntStop{ FRAMEH frameHandle, short far * status,
long far * index);

Pascal
Function K_IntStop(frameHandle : Longint, Var status © Word,
Var index : Longint) ; Word,

Visual Basic for Windows
K_IntStop Lib "DASTC.AII" (ByVal frameHandle As Long, starus As Integer,
index As Long) As Integer

SframeHuandle Handle to A/D frame
sratus Code that indicates status of interrupt operation. Valid values:
0 = Interrupt operation idle
1 = Interrupt operation active (interrupt was stopped)
index Buffer array index. Used by this function to store the buffer array

index.

K_IntStop aborts the interrupt operation defined by the frame identified by
JrameHandle, On return, status contains a code that indicates what the status was
when the function was called; index contains the number of the next buffer element,
at the time the function was called, which is to be written with the next sample.

K _IntStop does nothing if an interrupt-inode A/D operation is not in progress.

Chapter 3 — Callable Functions 73

K_MoveDataBuf

Purpose Transfer acquired A/D samples between a memory buiter and an array.

Prototype C
DASErr far pascal K_MoveDataBuf(int far * dest, int far * source,
unsigned int samples);

Pascal
Function K_MoveDataBut(dest : Longint, source : Longint,
samples » Word } ; Integer,

Visual Basic for Windows
K_MoveDataBuf Lib "DASTC.dII" (dest As Any, source As Any,
ByVal samples As Integer) As Integer

Parameters dest Address of destination butfer
source Address of source butter
samples Number of samples to transfer

Notes K_MoveDataBuf moves samples samples from the buffer at source to the bufler
at dest.

Although this function is valid for all of the supported languages, it is intended
primarily for use with those languages (such as Visual Basic) that do not provide a
convenient method of accessing memory directly. This function is also needed in
languages that are running in a Windows standard environment, where acquired
samples must be initially written into a dynamically allocated bulfer before the datu
can be stored in a local buffer.

74 ASO-DAS-TC User's Guide — Rev. A

K_RestoreChnGAry

Purpose

Prototype

Parameters

Notes

Convert a Function Call Driver Channel-Gain array into an equivalent Visual Basic
Channel-Gain array (Visual Basic Only).

Visual Basic for Windows
K_RestoreChnGAry Lib "DASTC.dII" (chanGainArray As Integer) As Integer

chanGainArray Storage location for Channel-Gain array
Use this function to restore the Channel-Gain Array in a format readable to Visual
Basic.

Do not call this function until a K_SyncStart or K_IntStart has been called.

Chapter 3 — Callable Functions 75

K_SetBuf

Purpose Set the values of an A/D frame’s Buffer Address and Number of Samples elements
(Pascal and C languages only).

Prototype Cc
DASErr far pascal K_SctBuf(FRAMEH frameHandle, void far * bufAddr,
long samples),

Pascal
Function K_SetBul(frameHandle : Longint; bufAddr ; Longint;
samples . Longint)} @ Word;

Parameters SframeHandle Handle 10 A/D frame
bufAddr Buffer Address
sumples Number of Samples (1-65,535)

Notes K_SetBuf assigns values to the following clements in the frame identified by
frameHandle:

« (he Buffer Address element is assigned the value in bufAddr
+ the Number of Samples element is assigned the value in samples
It using Visual Basic for Windows, bufAddr must be the address of a dynamically

allocated buffer obtained from K_IntAlloc. For user-detined arrays, see K_SetBufL
if integer type is configured, and K_SetBufR it floating-point type is configured,

76 ASO-DAS-TC User's Guide — Rev. A

K_SetBufL

Purpose

Prototype

Parameters

Notes

Set the values of a frame’s Buffer Address and Number of Samples elements for
user-defined long integer arrays (Visual Basic for Windows only).

Visual Baslc for Windows

K_SetBufL. Lib "DAS1600.dI1" { ByVal frameHandie As Long, bufAddr As Long,
ByVal samples As Long) As Integer

frameHandle Frame handle
bufAddr Address of user-created buffer defined as a long array
samples Number of samples 10 be stored in buffer

K SetBufL sets the Butter Address (0 bufAddr and the Number of Samples to
samples in the frame identified by frameHancdle.

Chapter 3 — Callable Functions 77

K_SetBufR

Purpose Set the values of a frame’s Buffer Address and Number of Samples elements for
user-defined floating-point arrays (Visual Basic for Windows only).

Prototype Visual Basic for Windows
K_SetBufR Lib "DAS1600.d1" { ByVal frameHandle As Long, bufAddr As Single,
ByVal samples As Long) As Integer

Parameters frameHandle Frame handle
bufAddr Address of user-created buffer defined as a long array
samples Number of samples to be stored in buflfer

Notes K_SetBufR scts the Buffer Address to bufAddr and the Number of Samples 1o

samples in the frame identified by frameHandle.

78 ASO-DAS-TC User’s Guide — Rev. A

K_SetChnGAry

Purpose

Prototype

Parameters

Notes

Set the value of a frame’s Channel-Gain Array Address element.

C
DASErr far pascal K_SetChnGAry(FRAMEH frameHandle,
void far * chanGainArray);

Pascal
Function K_ScetChnGAry(frameHandle . Longint;
Var chanGainArray @ Integer) : Word;

Visual Basic for Windows
K_SetChnGAry Lib "DASTC.AII" (ByVal frameHandle As Long,
chanGainArray As Integer) As Integer

frameHandle Handle (o A/D frame

chanGainArray Channel-Gain Array Address

K_SetChnGAry sets the value of the Channel-Gain Array Address element (o
chanGainArray in the frame identified by frameHandle,

A Channel-Gain Array defines two characteristics of an A/D operation:

+ the sequence in which the input channels are sampled and,

* the gain applied 1o cach of the channels configured for voltage in thal scquence.
A Channel-Gain Array can define up to 16 randomly sequenced channel-gain pairs.
Adjacent pairs can specily the same channel (with equal or unequal gains). The

following table illustrates the required format of a Channel-Gain array tor the € and
Pascal languages.

Byte)] 1 2 3 4 5 2N 2N+1
Value N chan gain | chan © gain | .. | chan pain
of pairs pair | pair 2 pair N

Chapter 3 — Callable Functions 79

The following table illustrates the required format of a Channel-Gain array for Visual

Basic.
Integer 0 1 2 3 4 2N-1 2N
Value N chan gain | chan gain chan | gain
of pair 1 pair 2 pair N
pairs

The gain must be specified as a gain code. Refer to Table 1 on page 47 for the input
range affected by each gain.

Gain Code

2

|

Gain

166.67

w0 |

A Channel-Gain array enables you to specify different gains for different input

channels.

80 ASO-DAS-TC User’s Guide — Rev. A

K_SetContRun

Purpose

Prototype

Parameters

Notes

Set the value of a frame’s Buffering Mode element to CONTINUOUS.
Cc
DASErr far pascal K_SetContRun{ FRAMEH frameHandle, short).

Pascal
Function K_SetContRun{ frameHandle © Longint) : Word;

Visual Basic for Windows

K_SetContRun Lib "DASTC.AII" (ByVal frameHandle As Long) As Integer
frameHandle Handle to A/D frame

K_SetContRun sets the Buffering Mode to CONTINUOUS in the frame identified by
SframeHandle,

The default setting for buffering mode is SINGLE-CYCLE

Chapter 3 — Callable Functions 81

K_SetStartStopChn

Purpose Set the values of an A/D frame’s Start Channel and Stop Channel elements.

Prototype C
DASErr far pascal K_SetStartStopChn(FRAMEH frameHandle, short start,
short stop);

Pascal
Function K_SetStartStopChn(frameHandle : Longint; start @ Word;
stop » Word) © Word,

Visuai Basic for Windows
K_SetStartStopChn Lib "DASTC.dII" (ByVal frameHandle As Long,
ByVal start As Integer, ByVal stop As Integer) As Integer

Parameters SframeHandle Handle to A/D frame
start Start Channel. Valid values: 0, 1,....15
stop Stop Channel. Valid values: 0, 1,...,15

Notes K_SetStartStopChn assigns values to the following elements in the frame identilicd
by frameHandle:

+ the Start Channel element is assigned the value in start

+ the Stop Channel element is assigned the value in stop

During a Start/Stop scan, the gains applied are either the internal defaults or those
read from the configuration file at load time.

Use K_SetChnGAry to specify a non-sequential channel-scanning sequence and/or
to specify channel gains.

If the Stop channel number is greater than the Start channe! number, then the scan
order is

Start channel number,., ... Stop channel number

For example, if Stop=13 and Start=10, the scan order is 10,11,12, and 13.

82 ASO-DAS-TC User’s Guide — Rev. A

If the Stop channel number is less than the Start channel number, then scan order is
Start channel number,., ... 150, .. Stop channel number

For example, if Start=13 and Stop=10, the scan order is 13-15 (inclusive), then OQ-10
(inclusive),

If the Start and Stop channel numbers are the same, a single scan is performed.

Chapter 3 — Calluble Functions 83

K_SyncStart

Purpose Start a synchronous-mode A/D operation.
Prototype C
DASEmr far pascal K_SyncStart{ FRAMEH frameHand{e),

Pascat
Function K_SyncStari(frameHandle : Longint) : Word;

Visual Basic for Windows
K_SyncStart Lib "DASTC.dII" (ByVal frameHandle As Long) As Integer

Parameters frameHandle Handle to A/D frame

Notes K_SyncStart starts the synchronous-mode A/D operation defined in the trame
identified by framehandfe. An crror is returned if an Interrupt operation is in
progress.

The values acquired are in microvolts or .01 degrees for integer types, and are not
scaled for floating point.

84 ASO-DAS-TC User’s Guide — Rev, A

A1

Error 0000h

Error 6000h

Cause

Solution

Error 6001h

Error 6002h

Error 6004h

Error 6005h
Cause

Solution

Error 6006h

Function Call Driver A
Error Messages

Error Codes

No error.

Error In Configuration File

The configuration file supplicd to DASTC_DevOpen() is corrupt or does not
exist. If file is known to be good, then it probably contains one or more
undefined keywords,

Check if the file exists at the specitied path, Check for illegal keywords in tile;
the best way 1o fix illegal keywords is to et the supplicd DASTCCFG.EXE
utility do it.

lllegal Base Address in Configuration File.

Negal IRQ level in Configuration Flle.

Error opening configuration file.

llegal Channel Number
The specified I/O operation channel is out of range. The legal range is 0-15,

Specity legal channel number.

Ilegal gain.

Appendix A — Function Call Driver error messages 85

Error 6008h
Cause

Solution

Error 60090

Error 600Ah
Cause

Solution

Error 600Ch
Cause

Solution

Error 600D
Cause

Solution

Error 600Eh

Error 600Fh

Error 6010h

Error 6011h

Error 6012h

Error 6013h

Error 7000h

Cause

Solution

Bad number in configuration file.

An illegal specification of a number is detected in the Configuration file. Note
that if specifying a hexadecimal number for the Base Address, that number
must be proceeded with "&H’.

Check the number following ’Address’ in the Configuration file.
incorrect version number.

Configuration file not found.
This error is retumed by the DASTC_DevOpen() function whenever the
specified configuration file is not found.

Check the configuration file name (spelling!), path, etc...
Error returning INT buffer.

This error occurs during K_IntFree() whenever DOS retumns an crror in INT
21h function 49H.

Make sure that the parameter passed to K_INTFree() was previously obtained
via K_INTAlloc().

Bad frame handle.

This error is usually returned by Frame Management or an Operation Function
whenever an illegal Frame handle is passed to one of these functions.

Check the Frame Handle.

No more frame handles,
Requested INT bufter too large.
Cannot allocate INT buffer.

INT buffer already allocated.
INT buffer De-Allocatlon Error.
INT butfer never allocated.

No board name

DASTC_DevOpen() tunction did not {ind the keyword 'Name’or a name
following in the specified configuration file.

Make sure that a board name is specified in your configuration file. The legal
DAS-TC name is: DASTC.

86 ASO-DAS-TC User’s Guide — Rev. A

Error 7001h

Cause

Solution

Error 7002h

Cause

Salution

Error 7003h

Cause

Solution

Error 7004h
Cuause

Solution

Error 7005h

Error 7006h

Error 7007h
Cause

Error 7008h
Cause

Error 7009h
Cause

Error 700Ah

Bad board nhame

DASTC_DevOpen() function found the board name’ in the specified
configuration file to be illegal. The legal DASTC name is: DASTC.

Check the name following keyword "Name' in your configuration file.

Bad board number

DASTC_DevOpen() function found the "Board’ number in the specified
configuration file to be illegal. The fegal board numbers are O and 1.

Check the number foltowing *Board’ in your configuration file.

Bad base address

DASTC_DevOpen() function found the board’s basc /O "Address’ in the
specified configuration file to be illegal. The legal address are 200h (512)
through 3FOh {1008) in increments of 10h (16} inclusive,

Check the number following "Address’ in your configuration file, NOTE that
to specify a Hex number, the number must be preceded by "&H',

Bad Interrupt Level.
DASTC_DevOpen() function found the Interrupt Level in the specified

configuration file to be illegal. The legal Interrupt levels are 2, 3, 4, 5, and 7.

Check the number following ’IntLevel” in your configuration file.
Bad Normal Mode Rejection Frequency.
Bad Number Type.

Bad Channel Configuration.

One or more of these conditions exisls:
- Channel # is out of range

- Channel argument is illegal

Check Sum Error.
Checksum in communication packet failed, resulting in a4 communication
failure.

Board Not Initialized.

One or more of the following conditions exists:

- A function was called before K_DASDevInit was called.

- The PC Side Board diagnostics done during board initialization failed.
- Attempt to return the DAS-TC 1D failed.

- Wrong Base Address.

Initialization Falture.

Appendix A — Function Call Driver error messages

87

88

Error 700Bh

Error 700Ch

Error 8000h

Error 8001h

Cause

Solution

Error 8002h

Cause

Solution

Error 8003h
Cause

Solution

Error 8005h

Cause

Solution

Error 8006h

Cause

Error 801Ah
Cause

Solution

Protocol Communication Error.
Bad Voltage to Temperature Calculation Error.
No error.

Function not supported

A request is made to a function that is not supported by a DAS-TC. This error
should not occur in a standard release software,

Insure that the function is one listed in chapter 3. If the problem cannot be
resolved, contact the Keithley Technical Support Department,
Function out of bounds

Illegal function number is specified. This error should not occur in a standard
release soltware.

Contact the Keithley Technical Support Department.

lllegal board number
The driver supports up to two boards: 0 and 1.

Check the hoard number parameter in your call to DASTC_ GetDevHandle().

No board

This error is issued during K_DASDevInit() whenever the hoard presence lest
fails. This is normally caused by a conflict in the specified board [/O address
and the actual /O address the board is configured for. Also, this error is issued
when the board is not present in the system,

Check the board’s base 1/O address dip switch and make sure it matches the
base address in your configuration file.
A/D not Inltialized

A [unction was called before K_DASDevInit was called.

Interrupts Already Active.
An attempt is made to start an Interrupt-based operation while another is
already active.

Stop current Interrupt mode first and retry.

ASO-DAS-TC User’s Guide — Rev. A

A.2 Error Conditions

Voltage/Thermocouple When a voltage/thermocouple input is under or over the voltage range set for a
Error Conditions particular channel, the DAS-TC responds with the following readouts.

For under the voltage/thermocouple range:

+ Floating Point is -10,000.00

« Integer is -971,227,136

For over the voltage/thermocouple range:
+ Floating Point is +10,000.00
+ Integer is +1,176,256,512

Appendix A — Function Call Driver error messages 89

(SRR g DATA ACQUISITION

440 Myles Standish Boulevard
Taunton, MA 02780
508-880-30060

	TOC:

