
PCF-8

Keithley MetraByte Corporation

The

PCF-8
Guide to Using
PASCAL, C, & FORTRAN
Callable Driver Software
for the

DAS-8, DAS=8PGA, & DAS-8/AO

Revision B, - July 1990

Copyright @ Keithley MetraByte Corp. 1989
Part Number: 24871

IGXTHIXY METRARYTFt CORPORATION

440 MYLES STANDISH BLVD., Taunton, MA 02780

TEL. 508/880-3000, FAX 508/880-O 179

. . .
- tta -

Warranty Information

All products manufactured by Keithley MetraByte are warranted against defective materials
and worksmanship for a period of one year from the date of delivery to the original
purchaser. Any product that is found to be defective within the warranty period will, at the
option of Keith@ MetraByte, be repaired or replaced. This warranty does not apply to
products damaged by improper use.

Warning

Keithley MetraByte assumes no liability for damages
consequent to the use of this product. This product is not
designed with components of a level of reliability suitable

for use in life support or critical applications.

Disclaimer

Information furnished by Keithley MetraByte is believed to be accurate and reliable.
However, the Keithley MetraByte Corporation assumes no responsibility for the use of such
information nor for any infringements of patents or other rights of third parties that may
result from its use. No license is granted by implication or otherwise under any patent
rights of Keithley MetraByte Corporation.

Notes

Keithley MetraByte/Asyst/DAC is also referred to here-m as Keith& MefraEQte.

BasicTM is a trademark of Dartmouth College.

IBM@ is a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture@ (MCA) are trademarks of
International Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo C@ is a registered trademark of Borland International.

- iv -

Contents

CHAPTER 1 INTRODUCTION

1.1 General l-l
1.2 PCF-8 implementation l-l
1.3 Current DAS-8 Driver l-l

CHAPTER 2 MODE DESCRIPTIONS

2.1
2.2
4.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14
2.3.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
2.3.22
2.3.23
2.3.24
2.3.25

Overview 2-1
MODE Types & Functions 2-l
MODE Descriptions 2-2

MODE 0: Initialize 2-2
MODE 1: Set Channel Scan Limits (MUX Low & High) 2-2
MODE 2: Set Next Multiplexer Channel 2-3
MODE 3: Read Current Multiplexer Channel 2-4
MODE 4: Single A/D Conversion & Increment Channel MUX 2-4
MODE 5: Multiple Conversions On Trigger; Transfer Data To Array 2-5
MODE 6: Enable Interrupt Handler 2-7
MODE 7: Disable Interrupt Handler 2-8
MODE 8: Multiple Conversions On Interrupt (Background) 2-8
MODE 9: Data Transfer To BASIC Array 2-l 0
MODE 10: Configure Timer/Counter 2-l 1
MODE 11: Load Timer Counter 2-l 2
MODE 12: Read Timer/Counter 2-13
MODE 13: Read Digital Inputs IPl-3 2-13
MODE 14: Write Digital Outputs OPl-4 2-14
MODE 15: Measure Frequency 2-15
MODE 16: Measure Period Or Pulse Width 2-16
MODE 17: Enable/Disable Channel Tag 2-l 7
MODE 18: Multiple A/D Conversions Via Software Trigger 2-18
MODE 19: Set DAS-8PGA (Programmable Gain Amplifier) 2-19
MODE 20: Return Interrupt State/PGA Status 2-19
MODE 21: “N” Conversions In “x” Channel Bursts 2-20
MODE 22: Multiple A/D Conversions w/Interrupts Using EXP-16 2-21
MODE 23: Output Data To DACs (DAS8/AO Only) 2-22
MODE 24: Update DACs From Array On Interrupt (DASS/AO Only) 2-22

CHAPTER 3 ERROR CODES

CHAPTER 4 PROGRAMMING EXAMPLES

4.1 Language Interfacing 4-1
4.2 Programming In PASCAL 4-1
4.3 Programming In Turbo PASCAL 4-2
4.4 Programming In C 4-4
4.5 Programming In Turbo C 4-5
4.6 Programming In Fortran 4-7
4.7 General Notes 4-8

-v -

Chapter 1

INTRODUCTION

1 .l OVERVIEW

MetraByte’s PCF-8 package is an aid for Pascal, C, and Fortran programmers who must develop data
acquisition and control routines for MetraByte’s DA!+8 series and EXP-16 (expander/multiplexer)
boards. The package consists of an Assembly language driver (DA%OBJ), a simple graphics package
(DRAW.LIB), and several example programs for each language.

Note that the DAS-8 series of boards includes the DAS-8, the DAS-SPGA, and the DAS-8/AO models.
For the sake of brevity, this manual refers to these boards collectively as the DAS-8/PGA/AO.

1.2 PCF-8 IMPLEMENTATION

The three software drivers supplied in the PCF-8 package are similar to the BASIC drivers provided
with the DAS8/PGA/AO and should therefore be easily implemented by anyone familiar with these
boards. If you are unfamiliar with MetraByte’s DAS-8/PGA/AO, we suggest you read the manual for
these boards -- paying particular attention to the programming section (Chapters 3 and 4).

The differences between the PCF-8 callable drivers and those of the DAS-8 are the way data and
computer control are passed to and from the user program and the assembly driver. The various
functions are selected using MODES . Currently, there are 25 MODES (0 thru 24), each performing a
specific function. Each of these MODES is described in Chapter 4 of the DAS-8/PGA/AO manual,
which is extensively referenced herein. However, this manual includes a quick reference guide and a
description of each MODE along with applicable execution parameters. This document specifically
illustrates syntax and calling conventions required to execute any of the 25 MODES from Pascal, C,
and Fortran.

1.3 CURRENT DAS-8 DRIVER

The current DASS/PGA/AO driver is Version 4.4. This version is larger than its predecessors and
therefore uses more memory. It is important that machines have enough free memory when loading
the driver via BASIC.

l-l

Chapter 2

MODE DESCRIPTIONS

2.1 OVERVIEW

This chapter details the functions and implemention of each MODE. Arguments are integer variables.
Using QuickBASIC, a typical MODE passes and returns values as follows:

integer MD ‘Declare all variables as a-byte

integer D% (6) ‘signed/unsigned integers.
integer FLAG 'integer corresponding to error number.
MD% = mode number 'Range is 0 - 24

D% (0) = argument 1 ‘Set up arguments

D% (5) = argument 6
FLAG% = DAS8(MD%,D%) 'Flag returned from function

2.2 MODE TYPES & FUNCTIONS

MODE FUNCTIONALDESCRIPTION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Initialize DAS-8/PGA/AO (Set Base Address).
Set Channel Scan limits: DAS-8/PGA/AO MUX low dz high.
Set next multiplexer channel.
Read current multiplexer channel.
Single A/D conversion, return data and increment channel.
Multiple A/D conversions. Scan rate set by Counter 2 or external strobe.
Enable DAS-8/PGA/AO interrupt handler.
Disable DAS8/PGA/AO interrupt handler.
Multiple A/D conversions on interrupts (Background operation).
Data transfer to BASIC array.
Configure DAS-8/PGA/AO timer/counter.
Load timer/counter.
Read timer/counter.
Read digital inputs lPl-3.
Write digital outputs OP1-4.
Measure frequency (with timer/counter).
Measure period (with timer/counter).
Enable/Disable Channel Tag (lower nybble).
Multiple A/D conversions using software trigger.
Set PGA gain @AS-8PGA only).
Return interrupt status.
Perform “N” A/D conversions in X channel bursts with triggers.
Multiple A/D conversions w/interrupts using EXP-16.
Output Data To DACs @AS-8/AO Only).
Update DACs from Array On Interrupt (DAS-8/AO Only).

2-1

PCF-8 Package

2.3 MODE DESCRIPTIONS

2.3.1 MODE 0: Initialize

Prior to using other MODES in the CALL routine, you must set the BASE ADDRESS and check for the
PGA or /A0 options. Failure to provide this information causes an error flag (FLAG = 1, Base
Address unknown) when other MODES are implemented. Intialization is required only once and is
generally accomplished in the initialization section of your program.

On entry the following parameters should be initialized:

MD% = 0 (MODE #I
BASADR% = &H300 (I/O address)
FLAG% = X (value does not matter)

Then

CALL DAS8 (MD%, BASADR%, FLAG%)

Alternatively, you may use DAS8DI.SYS (if previously installed, see Section 2.1) as follows:

MD% = 0 (MODE 0)
BRDIDB = 0, 1, 2, 3, 4, or 5 (ID# for selected pCDAS-8PGA)
FLAG% = X (Value does not matter)

Then

CALL DAS8 (MD%, BRDID%, FLAG%)

On return, the variables contain data as follows:

MD% = 0
BASADR% = &H300

(unchanged)
(unchanged)

The following Error Codes apply to MODE 0:

If FLAG% = 0 (no error, OK)
= 2 (MODE number out of range, CO or >24)
= 3 (Base Address out of range ~255 or ~1016)

Note that Error 3 occurs if you have specified an I/O address that is less than 255 (Hex FF) or greater
than 1016 (Hex 3F8). I/O addresses below Hex FF are used internally by devices on the IBM PC
system board and will always cause an address conflict with the DAS-S/PGA/AO. Addresses above
Hex 3FF are not decoded on the IBM PC.

2.3.2 MODE 1: Set Channel Scan Limits (MUX Low & High)

MODE 1 allows you to assign the channel scan limits prior to performing A/D conversions. The
lower and upper limits are passed as arguments in a 2-element array variable LT%(O) and LT%(l).
Default Channels are 0 and 7, respectively.

To illustrate the action of MODE 1, assume we set LT%(O) = 3 and LT%(l) = 6. The first A/D
conversion (via MODES 4 or 7) would be performed on Channel 3. Data is returned and the channel
incremented to 4. The next conversion is performed on Channel 4, data returned and the channel

2-2

CHAPTER 2 Mode Descriptions

incremented to 5, etc.. This continues until a conversion is performed on Channel 6. The multiplexer
address is then reset to 3 and the cycle may be repeated. Subsequent channel scanning occurs from
Channels 3 through 6. Continuous conversions on a single channel require the low and high channel
limits be set equal; for example LT%(O) = 1, LT%(l) = 1 (for Channel 1).

Note that the starting channel for A/D conversion defaults to LT%(O), the lower limit. If you wished
to start A/D conversion at some other channel, MODE 2 could be used to assign the starting channel #
after setting the channel scan limits.

On entry the following parameters should be initialized:

MD% = 1 (MODE #I
LT%(O) = Othru 7 (lower scan limit)
LT%(l) = Othru 7 (upper scan limit)
FLAG% =X (value does not matter)

Then

CALL DAS8 (MD%, LT%(O), FLAG%)

Specifying the first array element, LT%(O), will pass all other required array parameters.

On return the variables contain:

MO% = 1
LT%(O) = Othru 7
LT%(l) = Othru 7

(unchanged)
(unchanged)
(unchanged)

The following Error Codes apply to MODE 1:

IfFLAG% =O (noerror,OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or >24)
= 4 (scan limits out of range)

Error Code 4 indicates that either or both of the scan limits are out of range. That is, ~0 or >7 or their
order is reversed; for example, lower limit > upper limit.

2.3.3 MODE 2: Set Next Multiplexer Channel

MODE 2 sets the multiplexer address for the next conversion. Default is zero.

On entry the following parameters should be initialized:

MD% = 2

CH% = Othru 7
FLAG% = X

(MODE)
(channel number)
(value does not matter)

Then

CALL DAS8 (MD%, CH%, FLAG%)

On return the variables contain data as follows:

2-3

PCF-8 Package

MD% = 2 (unchanged)
CH% = 0 thru 7 (unchanged)

The following Error Codes apply to MODE 2:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or 9.4)
= 5 (channel number out of range)

Note that MODE 1 should be used to explicitly declare the channel scan limits prior to entering MODE
2. Otherwise, they will default to 0 and 7.

2.3.4 MODE 3: Read Current Multiplexer Channel

MODE 3 allows you to determine the current multiplexer (channel) address.

On entry the following parameters should be initialized:

MD% =3
CH% =x
FLAG% =X

(MODE)
(value does not matter)
(value does not matter)

Then

CALL DAS8 (MD%, CH%, FLAG%)

On return the variables contain data as follows:

MD% =3
CH% = Othru 7

(unchanged)
(current channel number)

The following Error Codes apply to MODE 3:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or ~24)

Note that attempting to read the MUX channel number while an A/D conversion is in progress may
have unexpected and generally undesirable effects. Therefore, when using the auto-increment
MODES 4,5 or 8, it is good practice to check the DAS-8/PGA/AO Status Register EOC bit for
inactivity (channel incrementing occurs at the start of the A/D conversion while the sample/hold is
holding and the EOC bit is active high).

2.3.5 MODE 4: Single A/D Conversion & Increment Channel MUX

MODE 4 initiates the following sequence of events:

1. Starts 12-bit A/D conversion,

2. Increments channel mux prior to A/D and sample/hold is holding. Checks scan limit; if limit
exceeded, reset to lower scan limit.

3. Poll status to determine if A/D finished.

2-4

CHAPTER 2 Mode Descriptions

4. Return data to variable.

The A/D performs conversions on channels in accordance with the conditions set in MODES 1 & 2. If
MODES 1 & 2 have not been entered prior to MODE 4, scan limits default to 0 & 7.

On entry the following parameters should be initialized:

MD% =4 (MODE)
D% =x (value does not matter)
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, D%, FLAG%)

On return the variables contain data as follows:

MD% =4
D% = data

(unchanged)
(converted data)

Note that if MODE 17 has been enabled prior to entering MODE 4, returned data will be “tagged’ with
the channel address (see MODE 17).

The following Error Codes apply to MODE 4:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or ~24)
= 6 (A/D timeout)

Error Code 6 will occur only if the end of conversion signal (EOC) from the A/D remains high for
more than 100 microseconds or stays low after a conversion has been initiated. Either of these
conditions is indicative of a hardware fault and it is recommended that users replace the A/D
converter I.C. (AD574A) as a first step in attempting correction. A normal 12-bit A/D conversion
should not take more than 35 microseconds.

2.3.6 MODE 5: Multiple Conversions On Trigger; Transfer Data To Array

MODE 5 is an expanded version of MODE 4 for multiple data conversions according to the channel
scan limits. Mulitple conversions are initiated by a high input on IPl. Once the scan has started, the
rate at which conversions are performed is set by Counter 2. The number of conversions (N) specified
at entrance to the CALL is performed and data is transferred to a specified integer array ARRAY%(N)
previously dimensioned for not less than N elements. Error checking is not performed to determine
whether sufficient array space exists.

The interrupt handshake flip-flop on the DAS-8/PGA/AO is used to acknowledge trigger inputs in
this MODE although the conversions are not interrupt driven. MODE 5 performs a maximum of
about 4000 conversions/set; although some conversions may be delayed by the timer interrupt of the
IBM PC, since the system clock has a very high interrupt priority level. If you wish to trigger at a
programmable time interval set by Counter 2 then:

Jumper externally
Start scan

OUT 2 (Pin 6) to INT.IN (Pin 24)
High input to II’1 (Pin 25)

2-5

PCF-8 Package

See MODES 10 & 11 and Chapter 4 on setting Counter 2 to output a periodic pulse (configuration # 2
or 3). For slow scan rates (~27 milliseconds/conversion), counter 1 and/or 0 can be cascaded to
counter 2 output and their outputs connected to INTIN. Alternatively, you may connect an external
trigger source to lNT.IN, with each positive edge triggering a conversion. After the CALL routine is
entered, IPl is polled. If IF1 is low, polling will continue until it goes high. If IPl is an open circuit
(floats high) or as soon as it is driven high, the scan sequence commences on the first positive
transition to INTIN input. Each time a positive edge is received, an A/D conversion is performed as
in MODE 4.

The sequence of events is as follows:

1. Test IPl until it goes high.

2. Start A/D conversion on positive edge to INTIN

3. Clear interrupt flip-flop (IRQ) for next trigger.

4. Increment MUX after A/D has started and sample/hold is in hold. Check whether scan limit
exceeded; if so, reset to lower scan limit.

5. Poll status to determine if A/D finished.

6. Return data to next element of array.

7. Check for N conversions. If so, exit otherwise loop & do again.

The A/D will perform conversions on channels in accordance with the conditions set in MODES 1 or
2. If MODES 1 or 2 have not been entered prior to MODE 5, channel scan limits default to 0 & 7.

On entry the following parameters should be initialized:

MD% =5 WDE)
TRAN% (0) = VARPTR(ARRAY%(O)) (pointer to data array)
TRAN%(l) = N (number of conversions)
FLAG% =X (value does not matter)

IF TRAN%(O) = -1 THEN
TRW% (2) = OFFSET OF ARRAY
TRAN% (3) =SEGMF,NTOFARRAY

Then

CALL DAS8 (MD%, TRAN%(O), FLAG%)

On return the variables contain data as follows:

MD% = 5 (unchanged)
TRAN% (0) = VARPTR(ARRAY%(O)) (unchanged)
TFGiN% (1) =N (unchanged)
ARRAY% (0) = Data from 1st. conversion
ARRAY%(l) = w I1 2nd. "
ARRAYO(2) = ” 'I 3rd. "

ARRAY%(N-1) = Data from Nth. conversion

Note that if MODE 17 has been enabled prior to entering MODE 5, returned data will be “tagged” with
the channel number (see MODE 17). Also, exit from the routine will not occur until II’1 has been taken
high and TRAN%(O) is satisfied (desired number of conversions have been performed). If these
conditions are not met, your computer may appear to be hung waiting for the above conditions to be

2-6

CHAPTER 2 Mode Descriptions

satisfied. Control-Break will not exit you from the routine once started. Control-Alt-Delete will, but
your program will be lost. Be careful!

The following Error Codes apply to MODE 5:

If FLAG% =o (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or >24)
= 6 (A/D timeout on any conversion)

Error Code 6 occurs only if the end of conversion signal (EOC) from the A/D remains high for more
than 100 microseconds or stays low after a conversion has been initiated. Either of these conditions is
indicative of a hardware fault and it is recommended that users replace the A/D converter I.C.
(AD574A) as a first step in attempting correction. A normal 12-bit A/D conversion should not take
more than 35 microseconds.

2.3.7 MODE 6: Enable Interrupt Handler

MODE 6 sets up an interrupt service routine for subsequent background data transfer using MODE 8.
Before selecting MODE 6/8, you should decide upon the Interrupt Level you wish to assign to the
DAS-8/PGA/AO and position the Interrupt Level Jumper on the DAS-8/PGA/AO board (J2) to that
level. The IBM PC is provided with 8 levels of interrupts operating through the 8259 Interrupt
Controller. Level 0 has the highest priority and Level 7 the lowest. Levels 0 and 1 are not available on
the expansion bus connectors since Level 0 is used internally for the TIME & DATE functions, and
Level 1 is used to service the keyboard.

Levels 2 - 7 have been preassigned by IBM for use as follows:

Level 2 Reserved (but not used) by Color Graphics adapter
Level 3 Serial I/O - used by COM2: if installed.
Level 4 Serial I/O - used by COMl: if installed.
Level 5 Printer - may be used by LPT2: if installed.
Level 6 Always in use by disk drives
Level 7 Printer - may be used by LPTl : if installed.

Since the disk drives are slow devices, using interrupt levels lower than 5 might delay A/D
conversion service for long periods. In most systems, at least one or more of Levels 2 - 5 is available
making these the best choices. When you have decided, move the Interrupt Level Jumper on the DAS-
8/PGA/AO board to the desired Interrupt Level.

MODE 6 initiates the following sequence of events:

1. Loads interrupt vectors into memory for the level selected and stores any old vectors for
subsequent restitution by MODE 7.

2. Enables interrupt handler routine.

3. Initializes 8259 interrupt controller and enables 8259 interrupt mask register for level selected.
Interrupts are generated by a low to high transition on the INTIN input (Pin 24).

4. Specifies the type of interrupt buffer according to the “re-cycle” parameter. If D%(l)=O,
conversions cease after the buffer is filled. If D%(l)=l, the buffer is circular and begins
overwriting data upon buffer full. It makes sense to make the buffer a multiple of the number
of scanned channels. Buffer location and size are specified using MODE 8.

Interrupts are not enabled until the INTB bit in the DAS-8/PGA/AO control register is taken high.
MODE 8 performs this final step.

2-7

PCF-8 Package

On entry the following parameters should be initialized as follows:

MD% = 6 (MODE)
D% (0) = 2 thru 7 (interrupt level)

D% (1) = 0 or 1 (0 = NO Recycle, 1 = Recycle))
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, D%, FLAG%)

On return the variables contain data as follows:

MD% = 6 (unchanged)
D% (0) = 2 thru 7 (unchanged)

D% (1) = Recycle (unchanged)

The following Error Codes apply to MODE 6:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or >24)
= 7 (interrupt level out of range <2 or >7)

2.3.8 MODE 7: Disable Interrupt Handler

MODE 7 disables interrupt processing initiated by MODES 6 & 8 for the level previously selected. It
restores previous interrupt vectors and the 8259 mask register state. Note that the CALL routine
should not be reloaded before entering MODE 7 as this may destroy temporary storage of old vectors
etc.

On entry the following parameters should be initialized:

MD% = 7 (MODE #)
D% =x (declare variable, value does not matter)
FLAG% =x (entry value does not matter)

On return the variables contain data as follows:

MD% =7 (unchanged)
D% =x (unchanged)

The following Error Codes apply to MODE 7:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >24)

2.3.9 MODE 8: Multiple Conversions On Interrupt (Background)

MODE 8 initiates background data acquisition via interrupts. MODE 8 requires two initialization
parameters; (1) the length of the data buffer (in words, 1 - 32767) and (2) the destination memory
segment for the data buffer. Each data word from the A/D requires 2 bytes, so that 32767 conversions

2-8

CHAPTER 2 Mode Descriptions

will occupy an entire memory segment (64K). Each conversion is triggered by an interrupt, and when
ready, data is transferred to the next available word in the buffer and the multiplexer incremented
within the scan limits in preparation for the next interrupt. Periodic interrupts can be derived from
the DAS8/PGA/AO timer/counter (set via 10) or alternatively by an external trigger input. An
external connection is required from the selected counter output or the user’s trigger source to the
INT. IN (pin 24). Interrupts are triggered by a low to high transition at pin 24.

On entry, MODE 8 enables the INTE bit of the DAS-S/PGA/AO and the CALL is exited. As soon as
an interrupt is received, a conversion is performed and data transferred. This continues on each
interrupt until the data buffer is filled. If the recycle option of MODE 6 has been disabled, the INTE
bit of the DAS-8/PGA/AO control register is set to zero and futher interrupt inputs are ignored. If the
recycle option of MODE 6 is enabled, further conversions overwrite the data in the buffer, word by
word, starting from the beginning. In this case, the data buffer can be as small as 1 word or as large as
32767 words, but making the buffer a multiple of the number of active channels in the scan makes
every word correspond with a particular channel which is convenient for data retrieval. If the
interrupt is being derived from the DAS+J/l’GA/AO 8254 counter/timer, the counter gate can be
used to hold off interrupts until an external system is ready.

Each 12 bit conversion requires 2 bytes of memory for storage. Consecutive conversions are placed in
consecutive memory locations starting with the segment address specified. The segment address can
be in the range of 0 to -24577 (Hex 0 to 9FFF) * which corresponds to the maximum addressable
RAM available in the IBM PC. If MODE 17 is selected, the channel address is contained in the lower
nybble of the 1st byte. This “Tagged” data requires 2 bytes for storage (see MODE 17). In either case,
the 8 most significant bits of data are in the 2nd byte and the 4 least significant bits in the upper nybble
of the 1st byte.

Data is retrieved from memory to a BASIC integer array using MODE 9. You should choose a data
storage segment that will not interfere with your program space (that is, BASIC workspace or other
programs). If your machine is memory-limited, contraction of your BASIC workspace will be
required to open up a data storage area. Also avoid loading data over the CALL routine which
contains the interrupt handler. Once the interrupt is running, you may load other programs and other
languages and come back later to process collected data. If you do this, avoid resetting the computer
as the memory check that BIOS performs will destroy your data. The Ctrl-Alt-Delete sequence will
leave your data intact in memory but will discontinue interrupts.

NOTE: The DAS-8 driver adds the number of conversions to the segment address. If the
resultant segment address = > AOOOH, FLAG% = 8 is returned.

Apart from being a background operation, MODE 8 has a number of operational advantages from a
performance point of view. Data can be collected much faster than in MODES 4 & 5 as the execution
time of the BASIC interpreter involved in going in and out of the CALL statement is eliminated.
Secondly, a greater amount of data can be stored than is possible using a BASIC array since 64K
corresponds to the maximum workspace of BASIC including program, stack and temporary storage.
Therefore, considerably less than 64K of data storage is available in arrays within the BASIC
workspace. Provided you have sufficient memory, a full 64K block can be set aside for data storage.
Whenever maximum speed and/or maximum storage is required, MODE 8 should be used.

Up to 4000 conversions/set are possible using MODE 8. As the interrupt rate rises, less and less time
is available for foreground operations. Above about 3000 conversions/set a noticeable degradation in
computer processing speed will occur and certain I/O operations will become significantly slower.

2-9

PCF-8 Package

On entry, the following variables should be initialized:

MD% =8 NODE 1
D% (0) = 1 thru 32767 (data buffer length in words)

D% (1) = 0 thru -24577 (segment address of data storage)
FLAG% =x (entry value does not matter)

Then

CALL DAS8 (MD%, D%(O), FLAG%)

Note that D% must be a 2-clement integer array with only the first element referenced in the CALL.

On return all variables are unchanged except FLAG%.

MD% =8

D% (0) = 1 thru -24577
D% (1) = 0 thru 32767

(unchanged)
(unchanged)
(unchanged)

The following Error Codes apply to MODE 8:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or ~24)
= 8 (transfer parameters out of range)

Error code 8 will occur if the number of conversions requested is 4 or >32767 and/or the segment
address for storage is negative or ~32767 (AOOOH). In these cases, the interrupt will not be enabled.

2.3.10 MODE 9: Data Transfer To BASIC Array

MODE 9 transfers data from a memory storage area into a BASIC integer data array. MODE 9
transfers N conversions from offset M of the memory segment selected in MODE 8. MODE 9 can be
entered whether or not conversions in MODE 8 have ceased. MODE 9 simply copies data from
memory and will not alter the data. The number of conversions transferred (2 byte data words) can be
between 1 and 32767 and the offset can be anywhere from 0 to 32767. This allows transfer of any block
length of data from any location in data storage to an appropriately dimensioned integer array. This
indirect method of retrieving data may seem complex, but it avoids several problems that would arise
if data was transferred directly to an array by MODE 8. After entry to the CALL, the pointers to the
array are placed on the stack and used by the routine to locate the array. Once you have initiated
MODE 8 interrupt, it is possible to declare further simple variables, alter your program or chain to
other programs. Any of these actions would dynamically relocate the array variables so that CALL
would lose the location of the array with disasterous results. The solution is to reenter the CALL so
that it is always working with the current location of the array. This is why an indirect method is
used, giving you the flexibility to start the interrupt (MODE 8) with one program, then load another
program to read the data (MODE 9) and avoid disturbing the array location.

Once background data acquisition has been set up (via the recycle option of MODE 6 and a data buffer
area specified by MODE 8), a foreground program may be used to process data retrieved by MODE 9.
This is excellent for graphic and “digital oscilloscope” applications. The role of the variables is
somewhat different in MODE 9, and they should be initialized as follows:

2-10

CHAPTER 2 Mode Descriptions

ND% = 9 (MODE)
TRAN% (0) = VARPTR(ARRAY%(N)) (pointer to data array)
TRAN% (1) = 1 thru 32767 (number of data transfers)
TRAN% (2) = 0 thru 32767 (offset from segment start)
FLAG% =x (value does not matter)

TRAN%(O) points to the desired element in your data array (ARRAY%(N)) via VARPTR (N=O for
element 1). This array should be dimensioned for the maximum number of transfers specified in
TRAN%(l).

Then

CALL DAS8 (MD%, TRAN%(O), FLAG%)

On return the variables are as follows:

ND% = 9 (unchanged)
TRAN%(O - 2) (unchanged)
ARRAY%(N) = 1st data word
ARRAY%(N+l) = 2nd data word
AFtRAY%(N+2) = 3rd data word

The following Error Codes apply to MODE 9:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >24)
= 9 (transfer parameters out of range)

Error 9 is returned if the number of data transfers requested is zero, negative or >32767 and/or the
memory offset is negative or >32767. Note that array size is not checked so that more data may be
transfered than the array can handle. This is often undesirable and may cause your computer to hang

UP*

It is reccommended that TRAN%(O) = VARFTR(ARRAY%(O)) be assigned immediately before the
CALL statement since declaration of a new simple variable after this assignment will dynamically
relocate ARRAY%(O) and upset operation of this MODE. For instance, the following example
correctly declares the variable “I” prior to the assigning TRAN%(O)=VARPTR(ARRAY(O)).

xxx10 I=3
xxx20 TRAN%(O) = VAW?TR(ARRAY%(O))
xxx30 CALL DAS8 (MD%, TM%(O), FLAG%)

As an alternative to MODE 9, you may be tempted to retrieve data using BASIC’s PEEK function. If
interrupt transfers are active, be warned that PEEK retrieves data one byte at a time and interrupts
occuring between readings of low and high data bytes will cause the time sequential PEEK to return
erroneous data. Using MODE 9 avoids this problem.

2.3.11 MODE 10: Configure Timer/Counter

MODE 10 is used to configure the DAS8/PGA/AO timer/counter. For a complete discussion of the
possible configurations see Chapter 4 on timer/counter operations. Each of the three counters (0, 1 &
2) may be set to one of six configurations:

2- 11

PCF-8 Package

0 Pulse high on terminal count
1 Programmable one-shot
2 Rate generator
3 Square wave generator
4 Software triggered strobe
5 Hardware triggered strobe

On entry the following parameters should be initialized:

MD% = 10 (MODE)
D% (0) = Othru 2 (counter number)

D% (1) = Othru 5 (configuration number)
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, D%(O), FLAG%)

On return the variables are unchanged:

MD% = 10 (unchanged)
D% (0) = 0 thru 2 (counter number)

D% (1) = 0 thru 5 (configuration number)

The following Error Codes apply to MODE 10:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or >24)
= lO(counternumberoutofrange cOor >2)
= 11 (configuration number out of range <O or >5)

2.3.12 MODE 11: Load Timer/Counter

MODE 11 loads the selected timer counter. Since each counter is a &bit device, counts as high as
65,535 are possible. Integer variables are signed N-bit words; that is, they can have values between -
32768 and +32767. To load a number above 32767, the integer data variable should be set to X - 65,536;
for example, 40,000 would be entered as -25,536.

On entry the following parameters should be initialized:

MD% = 11
D% (0) = 0 thru 2
D% (1) = -32768 to +32767
FLAG% =X

(MODE)
(counter number)
(counter load data)
(value does not matter)

Then

CALL DAS8 (MD%, D%(O), FLAG%)

2-12

CHAPTER 2 M& Descriptions

On return the variables are unchanged:

MD% = 11 (unchanged)
D% (0) = Othru 2 (unchanged)

D% (1) = -32768 to +32767 (unchanged)

The following Error Codes apply to MODE 11:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or >24)
= 10 (counter number out of range <O or >2)

2.3.13 MODE 12: Read Timer/Counter

MODE 12 reads the selected timer/counter. Counter data is 16-bits wide and integer variables are
returned as signed %-bit words with values between -32768 and +32767. Numbers above 32767 are
returned as negative integers; for example, -8,000 would correspond to 65,536 - 8,000 = 57,536.

On entry the following parameters should be initialized:

MD% = 12 (MODE)
D% (0) = Othru 2 (counter number)
D%(l) = X (value does not matter)
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, D%(O), FLAG%)

Variables are returned as follows:

MD% = 12 (unchanged)
D% (0) = Othru 2 (unchanged)
D% (1) = -32768 to +32767 (counter data)

The following Error Codes apply to MODE 12:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or ~-24)
= 10 (counter number out of range <O or >2)

2.3.14 MODE 13: Read Digital Inputs lpi-3

MODE 13 allows you to read the state of digital inputs IPl-3. Data returned can range between 0 and
7 corresponding to all combinations of the 3 input bits.

2-13

PCF-8 Package

On entry the following parameters should be initialized:

MD% = 13 WOW
IP% =x (value does not matter)
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, IP%, FLAG%)

On return the variables contain data as follows:

MD% = 13
IP% = 0 thru 7

(unchanged)
(input data)

The following Error Codes apply to MODE 13:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, ~0 or >24)

2.3.15 MODE 14: Write Digital Outputs OPI-4

MODE 14 allows you to output data on the 4 digital output lines OP1-4. Since this data is passed
through the DASS/PGA/AO control register, MODE 14 performs an OR operation with the current
multiplexer address and INTB bits, leaving these unchanged.

On entry the following parameters should be initialized:

MD% = 14
OP% 0 thru 15
FLAG% =x

(MODE)
(output data)
(value does not matter)

Then

CALL DAS8 (MD%, OP%, FLAG%)

On return the variables contain data as follows:

MD%
OP%

= 14
= 0 thru 15

(unchanged)
(unchanged)

The following Error Codes apply to MODE 14:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or >24)
= 12 (output data out of range, c0 or >15)

2-14

CHAPTER 2 Mode Descriptions

2.3.16 MODE 15: Measure Frequency

MODE 15 allows you to measure frequency using the 8254 counter/timer and one digital input. In
this MODE, Counter 2 is configured to output lmspulses. This square-wave output signal must be
externally connected to Counter 1 input. Setting FRQ%(O) = 100 provides a 1OOms gating pulse at the
output of Counter 1 (FRQ%(O) can be set to any number c 65,!?35mS). This output signal (counter 1)
must be externally connected to the gate of Counter 0 and IP2. The unknown frequency (a TTL
compatible signal) is connected to the clock input of Counter 0. During the low period of the gate
signal, Counter 0 is set to 65,535. When the gate signal goes high, Counter 0 counts down, and on the
gate signal returning low, the change in the count is returned in FRQ%(l). This count is proportional
to the frequency of the unknown signal and if gate intervals of 0.1, 1 or 10 seconds are used, the
unknown frequency is calculated by simply multiplying FRQ%(l) by 10,l or 0.1 respectively.

The following external connections should be made:

Jumper - Out 2 (Pin 6) to Clk.1 (Pin 4)
Jumper - Out 1 (Pin 5) to Gate 0 (Pin 21) and IP2 (Pin 26)
Unknown frequency (TTL) - wired to Clk.0 (Pin 2) and Common (Pin 11 or 28)

The DAS8 derives its timing from the system clock (of the computer) and is actually l/2 of the system
clock frequency. The DA!+8PGA has a dedicated 1 MHz clock. The DAS-8 contains a small rounding
error that occurs in Counter 2 (actual output pulses are 0.99985 mS period). An absolute accuracy of
+O.l% fl count is readily achievable.

MODE 15 sets the correct counter configurations and performs the entire frequency measurement
sequence once the external connections are made. Note that you may still use the output of Counter 1
to trigger interrupts and, in fact, this MODE sets the output of Counter 1 in convenient lms
increments. Note that the execution time of MODE 15 may be as much as 4*FRQ(O)mS. At higher
frequencies with 10 or 1OOms gating intervals, the measurement time is brief, but at low frequecies (for
example, 1,000 or 10,OOOms gating intervals) measurement becomes quite slow. A faster and more
accurate method of measuring low frequencies (c1OOHz.) is to measure the period using MODE 16
(next section) and derive the frequency from the reciprocal.

On entry the following parameters should be initialized:

MD% = 15 (MODE)
FRQ% (0) = 1000 (gating interval in mS, 10 - 32767)
FRQ% (1) = X (value does not matter)
FLAG% =x (value does not matter)

Then
CALL DAS8 (MD%, FRQ%(O), FLAG%)

On return the variables contain data as follows:

MD% = 15
FRQ%(O)= 1000
FRQ%(l)= data

(unchanged)
(unchanged)
(count proportional to frequency)

The following Error Codes apply to MODE 15:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or >24)

2-15

PCF-8 Package

The frequency should be derived from the change in count returned by FRQ%(l) and the gating
interval l?RQ%(O) as follows:

xxxxx F=Q = FRQ% (1) * 1000 / FRQ%(O)

Note that a slightly more accurate result is obtained if account is taken of the real output interval of
Counter 2 (DAS-8 only) which is 0.99985ms instead of lms. This correction error is small and can
usually be ignored, but for perfectionists, the correction can be included in the frequency calculation
above:

xxxxx FmQ = FRQ%(l) * 1000 / (FRQ%(O) * 0.99985)
DAS-8 only

2.3.17 MODE 16: Measure Period Or Pulse Width

MODE 16 measures Pulse Width by triggering Counter 2 (positive going edge from input signal) and
halting Counter 2 on the negative going edge. This results in determination of the half period of any
repetitive waveform or the duration of a positive pulse. DAS-8 timing is derived from the system
clock (2.38636 MHz, bus dependent) with each decrement being 0.41905 us while the DAS-8PGA
provides its own timing @ 1.000 MHz. Maximum period measurements are 27.46 ms (DAS8) and
65.54 ms (DAS8PGA). The signal for period or pulse duration measurement must be externally
connected to the gate input of Counter 2 (pin 23) and IP2 (pin 26). MODE 16 performs all the
necessary counter initialization and timing operations. Note that Counters 0 & 1 are not used and are
free for other operations.

On entry the following parameters should be initialized:

MD% = 16 (MODE)
PW% =x (value does not matter)
FLAG% =x (value does not matter)

Then

CALL DAS8 (MD%, PW%, FLAG%)

On return the variables contain data as follows:

MD% = 16
PW% = -32768 thru 32767

(unchanged)
(counts decremented)

The following Error Codes apply to MODE 16:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, <O or >24)

Note that counts greater than 32767 will be returned as negative integers to and stored in 2’s
complement form (see Appendix C).

2-16

CHAPTER 2 Mode Descriptions

The following short BASIC program returns a true count into a real variable (PULWID) and scales the
count to microseconds:

xxx10 IF PW% <O THEN PULWID = 65536 t PW% ELSE PULWID = PW%
xxx20 PULWID = PULWID * 0.41905 ‘change to microseconds (DASB)
xxx30 PERIOD = 2 * PULWID 'for symmetric waveform

Line xxx20 may be eliminated for DAS-8PGA since the multiplier is 1.

2.3.18 MODE 17: Enable/Disable Channel Tag

MODE 17 “tags” analog data with its respective input channel #. MODE 17 is defaulted to disable
tagging. Since the A/D data requires 12 bits and the multiplexer channel number ((r7) uses 3 bits, the
two can be combined and stored in a single integer variable (2 bytes). Conversion data is stored as an
integer variable (2’s complement):

OP4 OP3 OP2 OPl MODE 22 EXP Channel
I I I I I I I

D7 D6 D5 D4 D3 D2 Dl DO

High Byte

if MODE 17
enabled

I I I I I I I

Bl 0 MA2 MA1 MAO B2 83 B4
Sign MUX address ND data

High byte

if MODE 17
disabled
(default)

t
I I I I I I I

I
Bl 0 0 0 0 82 83 84
Sign A/D data

Low byte 85 B6 87 88 B9 BIO Bll 812
I I I I I I I

I 1
ND data 0-W

On entry the following parameters should be initialized:

MD% = 17 (MODE f)
EM%(O) = 0 (O=disable; l=enable)
FLAG% =X (value does not matter)

Then

CALL DAS8 (MD%, EN%, FLAG%)

On return the variables remain unchanged:

MD% = 17 (unchanged)
EN% (0) =Oorl (unchanged)

2-17

PCF-8 Package

The following Error Codes apply to MODE 17:

If FLAG% = 0 (no error, OK)
= 1 (Base Address unknown)
= 2 (MODE number out of range, CO or ~24)
= 13 (trigger channel number out of range ~0 or >7)

Packing the channel number & data together maximizes memory and/or disk storage space. If
packed data is returned to an integer array (Z%/,), separation may be accomplished by isolating and
right justifying the EXP channel # (D&D3) as follows:

CHANNEL% = (z%(I) AND &H7800)/2048

If data is negative, the sign must be moved to where the channel number was so that it immediately
precedes the data. This is accomplished as follows:

IF Z%(I) AND &Ii8000 THEN Z%(I) = (Z%(I) AND &H87FF) OR CH7800

Z%(I) is pure data and may be retrieved (see QBM22INT.BAS for usage).

2.3.19 MODE 18: Multiple A/D Conversions Via Software Trigger

MODE 18 is an analog threshold trigger with a user-efinable setpoint (per channel). As such,
triggering is controlled by software (comparison of input signal to threshold value). Once this
threshold is exceeded, “N” A/D conversions occur.

On entry the following parameters should be initialized:

MO% = 18 (MODE #I
D% (0) = Segment address of ARRAY* (Offset of 0 is assumed)
D% (1) = Number of conversions (Max number is 32768)

D% (2) = Trigger channel (O-7 independent of MUX Range)
D%(3) = Center of trigger window (O-4095 or t/-2047: Uni-Bipolar)
D%(4) = Upper/lower limit (o-2047)

D%(5) = Trigger slope (0 positive, 1 negative)

* FORTRAN, PASCAL, C, and TurboBASIC pass the ARRAY Segment address as D%(O) =
VARSEG(ARRAY %(O))

whereas, GW BASIC and QuickBASIC pass the Segment address as D %(0) =
VARPTR(ARRAY %(O))

NOTE The trigger boundary defines a region +/- the trigger level. For a valid trigger to occur
the signal must pass through this region with the correct slope.

FLAG may return the following Errors:

If FLAG% = 0 No errors.
= 1 Base address unknown.
= 6 A/D time out.
= 13 Trigger channel out of range.
= 14 Trigger level out of range.
= 15 Invalid slope value.

2-18

CHAPTER 2 Mode Descriptions

NOTE: Error 6 indicates a hardware fault (See MODE 4).

2.3.20 MODE 19: Set DAS-8PGA (Programmable Gain Amplifier)

MODE 19 configures the PGA for input range and UNIPOLAR or BIPOLAR operation. The default
range is k5 Volts. The PGA option is configured as follows:

RANGE (VOLTS) GAIN CODE

+5 0
+10 8

OtolO 9
HI.5 10

Otol 11
f0.05 12

otoo.l 13
*0.01 14

0 to 0.02 15

On entry the following parameters should he initialized:

MD% = 19 (MODE #)
D% (0) = PGA (gain code given above)

FLAG may return the following Error Codes:

If FLAG% =o No errors.
=l Base address unknown.
=16 Invalid PGA gain code.
=17 Function unavailable (No DAS-8PGA)

2.3.21 MODE 20: Return Interrupt StatelPGA Status

MODE 20 is used for status determination of interrupt state (MODE 8) as well as for DAS-8PGA
determination (present or not).

On return, the variables contain:

MD% = 20

D% (0) = Interrupt status O=done, l=active.
D% (1) = Number of conversions done to this point.
D% (2) = Current channel number in DAS8-MUX.
D% (3) = PGA gain code (see above) , (-l=PGA not present) .

FLAG may return the following Error Codes:

If FLAG% = 0 No errors.
= 1 Baseaddress unknown.

2-19

PCF-8 Package

2.3.22 MODE 21: “N” Conversions In “X” Channel Bursts

MODE 21, converts “x” A/D channels on each interrupt generated by the DAS-8/PGA/AO. The
advantage of this MODE is that interchannel skew is small (420 us (n-tax) for eight channels on an IBM-
PC). Interchannel skew can be eliminated altogether by using MetraByte’s SSH-4 (requires special
cable).

MODE 21 uses OUT-2 (Pin 6) to generate a square-wave frequency source. OUT-2 is tied to INT-IN
(Pin 24), IP-1 (Pin 25), and the sample/hold line of MetraByte’s SSH-4 (optional). Each interrupt is
triggered by the rising edge of OUT-2 (this directs an SSH-4 to sample data). Once interrupted, the
software waits for the falling edge of OUT-2, by polling IP-1, triggering A/D conversions. This
ensures an SSH-4 is holding data. MODE 1 CALL (assign “X” channels) should precede a MODE 21
CALL in order to set up the channels to be scanned.

To control the start of data collection two optional triggers are provided. A hardware trigger, II?-2
(Pin 26), will be polled until it goes high. A software trigger, like MODE 18’s, is also provided.

To run this MODE correctly requires three calls to MODE 21. The first call sets up the address of the
data array. The call is set up as follows:

MD% = 21 (MODE #)
D%(O) = 0 (Setup data array)
D% (1) = WLRPTR(A%(O))~ (BASICA’s PTR to data array)

D% (2) = # of array elements corresponding to the # of conversions
D%(3) = DAS-8PGA 2 thru 72 (Interrupt level)

The second call initiates the interrupt and enables the optional software/hardware triggers. The call is
set up as follows:

MD% = 21 (MODE #)
D%(O) = 1 (Start data taking with triggers)
D%(l) = 0 (no software trigger)

E 1 (trigger on positive slope)
= 2 (trigger on negative slope)

If D%(l) isn’t 0 then D%(24) contains additional software trigger information

D% (2) = Trigger channel (0 - 7)
D% (3) = Trigger level (+/- 2047 Bipolar)

(0 to 4095 Unipolar)

D% (4) = Trigger boundary (0 to 2047)3
D% (5) = 0 disables IP-2 trigger

To complete the conversion, the user must perform additional calls to MODE 21 with D%(O)=2. On
return from this call, D%(3) contains the number of conversions performed. The user must call this
MODE until D%(3) returns the total number of conversions requested. The call is set up as follows:

MD% = 21
D%(O) = 2
D%(l) = 1
D%(2) = 0

(MODE #)
(Monitor conversions)
(to terminate MODE 21 immediately)

On return:

D% (3) = Number of conversions done

2-20

CHAPTER 2 Mode Descriptions

Possible return errors in FLAG%

0 (No errors)
1 (Base address unknown)
7 (Interrupt out of range)
13 (Trigger channel out of range)
14 (Trigger level out of range)
15 (Invalid slope value)
19 (MODE 21 D%(O) out of range O-2)

1 Note: FORTRAN, C, PASCAL, & TurboBASIC pass the ARRAY segment address as D%(O) =
VARSEG(ARRAY %(O))

whereas, GW BASIC & QuickBASIC pass the segment address as D%(O) =
VARPTR(ARRAY % (0))

2 On the UCDAS&PGA the interrupt level isn’t required. It is derived directly from the boards
registers.

3 The trigger boundary defines a region +/- the trigger level. For a valid trigger to occur the signal
must pass through this region with the correct slope.

2.3.23 MODE 22: Multiple A/D Conversions With Interrupts Using EXP-16

MODE 22 is an interrupt driven data acquisition routine for use with one or more EXP-16s (8, max).
The interrupt level is set via MODE 6 and the interrupt itself may be generated by the DAS-
8/PGA/AO counter or by an external TTL, compatible signal. The scan limits on the DAS
8/PGA/AO must first be set using MODE 1. Upon interrupt, a single EXP-16 channel will be read for
each DAS8/PGA/AO channel within the scan limit. Upon channel scan completion, the EXP-16 will
be incremented for the next interrupt. Subsequent interrupts trigger the process on the new EXP-16
channel. MODE 22, like MODE 8 allows background data acquisition while other tasks/programs are
operating in the foreground. If the channel tag (MODE 17) is used, the 4 high order bits appended to
the data will reflect the EXP-16 channel read (O-15) and not the DAS-8/PGA/AO channel. Data in
memory will appear as follows:

Interrupt #l lxx EXP-16 Chl for lowest DAS-S/PGA/AO channel selected.
lxx EXP-16 Chl for highest DAS-8/PGA/AO channel.

Interrupt 2 2xx EXP-16 Cl-0 for lowest DAS-8/PGA/AO channel selected.
2xx EXP-16 Cl-L! for highest DAS-8/PGA/AO channel.

Upon completion of MODE 22 (via MODE 20 or otherwise), MODE 22 should be called again with
D%(O)=0 to disable the interrupt routine.

On entry the following parameters should be initialized:

MD% = 22 (MODE #)
D% (0) = Interrupt vector (+ recycle) Level 2-7 (+ 8 for recycle)
D% (1) = Segment Address of data array(OFFSET 0 required)
D% (2) = Number of conversion (1 thru 32766)
D%(3) = EXP-16 Low scan limit
D%(4) = EXP-16 High scan limit
D%(5) = # of readings to average ** (0 thru 100)

2-21

PCF-8 Package

If FLAG% =0 Noerrors
= 1 Base address Unknown
= 7 Interrupt level out of range
= 8 Transfer parameters out of range
= 20 EXP- 16 channel out of range

** Input signals higher than 15Hz may require removal of the 1uF capacitor from each EXP-16 input
channel. Removal of this Cap will increase input signal noise. Signal averaging will substantially
reduce noise.

2.3.24 MODE 23: Output Data To DACs (DAS-8/AO Only)

MODE 23 Writes data to DAC Channels 0 or 1 when configured for normal updates. If the DACs are
set for simultaneous update, MODE 23 updates both channels at the same time.

On entry, the following parameters should be initialized:

ND% -> 23
D%(O) -> DAC SELECT

0 = DAC 0
1 = DAC 1
2 = Both (Simultaneous update)

D%(l) -> DAC 0 Data (0 - 4095)
D%(2) -> DAC 1 Data (0 - 4095) (used only if D%(O) = 2)

FLAG may return the following Error Codes:

0 = No errors.
9 = Invalid DAC selected.
10 = DAC data out of range.

2.3.25 MODE 24: Update DACs From Array On Interrupt (DAS-8/AO Only)

MODE 24 updates DAC 0 or 1 on Interrupt when configured for normal updates. If the DACs are set
for simultaneous update, MODE 24 updates both DAC channels.

On entry, the following parameters should be initialized:

MD% -> 24
D%(O) -> DAC SELECT

0 = DAC 0
1 = DAC 1
2 = Both (Simultaneous update)

D%(l) -> INTERRUPT LEVEL (2 - 7)
D%(2) -> NUMBER OF SAMPLES (0 = Continuous or 1 - 32767)
D%(3) -> NUMBEROF SAMPLES

If GWBASIC:
D% (4) - > SEGMENT = -1

2-22

CHAPTER 2 Mode Descriptions

Else:
D%(4) -> SEGMENT OF DATA ARRAY
D%(5) -> OFFSET OF DATA AREtAY

Flag may return the following error codes:

0 = No Error.
1 1 = Interrupts Already Enabled.
12 = Invalid DAC Channel Selected.
13 = Interrupt Level Out Of Range.

2 - 23

PCF-8 Package

2-24

Chapter 3

ERROR CODES

SUMMARY OF ERROR CODES

If for any reason the FLAG% variable is returned non-zero, then an error has occurred in the input of
data to the CALL routine. Checking of data occurs first in the routine and no action will bc taken if an
error condition exists. An immediate return will take place with the error specified in the FLAG%
variable.

ERROR CODE FAULT

0 No error, function completed successfully.
1 Base address unknown. (I/O location not initialized)
2 Modenumber <Oar >24.
3 Invalid Base Address, <256 or ~1016.
4 MUX scan limits out of range or reversed order, CO or >7.
5 Channel number out of range, <O or >7.
6 A/D timeout. Incorrect busy signal from A/D.
7 Interrupt level out of range, <2 or >7.
8 Mode 8 data transfer parameters out of range.
9 Mode 9 data transfer parameters out of range.

10 Counter number out of range, <O or >2.
11 Counter configuration number out of range, c0 or >5.
12 Digital output data out of range, CO or >15.
13 Mode 18 Trigger channel number out of range <O or ~7.
14 Mode 18 Trigger level out of range, ~2048 or >2047.
15 Mode 18 Trigger slope not 0 or 1.
16 PGA gain codes illegal CO or >3.
17 PGA function not available (no DAS8F’GA).
18 Mode # unavailable for this language.
19 Mode 21 not initialized.

Error detection after the CALL routine is easily implemented:

xxx10 CALL DAS8 (MD%, D%, FLAG%)
xxx20 IF FLAG% < > 0 THEN GOSUB yyyyy

.
yyyyy REM: Error handling subroutine

This is useful while debugging a new program or within a program containing a suitable error
handling subroutine.

3-1

PCF-8 Package

3-2

Chapter 4

PROGRAMMING EXAMPLES

4.1 LANGUAGE INTERFACING

To simplify programming, the DAS8 basic driver uses a single set of routines callable by Microsoft
PASCAL, C, FORTRAN, and other compilers supporting the MS-FORTRAN calling conventions. To
avoid conflicts with DA!38 CALL routines, a set of “include” files has been written for each language.
The routines are contained in DAS8.OBJ and are linked by the linker LINK.EXE. The following entry
points (*) are provided in DASS.OBJ:

ALLMEMO Allocates array memory (**I.
FREMEMO Frees any memory allocated by ALLMEM (**).
RETSEGO Returns a segment value for DAS-8 MODES 8,18, and 21.
INI’CHRO Returns a character from the keyboard (if any).
DAS-80 Entry point into DAS-8 driver.

** Unsupported in FORTRAN because of language limitations.

A simple graphics library, DRAW.LIB, is also included for plotting points and lines in both CGA and
EGA modes. DRAW.LIB uses the same calling conventions as DAS8.0BJ. The screen coordinates
used in DRAW.LIB assign the CRT’s center as point (0,O). In addition, DRAW.LIB has scaled the
screen for approximately equal X and Y (Horiz/Vert) pixel spacing. The following entry points are
provided in DRAW.LIB:

SETUP0
CLEAR0
COLOR0
POINT0
LINE0

Used to switch modes between text/graphics.
Used to set background color.
Used to set foreground color.
Point plotting routine (graphic modes).
Line plotting routine (graphic modes).

The example programs cover DAS-8 Modes 18 and 20. Also, a program for DAS-8PGA (Mode 19) set-
up has been included to illustrate the interface between the DAS-8 and each particular language.

* All entry points are declared as FAR references.

4.2 PROGRAMMING IN PASCAL

PASCAL programs on the PCF-8 disk begin with the letter P and should be copied (I’*.*) to a working
disk (or hard drive) along with DAS8.0BJ and DRAW.LIB. PASCAL programs are set up as follows:

Program MODE 19 (INPUT, OUTPUT) ;
{ Sinclude: ‘pdas8.inc’) < ---Contains references to DAS8.0BJ

and Creates PUBLIC variables
MD, DIO, & FLAG.

4-1

PCF-8 Package

{ $include: ‘pdraw.inc’ 1 < ---Contains all references to
DBAW.LIB.

{ Sinclude: 'psubs.inc')

VAB
rzinteger;

begin
MD := 0;
DIO[O] := 16#300;
FLAG := DASS(MD, DIO[O]);

< ---Contains user modifiable PASCAL
subroutines.

I: holds range value)

{ Initialize base address)

f user setable base address 1
< ---Sample call set up to the DAS-8

if FLAG <> 0 then
begin

writeln('Error in initialization'); ABOBT(NtJLL,O,O);
end;

writeln(chr(l6#1B),'[2J'); { clear screen (AWSI.SYS must be
loaded))

writeln(' Selection Range ') ;
writeln(' ---------- ----- '1;
writeln(' +/-SV 0 'I;
writeln(' +/-1ov 1 'I;
writeln(' 0 to +1ov 2 'I;
writeln(' t/-0.5v 3 'I;
writeln(' 0 to t1v 4 'I;
writeln (’ t/-50mV 5 'I;
writeln(' 0 to t1OOmV 6 'I;
writeln (1 t/-1OmV 7
writeln(' 0 to +2OmV 8
writeln;
write('Enter input range for DAS-8PGA: I);
readln(r);

if r<>O then r:=rt7;
MD := 19;
DIO[O] :=I;
FLAG := DASS(MD, DIO[O]);

{ set up proper das8-PGA range 1
{ SET DAS-8PGA)
{ range number 0,8-15]

if FLAG <> 0 then
begin

writeln('Error in setting PGA'); ABORT(WULL,O,O);
end;

end.

_________----------_---

Programs may be compiled and linked as follows:
PAS1 PMODElg,,;
PAS2
LIWE/map PMODE19tDAS8,,,mathtpascaltDPAW

4-2

CHAPTER 4: Programming Examples

4.3 PROGRAMMING IN TURBO PASCAL

Turbo PASCAL supports a compact and a large memory model. The compact model supports one
code segment and multiple data segments. In this model, code segment is limited to 64K with
Assembly routine calls being near calls. The data segment is unlimited. The large model permits
unlimited code and data segments with Assembly calls and data access calls being far calls.

The program TINST.EXE, shipped with Turbo PASCAL, can change the calling convention so that the
user may not know which convention is in use. The Defaultstate is in Off or Compact mode. To
determine which mode is in use, run TINST.EXE.

Model:
Passes:
Sequence:
Default Calling

Convention:

Compact (Forces far call Off in TINST.EXE).
dword size pointers (offset and segment).
Arguments passed left to right.

Arguments passed by value.

Example:

PASCAL Call: Result = tpJlasg(Varl,Var2);
PASCAL Declaration: FUNCTION Qi-dasg (VAR Varl:integer; VAR Var2);
.ASM Subroutine: (Either Model)

The following assembly code shows how the driver handles user arguments.

tp-das8 proc near
push bp
mov bp,sp
.

;near call(single word return address)
*save I base pointer
*save I stack pointer
: [bptlo] offset of VARl
;[bp+81
: [bp+C] offset of VAR2
; Cbp+41

tp-das8

.

.
mov ax,n
POP bp
ret 8
endp

i
;
;return Value for Function in ax register

-return , & pop values prior to exit

Other:

This information is offered to those wishing to create their own drivers.

l Use the $L ‘Metacommand’ to link the object file containing external function tpdas8; that is, use
$L tpdas8 to link to file tpdas8.

l The VAR declarative forces pass by reference (address of variable) in the function declaration.
Default is pass by value (pushing the actual integer valu onto thee stack.

l tp-das8 is declared external in the calling program along with the type of return value (integer).
Remember that in PASCAL, functions return a value whereas procedures never do.

l The .ASM file contains an explicit declaration of the code segment containing tp-das8. Turbo
PASCAL handles segments in a primitive manner not compatible with the ‘.model’ statements

4-3

PCF-8 Package

available in MASM or TASM. The function tp-das8 must reside in a segment called “CODE.”
Turbo PASCAL will not accept any other segment name. If tp-das8 is not in segment “CODE,”
the linker returns an “unresolved external” error. The Segment Declaration for “CODE” in the
.ASM file must appear as:

CODE SEGMENT WORD PUBLIC
ASSUME CS:CODE
.
. ,CODE GOES HERE

;C~DE ENDS

Turbo PASCAL Example:

{$R-1
f SI-1
I@+)
I ss+1
f$N-1
ISL tpdas8)
{$M 65500,16384,655360}

I
********************************f****************
* *
* Demonstration program using MODE 0 *
* Compiled with Borland Turbo PASCAL *
* *
*************************************t********************

1

TYPE
PArray = array [1..7] of word;
Var

DIO : PArray;
MD,FLAG : integer;

(* Define the Turbo Pascal Function Call *)

FUNCTION TP-DASI(VAR MD:integer;VAR DIO:PArray):integer;external;

begin

Print-INTRO {print introductory message)

MD := 0
DIO[l] := 768;

{Initialize Base Address)
{User set able Base Address)

FLAG := tpdas8(ED, DIO); {Call MODE 0)

if(FLAG <> 0) then
ReportError;

end.

4-4

CHAPTER 4: Programming Examples

4.4 PROGRAMMING IN C

C programs on the PCF8 disk begin with the letter C. These should be copied to your working drive
(C.*) along with DASOBJ and DRAW.LIB.

C programs are set up as follows:

#include <stdio.h>
#include <cdef.h>
#include tcdraw.h>
#include <cdas8.h>

main ()

{
int r;
MD = 0;
DIO(0) = 0x300;
FLAG = DASS(&MD, DIO);

if (FLAG != 0)

/*Required for basic I/O*/
/*defines WORD as “unsigned integer"*/
/*Contains all references to DBAW.LIB*/
/*Contains all references to DAS8.0BJ

and Creates PUBLIC variables MD,
DIO, & FLAG*/

/* holds a range value */
/* Initialize base address */
/* user setable base address */
/*sample call setup for C*/

{ printf("\\nError in initialization\\n"); return(O); };

printf("\\xlB[25"); /* clear screen (AWSI.SYS must be
loaded)*/

printf(" Selection Range \\n”) ;
printf (‘9 --------- ----- \\n”) ;
printf(" t/-5V 0 \\n") ;
printf(" t/-1OV 1 \\n") ;
printf(" 0 to t1ov2 \\n") ;
printf(" t/-0.5V 3 \\n") ;
printf(" 0 to t1v 4 \\n") ;
printf(" t/-5OmV 5 \\n") ;
printf(" 0 to t1OOmV 6 \\n'l);
printf(" t/-1OmV 7 \\n") ;
printf(" 0 to t2OmV 8 \\n\\n");
printf("Enter range you would like to set das8-PGA to: I’);
scanf("%d",r) ;

if (r!=O) r=rt7; /* set up proper das8-PGA range */

MD = 19;
DIO(0) = r;
FLAG= DASS(&MD, DIO);

/* SET DAS-8PGA */
/* range number 0,8-15 */

if (FLAG != 0)
I printf("\\nError in setting PGA\\n"); return(O); };

return(O); /* normal completion */
1

/* Include additional routines used by

4-5

PCF-8 Package

#include <csubs.h>
C programs*/

/*Contains user modifiable C
subroutines*/

_____--

C programs may be compiled and linked as follows:

MSC CMODEl9 /AS; <- small MODE1 chosen here . . .
LIEE/Se:255/CP:l CMODE19tDAS8,,,DEAW;

4.5 PROGRAMMING IN TURBO C

Medium Model:

Model:
Passes:
Sequence:
Default Calling

Convention:

Medium (“-mm”) switch on command line.
word size Pointers (offset, no DS register)
Arguments passed right to left.

Arguments passed by value.

Example

‘c’ Call:
‘c’ Declaration:
.ASM Subroutine:

tcm-das8 (&Mode, Params);
extem void tcm_das8(int*,int*);

The following assembly code shows how the driver handles user arguments.

-tcm_das8 proc far
push bp
mov bp,sp
.

;dword pointer return address
*save , base pointer
-save I stack pointer
;[bpt6] holds offset of Mode
; [bpt8] holds offset of Params

. -Program execution here I

. :

. ;
POP bp ;restore bp &I sp prior to exit
ret ;return

>cm_das8 endp

Other:

This information is for those wishing to create their own drivers.

. -tcm_das8 is declared “PUBLIC” in the .ASM file.

l tcm-das8 is declared “extem” in the C file.

l The .ASM file contains the “.model medium” directive (MASM & TASM only).

l Add leading underscore “-” to all tcm-das8 occurences in the .ASM file.

4-6

CHMTER 4: Programming Examples

. tcm-das8 must be in a segment fname_TEXT (where fname is the name of the file in which
tcm-das8 resides); else Linker returns an error.

Large Model

Model:
Passes:
Sequence:
Default Calling

Convention:

Large (-ml) switch on command line
dword size Pointers (offset and DS register)
Arguments passed right to left

Arguments passed by value

Example

‘c’ Call:
‘c’ Declaration:
.ASM Subroutine:

tcl&& (&Mode, Params);
extem void tcl-das8 (int*,int*);

The following Assembly code shows how the driver handles user arguments.

-tcl-das8 proc far
push bp
mov bP,sp

POP bp
ret

>cl_das8 endp

;dword pointer return address
*save base pointer I
-save I stack pointer
; [bp+8] holds MO&
; Ibpt61
; [bpt12] holds Params
i IbptlOl
*Program execution here I
:
:
*restore bp & sp prior to exit I
;return

Other:

This information is for those wishing to create their own drivers:

. -tcl_das8 is declared “PUBLIC,, in the .ASM file.

9 tcl-das8 is declared “extern” in the C file.

l The .ASM file contains the “.model large” directive (MASM & TASM only).

l Add leading underscore “-” to all tcl-das8 occurences in .ASM file.

l Both code and data use dword (segment/offset) pointers.

l tcl-das8 must be in a segment fname_TEXT (where fname is the name of the file in which
tcl-das8 resides); else Linker returns an error.

4-7

PCF-8Package

Turbo C Example:

#include tstdio.h>
#include <math.h>
#include <dos.h>

/* DECLARE THE PROPER FUNCTION CALL */

extern int far tan-das8(int near *, int near *);

int A[lOOO];
int MD, DIO[6], FLAG;
char far *tenp;
int ns, a;
int x;
unsigned seg, offs I

Print-INTRO();

/* date array */

/* temp char buffer */
/* holds number of samples */

/* print introductory message */

/***** use MODE 0 to initialize the DASS/AO *****/

MD = 0; /* Initialize Base Address */
DIO[o] = 0x30; /* Base Address */

FLAG= tcra_das8(&MD, DIO); /* Medium Model Call */

if (FLAG != 0)
l

printf ("\nError in initialization\n”) ;
return(O);

1

4.6 PROGRAMMING IN FORTRAN

FORTRAN programs on the PCF8 disk begin with the letter F. These should be copied to the working
drive along with DA!%.OBJ and DRAW.LIB. The following is an example of setting up a program in
FORTRAN:

$include: 'fdasE.inc' < --- File contains references to
DAS8.OBJ and Creates PUBLIC
variables MD, DIO, & FLAG

Sinclude: 'fdraw.inc' < --- File contains all references
to DEAW.LIB . . .

C”

c*
integer*2 r

ND=0
DIO(l) = 16#300

** holds range number **

*** Initialize via DIO(1) ***

4-8

CHAPTER 4: Programming Examples

FLAG = DASS(MD, DIO)
if (FLAG.ne.0) then

write(*,*) 'Error in initialization'
stop

endif
C" clear screen AWSI.SYS must be loaded

write{*,*) chr(lC#lB),'[25'
write(*,*) ' Selection Range'
write(*,*) ' ------------ ,,,,,,,,,'

write(*,*) ' +/-5v 0'
write(*,*) ' +/-1ov 1'
write(*,*) ' oto+10v 2'
write(*,*) ' +/-0.5V3'
write(*,*) ' otot1v 4'
write(*,*) ' t/-5OmV5'
write(*,*) ' 0 to t1OOmV 6'
write(*,*) ' t/-lOmV7'
write(*,*) ' 0 to t2OmV 8'
write(*,*) write(*,*) 'Enter range you would like to set das8-PGA to:

1

read(*,*) r
c* set up proper dasl-PGA range

if (r.ne.0) then
r=rt7

endif
C" set DAS-8PGA

MD = 19
C" **range number 0,8-15

DIO(1) = r
FLAG= DAS8(MD, DIO)
if (FLAG.ne.0) then
write(*,*)'Error in setting PGA'

stop
endif

end
Sinclude: 'c:fsubs.inc' < --- Contains user modifiable FORTRAN

subroutines

--

FORTRAN programs may be compiled and linked as follows (modifications may be
required for certain machine comfigurations):

FORl FMODE19;
PAS2
LINK/map PMODE19tDAS8,,,mathtfortrantDRAW

4.7 GENERAL NOTES

The PASCAL compiler used is MicroSoft MS-PASCAL V3.31.

The TurboPASCAL compiler is Borland (Version 3.0 - 4.0).

The C compiler used is MSC V4.0.

The Turbo C compiler is Borland

4-9

PCF-8 Package

The Fortran compiler used is MS-FORTRAN V3.31. (Earlier versions may not be compatible)

Some machines may not have enough memory to compile these examples. In this case, the examples
may be segmented and compiled separately.

4-10

	ToC:

