
DV-488

IEEE-488 Interface Board

Keithley MetraByte Corporation

A Subsidiary of Keithle Instruments, Inc.
440 Myles &andish Boulevard
Taunton, Massachusetts 02780

Part Number: 24821

First Printing: June 1989

Copyrt ht 0 1989
%Y

Keithley MetraB te Corporation
440 Myles Stan&sh Boulevard
Taunton, Massachusetts 02780

II WARNING
Keithley MetraByte Corporation assumes no liability for dama es cons
this product. This product is not designed with components o

f eyeyt tothe use of
a level o rehabihty suitable II

All rights reserved. No part of this publication may be re
or transmitted, in an

K
form by any means, electronic, met R

reduced, stored in a retrieval.system,
anical, photoco

otherwise, without t e express written permission of Keithley MetraByte e
ying, recording or
orporation.

Information furnished by MetraB
ever, no responsibility is assum
ments of patents or other rights
granted by implication or otherwise un

to be accurate and reliable. How-
for its use; nor for an

result from its use. No yi
infringe-
tense is

ts of Keithley MetraByte Corporation.

MetraByte TM is a trademark of Keithley MetraByte Corporation.

IBM 0 is a registered trademark of International Business Machines Corporation.

Microsoft 8 is a registered trademark of Microsoft Corporation.

WARRANTYINFORhfATION

All products manufactured b Keithley MetraByte are warranted against defective materials
and workmanship for a peno 4 of v from the date of delive
Any roduct found to be defective wtthin the warranty period WI , at the option o Kerthley

lf
fx

to the original purchaser.

Metra yte, be repaired or replaced. This warranty does not apply to products which have been
damaged by improper use.

TABLE OF CONTENTS

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

INTRODUCTION
General Description (MBC-488 & uCMBC-488)

INSTALLATION (Hardware)
MBC-488 & IBM PC/XT/AT
uCMBC-488 & PS/2
Modifying the @5018ADF File
PSI2 Installation Errors

DEVICE DRIVER (DV488)
Introduction & General Overview
Installing DV488 Device Driver
Program Mode of Operation
Direct Memory Access Mode of Operation
Data Transfer Sequence

GPIB PROGRAMMING with DV488
Programming and Device Driver Access
Image Specifiers & Terminators
Command Structure & Syntax
Device Driver Commands
DV488 Error Messages
Programmed Data Transfer
BASICA Example Program
DMA Command Syntax
Determing the Status of a DMA Operation
QuickBASIC Example Program

IBM PC/XT SPECIFIC PROGRAMMING STRUCTURE
DMA Data Transfer
IBM PC/XT Memory Page Boundaries
DMA Transfers in BASIC

PS/2 PROGRAMMING STRUCTURE
uCMBC-488 DMA Data Transfer
DMA Data Transfers in BASIC

MBC-488 HARDWARE STRUCTURE
MBC-488 Register I/O Map
MBC-488 Interrupts & DMA
MBC-488 Specifications

uCMBC-488 HARDWARE STRUCTURE
uCMBC-488 Register I/O Map
uCMBC-488 Interrupts & DMA
uCMBC-488 Specifications

APPENDICES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

IEEE-488 Standard
IEEE-488 Interface Messages
File Listing for IBM PC/XT/AT Diskette
File Listing for IBM PS/2 Diskette
Installing the Line Printer Driver

1

z
5
5

;
9

:II
19
20
24

;z

z:
32

ii
41

IEEE-488 Standard
IEEE-488 Interface Messages

APPENDIX C File Listing for IBM PC/XT/AT Diskette
APPENDIX D File Listing for IBM PS/2 Diskette
APPENDIX E Installing the Line Printer Driver

1.0 IiVZ'RODUCZ'ION

General Description (MBC-488 & uCMBC-488)

MetraByte’s MBC-488 and uCMBC-488 are General Purpose Instrument Bus (GPIB) interface
cards conforming to the IEEE-488 standard (November 1978 and later. See Appendix A). The
MBC-488 or uCMBC-488 plug directly into any IBM PC/XT/AT expansion slot (including the
PC/XT short slot J8) as well as virtually any other PC bus compatible or the IBM PW. The
(uC)MBC-488 is supplied with a standard IEEE-488 interface connector. It can be configured as
a controller, talker or listener and supports the 12 interface messages applicable to the IEEE-488
standard (See Appendix B). Full software support (DV488PC.SYS & DV488UCSYS), via DOS
device drivers, is supplied with the both boards (PC and uChanne1 Bus compatible boards). The
DV488 software allows interfacing with up to 14 other devices and provides system timing and
interrupt control (when applicable) for complete GPIB operation.

The hardware and supporting software allow Programmed and Direct Memory Access (DMA)
data transfer with data transfer rates of 2 KBytes/Sec in programmed mode and 400 KBytes/Sec
in DMA mode, The supplied device drivers are general purpose in nature and may be used to
interface with virtually any high and low level computer language supporting device drivers.
Example routines in various languages (C, FORTRAN, BASIC, TurboPASCAL, and QuickBA-
SIC, etc.) are provided and may be listed and/or copied as desired.

(uC)MBC-488 configuration and installation is quick and easy with the IBM PC version being
configured with hardware switches and the PS/2 version being configured via the PS/2’s Setup
and Installation programs supplied.

Product Returns and RMA Procedure

MetraByte’s warranty and product return policies are fully described in the MetraByte Product
catalog. In the unlikely event that you wish to return any MetraByte product, whether for repair,
replacement, or any other reason, you must fist call the Technical Support Department
(508-880-3000) between the hours of 9:00 AM and 4:30 PM to receive a Return Materials
Authorization (RMA) number. This assures that your account will be properly credited (for
product returns) and/or allows MetraByte to track your products to better serve you in the event
that you require support or service.

2.0 INSTALLATION

MBC-488 & the IBM PC/XT/AT

MetraByte’s MBC-488 board uses 16 consecutive address locations in the IBM PC’s I/O address
space. Some I/O address locations will be occupied by internal I/O and other peripheral cards.
The base address of the MBC-488 can be set by the Base Address DIP switch to any 16-bit
boundary. This address space extends from decimal 256-1023 (Hex lOO-3FF). The table below
summarizes the usual address assignments and is reproduced from the “IBM Technical
Reference Manual”:

ADDRESS (Hex) DEVICE ADDRESS (hex) DEVICE

OO@OFF Internal system 378-37F LPTl:
200-20F Game 380-38C SDLC comm.
210-217 Expansion unit 380-389 Binary comm. 2
220.24F Reserved 3AO-3A9 Binary comm. 1
278-27F Reserved 3BO-3BF Mono dsp/LPTl :
2FO-2F7 LPT2: 3CO-3CF Reserved
2F8-2FF COM2: 3DO-3DF Color graphics
300-31F Prototype card 3EO-3E7 Reserved
320-32 Hard disk 3FO-3F7 Floppy disk
3F8-3F COMl:

This list covers the standard I/O options. You may, however, have other peripherals e.g. hard
disk drives, graphics boards, etc. that use I/O address space. Check the manuals that came with
your other peripherals to avoid address conflicts. Review the above list and choose an address
space 16-bits wide and set it via the Base Address DIP switch. The DV488 device driver
(supplied) supports 2 MBC-488 boards. If you are using more than one MBC-488 board,
separate Base Addresses are required to avoid address conflicts.

A second DIP switch (marked DMAANT) is to the left of the Base Address switch and controls
selection of DMA level, interrupts and operation in the J8 short slot of an IBM PC/XT. The first
slider selects the DMA level. There are 4 DMA levels provided by the internal (PC) 8237 DMA
controller. Level 0 is used internally by the system for memory refresh and is not available.
Levels 1, 2 and 3 are available, with level 2 usually being used by the floppy disk drive. Level 1
is usually available, and level 3 is available on standard IBM PC (without hard disk) or IBM
PC/AT. On the XT model, level 3 is used by the hard disk. Select the DMA level desired and
set the switch accordingly. The MBC-488 can be operated in non-DMA modes in the rightmost
short slot (J8) of a PC/XT by setting switch 58 ON (otherwise it should be OFF). This slot is
normally intended for driving the expansion chassis interface and has slightly different signals
from the other slots. If the DMA mode of operation is disabled, both DMA and interrupts will be
disabled and their settings will be meaningless.

There are 6 interrupt levels on the bus (2 thru 7). Interrupts are used for Direct Memory Access
@MA) data transfer only. With the exception of level 6 which is used by the floppy disk
adapter, most of the other . levels may be available. The MBC-488 is shipped with its DIP
switches set for a base I/O address of Hex 300, interrupt level 5, DMA level 1, and the J8 slot
feature disabled. These are usually good default values, and you may not need to alter them. If
you want to check them or change them before you install the board in your computer, insert the
software disk in your floppy drive and enter:

A> INSTALL

The INSTALL.EXB program is a self-explanatory program (INSTALL.EXB) that gives you a
pictorial view the correct switch settings on the MBC-488 for any combination of addresses,
interrupt level, DMA level etc. Simply set the switches the way you see them on the screen and
press &SC> to exit to DOS. You will also see warning messages for possible conflicting
addresses. If you receive a warning for a device that is not in your computer, it can safely be
ignored. These cautions apply strictly for IBM standard devices (although the same mapping is
followed by most compatibles) and may not be totally foolproof as far as non-IBM peripherals
are concerned. If your MBC-488 does not appear to work correctly, or interferes in some way
with other devices on your computer e.g. disk drives etc. or your computer will not boot up,
remove the MBC-488 and try a different I/O address, interrupt or DMA level. Once you have
set the base I/O address, make a note of its value as you will need to use it in the SYSCON
initializing command in your programs. All the other switch settings are read by the driver
(software) so you can forget the interrupt and DMA level settings. Prior to installing the
MBC-488 in your computer, SHUT OFF THE POWER and discharge any static electricity that
you may be carrying. The MBC-488 will fit in any of the regular full depth slots of the IBM
PC/XT/AT or the “half’ slots of the IBM XT or Portable computer. You may feel some
resistance when pushing the IEEE-488 connector through the rear panel of your computer as the
slots are close to a clearance fit for this type of connector. The base of the connector plate has
been machined with a slight undercut, so once seated in the slot it should slide up and down
freely. When you mate a standard IEEE-488 cable to the connector, you may find it blocks
adjacent slot access to some extent due to its width. This can be avoided by placing the
MBC-488 in an end slot, or adjacent to a board that has no connector on it. If the connector
becomes a problem, MetraByte’s IB-488 board avoids this difficulty through the use of a special
adapter cable. If you later remove the MBC-488 board, MetraByte recommends that you retain
the special electrostatically shielded packaging and use it for storage.

Backing up the DV488 Diskette

It is important to make a back-up copy of the software supplied with MBC-488. The software is
not copy protected so you may make as many copies as desired. It is supplied on a DOS 2.1 and
higher double sided (360K) floppy disk format.

DV.468

uCMBC-488 & the PSI2

4

The uCMBC-488 adheres to the design philosophy of the IBM PS/2 Programmable Option
Select (PCS) rules and, therefore, has no jumpers or switches. The uCMBC-488 has been
assigned a Board Identifier Number (BIN) of 5018 (hex) which is registered with IBM Corp.
Actual configuration of the uCMBC-488 board is done in software and requires a copy of the
IBM Reference Diskette and several files supplied by MetraByte. Prior to plugging the board
into the PS/2 expansion bus, you must install its BIN onto the reference disk (special ID numbers
may be obtained from MetraByte’s Tech Support Dept. 508-880-3000). This will then be used
only once to install the system configuration onto battery backed RAM. The reference diskette
will not be used again unless you reconfigure your system. It should be stored in a safe place
after use. The uCMBC-488 has several static sensitive components so that caution should be
used when removing the board from it’s shipping container.

1)

2)

3)

4)

5)

6a)

6b)

7)

Make a back-up copy of both the PSL? Reference Disk and the MetraByte uCMBC-488
Utility Disk. Now copy the @5018,ADF file from the MetraByte Utility disk onto the
copy of the PS/s Reference disk.

Shut OFF the power to the PS/2 and any option boards that are externally powered.
Remove the cover from the computer and install the board.

Place the copy of the IBM Reference Disk in drive A: and repower the computer.

After the computer runs it’s power-up check, the error code 165 . . . Adapter Configura-
tion Error will appear, followed by two beeps.

After the IBM logo appears, press <Enter> and <PgDn> after the first page of text.

If you intend to use the default Base Address of 300 (HEX), you can automatically
configure your system by typing <Yz at the prompt Run Automatic Configuration.

If you are not using the default Base Address for the uCMBC-488, type <N> at the
prompt. This will return you to the Main Menu where you will select: 3. Set
Configuration. A Configuration Menu will appear. Select: 2. Change Configuration.
Use the cursor keys to through the configuration list until you see the MetraByte
uCMBC-488 in the appropriate expansion slot. Use the <F5> and <F6> keys to choose a
new Base Address. The press <FlO) to install this new configuration in RAM.

You will not need the copy of the Reference Diskette again unless or until you
reconfigure your system. It should be stored in a safe place.

Modifying the @SOlti.ADF File

IBM’s Configuration program has 16 possible choices for each selection. In the case of Base
Address, the uCMBC-488 supports 255 possible addresses. Use the GENADF.EXE file to
modify @501&ADF from 300 (HEX) to any other address you prefer. Be sure the file
(GENADF.EXE) is on the copy of the working (reference) diskette and then proceed as above to
change the configuration.

PS/2 Installation Errors

Several common errors may be encountered if you did not follow the above instructions
explicitly. They are:

Error Message

165

* Conflict

Meaning

Unrecognized Adapter
Board

Two or more adapter
iz;z;sshare the same

Set-up cannot find ap-
propriate .ADF file.

.ADF file does not
appear on working
disk.

Set-up cannot read Unreadable .ADF file
.ADF file. on working disk.

Solution

Reconfigure the System.

Select’s new address for one of the
boards.

Copy .ADF to the working disk.

Use GENADF.EXE to recreate correct
.ADF file.

DV-4SR

3.0 DEVICE DRIVER (DV488)

Introduction and General Overview

6

DV488 is the overall name given to MetraByte’s (uC)MBC-488 device driver and example
routine software package. It is supplied free with the purchase of either the MBC-488 or the
uCMBC-488 GPIB interface boards. The software contains many example programs. The
examples illustrate serial and parallel data transfer in various formats including HIGH, LOW,
PACKED byte, and STRING data. Additionally, single/dual board configurations,
(uC)MBC-488 usage as talker/listener, and DMA/programmed data transfer modes are shown.
The examples are done in BASICA, C, FORTRAN, TurboPASCAL, and QuickBASIC. The two
Device Drivers are; DV488PC.SYS and DV488UC.SYS for the IBM PC/XT/AT and PS/2,
respectively. (See Appendix C for a complete file listing and brief description of each).

Installing DV488 Device Driver

Prior to operation of either the MBC-488 or uCMBC-488, the appropriate device driver
(DV488PC or DV488UC) must be installed. This is done by running DVSETUP.EXE (supplied
on your diskette). To run DVSETUP.EXE, type:

C:>DVSETUP<cr>

Once invoked, DVSETUP will prompt you for the (sub)directory containing DV488. Note that
VIPARSE.SYS must be in the same (sub)directory. CONFIG.SYS is a readable file. It should
look something like this.

BUFFERS = 20
FILES = 20
DEVICE = (path:)VIPARSE.SYS /HK=ALT H /MK=ALT M /SK=ALT TAB
DEVICE = @ath:)DV488PCSYS

If VLSYS was selected (for PCIP instruments, see Appendix C) as the device driver, add the
following line to CONFIG.SYS. It must be added before the line selecting VLSYS.

DEVICE = (path:)ANSLSYS

CONFIGSYS is automatically executed at system (computer) start-up and installs the various
device drivers required.

MetraByte’s (uC)MBC-488 may be operated in one of two data transfer modes; a Programmed
Mode and a DMA mode. The Programmed mode requires that DMA and Interrupt levels be
disabled on the MBC-488 whereas the uCMBC-488 operates entirely via software so that
nothing need be done in order to operate in either mode.

A set of image specifiers are used in conjunction with the ENTER/OUTPUT commands to
format data prior to transfer to strings, integer variables, etc. These image specifiers also allow
the addition of parity to ASCII data and control characters <cr> & <lB for string data
termination.

DIRECT MEMORY ACCESS (DMA) Mode of Operation

Both the MBC-488 and the uCMBC-488 in conjunction with the supplied device driver software
are capable of DMA data transfer at very high speed. Data transfer speeds on the order of
400Kbaud are possible on the Psi2 and similar increases are possible on the IBM PC/XT/AT.
This tremendous increase in transfer speed is possible by essentially bypassing the CPU,
program variables and other associated program overhead. The DMA mode of operation is
interrupt driven and it’s ultimate transfer speed is subject to various interrelated factors, each of
which contributes to a final top end. Rarely, will actual data transfer speeds attain the maximum
possible. During DMA data transfer, data is dumped (or retrieved) directly to/from sequential
memory locations. Generally, the performance of the computer’s DMA controller far exceeds
the ability of the device or instrument transferring data to/from the GPIB or the speed at which
the instrument is capable of collecting data. For a more detailed discussion concerning DMA,
see either chapter 5 (MBC-488) or Chapter 6 (uCMBC-488).

In order to implement DMA data transfers, remember that the (uC)MBC-488 must be configured
for interrupt implementation. See the hardware configuration section of this manual for a
complete discussion.

Regardless of the Mode of Operation (Programmed or DMA), the command sequence is the
same:

OUTPUT
1. UNTALK
2. UNLISTEN
3. Computer’s TALK Address
4. Device LISTEN Address

(secondary address(

ENTER
1. UNTALK
2. UNLISTEN
3.Computer’s LISTEN Address
4.Device TALK Address

(secondary address(
5. UNTALK

Once data transfer is complete, the bus is untalked if in control. When communicating with
devices using secondary addressing, the device’s extended address is specified by separating the
primary address with a period (J.

When the computer is not the active controller on the bus, no other device may be addressed by
the computer (controller commands). However, the computer may transfer data as a talkerhis-
tener if configured as such by the controller. During an ENTER command, the computer waits
for the active talker on the bus to finish data transmission prior to it’s transmission if it has been
addressed by the talker/listener. Address codes must be satisfied during GPIB activity or error(s)
will occur. DOS handles such errors, but often in a rather cryptic fashion. Most High and Low
level languages are capable of handling DOS errors allowing the user to perform WAIT loops or
write error handling routines thus allowing a high degree of debugging and increasing overall
program efficiency. The OUTPUT statement waits until the controller addresses the computer to
talk and the ENTER command waits until the controller addresses the computer to listen. The
computer may assume control if the controller in charge sends a Take Control Message after it
programs the computer as a talker. During DMA data transfer the computer waits until it is
addressed before transferring data. A driver “Device Time-out” error may occur if data is not
successfully transferred. The Time-out delay is adjustable using the TIMEOUT command.

4.0 GPIB PROGRAMMING with DV488

Programming and Device Driver Access

Data transfer operations to or from either the MBC-488 or the uCMBC-488 via the GPIB are
defined by a set of commands. The syntax or structure of these commands is critical. Each
element within a command must be separated by a single space and, normally, the first two
letters of a command must be capitalized. Trailing arguments are not case dependent (may be
upper or lower case). Since all data, whether transmitted or received, must be formatted prior to
GPIB activity these data must pass through the driver. This requires that the device driver be
accessed. For data transmission, the driver is “OPENed” for OUTPUT whereas data reception
requires the driver to be “OPENed” for INPUT as follows:

OPEN “$DV488UC” FOR OUTPUT AS #I

and/or

OPEN “fiDV488UC” FOR INPUT AS #K?

Once the driver has been accessed, data may be transmitted or received as follows:

To XMIT: PRINT #I, “OUTPUT 4 $ E +‘I

where: 4 is the device #
$ is a String variable containing data
E is Even Parity

and
+ is addition of <cr><lf> to the end of the data

To RCV: PRINT #l, “ENTER 4 $ +‘I
INPUT #Z, DVMDT$

NOTE: The driver (DV488) provides for various errors (syntax, etc) that may occur. It does
not provide for error handling, however, since this is done via DOS (Disk Operating
System). DV488 errors may be accessed from the (uC)MBC-488 as shown in Chapter
4 (GPIB Programming with DV488). It is left to the user to assure that all required
conditions have been met prior to GPIB activity.

DV-488

Image Specifiers (Data Types) and Terminators
9

The image specifiers define data types as falling into two separate types with four categories.
These are listed below along with the specifiers for each:

count
STRING
STRING with optional count (ENTER only)

B BYTE packed bytes of an integer array
RB BYTE packed bytes of an integer array in REVERSE Order
BL BYTE low byte of integer array (WORD)
BH BYTE high byte of integer array (WORD)

Image terminators are required for the devices on the GPIB to recognize the End Of Data
transfer. Each terminator acts somewhat differently so that you should be aware of the
subtleties. The image terminators operate the same way in all transfer modes. However, during
DMA transfers, the last data byte plus the image terminators, if requested, are sent via the system
CPU in order to clear the (DMA) interrupt for other computer operations (the interrupt service
routine handles this last byte plus terminators prior to returning to normal operation).

Programmed
Terminator

%

+
!
NONE

Terminator Sent
lOUTPUT command)

NONE
EOI

EOI and <cr><lf>
EOI
EOI

Terminator Sensed
a dl

=%Frnrn n
EOI

<lf> or EOI
<cr> or EOI

EOI

Command Structure & Syntax

Data transfer operations to/from the (uC)MBC-488 are defined by a set of commands. Case is
unimportant. For example:

&T
en

or ent
ENTE ente
ENTER enter

Language peculiarities may require a detailed understanding of the particular language in order
to transfer data. However, the examples provided with the diskette should be adequate for the
majority of data I/O. For example, transferring an array (bytes) of data requires the segment,
offset and byte count. Since BASICA does not have a VARSEG statement, a driver semaphore
must precede the VARPTR (data segment) statement:

OUTPUT 12 B + &HFFFF varptr(A%(O)) 25

However, QuickBASIC supports the VARSEG statement:

OUTPUT 12 B + varseg(A%(O)) varptr(A%(O)) 25

In both cases, “A%” is the is the array containing the data to be transferred to device “12”. The
data is in byte “B” format with “25” bytes being transferred.

Device Driver Commands

sensitive and must be used in the first position of the command line.
I

This argument is used to direct commands to the second board in the system. It is position

FUNCTION

II FUNCTION

COMMAND
ABort

USAGE
PRINT #l, “ABORT”

i

DV.488 10

FUNCTION

Used to CLEAR INPUT buffer of the computer prior to accepting data. Normally, it is used
immediately after OPENing the DV488 file for output. This is not a GPIB command.

COMMAND
BUfferclear

USAGE
OPEN #l “$DV488PC” FOR OUTPUT AS #l
PRINT #l, “BUFFERCLEAR”

COMMAND
CLear

USAGE
PRINT #l, “CLEAR 12 5”

FUNCTION

Used to clear up to 14 devices (6 secondary) to their power-up/default state. When used with
I device number, it clears only that device. If device numbers are not specified, all devices on
:he bus am cleared.

COMMAND USAGE
ENter PRINT #I, “ENTER 7 $”

FUNCTION

Used to receive data from the GPIB. As mentioned previously, there are five types of data tha
may be transferred.

STRING data “$,’ Strings are often the most convenient format for simple data. String dan
is limited to about 4000 characters and is also the slowest method of data transfer. A coun
may be used with this format, but it cannot exceed 4000 bytes (default). Data transfer ends a
4000 bytes (or at specified count) or when a valid terminator or EOI is recognized.

Packed byte “B” Data is received and automatically packed into a one dimension integer
array (low byte first).

Reverse order “RB” Data is received into the type of array specified and packed in Reverse
Order statrting at the objetc’s address plus the count. For single precision real array:
(variables), the count must be a multiple of four. Generally used for entering IEEE REAL
numbers that are sent by an instrument with the sign being sent first.

HIGH byte “BH” Data is received and placed into every second position (High Byte
position) of an integer array.

LOW byte “BL”
an integer array.

Data is received and placed into every first position (Low Byte position) 01

DMA bytes “DMA High speed method of receiving data (up to 400 Kbytes/Sec). Data is
received in bytes and is packed into an integer array (low byte first).

NOTE: All byte format transfers will accept up to 64000 characters (bytes). A count is used
and data transmission ends when the specified count has been reached or when a valid
terminator or EOI has been recognized. Programmed terminators in byte format data transfers
may be a problem since hex D <cr> and hex A <If> may be real data. Each device must be
specified if it is to receive data.

USAGE
PRINT #l, “LOCAL 3”

FUNCTION

Used to cancel the effect of REMote command (by turning off the remote line on the GPIB)
when no device(s) are given. If devices are specified, the remote line will not be turned OFF
and only the named device will return to local.

USAGE
PRINT #l, “LOCKOUT 5”

FUNCTION

Used to disable the front panel LOCAL function for devices supporting full RBMOTE/LO-
CAL operating modes. If the device is not in remote, LOCKOUT will cause the device to
enter the local state with lockout, disabling the local function while maintaining all other front
panel functions.

LOCKOUT sends the GPIB LLO message

Device address on the GPIB may be specified which will assert the REMOTE line and
nlace those devices in REMOTE with I.tX!KOl JT state.

COMMAND
OUTput

USAGE
PRINT #l “OUTPUT 7 S +‘I, CMDS

FUNCTION

Used to transfer data to the bus. OUTPUT supports all five data format types.

STRING data “$” Strings are often the most convenient format for sending simple data 01
commands. String data is limited to about 4000 characters and is also the slowest method 01
data transfer. No count is used with this type of data format.

PACKED byte “B” Data is transmitted in bytes packed in integer arrays (low byte first).

HIGH byte “BH” Data is transmitted from every second position (High Byte position) of an
integer array only.

LOW byte “BL” Data is transmitted from every first position (Low Byte position) of an
integer array.

DMA bytes “DMA Highest speed method of transmitting data (up to 400 Kbytes/Sec). Data
is transmitted from bytes packed in a integer array (low byte first). The last byte and
terminators, if requested, are sent via normal I/O thru the system CPU. This is done in the
DMA interrupt service routine which then clears the interrupt line and returns the computer tc
normal operation.

NOTE: All byte format transmissions will send up to 64000 characters (bytes). A count is
used and data transmission ends when the specified count has been reached or when a valid
terminator or EOI has been recognized. Programmed terminators in byte format data transfers
may be a problem since hex D <cr> and hex A <If> may be real data. Each device must be
specified if it is to transmit data.

COMMAND
PARpol

JJSAGE
PRINT #l, “PARPOL”
INPUT #2, STAT%

FUNCTION

IJsed to remrn Parallel Poll status hvt~e from the GPTR. No device addresses are used.

PRINT!@&TL 7”

FUNCTION

Used to transfer control from the present controller to another device on the bus that is capable
of control functions. The command sends the TCT GPIB BUS message and waits for a
time-out period. A second PASCTL command will verify that control has been passed (error
#lO returned). Alternatively, the REQUEST command will return the status of the
(uC)MBC-488 board which contains the CIC status bit. If the bit is 0, the board has

COMMAND USAGE
PPConf PRINT #l, “PPCONP 12 PCONF=107”

FUNCTION

Allows the controller to program a device for a specific response to the parallel poll command.
The targeted device is programmed to respond to a specific GPIB line (DIO 1-8) and what it’s
response should be (0 or 1). Only one device may be specified per PPCONF command.
Pl-P3 is the binary code for the GPIB line and S is the state of the response;

msb &
B7 B6 BS B4 B3 B2 Bl BO
x 1 1 0 s P3 P2 Pl

FUNCTION

Used to disable/clear device(s) for parallel poll response. If a device has been programmed for
a specific response to parallel poll, this command clears the device of its response. If no
devices address is given, it clears the entire bus of pre-programmed parallel poll configura-
tions.

COMMAND USAGE
REMote PRINT #l , “REMOTE 7”

Command used by the controller to establish a remote state so that the device(s) may be
controlled by a computer. Device(s) may be addressed or not. If device address are not
given, the GPIB asserts the REMOTE line. Once the REMOTE line has been asserted, any
device that is subsequently addressed will be set to remote status and remain in that state until
a LOCAL commandis sensed.

COMMAND
RXctl

USAGE
PRINT #l , “RXCTL”

FUNCTION

RXCTL may be used by a device expecting the GPIB controller to transfer control. The
command will cause a wait for the time-out period and return an integer indicating status of
the transfer (true if control was received, false if not received). No devices are specified.

COMMAND
REQuest 2

USAGE
PRINT #1, “REQUEST 2”
INPUT #2, LEVELS%

FUNCTION

EQUEST 2 returns DMA & Interrupt levels
& Isb

B5 B4 B3 B2 Bl BO
DO D3 D2 Dl DO

B15
DMA LEVEL

B14 B13 B12 Bll BlO B9 B8
l/O l/O l/O l/O l/O l/O l/O l/O

EXTENDED SIGN

COMMAND USAGE
REQuest 1 PRINT #l, “REQUEST I”, RESPONSE%

FUNCTION

REQUEST 1 is used to write a response pattern to the Serial Poll Register, This pattern is ther
output by the (uC)MBC-488 when it is serially polled by bus controller (this pattern is alsc
/ called the Serial Poll Byte).

E? B6 B4 B3 B2 Bl
g

S8 rsv ifi s5 s4 s3 s2 Sl

When the rsv bit is 1, a service request is issued on the GPIB. The value of the others bits may
I be set by the user for whatever purpose is desired. c

FUNCTION

REQUEST is used to return the hardware status of the (uC)MBC-488 controller board. The
status is returned as an integer.

B13 B12 Bll BlO B9
SRQI x x LA TA DMA $A

BUSY ERR

USAGE
PRINT#l, “SYSCON MADl=l2 CICl=l BAl=&H300 CLK=8”

FUNCTION

“MAD1 <MAD29 GPIB Module address. Allows two boards to have independent GPIB
addresses, if desired.

“CICl cCIC29’ Controller In Charge. There are four possible levels as follows:

“CICx=O” Addressed Talker/Listener. In this mode, the user’s board is not in control and
must wait for the GPIB controller to address it as a Talker or Listener. The address used is the
one programmed by the MADx parameter. The REQUEST command is used to determine the
addressed state by testing the LA & TA bits. The user’s program may switch between the LA
and TA modes at will.

“CICx=l” Controller In Charge. This command gives complete control of the GPIB to the

“CICx=2” Non-addressed Talker/Listener. Used to communicate with devices such as
printers, plotters, and other Talk Only/Listen Only devices not supporting GPIB addressing. If
the OUTPUT command is issued the driver will implement the TALK function and broadcast
on the GPIB disrupting any other GPIB traffic. If the ENTER command is issued the LISTEN
function is forced and the driver will accumulate data from the bus. Note that the user’s
program may not arbitrarily switch between a TALKER and LISTENER mode without
reconfiguring the bus via the SYSCON command.

“BAl <BA2>” Base Address. This command sets the (uC)MBC-488 base address in the
computer’s I/O address space. It is left to the user to determine that the address assigned is a
valid address that does not interfere with other computer processes/devices. If two boards are
present, the driver only checks that they are 16-bytes apart. A test for the board at the given
address is also done.

PRINT #l, “STATUS 7”
INPUT #2, STAT%

FUNCTION

COMMAND USAGE
TIMEOUT A% = 100

PRINT #1 , “TIMBOUT”, A%

FUNCTION

Used to set one time-out period for GPIB command and data transfer activity. An integer
multiplier is specified which sets the timeout period to a multiple of 56 milliseconds. If the
TIMBOUT command is never executed, the default timeout period is about 2 seconds. NC
devices are spr

USAGE
PRINT #l , “TRIGGER 7 12”

FUNCTION

Sends the GPIB “GET” message (Group Executive Trigger). The device(s) must have been
programmed to perform a specific task on GET or the message is ignored. One or more
devices must be soecified.

DV488 ERROR MESSAGES

All errors, whether BASICA or DV488, are handled by DOS. When a device driver error
occurs, the board sends three messages to the computer as mentioned above. These errors and
messages are listed below. Error numbers not listed are reserved.

ERROR # MESSAGE CAUSE

1 Unknown character encountered Misspelled DV488 command

2 Space expected . . . Improperly spaced command elements.

3 DMA page wraparound An array address or byte count was passed for
DMA transfer that results in crossing a page
boundary. (See Section 5).

4 DMA level error Incorrect or disconnected DMA level.

6 DMA channel busy Bus request issued while DMA transfer in
progress.

8 Hardware Failure Error during internal procedure call or the IBC
chip encountered an error on a write.

9 Device time out If GPIB transfer failure occurred, driver retries
transfer for time out period.

10 GPIB BOARD not in control Issued command requires (uC)MBC-488 con-
trol.

11 GPIB BOARD is in control Issued command requires (uC)MBC-488 NOT
in control.

12 System not initialized SYSCON not issued prior to GPIB command.

13 Configuration Error One or more SYSCON parameters invalid. In
2 board systems, Base Addresses are not 16
bytes apart or the interrupt & DMA levels are
the same (IBM PC/XT) or the DMA levels arc
the same (PS/2). Board not found at specified
Address.

Undefined command Invalid or missing DV488 command.

15 Syntax error in command line Most often, missing spaces between command
parameters, misspelled commands or incom-
plete (missing) SYSCON parameters.

16 Undefined image Missing [$, B, RB, BL, BH, or DMA]

17 Device range error Invalid GPIB address. Must be between 0 -
30.

18 TOO many devices Specified command contained too many device
addresses.

20 Command /Data out of range Byte count passed must be between 1 - 65535.

21 Command requires device No address passed with GPIB command
requiring it.

24 GPIB BOARD must be talker or
Listener

Normally occurs when CICx = 0 and the IBC
chip has not been addressed. Use REQUEST
command to check address status in TA and
LA bits.

Programmed Data Transfer

In a normal or Programmed transfer, the data travelling to or from the 7210 controller passes
through the accumulator register (AX) of the computer’s CPU. This allows flexibility in data
handling but also involves a good deal of CPU overhead (the CPU continually polls the 7210 for
new data which must be moved to/from the AX register and then move the AX register to/from
memory). This takes time and is dependent upon CPU speed. Even with this overhead, transfer
rates in programmed mode are usually around 1000-2000 bytes/second (also dependent upon
GPIB device response speed). Speed is usually not a major factor during instrument control
where command strings are generally short and response times long. But it may become a more
serious problem with devices that move a lot of data in blocks over the GPIB.

BASICA Example Program

The following is an example program, with comments, illustrating au MBC-488 board and a
typical device (Digital Multimeter with GPIB capability). It is written in BASICA as imple-
mented on the IBM PC/XT. It uses Serial Polling to ensure data validity. The program itself
(DVSPGL.BAS) is supplied on the diskette that came with your board, but this example is
exhaustively commented for new GPIB programmers.

100 ’
110 ’
120 ’
130 ’
140 ’
150 ’
160 ’
170
180
190 ’
200 ’
210 ’
220 ’
230 ’
240 ’
250 ’
260 ’
270
280
290

300

310 ’
320 ’
330 ’
340

350 ’
360 ’
370 ’
380

IEEE488 Device Driver Example Program
BASICA
(DVSPGL.BAS)
Serial Poll with STRING data Transfer
MetraByte Corp l/17/89

CLS:KEYOFF:LOCATE 25,l:PRINT” Press any key to exit program”;
LOCATE 1,l

This is an example of reading data from device 12, in this case
a Keithly 196 system DMM.
To run with a different device number, change command strings in
those lines referring to DEVICE 12.

###t# Establish Communication with device driver #W#

OPEN “$DV488” FOR OUTPUT AS #l
PRINT #l, “BUFFERCLEAR”
OPEN “$DV488” FOR INPUT AS #2

Line 370 opens an output file (#l) for data transmission via $DV488.
Line 380 clears the output tile (buffer) of extraneous data, if any.
Line 390 opens an input file (#2) for receiving data via $DV488.

ON ERROR GOT0 1040

This is a simple error trapping routine for both BASICA and DV488 errors that may
occur during execution of the program.

####Initialize MBC-488 board using SYSCON command.

PRINT#l, “SYSCON MADI= CICl=l BAl=&H300”

MAD1=3 assigns board #1 (MBC-488) a GPIB device address of 3.
CICl=l assigns board#l as controller in charge.
BAl=&H300 assigns board ##l a Base Address of 300 (hex).
Also transmits the GPIB message IFC (Interface Clear).

f##W Set GPIB device (DVM) into REMOTE state. #W##

PRINT #l , “REMOTE 12”

390 ’

:Yz ’
420
430
440 ’
450 ’
460 ’
470
480

490 ’
500 LAP = 50 5 second delay for instr to process config data
510 INCREMENT = 0 1
520 TO = TIMER : D$=DATB$
530 Tl = :TO
540 WH ILE LAP <> 0
550 WHILE (Tl < (TO + INCREMENT))
560 Tl = TIMER : ID D$oDATE$ THEN Tl=T1+86400!
570 WEND
580 D$=DATE$:TO=TO+INCREMENT:IF TO>=86400! THEN TO=TO-86400!:

Tl=Tl-86400!
590 LAP = LAP - 1
600 WEND
610 ’

Set GPIB device at address #12 to remote state for computer control.

####Set Time-out period (timeout = 0.056 x A%) ####

A%=100
PRINT #l, “TIMEOUT”, A%

Set Mode to TRIGGER on GET ####

CMD$ = “T3FOR3SOM8X”
PRINT #l, “OUTPUT 12 $ +” ,CMD$

The CMD$ is a DVM specific command for selecting various functions and ranges
on the DVM. Line 570 outputs this STRING (CMD$) command to device # 12 and
appends a <cm+, <If>, and asserts the EOI line with the <le. Certain devices require
a long time initial setup (5 seconds). A time delay loop such as the following is
common practice to avoid a bus lock-up.

620 #### Send TRIGGER message ####
630 ’
640 PRINT #l, “TRIGGER 12”

Trigger Device #12 (DMM) for data measurements.

650 ’
660 ‘###I@ Wait for SRQ (Service Request) #f###
670 ’ _.
680 PRINT#l “REQUEST”
690 INPUT #2 : REQ%
700 PRINT “‘J Jaiting for Service Request”
7 10 PRINT “R EQUEST word = &H”;HEX$(SPOLL%):PRINT
720 IF (REQ% AND &H4000) <> &H4000 THEN 680

This is a status request that will return data in a long, signed integer format. The
information concerns various registers of the 7210 (IBC chip) as well as the
MBC-488 registers. No GPIB activity is initiated since the required data comes only
from the computer and board. The bit of interest is the SRQI bit in the 7210
~ Interrupt Status Register 1. This bit is true when the GPIB SRQ line is asserted.
The SRQ line is a “WIRE OR” line meaning that one or more devices on the GPIB is
requesting service. This type of routine may be used as a “check for GPIB activity”
subroutine and may be entered and exited periodically to check for bus activity (data
transfers). However, the driver does not support interrnpt handling, as such, in this
1 condition.

730 ’
740 ’
750 ’
760
770
780
790
800

810 ’
820 ’
830 ’
840
850
860
870
880

890
900
910
920
930
940
950
960

######Read Serial Poll Byte ####

PRINT #l, “STATUS 12”
INPUT #2, SPOLL%
PRINT “Testina Serial Poll Bvte for ‘RSV”’
PRINT “Serial Foil Byte = &I?;HBX$(SPOLL%):PRINT
IF (SPOLL% AND 8) <> 8 THEN PRINT “No request in Serial Poll Byte”:STOP

The Serial Poll (STATUS 12) is used to find out if device # 12 is the device
requested service since the SRQ line only indicates that one or more devices require
service. Data is returned in a long, signed integer. The contents of the DMM. serial
poll register are read back to the computer (via STRING variable SPOLL$) where it
is evaluated for activity (set high if true). The 8 is was used previously during the
DMM. setup (M8) enabling the DMM. to issue an SRQ under certain conditions.

####Read data from device 12 @MM.) ####

PRINT #l, “ENTER 12$”
INPUT #2, DVM$
PRINT “DVM Data = “;
PRINT DVM$
PRINT:PRINT:PRINT

Line 810 instructs device 12 to transmit (TALK) STRING data.
Line 820 receives this data into the STRING variable DVM$.
Line 830 displays the received data on the computer display.

LAP = 20 ‘2 second delay for viewing data
INCREMENT = 0.1
TO = TIMBR : D$=DATB$
Tl=TO
WHILELAP<>

WHILE (Tl c (TO + INCREMENT))
Tl = TIMER : ID D$<>DATB$ THEN Tl=T1+86400!
WEND

970 D$=DATE$:TO=TO+INCRMENT:IP TO>=86400! THEN TO=TO-86400!:
Tl=Tl-86400!

;;; E.AF&LAP - 1

:i! KX$ = INKBY$:IP K$ = “” THEN 640
1020 CLOSE ‘close all files for I/O
1030 STOP ‘halt program
1040 IF ERR <> 68 AND (ERR<> 57) THEN PRINT “BASIC ERROR # “;ERR;” IN LINE

“;ERL:STOP
1050 INPUT #2, E$
1060 PRINT “$DV488 driver returned error number - I’, ES’
1070 INPUT #2, E$
1080 PRINT E$
1090 INPUT #2, E$
1100 PRINT E$
1110 END

Lines 890 thru 960 are simply checking for any error and returning these errors
whether BASIC errors or DV488 errors to STRING variable E$ for display.
Enhancing this routine could be done by branching to various other routines for
certain errors and correcting them.

Error #57 is a BASIC “Device I/O Error”

Error #68 is a BASIC “device unavailable” error indicating that $DV488 returned
the error. If this is the case, three strings are issued from the driver as follows:

1) Device Driver Error Number
2) Original Command String
3) Position (in command) where error occurred and plain english

error message.

NOTE: BASICA does not support long integers (32 bits), but the $DV488 driver returns a long
integer with only the low byte or word containing information. In all cases, the upper byte or
word is the extended sign. However, BASICA will correctly read the long signed integer
returned into a BASIC integer.

DMA Command Syntax

[BRD2] ENTER DEV DMA[term] SEGMENT OFFSET COUNT
[BRD2] OUTPUT DEV DMA[tenn] SEGMENT OFFSET COUNT

Example:
DMASEG% = &H8000 : DBFSEG = DMASEG%
PRINT #l. “ENTER 12 DMA +‘I. DMASEG%. “0”. “50’

Determining the Status of a DMA Operation

Once a DMA transfer has started, it will remain active until the terminal count is reached or a
valid EOI is received. DMA is really the hardware equivalent of an interrupt and is a
background operation. As such, your program may continue run in the foreground. Since this is
true, your program should be written to check DMA status. The status of a DMA operation can
be determined by the REQUEST command (see Commands). REQUEST returns a 16 bit
integer, bit 9 is set when the DMA is active and cleared when done. If required, a simple polling
loop (check bit 9) can be used to hold program execution until the DMA transfer is complete. If
any errors occur during the DMA last byte transfer, bit 8 of the REQUEST 1 return integer will
be set.

, QuickBASIC Example:

PRINT #l, “ENTER 12 DMA +‘I, VARSEG(DMA%(O)), VARSEG(DMA%(O)), “50”

Transferring to a STRING%

S$ = SPACE$(1024) ‘allocate memory for 1024 characters
’ calculate address offset of S$ in memory
offs% = (PEEK(VARPTR(S$) .t 2) + (256 * (PEEK(VARPTR(S$) + 3))))
PRINT #l, “ENTER 12 DMA +‘I, VARSEG(S$), offs%, LEN(S$)

QuickBASIC Example Program

The following QuickBASIC example illustrates the use of DMA data transfer to/from a specific
memory address. It is also supplied on the diskette that was supplied with your uCMBC-488
under the file name QBDVDMA.BAS.

’ ===

‘QuickBASIC 4.0
‘(QBDV2DMA.BAS)
‘Serial Poll with DMA transfer on TWO Boards
‘MetraByte Corporation

‘This is au example of reading data from device 12, in this case
‘a Keithly 196 system DMM.
‘To run with a different device number, change command strings in
‘lines referring to DEVICE 12.

DECLARE SUB ADDRESS (so/o, o%, count%, addr%, byteOff%)

CLSKEY 0FF:LOCATE 25,l: PRINT “Press any key to exit program”;
LOCATE 1,l

‘BOARD #1 array allocation
‘Calculate address within DV%() that lies on a page boundary and
‘return byte offset to that element

DIM dv%(200)
count% = LEN(dv%(O)) * 25 ‘allow 50 bytes for transfer
CALL ADDRESS(VARSEG(dv%(O)), VARPTR(dv%(O)), count%, addr%, byteOff%)

‘calculate true beginning element for this array type
element% = byteOff% I LEN(dv%(O))

BOARD #2 array allocation
‘Calculate address within DV2%() that lies on a page boundary and
‘return byte offset to that element

DIM dv2%(200)
count% = LEN(dR%(O)) * 25 ‘allow 50 bytes for transfer
CALL ADDRESS(VARSEG(dv2%(0)), VARPTR(dv2%(0)), count%, addr2%, byteOff%)

‘calculate true beginning element for this array type
element2% = byteOff% / LEN(dv2%(0))

‘####Establish communication with device driver ##tW

OPEN “$DV488” FOR OUTPUT AS #l
PRINT #l, “BUFFERCLEAR”
OPEN “$DV488” FOR INPUT AS #2
ON ERROR GOT0 ersvc

DV-488 26

‘Initialize uCMBC-488 board using “SYSCON”command

PRINT #l, “SYSCON MADI= CICl=l BAl=&H300 MAD2=3 CIC2=1 BA2=&H400”

‘#### Set DMM into REMOTE #######

PRINT #l, ‘REMOTE 12”
PRINT ##l, “BRD2 REMOTE 12”

‘#########SET TIMEOUT (timeout time = 0.056 x A%)
A%=100
PRINT #l, “TIMEOUT”, A%

‘####### SET MODE TO TRIGGER ON “GET”

DV$ = “T3R3M8X”

PRINT #l, “OUTPUT 12 $ +‘I, dv$
PRINT #l, “BRD2 OUTPUT 12 $ +” dv$

LAP = 50
TO = TIMER: D$=DATB$
Tl=TO
WHILE LAP <> 0

‘wait 5 Seconds for set-up finish

WHILE (Tl< (TO + INCREMENT))
Tl = TIMER : IF D$ <> DATES THEN Tl=Tl + 86400
WEND

D$=DATE$: TO=TO + INCREMENT : IF TO>=86400 THEN TO=TO-86400:Tl=Tl-86400
LAP=LAP-1
WEND
‘######## Send trigger message ##f####

WHILE M$ = “”

PRINT #l , “TRIGGER 12”

?#k+### Wait for SQR ###U###

REQ%=O
REQ2% = 0

WHILE (REQ% AND &H4000) <> &H4000
PRINT #l, “REQUEST”
INPUT #2, REQ%
PRINT “Waiting for Service Request from DVM on board #I”
PRINT “REQUEST WORD = &H”; HBX$(RBQ%):PRINT

WEND

DV-488

‘######## Read Serial Poll byte ########

PRINT #l , “STATUS 12”
INPUT #2, SPOLL%
PRINT “Testing Serial Poll byte for ‘RSV”’
PRINT “Serial Poll Byte = &I-I”; HEX$(SPOLL%): PRINT
IF (SPOLL% AND 8) <> 8 THEN PRINT “No request in Serial Poll Byte”: STOP

WHILE (REQ2% AND &H4000) <> &H4000
PRINT #I, “BRD2 REQUEST”
INPUT #2, REQ2%
PRINT “Waiting for Service Request from DVM on board #2”
PRINT ‘REQUEST word = &HI’; HEX$(REQ2%):PRINT

WEND

‘#######Read Serial Poll byte ###G###

PRINT #l , “BRD2 STATUS 12”
INPUT #2, SPOLL2%
PRINT “Testing Serial Poll byte for ‘RSV”’
PRINT “Serial Poll Byte = &HI’; HEX$(SPOLL%): PRINT
IF (SPOLL2% AND 8) c> 8 THEN PRINT “No request in Serial Poll Byte #2”: STOP

‘########### Read data from DVM ###########

PRINT #l, “ENTER 12 DMA”, addr%, “o”, 16 ’ start DMA on board #l
PRINT #l, “BRD2 ENTER 12 DMA”, addr2%, “0”. 16 ’ board#2

‘###I### Wait for DMA to finish ####I##

REQ% = &H200

WHILE (RBQ% AND &H200) <> &H200
PRINT #I, “REQUEST”
INPUT #2, REQ%
PRINT “Waiting for DMA ENTER to finish on board #l”
PRINT “REQUEST word = &H”; HEX$(REQ%):PRINT

WEND

PRINT “Data form DVM on board #l = “;
FOR offs = element% to element%+14
‘print high byte then low byte of each integer

‘recover stored DMA data

PRINT CHR$(dv%(offs)) AND &HFF); CHR$(dv%(offs) / 256);
NEXT offs
PRINT:PRINT:PRINT

‘2 Second dealy for viewing

LAP <> 0
WHILE (Tl c TO+INCREMENT))
Tl=TIMER:IFD$<>DATE$THENTl=T1+86400

D$~k$:TO=TO+INCREMEN? IF TO>=86400 THEN TO=TO-86400:Tl=Tl-86400
LAP = LAP -1
WEND
PRINT

REQ2% = &H200

WHILE (REQ2% AND &H200) <> &H200
PRINT #l, “BRD2 REQUEST”
INPUT #2, REQ2%
PRINT “Waiting for DMA ENTER to finish on board #2”
PRINT “REQUEST word = &H”;HEX$(REQ2%):PRINT

WEND

PRINT “Data form DVM on board #2 = “;
FOR offs = element2% to element2%+14
‘print high byte then low byte of each integer

‘recover stored DMA data

F’RIN;07p$(dv2%(offs)) AND &HFF); CHR$(dv2%(offs) / 256);

PRINT:PRINT:PRINT

LAP=20
INCREMENT = 0.1
TO = TIMER:D$ = DATE$
Tl=TO

‘2 Second dealy for viewing

WHILE LAP <> 0
WHILE (Tl < TO+INCREMENT))
Tl = TIMER : IF D$ <> DATE$ THEN Tl = Tl + 86400
WEND

D$=DATE$:TO=TO+INCREMENT: IF TO>=86400 THEN TO=TO-864OO:Tl=Tl-86400
LAP = LAP - 1

z%

KX$ = INKEY$

WEND
CLOSE
STOP

ersvc:

IF (ERRo68) AND (ERRo57) THEN PRINT “BASIC ERR # “;ERR;” IN LINE “;
ERL:STOP

INPUT #2, E$
PRINT “$DV488 driver returned error number - “; E$
INPUT #2. ES
PRINT E$’
INPUT #2, E$
PRINT E$
END

SUB ADDRESS (so/o, 0%. count%, addr%, byteOff%)

Subroutine to Allocate Space for DMA Transfers ,,.

DIM a AS LONG
DIM b AS LONG

s = s%
o=o%
IFo<OTHENo=o+65536
IFscOTHENs=s+65536
a=s* 16+o
arrayptr = a
page = INT (a / 65536)

REM Check for DMA wraparound

‘get segment address
‘get segment offset

‘save org ptr for element talc

b = a - (page * 65536)
b = b + count%
IF b > 65535 THEN

a = a (page = 1) * &HlOOO: ‘here if page wrap would occur
IF a > 32767 THEN addr% = a - 65536 ELSE addr% = a

ELSE REM here if no page wrap
a=a/16
IF a >32767 then addr% = a - 65536
IF a <= 3277 THEN addr% = a

ENDIF
IF addr% < 0 THEN c = addr% + 65536 ELSE c = addr%
c=c*16 ’ new ptr to actual xfer element

‘return byte offset where DMA will transfer in the named array

bytOff% = (c - arrayptr)
‘note the byteOff% value must be divide by the length of the array type

END SUB

5.0 IBM PCIXT SPECIFIC PROGRAMMING STRUCTURE

DMA Data Transfer

The NEC 7210 controller on the MBC-488 is capable of performing transfers of data directly
from/to the GPIB to/from memory using direct memory access (DMA). In DMA mode, the
7210 generates a DMA request to the 8237 DMA controller on the IBM PC system board. In
turn, the DMA controller issues a hold request to the 8088 CPU which releases the internal PC
bus as soon as it completes its current instruction. The 8088 issues a hold acknowledge to the
DMA controller which then takes control of the bus, placing a valid memory address on the
address bus and issuing either a simultaneous memory read and I/O write (or memory write and
I/O read) together with a DMA acknowledge to the peripheral requesting transfer (MBC-488).
This enables transfer of data directly to/from the 7210 controller from/to memory. Depending
upon the interrupt level chosen, the data transfer process will continue until all data has been
transferred, as signaled by a valid EOI or the terminal count is reached. If, however, a higher
priority interrupt level requests service while (DMA) data is being transfered, the transfer is put
on hold until the higher priority request is serviced. Whereupon, data transfer resumes. For this
reason, the interrupt level should be chosen carefully so that it is assigned a priority level
corresponding to its overall system importance.

The installation of the MBC-488 DMA interrupt handler on IBM PC/XT class machines is
accomplished only once but no chaining mechanism is available (unlike the PS/2). The user is
cautioned not to use the DMA interrupt level for any other purpose (since a interrupt level
corresponds to a vector number which, in turn, points to an address in memory where the
handler resides). If the same level is used for another purpose, the DMA interrupt handler should
be reinstalled prior to MBC-488 requests for DMA data transfer.

The ultimate speed at which the DMA controller can handle DMA requests on a standard
4.77MHz IBM PC is about 400,000 bytes/second (it is faster still on an IBM PC/AT). In
practice, the actual transfer rate will depend upon the GPIB device(s) response speed. DMA
transfers are less flexible in passing data directly to variables and in general require more setup
than normal (programmed) transfers. However when speed is paramount, DMA is the best way
to use the controller.

IBM PC/XT Memory Page Boundary

The DMA controller is unable to transfer data across page boundaries. DV488 checks for page
boundary overlap. It is left to the user to ensure that memory has been allocated correctly for
data during DMA transfers.

There are sixteen legal pages within IBM PC memory so that it is unlikely that any array, unless
very large, will overlap a memory page. The general procedure for determining the segment
boundary for a legal page is shown in the QuickBASIC example below. The array (addr%),
which is twice the required size, the transfer count (count%), the segment in s%, and the offset in
0% are passed to the procedure. The legal segment is returned in ADDR% as well as the byte
count to the adjusted address from the element 0 in byteoff%. This integer variable could then
be used as a data pointer in the OUTPUT or ENTER commands as follows:

PRINT #l, “OUTPUT 12 DMA +‘I, addr%, “II”, count%

SUB ADDRESS (s%, o%, addr%, byteOff%)
Subroutine to allocate space for DMA transfer . . .

DIM a AS LONG
DIM b AS LONG

s = s% ‘get Segment Address
o=o% ‘get Segment Offset

IPo<OTHBNo=o+65536
IFs<OTHENs=s+65536
a=s* 16+o
arrayptr = a ‘save orig ptr for element talc

page = INT(a I 65536)

REM Check for DMA wraparound
b = a - (page * 65536)
b = b + count%

IF b > 65536 THBN
a = (page + 1) * &HlOOO: REM here if Page wraparound occurs
IF a > 32767 THEN addr% = a - 65536 ELSE addr% = a

ELSEayr,ltt if no page wrap

IF a 2 32767 THEN addr% = a - 65536
IF a <= 32767 THEN addr% = a

ENDIP
IF addr% < 0 THBN c = addr% + 65536 ELSE c = addr%
c=c* 16 ’ new ptr to actual transfer element

’ return byte offset where DMA will transfer in the named array
byteOff% = (c - arrayptr)
’ Note the byteOff% value must be divided by length of array type

END SUB

DMA Transfers in BASIC

The MBC-488 DMA data transfer hardware allows the user to transfer data anywhere within the
IBM PC’s 20 bit address range with a word count of up to 32767 (64 Kbyte).

IF THE SEGMENT IS SET TO &HFFFF THBN BASIC’s DATA SEGMENT IS
USED. This allows the user to transfer data directly to a BASIC variable.

This is the value used as a reference starting point. If you choose to transfer data
directly into a BASIC string or array variable, they must be declared prior to
VARPTR declaration. Once DMA data transfer has begun, NO simple variables
may be declared. Failure to comply with this requirement may generate unpre-
dictable errors. The reason for this is that BASIC stores array variables above
simple variables in memory, and on declaring a new simple variable, BASIC
relocates all array variables and string descriptors. If DMA data transfer to a
string or array is in progress, then suddenly relocated, disaster ensues!

STRING array space must be pre-allocated by assigning some data to the string
e.g. A$=SPACE$(NO) prior to using the ENTER command. Do not try to move
data into a null string.

NOTE DMA channel 1 shares the same page register as DMA channel 0 (memory
refresh). Altering the page register normally causes no problems except on early
IBM PC models with 64K memory on the system board (using 16K chips). On
these machines a parity check error will occur (due to a design fault in the
hardware) and the computer will have to be re-booted. This problem can be
avoided by disabling the memory parity check before commencing the DMA
operation:

OUT &HAO,O ‘Disables NM1 & parity check
OUT &HAO,&HSO ‘Re-enables NM1 & parity check

DMA channel 3 is used by and cannot be shared with the hard disk in XT
computers. In floppy only machines it is unused and available. In the PC/AT both
levels 1 and 3 are available despite the presence of the hard disk. The availability
of a suitable DMA level is a system limitation of the IBM-PC. It is the user’s
responsibility to insure that the MBC-488 DMA level is correctly selected on the
DIP switch and will not conflict with the use of the DMA level by another
peripheral (usually a hard disk controller or LAN card)

DMA data transfers are aborted with the ABORT command.

No check is made on overrunning the limits of the array. It is your responsibilty to
avoid this condition

6.0 PSI2 SPECIFIC PROGRAMMING STRUCTURE

DMA Data Transfer

The NEC 7210 controller used on the uCMBC-488 is capable of performing data transfers
directly from/to the GPIB and to/from memory using direct memory access (DMA). In DMA
mode, the 7210 generates a preempt to the DMA controller on the PSL? system board. The
PSj2’s DMA controller is similar to the Intel 8237 Programmable DMA Controller used on the
IBM PC/XT/AT. The major difference is that the PS/2’s DMA controller supports the
MicroChannel Architecture and employs serial data transfer whereas the 8237 (used in the PC)
uses a parallel type DMA interface for data transfer. All this is, however, transparent to the user
(since DV488.sys takes care of it) so that you need not concern yourself with the details. DMA
enables transfer of data directly to/from the controller from/to memory at very high rates. The
ultimate speed at which the DMA controller can handle data is about 400,COO bytes/second. In
practice, the actual data transfer rate will depend upon the speed of response of the device(s) on
the GPIB that is involved in the DMA transfer. DMA transfers are less flexible in passing data
directly to variables and, in general, requite more setup than normal transfers, however when
speed is paramount, they are the best way to use the controller.

DMA Data Transfers in BASIC

The uCMBC-488 DMA data transfer hardware allows the user to transfer data anywhere within
the PS/2’s 20 bit address space with a word count of up to 32767 (64 Kbyte).

IF THE SEGMENT IS SET TO &HFFFF, BASIC’s DATA SEGMENT IS
USED.
This allows the user to transfer data directly to a BASIC variable. If VAR%(O) is
set equal to &HFFFF, then BASIC’s data segment will automatically be used.
This is useful when directly transferring to/from BASIC variables.

All simple variables must be declared prior to the VARPI’R statement and cannot
be declared after memory has been set aside for DMA transfer. Failure to comply
with this requirement may generate unpredictable errors. The reason for this is
that BASIC stores array variables above simple variables in memory, and on
declaring a new simple variable, BASIC relocates all array variables and string
descriptors. If DMA data transfer to a string or array is in progress, sudden
reallocation of memory may be undesirable. Also, on an ENTER command the
string space must be pre-allocated by assigning some data to the string, e.g. Do
not try to move data into a null string.

Data transfers may be made to/from memory outside BASIC’s workspace or
directly to an integer array variable or string variable within BASIC. This allows
you to store block data up to the available limits of RAM.

NOTE: The TIMEOUT command has no effect in DMA mode. A DMA transfer will
remain active until either Terminal COUNT has been reached or a valid EOI
terminator has been recognized. To abort a DMA transfer in progress use the
ABORT command.

7.0 MBC-488 HARDWARE STRUCTURE

MBC-488 Register I/O Map

The MBC-488 uses 16 consecutive I/O addresses. The Fist 8 addresses are used by the NEC
7210 controller and the following I/O address drives registers on the MBC-488 that control
generation of DMA requests and interrupts. The I/O address map is as follows:

ADDRESS READ

Base +0 Data byte in
+l Interrupt Status 1
+2 Interrupt Status 2
+3 Serial Poll Status
+4 Address Status
i-5 Command Pass Through
+6 Address 0

WRITE

Data byte out
Interrupt Mask 1
Interrupt Mask 2
Serial Poll Mode
Address Mode
Auxiliary Mode
Address O/l

+7
+8-11 *
+12-15

Address 1
Interrupt/DMA status
Not used

Eud of String
Intetrupt/DMA control
Not used

* See next section (MBC-488 Interrupts & DMA) for explanation.

The Base Address is set by the DIP switch on the MBC-488 board and may be on any 16 bit
boundary in I/O address space. The NEC 7210 controller chip register functions are explained in
the NEC 7210 data sheet. A more useful and expanded description of the controller chip
functions is in a 90 page application manual titled “uPD7210 General Purpose Interface Bus
Manual” available from any NEC Electronics Inc. sales office. This information is not required
by the high level programmer using the MBC-488 driver, but would be of value to the assembly
language programmer interested in writing his own drivers. Any register may be accessed by the
appropriate OUT DX, AL or IN AL, DX instruction (equivalent to Basic’s OUT & INP()).

DV48

MBC-488 Interrupts & DMA

35

The MBC-488 can generate an interrupt on any of the available IBM PC bus levels 2 - 7 as
selected on the interrupt level DIP switch. The interrupt is the logical “OR” of the interrupt from
the 7210 controller and the 8237 DMA controller Terminal Count (T/C). The standard driver,
DV488.SYS, makes use of interrupts and DMA requests only in DMA mode, the interrupt
outputs and DMA REQUEST are tistated (high impedance) in normal program mode. This
means several MBC-488 or other peripherals can share DMA/interrupt levels as long as they use
them in turn and t&ate their outputs when disabled. It is possible to program the controller to
generate an interrupt on up to 13 different conditions including the obvious ones of a GPIB
service request (SRQ) or an EOI or a specific end of string character (EOS). The hardware will
support propagation of this interrupt to the IBM PC/XT, but it is the user’s responsibility to
provide a suitable interrupt service routine to handle the interrupt. Since BASIC and most other
high level languages do not support interrupts (there is no ON INTERRUPT statement in Basic
for instance) there is no support for interrupts in the driver @V488SYS), however an assembly
language programmer can take advantage of the hardware’s ability to generate interrupts by
writing their own interrupt service handler.

Reading Base Address + 8 (or 9, 10 or 11) returns the following data:

ADDRESS D7 D6 D5 D4 D3 D2 Dl DO
Base + 8 DMA x Interrupt Level DMA DMA INT

LVL ENA ENA

Bit D7 is set by a double write to the interrupt/DMA control register (Dl, below:
with DMA enable = 1 and is cleared by T/C from the 8237 DMA controller.

Bits D5 thru D3 are derived from the board DIP switches:

010 Level 2
011 Level 3

::
Level 4
Level 5

110 Level 6
111 Level 7

Bit D2 is derived from a DIP switch and indicates DMA level 1 (1) or level 3 (0).

Bits Dl and DO correspond to bits in the interrupt/DMA control register. (1:
enabled (0) disabled.

Writing to Base Address + 8 (or 9, 10 or 11) enables interrupts and/or DMA as follows:

ADDRESS D7 D6 D5 D4 D3 D2 Dl DO
Base + 8 x x x x x x DMA INT

Bits Dl and DO indicate enable (1) or disable (0)

DV.488

MBC-488 Specifications

36

Electrical

+5v power
-5v, +12v, -12~ power

Controller chip

Bus drivers

I/O address Can be set on any 16 bit boundary from Hex
100 to Hex 3F0

PC bus loading 174LS TTL load on all inputs

Interrupts Can be set on any level 2-7
(active only during DMA transfer)

DMA level

Operation in .I8 slot

470mA typical / 6OOmA , max
Not used

NEC uPD7210

SN75160AN & SN75162AN
or SN75160BN or SN75162BN
(these are socketed for easy replacement)

Selectable level 1 or 3
(active only during DMA transfers)

Possible in all non-DMA modes of PC/XT
(58 slot is half slot near power supply,
usually used for expansion interface)

Interface Repertoire

T6

E0
LEO
SHl
AH1
SRl
PPl

%
DTl
Cl,C2,C3,C4,C5

Basic talker, serial poll, unaddressed if MLA
No extended talker function
Basic listener, unaddressed if MTA
No extended listener function
Complete source handshake capability
Complete acceptor handshake capability
Complete service request capability
Parallel poll remote configuration capability
Complete remote/local capability
Complete device clear capability
Complete device trigger capability
Controller states

DV.488

Bus Performance

Data transfer rate 2 Kbyte/sec (normal program mode)
450 Kbyte/sec (DMA)
These rates assume zero response time from addressed
devices. In practice, transfer speeds may be lower,
especially in DMA.

Devices on GPIB
Secondaries

Bus length

15 (max, including MBC-488)
2 (max, addressed from same driver)

20 meters (max). Not to exceed 2 meters per device.
5 devices - 10 meters
12 devices - 20 meters

Connector On mar plate 24 pin female micro-ribbon
(Std. IEEE-488) with metric hardware.

Mechanical & Environmental

Card size 5” long x 3.9” high l/2 slot size

Weight 4.25 oz. (0.125 Kg)

Operating Temp 0 to 50 deg. C.

Storage Temp -40 to 100 deg. C.

Humidity 0 - 90% non-condensing

8.0 uCMBC-488 HARDWARE STRUCTURE

uCMBC-488 I/O Register Map

The uCMBC-488 has 16 I/O registers These 16 registers are accessed by reading and writing 16
consecutive I/O addresses (starting at the uCMBC-488’s Base Address) in the PS/2’s memory
workspace. The first 8 addresses are used by the NEC 7210 controller while the last 8 are used
to control interrupt requests and DMA.

ADDRESS READ WRITE

Base +0
+1
+2
+3
+4
+5
+6
+7
+8-11 *
+12-15

Data byte in
Interrupt Status 1
Interrupt Status 2
Serial Poll Status
Address Status
yd;;syt Pass Through

Address 1
Interrupt/DMA status
Not used

Data byte out
Interrupt Mask 1
Interrupt Mask 2
Serial Poll Mode
Address Mode
Auxiliary Mode
Address O/l
End of String
Interrupt/DMA control
Not used

* See next section for STATUS/CONTROL map.

STATUS/CONTROL Registers (Base Addr 8 - 11)

I Hardware Register 8 RETURN STATUS

B7 B6 B5

DMA EOT x
ACI’IVE INTR

PEND

B4 B3 B2 Bl BO

X ARB3 ARB2 ARBI ARBO

Hardware Register 8 WRITE CONTROL

B7 B6 B5 B4 B3 B2 Bl BO

DMA
CONTROL x X X X X X X

Register 8 Bit Description:

DMA ACTIVE 1 = ENABLE 0 = DISABLE
EOT INT PEND 1 = DMA TC REACHED REQUESTING INTERRUPT
ARB O-3 I/O READBACK OF POS ARBITRATION LEVEL
DMA CTL SET = 1 TO ENABLE DMA

I Hardware Register 9 RETURN STATUS

B7 B6 B5 B4 B3 B2 Bl BO

IL3 IL2 IL1 ILO IRQ 7210 7210 EOT
PEND INT INT INT

PEND ACI’V ACTV

I Hardware Register 9 WRITB CONTROL

I B7 B6 B5 B4 B3 B2 Bl BO

X X X X X X 7210 EOT
INT INT
CTL CTL

NOTE: Writing to Register 8 clears EOT latch.

Register 9 Bit Description:

ILO- I/O RBADBACK of INTERRUPT LEVEL
IRQ PEND 1 = OR of INTERRUPT PENDING BITS
7210 INT PEND 1 = 7210 CONTROLLER REQUESTING INTERRUPT
7210 INT ACTIVE 1 = BUS IRQ INT IS ENABLED
EOT INT ACTIVE 1 = BUS IRQ ON DMA EOT IS ENABLED
7210 INT CTL SET = 1 TO ENABLE IRQ ON 7210 INTERRUPT
EOT INT CfL SET = 1 TO ENABLE BUS IRQ DMA TERMINAL COUNT

The Base Address may be set on any 16 bit boundary in I/O address space via the PS/2’s POS
(Programmable Option Select) register. The NEC 7210 controller chip register functions are
explained in the NBC 7210 data sheet. A more useful and expanded description of the controller
chip functions is in a 90 page application manual titled “uPD7210 General Purpose Interface Bus
Manual” available from NBC Electronics Inc. sales office. This information may be of value to
the assembly language programmer interested in writing drivers for the uCMBC-488. Any
register may be accessed by the appropriate OUT DX, AL or IN AL, DX instruction (equivalent
to Basic’s OUT & INP()).

uCMBC-488 Interrupts & DMA

The uCMBC-488 can generate an interrupt on any of the available MicroChannel levels, 3, 4, 5,
6, 7, 11, 15 as selected by the interrupt level POS Register. The interrupt is the logical “OR” of
the request from the 7210 controller and the DMA controller Terminal Count (T/C). The
uCMBC-488 driver, DV488UCSYS makes use of interrupts and DMA requests only in DMA
mode, the interrupt outputs and DMA REQUEST are nistated (high impedance) in normal
program mode. However, the requested interrupt level will be installed in the first use of the
“SYSCON” command as a chained handler. The handler will remain in the system until a reboot
occurs. It is possible to program the 7210 controller to generate an interrupt on up to 13 different
conditions including the obvious ones of a GPIB service request (SRQ) or an End Or Identify
(BOI) or a specific End Of String (EOS) character. The hardware will support propagation of
this interrupt into the PW, but it is the user’s responsibility to provide a suitable interrupt
service routine to handle the interrupt. Since BASIC and most other high level languages do not
support interrupts (there is no ON INTERRUPT statement in Basic for instance) there is no
support for interrupts in DV488UC.SY.S. However, an assembly language programmer can take
advantage of the hardware capabilities by writing drivers.

In a programmed data transfer the data travelling to or from the 7210 controller is transferred
through the accumulator AX register of the 80286 (80386) CPU in the PS/2. This allows
flexibilty in data handling but also involves a good deal of CPU overhead (the CPU continually
polls the 7210 for new data which must be moved to/from the AX register and then move the AX
register to/from memory). This takes time and is dependent upon CPU speed. Even with this
overhead, transfer rates in programmed mode are usually around lOOO-2ooO bytes/second (also
dependant upon GPIB device response speed). Speed is usually not a major factor in instrument
control where command strings are short and response times long, but it may become a more
serious problem with devices that have to move a lot of data in blocks across the GPIB.

uCMBC-488 Specifications

Electrical

i5v power
-5v, +12v, -12v

Controller chip

900mA max.
Not used

NEC uPD7210

Bus drivers SN75160AN & SN75162AN
or SN75160BN or SN75162BN
(these are socketed for replacement)

I/O address

PC bus loading

Interrupts

Can be set on any 16 bit boundary

174LS TTL load on all inputs

Can be set on level
3,4,5,6,7,11,15 (only active in DMA transfer,
t&state otherwise). This is a shared handler.

DMA level Selectable level O-7 (only active in DMA transfer,
@i-state otherwise)

Interface Repertoire

T6 Basic talker, serial poll, unaddressed if MLA
TBO No extended talker function
L4
LEO

Basic listener,,unaddressed if MTA
No extended hstener function

SHl Complete source handshake capability
AH1 Complete acceptor handshake capability
SRl Complete service request capability
PPl Parallel poll remote configuration capability
RLl Complete remote/local capability
DC1 Complete device clear capability
DTl Complete device trigger capability
Cl,C2,C3,C4,C5 Controller states

Bus Performance

Data transfer rate 2 Kbyte/sec (normal program mode)
400 Kbyte/sec (D.M.A.) These rates assume zero
response times for devices and that only one
adapter arbitrates. In practice, transfer speeds
may be lower, especially in D.M.A.

Devices on Bus 15 (max, including uCMBC-488)

uCMBC-488 Boards 2 (max, per driver or computer)

Maximum bus length Two meters times the number of devices, not
exceeding 20 meters

Connector On rear plate 24 pin female micro-ribbon
(Std. IEEE-488) with metric hardware.

Mechanical & Environmental

Card size 12.5” long x 3.12” high Full slot size

Weight 4.25 oz. (0.125 Kg)

Operating Temp 0 to 50 deg. C.

Storage Temp -40 to 100 deg. C.

Humidity 0 - 90% non-condensing

APPENDIX A

IEEE-488 STANDARD

GPIB OPERATION DESCRIPTION

The IBEE Standard 488-1978 defines the IEEE-488 bus which is by far the most popular for
electronic instrumentation. This bus was first introduced by the Hewlett Packard Company as
the HP-IB (Hewlett Packard Interface Bus), later used by other manufacturers as the GPIB
(General Purpose Interface Bus) and finally standardized by the IEEE as the IEEE-488 bus. All
these buses are electrically identical. In Europe, the IBC-625 standard is electrically similar
although a different connector system is used. The IEEE-488 standard has allowed many
different manufacturers to build their devices so that they can easily be used together. A system
can be set up simply by plugging devices together. Now that the hardware standard for the GPIB
is complete, the IBEE is continuing its work on standard conventions in GPIB command syntax
and structure. IEEE Std. 728 - 1982 is an example of this.

Controller, Talker, and Listener

There are 3 types of devices that can be connected to the GPIB, listeners, talkers and controllers.
Some devices include more than one of these functions. The bus standard allows a maximum of
15 devices and a maximum cable length of 2 times the number of devices in meters or 20 meters
whichever is less. A minimum system consists of one controller and one talker or listener device
e.g. an IBM PC with MBC-488 and a digital voltmeter. It is possible to have several controllers
on the bus but only one may be active at any given time. The active controller may pass control
to another controller which in turn can pass it back or on to another controller etc. A listener is a
device that can receive data from the bus when instructed by the controller and a talker likewise
transmit data on to the bus when instructed. Apart from controller to device communications,
the controller can set up a group of listeners as well as a talker so that it is possible to send data
between groups of devices as well.

GPIB Control Signals

The bus is organized into 3 sets of signals: 8 data lines, 3 data byte transfer control lines and 5
general interface management lines. The specification defines the pin-out and type of connector
hardware. Data is transmitted in a bit parallel, byte serial asynchronous fotm on the data lines.
Logic levels are active low (negative true) and employ standard TI’L voltage levels. Bus
transceivers are arranged so that unpowered devices present a passive load to the bus and do not
interfere with the operation of active devices.

IEEE-488 Connector pin Assignments

The GPIB connector is a 24 pin The GPIB connector is a 24 pin connector with signals assigned as below:

i:. i:. 2 1 :i D5 D6

D”: D”: 4 3 :i 2
EOI EOI
DAV DAV 2 :;: E%

NRPD NRPD 7 19 GND
NDAC 8
IFC
SRQ 1;

;7
GND
GND

connector with signals assigned as below:

:
D5

:i D6

i :i 2

2 :;: E%
I
8 ;z %z NDAC

IFC
SRQ 1;

21 GND

ATN 11 ATN 11 ii ii ii= ii=
SHIBLD(GND) 12 24 SHIBLD(GND) 12 24 LOGIC GND LOGIC GND

Signal Functions

Dl-D8 Data input/output are the 8 bidirectional data lines. Used to carry all interface and
device dependent messages.

EOI End or identify. Used by a talker to indicate the end of a multi-byte transfer
sequence, or by controller with ATN high to perform a parallel poll.

DAV Data valid. Asserted when valid data on 8 data lines. Part of handshake.

NRFD Not Ready for Data. Asserted by any device that is not yet ready to receive data.
Part of handshake.

NDAC :tdsyg Accepted. Released by any device that has accepted data. Part of

IFC Interface Clear. Master reset of GPIB.

SRQ Service Request. Similar to an interrupt. Asserted by a device that requires service
from the controller.

ATN Attention. Used by controller to specify how data on GPIB is interpreted - data,
commands or addresses.

REN Remote Enable. Asserted by controller to take remote command of a device.

GND Ground. Signal return, shield, logic and frame grounds. These are usually common
although the functions are differentiated.

BUS Operation

The controller or talker may initiate data transfer using the Handshakle Process as follows:

Source initializes DAV to high

Acceptor(s) initialize NRFD to low and set NDAC TO LOW

Source checks for error condition then sets data on DIO lines

Source delays to allow data to settle on DIO lines

Acceptors have all indicated readiness to accept 1st data byte (NRDF goes high)

Source, upon sensing NRDF high, sets DAV low to indicate that data on DIO lines is
settled and valid

I

8

9

10

11

12

13

First acceptor sets NRDF low to indicate that it is no longer ready, then accepts the
data. Other acceptors follow at their own rates.

First acceptor sets NDAC high to indicate that it has accepted the data. (NDAC
remains low due to other acceptors driving NDAC low)

Last acceptor sets NDAC high to indicate that it has accepted data; all have now
accepted and the NDAC line remains high.

Source, having sensed that NDAC is high, sets DAV high. This indicates to the
acceptors that data on the DIO lines must now be considered invalid.

Source changes data on DIO lines

14

15

Source delays to allow data to settle on DIO lines

Acceptors, upon sensing DAV high set NDAC low in preparation for next cycle.
NDAC line goes as the first acceptor sets it low.

First acceptor indicates that it is ready for the data byte by setting NRDF high. (NRDF
remains low due to other acceptors driving it low).

Last acceptor indicates that it is ready for the data byte by setting NRFD high; It
remains high

16 Source, sensing NRDF high, setd DAV low to indicate that data on the DIO lines is
settled and valid.

17 First acceptor sets NRDF low to indicate that it is no longer ready, then accepts the
data.

18 Fist acceptor sets NDAC high to indicate that it has accepted data.

19 Last acceptor sets NDAC high to indicate that it has accepted data.

20 Source senses NDAC high, sets DAV high (as in 10).

21 Source removes data byte from DIO lines after setting DAV high.

22 Acceptors sense DAV high and, in turn, set NDAC low in preparation for next cycle.

23 All three handshake lines are now at initialized state.

Uniline Commands

Command D8D7D6D5D4D3D2Dl ATN EOI SRQ IPC RBN

ATN - attention xxxxxxxx 1 x x x x
IDY - identify xxxxxxxx X 1 x x x
SRQ - service req xxxxxxxx X x 1 x x
IFC - i/f clear xxxxxxxx x x x X
RBN - remote enable x x x x x x x x X x X X 1

Multiline Commands

Command D8D7D6D5D4D3D2Dl ATN EOI SRQ IPC REN

DAB - data byte
GTL- gotolocal
SDC - se1 dev clr
PPC - par poll cfg
GET - trigger
TCT - take control
DCL - device clear
LLG - local lockout
PPU - p poll uncfg
SPE - ser poll en
SPD - ser poll dis

MLA - listen addr
UNL - unlisten

MTA - talk address
UNT- untalk

PPE - par poll en
PPD - p poll dis
PPRl - p poll resp

responses 1 -
PPRII- p’poll resp
MSA - secondary ad

B8B7B6B5B4B3B2Bl
x0000001
x0000100
x0000101
x0001000
x0001001
x0010100
x0010001
x0010101
x0011000
x0011001

x 1 0 L5L4L3L2Ll
x0111111

x 1 0 T5T4T3T2Tl
x1011111

x 1 1 0 s P3 P2 Pl
x 1 1 1 D4D3D2Dl
xxxxxxxl

8 have corresponding data bit set.
1 x x x- x x~ x x
x 1 1 s5 s4 s3 s2 Sl

X
X
X
X
X
X
X
X
X
X
X

X
X

X
X

X
X
1

1
X

X
x
X
X
X
X
X
X
X
X
X

X
X

x
X

X
X
X

X
X

X
X
X
X
X
X
X
X
X
X
X

X
X

X
X

X
x
X

X
X

X
X
X
X
X
X
X
X
x
X
X

X
X

X
X

X
X
X

X
X

Note how the GPIB relies for many control functions on certain specialized byte codings asserted
with the ATN line high (Multiline commands). These codings are differentiated mainly by the
state of the 6Th. and 7Th. data bits (the 8Th. bit, D8, is usually irrelevant). The bulk of the the
control commands are asserted with D6 & D7 low and ATN high. D7 low and D6 high and
ATN high imply a listen address or unlisten command, and D7 high and D6 low and ATN high
imply a talk address or untalk command. If both D6 and D7 are high and ATN high this implies
a secondary address or if EOI is also asserted, a parallel poll command. All data is transmitted
after the commands with the ATN line low. Whether data, commands or addresses are being
transmitted, the “three wire handshake” is always used to transfer the data except in the case of
the parallel poll response. Not all devices are designed to respond to all possible commands.
The capabilities of devices are usually designated by the manufacturer as a series of codings
consisting of a letter or letters followed by a number. If the number is 0 then the device does not
have that capability

(S
E

N
T

AN
D

R

E
C

E
lV

E
D

W

lT
H

A

TW
I)

(
‘o

.
1

M
S

G
”I

‘0
,

1
M

SG

1
‘lo

1

M
SG

j”l

,
1

M
SG

)

‘0
”

1
M

SG

1’
0,

(

“S
G

(

‘I0

1
M

SG

(
‘I,

1

M
SG

1

0
I

I
I

I
I

2
I

13
1

Ld
l

I5
1

IA
l

l

11
 1

13

1

C
R

(

IJ
llll

O
l

14

1
so

I

(
G

S

(
I-

I
1

R
S

-1

>
&

I

Y
I

I
I

-
.

I-1
1

,
I

-
4

.

+
I

?
I

I
.

.
-

I
I

/
U

N
L

jo
I+

(

I

-
U

N
T

o

n
I

V

V

/\

U
N

IV
E

R
S

A
L

’
V

LI

S
TE

N

C
O

M
M

AN
D

TA

LK

A
D

D
R

E
S

S

A
D

D
R

E
S

S

G
R

O
U

P

(L
A

G
)

P
R

IM
A

R
Y

C

O
M

M
AN

D

G
R

O
U

P

(P
C

G
)

N
O

TE
S

:
1

M
SG

=

IN
TE

R
FA

C
E

M

E
S

S
A

G
E

gb
,

1
D

lO
l..

.b
,

=
~1

07

@

R
E

Q
”lR

E
S

SE

C
D

N
D

AR
Y

C
O

nM
Aw

0
D

E
N

S
E

S

U
B

S
E

T
(C

O
LU

M
N

2

TH
R

O
VG

H

51

S
E

C
O

N
D

A
R

Y

C
O

M
M

AN
D

G

R
O

U
P

(S

C
G

)

Interface Functions

Function Symbol Levels

Source Handshake SH 0,l
Acceptor Handshake AH 0.1
Talker or Extended Talker TorTE O-8
Listener or Extended Listener LorLE o-4
Service Request
Remote/local E f’2
Parallel Poll PP o-2
Device Clear

::
o-2

Device Trigger OJ
Controller C 0 - 28

A full explanation of these codings is supplied in the IEEE-488 specification.

Sequence of Operations

A typical sequence of commands used by a controller talking to a programmable power supply
might be as follows:

1) Controller sends IFC true to clear & initialize interface.

2) Controller sends DCL true to clear individual devices.

3) Controller sends MLA of power supply.

4) Controller enables REN to remote enable power supply.

5) Controller sends data byte(s) to program output (DAB).

6) Controller sends UNL unlisten command to end communication with power supply and
unlisten all listeners.

7) Controller sends MLA or MTA for next device etc. Note that the controller must always
enable a device as a listener or talker by transmitting the listen or talk address command
before data can be transferred. When data transfer is complete, the controller tells all
devices to unaddress themselves by sending the untalk and/or unlisten commands.
Devices are in effect “toggled” on and off the bus by this sequence. It is possible to set
up several devices to share the same data by addressing them and enabling them before
placing data on the bus. The IEEE-488 bus supports both serial and parallel polling to
determine which device may be requesting service. A talker initiates a serial poll by
asserting the SRQ line. If the device has been enabled for serial polls (SPE), the
controller can then perform a read of the each device’s status byte in turn, if it detects a
true state on D7 it means that that device generated the service request. A parallel poll
after SRQ is set up by the PPE so that a particular device will activate a particular bit Dl
- D7 when responding to a parallel poll request (PPRn). The bits returning set will then
indicate which device(s) are requesting service. This is faster than a serial poll.

Adherence to IEEE-488 Standard

Not all manufacturers of devices adhere completely to the standard. For instance, it was the
original intent of the standard that the last byte of a message would be signalled by asserting the
EOI line, so that the controller or receiving device would know that the message was at an end
and could then act upon it. Some manufacturers use a carriage return, line feed sequence and
omit the EOI. With suitable image terminators, the MBC-488 interface will both respond to and
generate this type of message ending.

Although unusual, manufacturers occasionally design devices that perform non-standard bus
operations which are not so easily accommodated. This might include transmitting data with the
ATN line high. This sort of situation may be difficult to handle with the standard MBC-488
commands that are designed to perform operations in accordance with the specification. In this
case you may have to resort to programming the NEC 7210 controller on the MBC-488 directly.
Information on doing this is provided in Section 8.

If you are interested in becoming more familiar with the IEEE-488 bus, the following references
are among the many sources of information now available.

1. “IEEE Standard Digital Interface for Programmable
Instruments”. ANSI/IEEE Std. 488-1978. Published
by the IEEE Inc., 345 East 47Th. St., New York,
N.Y., 10017.

2. “488 together with Code & Format Conventions”
Includes ANSI/IEEE Std. 488-1978 and 728-1982 in
hardbound form. ISBN 471-80786-g. Published by
John Wiley & Sons Inc.

APPENDIX B
IEEE-488 INTERFACE MESSAGES

The IEEE-488 standard (November 1978) &fines 12 interface messages. Below is a listing of
these messages. MetraByte’s DV488 (device driver) supports all 12 of these message types.

MESSAGE

The DATA Message

The Trigger Message

The Clear Message

The Remote Message

The Local Message

Local Lockout Message

Clear Lockout
(Local Message)

Service Request Message

Status Byte Message

The Status Bit Message

Pass Control Message

The Abort Message

FUNCTION

The actual data sent from the talker to one or more listeners on
the GPIB.

Causes listener device(s) to perform a device dependent action
when addressed.

Causes addressed device(s) to return to a predefined state.

Causes the addressed device(s) to switch from local (front
panel) control to remote program control.

Causes addressed device(s) to clears the remore message.

Prevents an operator from manually returning to local state via
ther front panel controls.

Clear all devices on the GPIB and sets Local Mode

Any device on the GPIB may send this message requesting
service from the controller. Message is cleared by sending
device status byte when service is no longer required.

A data byte representing status of the sending device. Bit 6 is
set if the device sent a service request message with the
remaining bits being device dependent.

A data byte representing the condition (or status) of a group of
devices on the GPIB with each bit representing a single device.
This is a typical response to a parallel poll operation.

Allows transfer of bus management (control) to another device
on the bus. There can be only one active bus controller at a
time.

The system controller takes unconditional control from the
active controller, if different. This message also terminates
communications on the bus and sends a Clear All message.

APPENDIX C
DV488 FILE LISTING for

MetraByte’s MBC-488

The following is a complete listing of the files on the 5.25” diskette supplied with your
MBC-488 board (also available on 3.5” diskette). This listing is also in the file “FILESDOC”
on the diskette.

Documentation and Utility Files

FILES DOC

README DOC

LPT DOC

DVSETUP EXE

INSTALL EXE

System Files

DV488PVC SYS

VIPARSE SYS

LPT SYS

VI SYS

Directory of DV488 files on diskette

File containing update history

Operating instuctions for Printer/Plotter device driver

Automatic setup of user’s CONFIGSYS file

Aid in setting up MBC-488 Base Address DIP switches

GPIB DOS Device Driver for IBM PC/XT/AT & PSI2 25,30

Virtual Image Support system (Parse File Only)

Printer/Plotter Device Driver to be loaded by CONFIGSYS

Complete support DOS DEVICE DRIVER for parsing and use with pop
up screen instruments. This file is included to supply the latest version
to current users of PCIP instruments.

BASIC Language DemonstrationlExample Programs

DVDMA BAS DMA Data Transfer

DVBL BAS Serial Poll with LOW BYTE Transfer

DVBH BAS Serial Poll with HIGH BYTE Transfer

DVSPOL BAS Serial Poll with STRING Transfer

DVB BAS Serial Poll with PACKED BYTE Transfer

DVFLUXE BAS Serial Poll with a FLUKE 8840A DMM

PLTRTST BAS Control of Plotter DOS DEVICE DRIVER

HPEXAMPL BAS Example Plot File that can be sent to an HP7475A Plotter from DOS
using HOT keys and the TYPE command via LPTSYS

QuickBASIC Language Demo/Example Files

QBDVB

QBDVDMA

QBDVBH

QBDVSPOL

QBDVPPOL

QBDVBL

QBDVMSTR

QBDVSLAV

QBDVPCTL

QBDVRCTL

QBDVZDMA

QBDVMSTS

QBDVRBQ2

QBDVTON

QBDVLON

QBDVDUAL

QBDVHP

QBDVBIG

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

BAS

Serial Poll with PACKED BYTE Transfer

DMA Data Transfer

Serial Poll with HIGH BYTE Transfer

Serial Poll with STRING Transfer

Parallel Poll - Power Supply Control

Serial Poll with LOW BYTE Transfer

Dual Computer Communications [MASTER)

Dual Computer Communications (SLAVE)

Passing Control to Other Device

Receiving Control

Dual Board Simultaneous DMA

Dual boards (1 Control, 1 Slave)

“REQUEST 2” returns DMA & INT levels

TALK ONLY Mode

LISTEN ONLY Mode

DUAL BUS Serial Poll

Entering REAL numbers with an HP3458A DMM

Talk only of 64Kbytes

PASCAL, C, FORTRAN Language Specific Examples

CDVSPOL C C EXAMPLE of Serial Poll with STRING Transfer

CDVB C C EXAMPLE of Serial Poll with PACKED BYTE Transfer

CDVSPOL MAK C Make file - Serial Poll with STRING Transfer

CDVB MAK C Make file - Serial Poll with PACKED BYTE Transfer

FDVSPOL FOR FORTRAN EXAMPLE of Serial Poll with STRING Transfer

FDVB FOR FORTRAN EXAMPLE of Serial Poll with PACKED BYTE Transfer

PDVSPOL PAS TurboPASCAL EXAMPLE of Serial Poll with STRING Transfer

PDVB PAS TurboPASCAL EXAMPLE of Serial Poll w/PACKED BYTE Transfer

Subdirectory (3.5’3 or second disk (5.25”)

MBC488 Callable libraries and routines included for users with existing software
(NOT RECOMMENDED FOR NEW APPLICATIONS)

APPENDIX D
DV488 FILE LISTING for
MetraByte’s uCMBC-488

The following is a complete file listing contained on the 3.5” diskette supplied with your
uCMBC-488 board. This same listing is contained in “FILES.DOC” on the diskette.

System Files

DV488UC SYS

VIPARSE SYS

LPI SYS

VI SYS

GPIB Device Driver for PSI2 Models 50 thru 80

Parse only support DOS DEVICE DRIVER

Printer/plotter Device Driver loaded by CONFIGSYS

Complete support DOS DEVICE DRIVER for parsing and use with Pop
up screen instruments. This file is included to supply the latest version
to current users of PCIP instruments.

Documentation, Utility and Executable Files

FILES DOC Directory of DV488 files on diskette

README DOC File containing update history

LPT DOC Operating instructions for printer/plotter driver

DVSETIJP EXE Automatic setup of user’s CONFIG.SYS file

@5018 ADF PS/2 POS Configuration file

GENADF EXE Utility used to modify uCMBC-488 Base Adddress selection

BASIC Language DemolExample Files

DVDMA BAS DMA Data Transfer

DVBL BAS Serial Poll with LOW BYTE Transfer

DVBH BAS Serial Poll with HIGH BYTE Transfer

DVSPOL BAS Serial Poll with STRING Transfer

DVB BAS Serial Poll with PACKED BYTE Transfer

DVFLUKE BAS Serial Poll with FLUKE 8840A DMM

PLTRTST BAS Control of Plotter DOS DEVICE DRIVER

HPEXAMPL PLT Example plot file that can be sent to a HP7475A plotter from DOS
using HOT keys and the TYPE command via LPTSYS

QuickBASIC Language DemolExample Files

QBDVB BAS

QBDVDMA BAS

QBDVBH BAS

QBDVSPOL BAS

QBDVPPOL BAS

QBDVBL BAS

QBDVMSTR BAS

QBDVSLAV BAS

QBDVPCTL BAS

QBDVRCTL BAS

QBDMDMA BAS

QBDVMSTS BAS

QBDVREQ2 BAS

QBDVTON BAS

QBDVLoN BAS

QBDVDUAL BAS

QBDVHP BAS

QBDVBIG BAS

Serial Poll with PACKED BYTE Transfer

DMA Data Transfer

Serial Poll with HIGH BYTE Transfer

Serial Poll with STRING Transfer

Parallel Poll - Power Supply Control

Serial Poll with LOW BYTE Transfer

Dual Computer Comm (MASTER)

Dual Computer Comm (SLAVE)

Passing Control to Other Device

Receiving Control

Dual Board Simultaneous DMA

Dual boards (1 Control, 1 Slave)

“REQUEST 2” returns DMA & INT levels

TALK ONLY Mode

LISTEN ONLY Mode

DUAL BUS Serial Poll

Entering REAL numbers with an HP3458A DMM

Talk Only Transfer of 64K bytes

PASCAL, C, FORTRAN Language Specific Examples

CDVSPOL C C EXAMPLE of Serial Poll with STRING Transfer

CDVB C C EXAMPLE of Serial Poll with PACKED BYTE Transfer

CVSPOL MAK C Make file - Serial Poll with STRING Transfer

CDVB MAK C Make file - Serial Poll with PACKED BYTE Transfer

FDVSPOL FOR FORTRAN EXAMPLE of Serial Poll with STRING Transfer

FDVB FOR FORTRAN EXAMPLE of Serial Poll w/PACKED BYTE Transfer

PDVSPOL PAS TurboPASCAL EXAMPLE of Serial Poll wl STRING Transfer

PDVB PAS TurboPASCAL EXAMPLE of Serial Poll w/PACKED BYTE Transfer

Subdirectory (3.5’3

UCMBC488 Callable libraries and routines included for users with existing software
(NOT RECOMMENDED FOR NEW APPLICATIONS)

APPENDIX E
INSTALLING the LINE PRINTER DRIVER

LPT is a DOS installable driver for the uCMBC-488. LPT allows an IEEE-488 compatible
device to be accessed as the systems line printer. LPT is a stand alone driver and does not
require any other GPIB driver.

LPT configures the host machine as a talk only device, and the line printer as the listener. The
GPIB is not a random access bus. LPT assumes that it is the only talker/controller on the bus.
Other bus traffic, especially traffic involving the host machine, is likely to be disrupted.

To install the printer driver, modify the conjig.sys file to include:

DEVICE = cpath>LPT.SYS Bcbbb> A<pp> [/css>] [Kcks]

where;
<path>
cbbb>
<PP>
<ss>
<k>

is the directory path to the LPTSYS file
is the Base Address (hex) of the uCMBC-488
is the optional decimal primary base address of the printer
is the optional decimal secondary of the printer
is the optional Hot Key selection number (below)

Choice Key Sequence Key Sequence
ON Plotter Plotter OFF

:.
<Alt> <A> <Alt> <Z>
<Lft ShiftxY7 Cleft ShiftxNz

iONE
<Rt ShiftscU> <Rt Shift><D>
4x7<+>* <Ctrl><-7*

* The <+> and c-> keys are the grey keyss on the numeric keypad.

When the Plotter ON hat key is pressed, one beep is sounded. Likewise, when the
Plotter OFF hot key is pressed, two beeps are sounded.

Installing LPT.SYS

The following example assumes;

1 LpT.SYS resides in the \DW88 directory

2 uCMBC-488 has a Base Address of 300 (hex)

3 Primary Address = 5

4 No secondary address

5 Hot Key sequence is <Ctrl7<+> for Plotter ON
<Ctrl7<-7 for Plotter OFF

To install the LPT device driver, simply add the following line to your CONFIG.SYS file:

DEVICE = WV\488\LPT.SYS B300 A5

	TOC:

