G')

PCF-16
&
PCF-uC16G

Keithley Instruments, Inc. Data Acquisition Division

User Guide

for the

Keithley MetraByte

PCF-16G & PCF-uC16G
PASCAL, C, & FORTRAN Callable Drivers

for the

DAS-16, DAS-16F, DAS-16G, & unCDas-16G Boards

cowﬂql':tg xﬁ"m?o; T 200, 1969
ns on RO,
Part Number: 24341“'

Keithley Instruments, Inc. Data Acquisition Division

440 MYLES STANDISH BLVD., Taunton, MA 02780
TEL. 506/880-3000, FAX 508/880-0179

- ffi -

Warranty information

All products manufactured by Keithley Instruments, Inc. Data Acquisition Division
are warranted against defective materials and worksmanship for a period of one
year from the date of delivery to the original purchaser. Any product that is found
to be defective within the warranty period will, at the option of the manufacturer,
be repaired or replaced. This warranty does not apply to products damaged by
improper use.

Warning

Keithley Instruments, Inc. Data Acquisition Division assumes no Babllity
for damages consequent to the use of this product. This product is not
designed with components of & level of relisbility suitable for use in life

support or critical applications. -

Disclaimer

Information furnished by Keithley Instruments, Inc. Data Acquisition Division is
believed to be accurate and relable. However, the Keithley Instruments, Inc. Data
Acqguisition Division assumes no responsibility for the use of such information nor
for any infringements of patents or other rights of third parties that may result
from its use. No license is granted by implication or otherwise under any patent
rights of the Keithley Instruments, Inc. Data Acquisition Division.

Copyright

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form by any means, electronic, mechanical,
photorcproductive, recording, or otherwise without the express prior written
permission of the Keithley Intsruments, Inc. Data Acquisition Division.

Note:

Keithley MetraByte™ s a trademark of Keithley Instruments, Inc. Data
Acquisition Division.

Basic™ is a trademark of Dartmouth College.
IBM® i3 a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture® are trademarks of Intema-
tional Business Machines Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.

Turbo C? is a registered trademark of Borland International.

-jv -

Contents

CHAPTER 1 INTRODUCTION

—t b ek amh ad
bhiv

21
2.2
2.3
2.4
2.5
2.6

Overview

..

Supported Languages e e e e e e
Copying The Distribution Software

Generating Your Application Program
This Manual

.........................

Ty | repra—ry
» ey 1 s
ol -

..

--

Mode Calls
CalingThe Driver. ittt ie el
Creating New Drivers

..................................

CHAPTER 3: DRIVER USAGE

3.1
3.2
33
3.4
35
3.6

CHAPTER 4

OVBIVIEW | . . e e e e e e e e e
Microsoft C/Turbo C

.................................

Microsoft PASCAL

..................................

Borland Turbo PASCAL (3.5

Microsoft FORTRAN
Microsoft QuickBASIC

.................................

................................

SUMMARY OF ERROR CODES

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The PCF-16G is a software package for programmers using Pascal, Turbo PASCAL, C, FORTRAN,
and QuickBASIC to write data acquisition and control routines (referred to herein as Application Code)
for the DAS-16/F/G and uCDAS-16G. The Distribution Software for this package is normally
supplied on 5.25" (3.5" for uCDAS-16G) low-density diskettes but is also available (upon request) on
3.5" diskette(s). Contents of the package include the following:

DAS-16/F/G and uCDAS-16G Drivers for each of the supported languages
Driver Source Modules for creating new Drivers
Miscellaneous documentation (.DOC) files

Example program files in all supported languages

1.2 SUPPORTED LANGUAGES
The PCF-16G supports all memory modules of the following languages:

Microsoft C (V4.0 - 6.0)

Microsoft Quick C (V1.0 -2.0)

Microsoft Pascal (V3.0 -4.0)

Microsoft FORTRAN (V4.0,4.1)

Microsoft QuickBASIC (V4.0 and higher)

Borland Turbo Pascal (V3.0 - 5.0)

Borland Turbo C (V1.0 - 2.0)

GW, COMPAQ), and IBM BASIC (V2.0 and higher)

1.3 COPYING DISTRIBUTION SOFTWARE

As soon as possible, make a working copy of your Distribution Software. You may put the working
copy on diskettes or on the PC Hard Drive. In either case, making a working copy allows you to store
your original software in a safe place as a backup.

To make a working copy of your Distribution Software, you will use the DOS COPY or DISKCOPY
function according to one of the instructions in the following two subsections.

PCF-16G USER GUIDE

To Copy Distribution Software To Another Diskette

Note that the source diskette is the diskette containing your Distribution Software; the target diskette
is the diskette you copy to. Before you start, be sure to have one (or more,as needed) formatted
diskettes on hand to serve as target diskettes.

First, place your Distribution Software diskette in your PC's A Drive and log to that drive by typing
A: . Then, use one of the following instructions to copy the diskette files.

e If your PC has just one diskette drive (Drive A), type COPY *.* B: (ina single-drive PC,
Drive A also serves as Drive B) and follow the instructions on the screen.

If you prefer to use the DOS DISKCOPY function, instead of COPY, you will type DISKCOPY

A: A: and follow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY.COM, in your DOS files.

¢ If your PC has two diskette drives (Drive A and Drive B), type COPY *.* B: (thesameas
above) and follow the instructions on the screen.

If you prefer to use the DOS DISKCOPY function, instead of COPY, you will type DISKCOPY
A: B: and follow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY.COM, in your DOS files.

To Copy Distribution Software To The PC Hard Drive

Before copying Distribution Software to a hard drive, make a directory on the hard drive to contain
the files. While the directory name is your choice, the following instructions use PCF16G .

1. After making a directory named PCF16G, place your Distribution Software diskette in your PC's
A Drive and log to that drive by typing A: .

2. Then, type COPY * . * path\PCF16G, where path is the drive designation and DOS path (if
needed) to the PCF16G directory.

When you finish copying your Distribution Software, store it in a safe place (away from heat,
humidty, and dust) for possible future use as a backup.

1.4 GENERATING AN APPLICATION PROGRAM

In the Distribution Software, the example program for the language you are using provides most of
the information you need to start your own Application Program. The overall procedure for a typical
executable program, however, is as follows:

1. Write your Application Code using a text editor or the language environment.

2. Compile your program,

3. Link the compiled program to a Driver (from the Distribution Software) suited to the language of
your Application Code.

This procedure gives you an executable Application Program, ready to test. Repeat all three steps as
you modify/fix this program.

1-2

CHAPTER 1: INTRODUCTION

1.5 THIS MANUAL
Chapter 1 of this manual is introductory material.

Chapter 2 presents information on the DAS-16 and uCDAS-16 Drivers required for the supported
languages. Since the Drivers support the full series of DAS-16 and uCDAS-16 Mode Calls, Chapter 2
also lists and briefly describes the Mode Calls. And since the Drivers may not be perfectly suited to
your particular applications, Chapter 2 discusses the Driver Source Modules, which are the source-
code files you may use for creating new Drivers. Finally, the chapter inciudes instructions for creating
new Drivers.

Chapter 3 presents brief instructions and examples for using the Drivers with your Application
Programs.

CHAPTER 2

DRIVER INFORMATION

2.1 OVERVIEW

When you write a program for your own DAS-16 (DAS-16 hereinafter refers to DAS-16/F/G and
uCDAS-16G) application, your program is referred to herein as the Application Code. You have a
choice of writing this Code in BASIC, QuickBASIC, PASCAL, Turbo PASCAL, C, or FORTRAN. You
then compile your Application Code and link the resulting program with a Driver . The linking

process develops the Application Program , which is the program giving you software control of your
hardware.

The Driver you link with your Application Code must be suited to the language used for the Code.
For example, if you write your Application Code in C, your must link it with a Driver suited to C.

The Distribution Software contains Drivers for BASIC, QuickBASIC, PASCAL, Turbo PASCAL, C, and
FORTRAN. The Distribution Software also contains the Driver Source Modules , which are the

Assembly Language source files provided for the purpose of allowing you to create new Drivers
customized to your particular needs.

Section 2.2 of this chapter lists and describes the Driver Source Modules, with which you may create
new Drivers. Section 2.3 lists and describes the Drivers available in the Distribution Software. Section
2.4 lists the Mode Calls supported by the Drivers. Section 2.5 instructs you on how to make calls from

your Application Code. The final section (Section 2.6) instructs you on how to use the Driver Source
Modules to create new Drivers.

2.2 DRIVER SOURCE MODULES

The following three Driver Source Modules are the essential building blocks for creating a DAS-16
Driver in any language:

DASG.ASM Core of the driver.
PCDASG.ASM Core of the driver.
DASGPCF.ASM Driver interface module for PASCAL, C, FORTRAN, and QuickBASIC.

As mentioned earlier, these three modules are available in your Distribution Software. Also available
in the Distribution Software is TUURBOPAS.ASM , which is a Driver Source Module available strictly
for Turbo PASCAL. TURBOPAS.ASM actually has a source equivalent to all the above three moduies.

For instructions on using these modules to create Drivers, refer to Section 2.6.

PCF-16G USER GUIDE

2.3 DRIVERS

As a convenience, your Distribution Software contains Drivers for PASCAL, Turbo PASCAL, C,
FORTRAN, BASIC, and QuickBASIC. You must link the appropriate Driver with your Application
Code; choose the Driver that matches the language used for your Application Code. Available

Drivers are as follows:

BASDASG.LIB:
DASG.LIB:
DASG.BIN:
DASG.QLB:

DASGX.QLB:
TURBOPAS.OBJ:

2.4 MODE CALLS

_ Driver for Compiled BASIC.

Driver for Pascal, C, FORTRAN, and stand-alone QuickBASIC programs.
Driver for BASIC(A).

Driver for the QuickBASIC Integrated Development Environment (Ver.
4.04.5).

Driver for the QuickBASIC Extended Environment (Ver. 7.0).
Driver for TURBO Pascal.

This list briefly describes the Mode Calls supported by the DAS-16/F/G and uCDAS-16G driver
software. More detailed explanations of each Mode are available in the main text of the DAS-16/F/G
and uCDAS-16G User Guides.

MODE 0:
MOPDE 1:
MODE 2:

MOPDE 3:

MOPDE 4:

MODE 5:

Initialize board, input Base Address, Interrupt Level, and DMA Level.

Set multiplexer low and high scan limits.
Reads the current channel setting and scan limit settings.

This MODE performs a single A/D conversion. Data from the
conversion is returned, the multiplexor is incremented, and the next
channel gain is selected from the gain table set up in MODE 21.
This MODE is slow and runs in the foreground. If calibration
MODE 1 is selected in MODE 0 then data will be offset corrected. 1f
calibration MODE 2 is selected in MODE 0 then both gain and offset
will be corrected.

This routine will perform N A/D conversions after receipt of an
external trigger. Scan rate can be set by the programmable timer
(set up by MODE 17), or by the external trigger. This MODE is
faster than MODE 3 but still runs in the foreground. MODE 21 sets
gain table. If calibration MODE 1 is selected in MODE 0 then data
will be offset corrected. If calibration MODE 2 is selected in MODE
0 then both gain and offset will be corrected.

This MODE is similar to MODE 4 except that data transfer is driven
by interrupts. Scan rates are set by the programmable timer or the
external trigger. Speed is medium and runs in the background.
Data is transferred by an interrupt service routine. MODE 21 sets
gain table. MODE 9 is used to transfer the data from memory into a
BASIC Array (autocalibration is performed in MODE 9).

MODE 6:

MODE 7:

MODE 8:

MODE 6:

MODE 10:

MODE 11:
MODE 12:
MODE 13:
MODE 14:
MODE 15:
MODE 16:
MODE 17:

MODE 18:

MODE 19:

MODE 20:

MODE 21:

MODE 22:

CHAPTER 2: DRIVER INFORMATION

This MODE is the fastest MODE of data transfer. An array of integers
is stored directly into memory by a DMA transfer. Since is no
interrupt service routine to select the next channel's gain, all
channels are at the same gain. MODE 9 is used to transfer data
from memory into a BASIC array. Note that MODE 6 puts data into
memory without performing any autocalibration. For calibrated
results use MODE 9, which not only takes the data from memory,
but also performs that autocalibration operation.

Disable DMA and interrupt operations started in MODEs 5,6,18, or
20.

Reports status of DMA and interrupt operations started by MODEs
5,6,18 or 20.

Block move of data acquired in MODEs 5, 6, and 20. If calibration
MODE 1 is selected in MODE 0 then data will be offset corrected. If

calibration MODE 2 is selected in MODE 0 then both gain and offset
will be corrected.

Set Counter 0 configuration. This is the counter whose output is
available at the output connector.

Load Counter 0 data.

Read Counter 0.

Output to digital outputs OP0 - OF7.
Read digital inputs IPO-IP7.

Output data to a single DAC channel.
Outputs data to both DAC channels.
Set programmabie timer rate.

DAC waveform output and ADC input. (Note that no data correction
is performed by MODE 18,

Analog trigger function.

A/D block scan on interrupt. This MODE will do a complete scan of
channels using gains set by MODE 21. Runs in background at
medium speed. Use MODE 9 to transfer data from memory into a
BASIC array. Note that MODE 20 puts data into memory without
performing any autocalibration. For calibrated results use MODE 9,
which not only takes the data from memory, but also performs that
autocalibration operation.

Set channel gains. Use this MODE to set up gain table prior to calling
MODEs 3, 4, 5, and 20.

Output a square wave frequency from Counter 0 out. Frequency
from 1.5Hz to 25KHz.

PCF-16G USER GUIDE

MODE 23:
MODE 24:
MODE 25:

MODE 26:

Allocate memory Segment.
Deallocate Memory Segment.
Initialize PPI chip.

1/0to PPL

2.5 CALLING THE DRIVER

In your Application Code, you write a call the DAS-16/F/G or uCDAS-16G driver through a single
label that corresponds to the language used for your Code and to the memory model used for
compiling. These labels are the Call Labels . DAS-16 Call Labels and their corresponding Drivers are

as follows:

DASG.LIB:

mscs_dasg
mscin_dasg
mscl_dasg
tes_dasg
tem_dasg
tcl_dasg

_dasg
msf_dasg
basdasg

TURBOPAS.OBJ:
tp_dasg

DASG.BIN:
dasg

For Calls from Microsoft C, Small Model
For Calls from Microsoft C, Medium Model
For Calls from Microsoft C, Large Model
For Calls from TURBO C, Small Model

For Calls from TURBQ C, Medium Model
For Calls from TURBO C, Large Model

For Calls from Microsoft Pascal
For Calls from Microsoft FORTRAN
For Calls from Microsoft QuickBASIC

For Calls from TURBQ Pascal

For Calis from BASIC(A)

Regardless of the language/model you are using, with each call to a label you must specify three

input parameters, as follows:

MODE A 16-bit integer containing the number of the mode to be executed by

the DAS-16 driver.

PARAM An array of 16-bit integers containing a variable number of mode-

dependent arguments required for the successful execution of the
mode.

CHAPTER 2: DRIVER INFORMATION

FLAG A 16-bit integer quantity that contains a number representing any
error code reported by the DAS-16 driver. (See Chapter 4 for error-
code definitions.)

The following is code fragment (in C) on how to declare and use the call parameters.

int Mode;

int Flng:-

int Params(16];

Mode = 0;

Flag = 0;

Params [0] = 0x300; /* Card Base Addrass */
Params{l] = 7; /* Selected Interrupt Lavel */
Params (2] = 3; /* Selected DMA Level */

macl dasg(&Mode, Params, &Flag);
if (Flag != 0)
printf ("**%** Error %d detected in mode 0", Flag):

Refer to Chapter 3 for additional details on how to declare and use these variables in other languages.

2.6 CREATING NEW DRIVERS

General

While the Drivers available to you in the Distribution Software (see Section 2.3) support all the Call
Modes described in Section 2.4, they may not suit your particular application. You may remedy this
problem by creating a new version of the desired Driver. This section provides the information

necessary to create a new Driver for BASIC, QuickBASIC, PASCAL, Turbo PASCAL, C, and
FORTRAN.

Note that to create a new version of a Driver, your working directory (generally, the directory
containing the Distribution Software) must contain the Driver Source Modules (Section 2.2) and the
following development tools:
MASM.EXE Microsoft Assembler
LINK.EEXE Microsoft Linker

LIB.EXE Microsoft Librarian

Other utilities will be specified as needed in the instructions of the subsections that follow.

Also, note that in the MASM compile commands you use to create a new Driver, you must define the
two symbols BIN and DASG . These definitions use the /D option for BASIC, QuickBASIC,
PASCAL, C, and FORTRAN. For Turbo PASCAL, only the symbol DASI6A requires definition.
These symbol definitions are as follows:

PCF-16G USER GUIDE

BIN=1: Compile for BASIC(A) Driver. Usage example: /DBIN=1.

BIN=0: Compile for non-BASIC(A) Driver (PASCAL, C, FORTRAN, and
QuickBASIC). Usage example: /DBIN=0.

DASG=1: Support for DAS-16A. Usage example: /DDASG=1 .

DASG=0: No support for DAS-16A. Usage example: /DDASG=0.

DAS16A =1: Support for DAS-16A (Turbo PASCAL Driver only). Usage example:
/DDAS16A=1.

DAS16A =0: No support for DAS-16A (Turbo PASCAL Driver only). Usage
exampie: /DDAS16A=0 .

WARNING

The manufacturer does not provide technical support for user
modications of the driver source code.

The DASG.BIN Driver For BASIC(A)
To create a DASG.BIN Driver, you must have access to the following utilities:

EXE2BIN.EXE A Microsoft .EXE-to-.COM file conversion utility {(generally available in
DOS files).
MAKEBIN.EXE A .COM-to0-.BIN file-conversion utility (supplied in the DAS-16/F/G

and uCDAS-16 Distribution Software),

Then, use the following commands:
MASM /DBIN=1 /DDASG=1 DASG.ASM:
MASM /DBIN=1 PCDASG.ASM
MASM /DBIN=1 DASGFCF.ASM;
LINK DASPCF + DASG + PCDASG, DASG:

EXE2BIN DASG.EXE DASG.COM
MAKEBIN DASG,COM

All four steps must be successful. Note that the linking operation generates the warning:

LINK : Warning L4021 : no stack segment

Disregard this warning; it is irrelevent.

The TURBOPAS.OBJ Driver For Turbo PASCAL
To create a TURBOPAS.OBJ Driver, you rust have access to the following utility:

_ TASM.EXE TURBO Assembler

CHAPTER 2: DRIVER INFORMATION

Then, use the command TASM TURBOPAS.ASM.

The DASG.QLB Driver For The QuickBASIC Integrated Environment (V4.5)

To create the DASG.QLB Driver, you must have access to the utility BQLB45.LIB , which is the
QuickBASIC Integrated Environment Library. Then use the following commands:

MASM /DBIN=0 /DDASG=1 DASG.ASM;

MASM /DBIN=0 PCDASG.ASM

MASM /DBIN=0 DASGPCF.ASM;

LINK /q DASG+PCDASG+PCFDASG, DASG, ,BQLB45;

The DASG.LIB Driver For A Stand-alone QuickBASIC (V4.5) Program

To create the DASG.LIB file, you must have access to MASM (the Microsoft Assembler) and LIB.EXE
(the Microsft Library Manager). Then, use the folowing commands:

MASM /DBIN=0 /DDASG=1 DASG.ASM;
MASM /DBIN=0 PCDASG.ASM;

MASM /DBIN=0 DASGPCF.ASNM;

LIB DASG-+DASG;

LIB DASG-+PCDASG;

LIB DASG-+DASGPCF;

The DASGX.QLB Driver For The QuickBASIC Extended Environment (V7.0)

To create a QLB library compatible with QuickBASIC Version 7.0, follow the procedure described for
QuickBASIC Version 4.5. However, link with QBXQLB.LIB, instead of BQLB45.LIB , as follows:

LINK /q DASGH+PCDASGHDASGPCF, DASGX, , QBXLE;

Note that the output file (from the linker) is renamed DASGX.QLB to avoid incompatibilities with
QuickBASIC 4.5.

The DASG.LIB Driver For PASCAL, C, & FORTRAN

When your Application Code is in PASCAL, C, or FORTRAN, use the DASG.LIB Driver to compile
your Application Program.

To create the DASGX.LIB file, you must have access to MASM (the Microsoft Assembler) and
LIB.EXE (the Microsft Library Manager). Use the following commands:

MASM /DBIN=0 /DDASG=1 DASG.ASM;
MASM /DBIN=0 PCDASG.ASM;

MASM /DBIN=0 DASGPCF.ASM:

LIB DASG-+DASG;

LIB DASG-+PCDASG;

LIB DASG-+DASGPCF;

DRIVER USAGE

3.1 OVERVIEW

Although your DAS-16 (DAS-16 refers hereinafter to DAS-16/F/G and uCDAS-16G) drivers perform

sirnilarly for all supported languages, there are differences from language-to-language in how they
pass parameters and parameter values. The items causmv_' the most confusion are as follows:

¢ Memory allocation for DMA buffers.

* Separating a FAR (32-bit) pointer into its Segment and Offset values (two 16-bit values).
This chapter discusses these items and any others of concern in the separate treatment of each
supported language. Refer to the appropriate section below for details on performing the Mode Calls

from the language you are using. The language sections contain brief code fragments for illustration.
More information is also available in the example programs (Distribution Software).

3.2 MICROSOFT C/TURBO C

The C Language, with its large run-time libraries and full pointer-manipulation support, provides the
most flexible environment for writing Application Code that fully utilizes your DAS-16 product.

Function Prototypes

In your Application Code, declare one of the following function prototypes, depending on the
Memory Model you will use:

mscs_dasg(int *, int *, int *):; /* MS C Small Model */
mscm daag(int *, int %, int *); /* MS C Medium Model */
mscl_dasg(int *, int *, int *); /* M8 C Large Model */
tes dasg(:.nt *, int *, int *); /* Turbo C Small Model */
tcm dasg(int *, int *, iat *); /* Turbo C Medium Model*/
tel_dasg(int *, int *, int *); /* Turbo C Lazxge Model */

You have the option of preceding these function prototypes with the C keyword exfern . Note that

each prototype contains a Call Label that corresponds to the Memory Model to be used during
compilation.

The Call Parameters
Declare the Mode Call parameters as follows:

int Mode;
int Params[l16]:;
int Flag:;

PCF-16G USER GUIDE

The Params(] array index values are 0 thru 15, inclusive.

An Example

To call MODE 0 of the DASG Driver from an MS C Medium Model program, your commands would
be

Mode=0;
Flag=0;
Params [0]=0X300;
Params{[l]=7;
Params[2]=3;
macm daag (&Mode, Params, &Flaq);
if (Flag !=0)
{

printf{"Mode %d Error Flag = %d\n", Mode, Flag):

exit (1);
}

Note that specifying Params in the Call statment is the same as &Params{0] .

Linking To The Driver

After compiling your C Application Code, link it to the DASG.LIB Driver (for Call Label mscm_dasg)
as follows:

LINK your-program,,,DASG.LIB;

1f no error reports occur, you will obtain your Application Program your-program.EXE , ready to test.
If the Linker reports errors such as Unresolved External(s), determine whether you linked to
DASG.LIB correctly.

NOTE: Be sure to use the correct Call Label for the Memory Mode! you are using.

DMA Memory Buffer Allocation

MODE 6 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA

address is available by calling MODE 23 (for detail, refer to the DAS-16/F/G and uCDAS-16G User
Guides).

Far Pointer Manipulation

MODE ¢4, 5, 9, 18, and 20 allows FAR pointers to be passed in the user Params{] integer array. The
Segment and Offset of all FAR pointers(32 bits) in C may be retrieved using C macro: FP_OFF and
FP_SEG. Refer to your C Run-time library manual for more detail.

CHAPTER 3: DRIVER USAGE

For exampie,

int far * samp buf_ ptr,*chan buf ptr;

unsigned int dast seg;

int Mode, Params[l6]}, Flag:

Mode=9;

Params[0) = 50; /* Number of Samples to unpack */
Params(l] = -1; /* use FAR pointer */
Params [2] = 0; /* Start with sample 0 */
Params (3] = FP_OFF (samp buf ptr); /* Offset address of data array */
Params[4] = FP_SEG(samp buf ptr):; /* Segment address of data array */
Params (5] = FP_OFF (chan_buf ptr); /* Offsat address of channel array */
Params[6] = FP_SEG(chan buf ptr):; /* Segment address of channel array */
Params[7] = 0; /* Mamory offset */
Params[8] = dest_seg; /* Memory segment * /

macl dasg(&Mode, Params, &Flag);
if (Flag !=0)
{

printf ("Mode 9 Error Flag = %d\n",Flag):
exit(l);

3.3 MICROSOFT PASCAL

Function Prototypes
In your Application Code, declare the following function prototype:

FUNCTION MSP_DASG (VAR Mode:integer;VAR Params:PArray;VAR Flag:integer):integer; external;

The Call Parameters
Declare the Mode Call parameters as follows:

TYPE
PArray = array [l1l..16] of word :

VAR
Params : PArray; (* MODE PARAM ARRAY *)
Mode,Flag : integer; (* MODE CALL VARIABLES *)}

The Params]] array index values are 1 thru 16 inclusive. Note that if PArray TYPE is declared as
{0..15], the index value starts at 0.

PCF-16G USER GUIDE

An Example
To call MODE 0 of the DASG Driver from MS Pascal Application Code,

Mode := 0;

Paramsa[1l] := 768; {* BOARD ADDRESS ¥*)
Params[2] := 7; (* INTERRUPT LEVEL *)
Params[3] := 3; (* DMA LEVEL *)

MSP_DASG (Mode, Params, Flag):;
if (Flag <> {) then ReportError;

where ReportError is a previously declared procedure that displays an error message and terminates

the program. Refer to the Microsoft PASCAL example program (in the Distribution Software) for
more detail.

Linking To The Driver

After compiling your MS PASCAL Application Code, link it to the DASG.LIB Driver (for Call Label
msp_dasg), as follows:

LINK your-program, , ,DASG.LIB;

If no error reports occur, you will obtain your Application Program your-program.EXE , ready to test.
If the Linker reports errors such as Unresolved External(s), determine whether you linked to
DASG.LIB correctly.

DMA Memory Buffer Allocation

MODE 6 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 23 (for detail, refer to the DAS-16/F/G and uCDAS-16G User
Guides).

Far Pointer Manipulation

MODESs 4, 5, 9, 18, and 20 allow FAR pointers to be passed in the user Paramsf] integer array. The
Segment and Offset of all FAR pointers (32 bits) in MS PASCAL may be retrieved using the built-in

operator ADS and the .5 and .R sub-operators. Refer to your MS Pascal Run-time library manual for
more detail.

For example,
Type .

DArray = array [l1..5000] of integer;
var

data, chan : DArray;

Mode
Flag

CHAPTER 3: DRIVER USAGE

=9
=0 ;

Params([l] :=5000;

Params([2] :=-1;

Params(3] :=0;

Params{4] :=ORD((ADS data).R):;
Params[5] :=ORD({ADS data).S):;
Params{6] :=ORD({{ADS chan).R);
Params (7] :=ORD{(ADS chan).S):
Parama[8] :=0;

Params([9] :=dest_ seqg;

Rasult := msp dasg(Moda, Params Flag)
if (result <> 0) then

Begin

ReportError;
Raturn;

End;

3.4 BORLAND TURBO PASCAL

The Call Label

The Call Label tp_dasg is usable from any Turbo Pascal program; declare this label in your
Application Code as follows:

FUNCTION

TP_DASG (VAR Mode:integer;VAR Params:PArray;VAR Flaqg:integer):integer; external;

The Call Parameters
Declare the Mode Call parameters as follows:

TYPE

VAR

PArray = array [l..16] of word;

Params : PArray: {* MODE PARAM ARRAY *)
Mode, Flag : integer:; {* MODE CALL VARIABLES *)
Result : integer; (* MODE CALL RETURN VALUE *)

The Params|] array index values are 1 thru 16, inclusive. Note that if PArray TYPE is declared as
[0..15], the index values start at 0.

An Example:
To call Mode 0 of the DASG Driver from Turbo Pascal Application Code:

Mode := 0;

Params([l] := 768; (* BOARD ADDRESS *)
Params[2] := 7; {(* INTERRUPT LEVEL *)
Parama([3] := 3; {(* DMA LEVEL *)
Rasult := TP DASG (Mode, Params, Flag):;

if (Rasult <> 0) then ReportError;

PCF-16G USER GUIDE

Where ReportError is a previously declared procedure that displays an error message and terminates
the Application Code. Refer to the Turbo Pascal example program provided for more detail.

Linking To The Driver

The Turbo Pascal Driver is TURBODAS.OBJ . This file is linked into your program using the $L
Compiler Directive. Include this command at the beginning of your progam as follows:

{$L TURBOPAS}

Once included, you are ready to compile your program with the command

TPC your-program

DMA Memory Buffer Allocation

MODE 6 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 23 (for detail, refer to the DAS-16/F/G and uCDAS-16G User
Guides).

Far Pointer Manipulation

MODEs 4, 5, 9, 18, and 20 allow FAR pointers to be passed in the user Params[] integer array. The
Segment and Offset of all FAR pointers (32 bits} in Turbo Pascal may be retrieved using built-in
function Ofs and Seg. Refer to your Turbo Pascal Run-time library manual for more detail.

For example,

Type .
PArray = array [l..16]of integer ;

DArray = array [l1l..5000] of integer;
var

Params : PArray ;
data,chan : DArray:

Mode,Flag : integer;

Mode := 9 ;

Flag := 0 ;

Params[l] :=5000;

Params[2] :=-1;

Params[3] :=0;

Params[4] :=ofs(data);

Params[5] :=aseg{data):;

Params[6] :=o0fs (chan);

Params([7] :=seg(chan):;

Params{8] :=0;

Params [9] :=dest seg:

Rasult := tp dasg(Mode,Params,Flag) ;

CHAPTER 3: DRIVER USAGE

3.5 MICROSOFT FORTRAN

The Software Driver Call Label

The call label msf _dasg is usable from any MS FORTRAN Application Code; no prototype declaration
of the label is required.

The Mode Call Parameters

Declare the Mode Call parameters as follows:
integer*2 i (16) iParameter Array
integer*2 mode i{Mode number
integer*2 flag iReturn error flag

Note that by default, FORTRAN array index values begin at 1. The latest versions of FORTRAN,

however, allow you override this default to start at Index Value 0. Refer to your FORTRAN Manuals
for more detail.

An Example

To call MODE 0 of the Driver from Microsoft FORTRAN Application Code,
mode=0
i{l)=768 ! Board Address
i(2)=7 ! Interrupt Level
1(3)=3 ' DMA Level

call msf dasg(mode, i(l), Flag)
if (flag .NE., 0) then

print *, 'Mode = ' mode,' Error # ', flag
endif

Linking To The Driver

After compiling your FORTRAN Application Code, link it to the DASG.LIB Driver (for the Call Label
msf_dasg) as follows:

LINK your-program,,,DASG.LIB;

If no error reports occur, you will obtain your Application Program your-program.EXE , ready to test.
If the Linker reports errors such as Unresolved External(s), determine whether you linked to
DASG.LIB correctly.

DMA Memory Buffer Allocation

MODE 6 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA

address is available by calling MODE 23 (for detail, refer to the DAS-16/F/G and uCDAS-16G User
Guides).

3-7

PCF-16G USER GUIDE

Far Pointer Manipulation

MODEs 4, 5, 9, 18, and 20 allow FAR pointers to be passed in the user Params() integer array. The
Segment and Offset of all FAR pointers that are to represent a memory buffer in FORTRAN may be
retrieved using the FORTRAN intrinsic function LOCFAR() and some simple calculation. Refer to
your FORTRAN Run-time library manual and our FORTRAN example programs for more detail.

For example,

integer*#2 data(5000),params(186)
integer*2 moda,flag
integer*2 array off,array seg
integer*4 array addr

Cc Get segmant and offsaet address of data array
array_addr=LOCFAR (data(l))
array_seg=array addz/#10000
array off=array addr-(array_ seg*#10000)

mode=9
£lag=0
params (1)=5000
params (2)=-1
params (3)=0
params (4) =array off
params (5)=array seg
params (6) =0
params (7)=0
params (8) =0
params (9) =dest_seg
call fdasg(mode, params(l), flag)

3.6 MICROSOFT QUICKBASIC

The Call Label

You must declare the Call Label in your Application Code. Make this declaration by inserting the
following command at the beginning of your Code:

DECLARE SUB BASDASG (MD%, BYVAL PARAMSS%, FLAGS)

Note that all subroutine DECLARES in your program MUST be made before any $DYNAMIC arrays
are allocated. $DYNAMIC data is data that is allocated space in the FAR heap, outside the default
data segment. All arrays used for data acquisition must be declared as $DYNAMIC; QuickBasic
assumes $STATIC data (Default data segment) unless otherwise specified.

The Call Parameters

CHAPTER 3. DRIVER USAGE

Declare the Mode Call parameter array D%(15) as follows:

DIM D% (15)
COMMON SHARED D% ()

The term COMMON SHARED allows the use other modules and subroutines in this array.

An Example

To initialize your DAS-16 board, use MODE (as follows:

180 MD% =
190 FLAGSY
200 D% (0)
210 D% (1)
220 D% (2)
230 D%(3)

nunwnne

'initialize mode
'daclare error variable
'Card Base Address
'Interrupt Lavel

‘DMA Level
'Auto-Calibration = QOff

240 CALL BASDASG (MD%, VARPTR(D%(0)), FLAG%)
250 IF FLAGY <> 0 THEN PRINT "MODE O Error ¥ "; FLAGS : STOP

Linking To The Driver

The QuickBASIC interface consists three separate Drivers:

DASG.QLB

DASGX.QLB

DASG.LIB

Use when you load the QuickBASIC Enviroment Version 4.5 and you
plan to run your program from within the Environment (no EXE
envolved here). Use the /L switch to load this Quick Library into
QuickBASIC:

OB /L DASG <your-program>

This is identical to DASG.QLB except that it is designed for QuickBASIC
Extended Environment Version 7.0 (QBX). Use the /L switch to load this
Quick Library into QuickBASIC:

QBX /L DASGX <your-program>

Link to this library when you want to make a stand-alone EXE program
from your QuickBASIC (all versions) source. To create such a program,
use BC and LINK the QuickBASIC compiler and linker as follows:

BC <your-program>.bas /o
LINK <your-program>,,,DASG.LIB;

NOTE: All$SDYNAMIC data declaration must occur after all COMMON and DECLARE
statements in your program. If you get the QB error, COMMON and DECLARE must

precede all executable statements; double check the order of all DECLARE, COMMON,
and $DYNAMIC declarations.

PCF-16G USER GUIDE

To link your Application Code to a QuicBASIC Driver, you must specify the Driver in the command
line using the Load Switch /L , as follows:

QB /L DASG.QLE

DMA Memory Buffer Allocation

MODE 6 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 23 (for detail, refer to the DAS-16/F/G and uCDAS-16G User
Guides).

Far Pointer Manipulation

QuickBASIC provides the built-in functions VARPTR and VARSEG for obtaining the Offset and
Segment of a given variable. f the variable is declared in the $STATIC area (by default), VARSEG
returns the default data segment. If the variable is declared as $DYNAMIC, then it is placed in the
FAR heap and VARSEG for such a variable returns a unique Segment value outside the defauit data

segment.

For example,
DIM DT%(1000) ' Data array used by MODE 9
DIM CH% (1000) ' Channel array used by MODE 9
MD% = 9 'mode 9 - data transfer
PARAME (0) = 1000 'numbar of words to transfer
PARAMS (1) = DMASEGH 'Flag to look for SEG:OFF pairs below...
PARAM® (2) = 0 'start transferring at lst sample
PARAMS (3) = VARPTR(DT% (0)) 'Offsat of DTH(*) array
PARAMS (4) = VARPTR{CH% {0)) 'Offset of CHY (*) array

CALL BASDASG(MD%, VARPTR{PARAM% (0)), FLAGY%) 'make transfer
IF FLAGY <> 0 THEN PRINT "Mode 9 data transfer error # ":; FLAGY: STOP

3-10

CHAPTER 4

SUMMARY OF ERROR CODES

In general, the Error Flag is the parameter that returns any reports of error conditions. This flag is an
integer type (16 bits) and contains the Error Code number.

The following list contains Error Code definitions and suggested actions.

Error 1: Driver not initialized.

Detail: This error may be issued from any mode; it indicates that the driver must
be re-initialized prior to this step.

Recommended Action: Call Mode 0 before calling the mode in which this error occurred.

Error 2: MODE number out of range.

Detail: This error may be issued from any mode; it indicates the the specified
mode number is not allowed.

Recommended Action: Check the mode number; it should be within 0 to 25.

Error 3: Base Address oint of range.

Detail: This error is generated by MODE 0 whenever the Base Address specified
is not allowed.

Recommended Action: Specify a Base Address within the range 256 (100h) and 1008 (3F0h),
inclusive,

Error 4; interrupt Level out of range.

Detail: This error is generated by MODE 0 whenever the specified Interrupt
Level is not allowed. Use a level that does not conflict with other devices
in your system.

Recommended Action: Supply MODE 0 with an Interrupt Level in the range 2 thru 7, inclusive.

Error 5: DMA channel not 1 or 3.

Detail: This error is generated by MODE 0 whenever the specified DMA
Channel is not allowed. Note that, unlike the Interrupt Level selection,
the DMA Channel selected here must match the DMA Channel Switch
position on the board!

Recommended Action: Supply MODE 0 with DMA Channel 1 or 3.

PCF-16G USER GUIDE

Error 6: Differential scan limits out of range.

Detail: This error is generated by MODE 1 whenever the differential input
channel scan limits are out of range.

Recommended Action: Check the channel numbers passed to MODE 1. They must be within 0
thru 7, inclusive.

Error 7: Single Ended scan limits out of range.

Detail: This error is generated by MODE 1 whenever the Single Ended input
channel scan limits are out of range.

Recommended Action: Check the channel numbers passed to MODE 1. They must be within 0
thru 15, inclusive.

Error 8:
Detail:

Recommended Action:

Error 9: No End-Of-Conversion (EOC) signal from A/D subsystem.

Detail: This error is generated by MODE 3 whenever an expected EOC signal
from the DAS-16 is not recieved. This indicates a hardware failure.

Recommended Action: Check the board's Base Address.

Error 10: One or both counter vailues out of range.

Detail: This error is generated by MODE 17 whenever one or both counter
divisors are specified as 0 or 1.

Recommended Action: Check both counter divisors for values within the range 2 thru 65535,
inclusive.

Error 11: Number of conversions out of range.

Detail: This error is generated by MODEs 4, 5, 6, or 20 whenever the number of
conversions specified is out of range. Note that the number of
conversions is limited to 0 thru 32767, inclusive; where, 0 is used to
specify the 32768 ~ the maximum number of conversions possible.

Recommended Action: Check the number of conversions.

Error 12: Counter 0 Configuration Number out of range.

Detail: This error is generated by MODE 10 whenever Counter 0 configuration
number is not within the allowed range of 0 thru 5 inclusive. Refer to
section 7?7 for detail on the different configuration modes.

Recommended Action: Check the configuration number.
4-2

CHAPTER 4 SUMMARY OF ERROR CODES

Error 13: Digital output data out of range.

Detail: This error is generated by MODE 13 whenever the output data value is
not within 0 thru 15 inclusive. There are four (4) Digital Qutput lines
available on the DAS-16.

Recommended Action: Check the Digital output value.

Error 14: Analog output (D/A) data out of range.

Detail: This error is generated by MODEs 15 and 16 whenever the D/ A value
specified is out of the allowed range of 0 thru 4095, inclusive.

Recommended Action: Check the DAC value.

Error 15: DAC channel number not 0 or 1.

Detail: This error is generated by MODEs 15 and 18 whenever the DAC channel

number specified is not allowed. the DAS-16 family of boards supports
two DAC channels: 0 and 1.

Recormmended Action: Check the DAC channel.

Error 16: Counter 0 Read operation number out of range.

Detail: This error is generated by MODE 12 whenever an illegal Counter Read

Operation is attempted. Two types of Reads are allowed: 0 = Normal
Read, and 1 = Latched Read.

Recommended Action: Check Read operation number.

Error 17: Starting sample number out of range.

Detail: This error is generated by MODE 9 whenever the starting sample
number is out of range. The number must within 0 thru 32767, inclusive.

Recommended Action: Check the starting sample number.

Error 18: Requested sample count out of range.

Detail: This error is generated by MODESs 9 and 18 whenever the number of

samples is out of range. The sample count for these modes must within
1 thru 32767, inclusive.

Recommended Action: Check the sample count.

Error 19: Trigger Mode mustbe O or 1.

Detail: This error is generated by a multiple of MODEs whenever the A/D
Conversions Trigger source is not valid.

Recommended Action: Specify 0 for Internal Trigger or 1 for External Trigger.

PCF-16G USER GUIDE

Error 20: Interrupt or DMA Mode(s) aiready active.

Detail: This error is generated by MODEs 5, 6, 18, or 20 whenever an Interrupt
or DMA Mode is attempted while another is already active. Interrupt

and DMA acquiistion modes share the same resources and can not be
used simultanuously.

Recommended Action: Use Mode 7 to terminate current acquisition operation.

Error 21: DMA Page Wrap.

Detail: This error is generated by MODE 6 whenever the combination of the
DMA Segment (DIO%(1)) and the Number of Samples (DIO%(0)) create

a Page Wrap condition in the PC's DMA Controller. The DMA operation
is never started.

Recommended Action: Use MODE 23 to determine a 'good’ DMA Segment to supply MODE 6.

Error 22: Board not presem.

Detail: The Board Presence Test performed in MODE 0 has failed. The Base
Address passed to MODE 0 must match the actual address selected on
the board.

Recommended Action: Check the board's Base Address.

Error 23: Analog Trigger Channel out of range.

Detail: This error is generated by MODE 19 whenever the specified Analog
Input Channel is out of range. This channel number must between 0 and
7 (Differential) or 0 and 15 (Single Ended), inclusive.

Recommended Action: Check the channel number.

Error 24: Anaiog trigger data out of range.

Detail: This error is generated by MODE 19 whenever trigger value is out of
range.

Recommended Action: Specify a value between 0 and 4095 (Unipolar) or -2048 and 2047
(Bipolar), inclusive.

Error 25: Analag trigger slape not 0 or 1.

Detail: For MODE 19, the user is allowed to specify 0 to trigger on a Positive
slope or 1 for a Negative slope.

Recommended Action: Sepcify O or 1 for the Trigger Slope.

CHAPTER 4 SUMMARY OF ERROR CODES

Error 26: Gain Code out of range.

Detail:

Recommended Action:

This error is generated by MODE:s 6, 19, and 21 whenever the specified
Gain Code is out of range. The allowed Gain Codes are 0 thru 3,
inclusive. Note that an Analog Input Gain Code is relevant only to the
DAS-16G1 and G2 boards. This value is ignored when specified for
other boards.

Specify a valid Gain Code.

Error 27: Old BASIC program compatibiity problem.

Detail:

Recommended Action:

Error 28:
Detait:

Recommended Action:

You will get this error when you use the new DAS-16 driver/library
feature (Rev 4.10 or newer} from a BASIC program written for a previous
revision of the driver,

Replace all: CALL DAS16 with CALL DASG , and increase your
parameter array D%(4) dimention to D%(15).

Error 29: Possible memory index overfiow.

Detail:

Recommended Action:

This is a rare error that is generated by MODEs 4 or 5. If you are
unlucky enough to see it, reduce your numnber of samples by 16!

Reduce your number of samples by 16, and retry.

Error 30: Memory allocation/deallocation error.

Detail:

Recommended Action:

This error is generated by MODE 23 or MODE 24 whenever memory can
not be allocated or deallocated through DOS.

If error is generated from Mode 23, reduces the size of allocating
memory. If error is generated from Mode 24, make sure the right
memory segment to be deallocated is passed to the driver correctly.

Error 31: 8255A PRI control word out of range (Mode 25 for DAS-16A only!).

Detail:

Recommended Action:

This error is generated by MODE 25 whenever the control word for PPl
8255A is out of range.

Check the control word passed to MODE 25. It must be within 0 -255.

PCF-18G USER GUIDE

Error 32: Data present flag out of range (Mode 25 for DAS-16A only!).

Detail: This error is generated by MODE 25 whenever the Data Present flag is
neither 0 (data is presented) nor 1 (data is not presented).

Recommended Action: Make sure the flag passed to MODE 25 is eithera 0 or 1.

Error 33: 8255A PP! mode out of range (Mode 25 for DAS-16A anly!).

Detail: This error is generated by MODE 25 whenever the 8255A PPI mode is
out of range.

Recommended Action: Make sure the mode number passed to MODE 25 is eithera (), 1,0ra 2.

Error 34: Port A direction out of range (Mode 25 for DAS-16A only!).

Detail: This error is generated by MODE 25 whenever the Port A direction is
invalid.

Recommended Action: Make sure the port direction is 0Ch, 01h, 10h, or 11h.

Error 35: Port B direction out of range (Mode 25 for DAS-16A only!).

Detail: This error is generated by MODE 25 whenever the Port B direction is
invalid.

Recommended Action: Make sure the port direction is 00h, 01h, 10h, or 11h.

Error 36: Port C (HI) dlrec;ian out of range (Mode 25 for DAS-16A only!).
Detail: This error is generated by MODE 25 whenever the Port C (Hi) direction
is invalid.
Recommended Action: Make sure the port direction is either 00h, 01h, 10h, or 11h.

Error 37: Port C (Lo) direction out of range (Mode 25 for DAS-16A oniy!).

Detail: This error is generated by MODE 25 whenever the Port C (Lo) direction
is invalid.

Recommended Action: Make sure the port direction is either 00h, O1h, 10h, or 11h.

Error 38: incarrect Port B (I/0) made (for 8255A PPl Mode 2 only!;, Mode 25 for DAS-16A oniy!).

Detail: This error is generated by MODE 25 whenever the Port B {I/O) mode is
invalid.

Recommended Action: Make sure the mode is either Q, 1.

CHAPTER 4 SUMMARY OF ERROR CODES

Error 39: 8255A PPI chip is not initialized (Mode 26 for DAS-16A only!).

Detail: This error is generated by MODE 26 whenever this MODE is called
before calling MODE 25.

Recommended Action: Calls MODE 25 first,

Error 40: Port A output data out of range (Mode 26 for DAS-16A only!).

Detail: This error is generated by MODE 26 whenever the output data to Port A
is out of range.

Recommended Action: =~ Make sure the output data is between 0 and 255.

Error 41: Port B output data out of range (Mode 26 for DAS-16A only!).

Detail: This error is generated by MODE 26 whenever the output data to Port A
is out of range.

Recommended Action: Make sure the output data is between 0 and 255.

Error 42: Port C output data out of range (Mode 26 for DAS-16A only!).

Detail: This error is generated by MODE 26 whenever the output data to Fort A
is out of range.

Recommended Action: Make sure the output data is between 0 and 255.

	TOC:

