
www.keithley.com

S530 Parametric Test System
KTE Software Manual
S530-921-01 Rev. B / January 2014

PS53092101B
S530-921-01

A Tektr onix Company
A Greater Measure of Confidence

S530 Parametric Test System

KTE Software

Manual

©2011-2014, Keithley Instruments, Inc.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in
part, without the prior written approval of Keithley Instruments, Inc. is strictly prohibited.

All Keithley Instruments product names are trademarks or registered trademarks of Keithley
Instruments, Inc. Other brand names are trademarks or registered trademarks of their

respective holders.

S530-921-01 Rev. B / January 2014Document Number:

 Safety precautions
The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions
required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using
the product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley Instruments products are designed for use with electrical signals that are measurement, control, and data I/O
connections, with low transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high
transient overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley measuring instruments may be connected to
mains. These instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating
information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of danger. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means caution, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains dangers that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley Instruments. Standard fuses with applicable national
safety approvals may be used if the rating and type are the same. Other components that are not safety-related may be
purchased from other suppliers as long as they are equivalent to the original component (note that selected parts should be
purchased only through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the
applicability of a replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water-based cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with
no case or chassis (e.g., a data acquisition board for installation into a computer) should never require cleaning if handled
according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the
factory for proper cleaning/servicing.

Safety precaution revision as of January 2013.

S530 KTE Software Table of Contents

Table of Contents
Section Topic Page

1 Introduction ... 1-1
Overview of the manual .. 1-2
Manual contents.. 1-2
Other documentation... 1-3
Manual addenda ... 1-3
System software.. 1-3

2 Creating Test Plans.. 2-1
Introduction ... 2-2
Wafer Description Utility (WDU) .. 2-3

WDU main window ... 2-3
Wafer Setup window... 2-6
Target Setup window .. 2-8
Probe Pattern Editor window .. 2-9
Site Editor window .. 2-12
Site Optimization window.. 2-14
Wafer Graph Editor window.. 2-14
User Defined Values window .. 2-21

Test Structure File Editor (TSE)... 2-23
TSE main window... 2-23
Creating a test structure file.. 2-25

Keithley Interactive Test Tool (KITT) ... 2-27
KITT main window .. 2-27
KITT results window ... 2-30

KITT Math, Array and Logic Expression Support...................................... 2-31
Math.. 2-31
Array Support.. 2-32
Using Generated Identifiers in a Test Macro....................................... 2-35
KTE data usage .. 2-36
Use of ibupu in KITT... 2-38

Parameter Set Editor (PSE) .. 2-38
PSE main window... 2-38

Keithley User Library Tool (KULT)... 2-41
KULT main window ... 2-41
Parameter window.. 2-45
Description window... 2-47
Command line interface.. 2-49
Copying user libraries with kult_copy_lib.. 2-50
Migrating user libraries with migrate_usrlib .. 2-51
Locking a module.. 2-51
Changing library attributes.. 2-52

KTE library locking .. 2-54
Run-time library locking .. 2-54
Edit-time library locking... 2-54
Troubleshooting .. 2-55

Limits File Editor (LFE).. 2-55
LFE main window ... 2-56
Limits data entry area ... 2-57
Limits editor dialog window... 2-59

Keithley Test Plan Manager (KTPM) ... 2-60
i

Table of Contents S530 KTE Software
Wafer plan builder ... 2-60
Wafer plan builder main window... 2-60
Title bar... 2-61
Wafer plan builder file menu ... 2-61
Wafer plan builder options menu .. 2-62
Wafer plan builder help menu... 2-62
Wafer description file selection field ... 2-62
Limits file selection field .. 2-62
Probe card file selection field.. 2-63
Plan type selection button .. 2-63
Sort subsites button.. 2-63
Probe patterns/site plans list... 2-63
Test macros/site plans list... 2-63
Site plan/wafer plan builder field... 2-63
Insert buttons.. 2-63
New site plan button ... 2-64
Wafer plan file description field... 2-64
Wafer description file description field .. 2-64

Cassette plan builder .. 2-64
Title bar... 2-65
Cassette plan builder file menu .. 2-65
Cassette plan builder options menu ... 2-66
Cassette plan builder help menu .. 2-66
File description field .. 2-66
Execution engine selection field ... 2-66
Probe card file selection field.. 2-66
Wafer description file selection field ... 2-66
Lot ID data field... 2-66
Global data file selection field ... 2-66
Slot ID type selection buttons ... 2-67
Wafer test plan field .. 2-67
Standard UAP file field.. 2-67
UAP module/KTM area... 2-67

Test documentation tool .. 2-67
Main window... 2-67
Using the test documentation tool .. 2-69
Generating documentation during testing... 2-71

Adaptive testing... 2-71
Overview... 2-71
Zone based testing ... 2-71
Result based testing ... 2-73

KTE Support Utilities ... 2-81
Random Pattern Generation (rand_pat) ... 2-81
File filtering ... 2-83

3 Test Execution .. 3-1
Introduction ... 3-2
Keithley Operator Interface Editor (KOPED)... 3-2

KOPED main window ... 3-3
KOPED file menu ... 3-3
KOPED edit menu .. 3-4
KOPED options menu .. 3-4
KOPED help menu ... 3-4
Pop-up menus .. 3-4

Keithley Test Execution Engine (KTXE) .. 3-4
KTXE main window .. 3-5
The execution process ... 3-8
User Library files required for KTXE execution................................... 3-15
The KTXEErrorHandler function... 3-15
Error and event logging .. 3-16
Lot suspend/resume ... 3-17
Multi-cassette Multi-lot Testing Utility (multi_cassette) 3-17
Wafer id usage in KTXE ... 3-17
Abort flags .. 3-18
KTXE results and their structures ... 3-21
ii

S530 KTE Software Table of Contents
.. 3-22

4 Data Analysis .. 4-1
Introduction ... 4-2
Data output formats... 4-2
Preview ... 4-2
Keithley Summary Utility (KSU) .. 4-2

Summary reports .. 4-3
Standard report ... 4-4
Raw report .. 4-6
KSU description .. 4-7
Starting KSU ... 4-7
KSU main window... 4-7
Other KSU main window controls ... 4-14
Command-line options for KSU .. 4-15

Keithley Curve Analysis Tool (KCAT) .. 4-16
KCAT main window... 4-16
Scaling window... 4-18
Data window ... 4-19
Pop-up tools menu.. 4-19

KDFtoKCS File Conversion Utility... 4-20

5 System Administration ... 5-1
Introduction ... 5-2
Workstation applications ... 5-2

Keithley tool palette .. 5-2
System configuration .. 5-4
ktpm.ini file.. 5-6
Environment variables .. 5-7
Log file environment variables .. 5-10
File management .. 5-11
KCM utility description .. 5-12
Project environments .. 5-12
Select tester.. 5-14
Addtester .. 5-16
System customization... 5-17

System integration .. 5-19
Linear Parametric Test Library (LPTLIB) .. 5-19
Keithley Data Files (KDF) library .. 5-19
Keithley User Interface (KUI) library ... 5-20

A KDF ... A-1
Test data logging .. A-2

Keithley Data Files (KDF) library ... A-2
Using limits files ... A-3
Programming examples... A-6

Data logging routines .. A-11
PutLot ... A-11
PutWafer.. A-12
PutSite ... A-12
PutParam... A-13
PutParamList ... A-13
EndLot ... A-14
EndWafer... A-14
EndSite .. A-15
GetLot .. A-15
GetWafer ... A-15
GetSite... A-16
GetParam .. A-17
GetParamList... A-17
GetLotData .. A-18
MatchParam2Limit... A-18
FileExist ... A-18
LotExist .. A-19
GetStartTime.. A-19
iii

Table of Contents S530 KTE Software
DeleteLot ... A-19
DeleteWafer... A-19
DeleteSite .. A-20
DeleteParam.. A-20
DeleteLimitCode .. A-20
DeleteLimit... A-21

Update comment routines .. A-21
GetComment ... A-21
PutComment.. A-21

Update limits routines... A-21
GetLimitCode... A-21
GetLimit ... A-22
PutLimit.. A-22

Structure handling routines .. A-23
AddNewLimitCode
AddNewLot
AddNewWafer
AddNewSite
AddNewParam .. A-23
CreateNewLmtCode
CreateNewLot
CreateNewWafer
CreateNewSite
CreateNewParam .. A-23
FindFirstLmtCode
FindFirstLot
FindFirstWafer
FindFirstSite
FindFirstParam .. A-24
FindLastLimitCode
FindLastLot
FindLastWafer
FindLastSite
FindLastParam .. A-25
FindNextLimitCode
FindNextLot
FindNextWafer
FindNextSite
FindNextParam.. A-25
FindPrevLimitCode
FindPrevLot
FindPrevWafer
FindPrevSite
FindPrevParam.. A-26
InsertNewLmtCode
InsertNewLot
InsertNewWafer
InsertNewSite
InsertNewParam.. A-26
RemoveLimitCode
RemoveLot
RemoveWafer
RemoveSite
RemoveParam... A-27
LimitExist ... A-28

KDF user tag data .. A-28
Example of use within a Cassette Plan ... A-30
UAP points... A-30

Structure definitions.. A-31
Sample programs... A-31

Logging one PARAM at a time, Data Retrieval through Get routines A-31
Logging a Linked List of PARAMs, Data Retrieval using GetLotData A-34

B Keithley User Interface .. B-1
Introduction .. B-2
iv

S530 KTE Software Table of Contents
User interface constants... B-2
User interface library variables... B-3
User interface library functions... B-4

GetProgramArgs — Get Program Command Line Arguments............ B-4
InitUINew — Initialize User Interface Library B-5
InputMsgDlg — Input Message Dialog .. B-6
LotDlg — Lot Information Dialog.. B-6
OkCancelAbortMsgDlg — Ok Cancel Abort Message Dialog B-7
OkCancelMsgDlg — Ok Cancel Message Dialog................................ B-7
OkMsgDlg — Ok Message Dialog ... B-7
QuitUI — Quit User Interface... B-7
ScrollMsgDlg — Scrollable Message Dialog B-7
ScrollMsgDlgClr — Scrollable Message Dialog Clear B-8
ScrollMsgDlgMsg — Scrollable Message Dialog Message B-8
StatusDlg — Status Dialog... B-8
UpdateModelessDlgs — Update Modeless Dialogs B-9
UpdateStatusDlg — Update Status Dialog .. B-10
VarMsgDlg — Variable Message Dialog.. B-10
WfrIdsDlg — Multiple Wafer Information Dialog B-11
WfrIdDlg — Single Wafer Information Dialog B-12
YesNoAbortMsgDlg — Yes No Abort Message Dialog B-13
YesNoCancelMsgDlg — Yes No Cancel Message Dialog................. B-14
ContSkipAbortDlg — Continue Skip Abort Message Dialog.............. B-14
LBoxDlg — List Box Message Dialog .. B-14
KTE KUI localization .. B-15

C KTE File Formats... C-1
Wafer description file format... C-3
Test structure file format... C-6
Keithley test macro (.ktm) .. C-7
Probe card file format... C-10
Global data file format .. C-11
Parameter set file format.. C-12
Parameter limits file format .. C-14
Wafer test plan file format .. C-16
Cassette test plan file format.. C-18
Keithley data file format.. C-21
User access point file format.. C-23
Keithley plot file format... C-24
KULT module file format... C-25

D Data Pool ... D-1
Data pool.. D-2

Advanced data pool use .. D-11
Description of the data pool functions.. D-12
Recommendations, hints, and examples... D-15

E User Access Points (UAPs) .. E-1
User Access Points (UAPs) ... E-2

User access point usage ... E-3
Types of UAPs... E-4
UAP locations .. E-5
Usage of LPTLIB functions at UAPs.. E-5
Distributed user libraries .. E-5
Test macro debugging ... E-6
v

1
Introduction

1-2 Introduction S530 KTE Software
This section gives an introduction to the KTE software manual. The information covered
in this section is as follows:

• Overview of the manual — Describes the contents of this manual and provides ref-
erences for other sources of information.

• Safety — Details safety concerns that should be observed during system opera-
tions.

Overview of the manual
This manual details the operation and use of the KTE software for the S530 Parametric
Test System. It explains the different software tools used in creating and executing test
programs and how system files are controlled and handled.

Manual contents
• 1 - Introduction — Gives an overview of the manual and an overview of the entire

KTE software system.

• 2 - Creating Test Plans — Discusses the tools used to create test plan files.

• 3 - Test Execution — Discusses the tools that control the selection and execution
of cassette plans.

• 4 - Data Analysis — Describes the tools used to gather and analyze results data
provided by an executed test program.

• 5 - System Administration — Details the setup of the KTE software, file
management, system configuration, and Ethernet specifications.

• Appendix A - Keithley Data Files (KDF) Library — Describes the set of routines
used to organize and save parametric test data into ASCII data files.

• Appendix B - Keithley User Interface (KUI) Library — Describes the different
subroutines that support the creation of sophisticated operator interface dialogs for
test programs.

• Appendix C - KTE Tool File Structure Examples — Provides file structure exam-
ples for all of the files created using the KTE software.

• Appendix D - Data Pool — Describes the data pool which is used to hold global
data while KTXE is running.

• Appendix E - User Access Points (UAPs) — Provides descriptions and examples
on how to use User Access Points.

• Appendix F - KTE Localization — Describes localization which allows the KTXE
interface to be displayed in any language.

S530 KTE Software Introduction 1-3
Other documentation
Although this manual provides some detailed information about the KTE software sys-
tem, it does not repeat information contained in other manuals. For information pertain-
ing to the KTE software, that is not contained within this manual, refer to the following
documentation:

• Linear Parametric Test Library (LPTLIB) Manual — A library of subroutines that
provide direct program control of the instrumentation and matrix.

• Prober Library Manual — A library of subroutines used to control a variety of man-
ual and automatic wafer probers.

Manual addenda
Any improvements or changes concerning the product or manual will be explained in an
addendum. Addenda are provided in a page replacement format. Simply replace the
obsolete pages with the new pages where indicated.

System software
This version of the software differs from earlier versions of the KTE software tools. Ear-
lier versions (V2.X) of the KTE software created compiled, uneditable, executable files.
This version of the software creates a much more flexible, editable test plan. The bene-
fits derived from this version include:

• Test plans that can be edited to suit the needs of the user.

• User Access Points (UAPs) that allow the user to extend the functionality of the test
execution engine.

• Test execution is data driven. This means the test plan execution is derived from
data files read by the test execution engine.

Figure 1-1 shows a diagram of how KTE is used to create and execute a cassette plan.
Figure 1-1 step numbers (from 1 through 8b) are keyed to Figure 1-3.

The data elements for a test plan are created in much the same way as they were for
the executable files in earlier versions of KTE:

• The Wafer Description Utility (WDU) is used to describe the wafer and specify the
test sites and subsites.

• The Limits File Editor (LFE) is used to specify the test result limits.

• The Keithley User Library Tool (KULT) is used to create user libraries that are acces-
sible in KITT.

• The Keithley Interactive Test Tool (KITT) is used to create the test macro that will be
run on the selected wafer.

The improvements that have come as a result of this version include:

• Adding the Keithley Data Editor (KDE), which gives the user access to all probe card
files (.pcf), global data files (.gdf) and pre-defined identifiers (PDI) from one central-
ized location.

• Adding the Test Structure File Editor (TSE), which allows the user to create a set of
test parameters for each specific device that is to be tested.

1-4 Introduction S530 KTE Software
• Adding the Parameter Set Editor (PSE), which allows the user to edit/add parameter
set data for a specific routine.

• Changes to the KITT Parameter Entry Window that allow the user to provide more
detailed parameter data.

• The ability to create probe card files (.pcf) that specify pad name to tester pin
assignments.

• The ability to create global data files (.gdf) that assign values to test data variables
and can be accessed by multiple test plans.

• The ability to create wafer plans (.wpf) that specify the wafer description, site and
subsite plans, the test macros that will be applied to the wafer, and the limits file that
will control the wafer testing depending on the test results.

• The ability to create cassette test plans (.cpf) that tie all of the test data together into
a coherent executable test plan.

• Adding the ability to use Math expressions in test macros and conditional execution
of test modules.

S530 KTE Software Introduction 1-5
Figure 1-1
Cassette plan creation flow diagram

Specify .wdf and subsite

Specify .pcf (for KITT only)

Specify .gdf (for KITT only)

Specify test structure file (.tsf)

Create test macro (.ktm)

KITT 3a

KTPM

Specify .klf

Specify .pcf

Specify .wdf

Create site plan

Bind .ktm to .wdf

Create wafer plan file (.wpf)

5Wafer Plan Editor

Specify .pcf (override of .wpf)

Specify .wdf (override of .wpf)

Specify .gdf

Specify .wpf

Specify UAP.s (optional)

Create cassette plan file (.cpf)

6Cassette Plan Builder

4

2

LFE

TSE

KDE

Creates limits file (.klf)

Create test structure file (.tsf)

Create probe card file (.pcf)
Create global data file (.gdf)

1WDU

7aKTXE

Specify .cpf (at start up)

Execute the test plan

7bKOPED

KOP

Select product ID

Select product version

Select .cpf

Create probe pattern

Define site locations

Define subsite locations

Create wafer description file (.wdf)

Enter product ID

Enter product version

Specify .cpf

3b

PSE

Create parameter sets (.psf)

3c

8a

KTE
Integrated

Display
Service
(KIDS)

8b

1-6 Introduction S530 KTE Software
The data files created using KTE all play important roles in creating a coherent test
plan. Figure 1-2 shows a diagram describing the data contained within each file and the
placement of each file when a test plan is created.

During test plan creation, it is possible to specify the probe card file and the wafer
description file in more than one place. If this occurs, the file specified in the Cassette
Test Plan takes precedence over the file specified in the Wafer Test Plan.

The Test Execution Engine (KTXE) accesses the Cassette Test Plan, which specifies
the:

• execution engine

• probe card file

• wafer description file

• lot data filename

• global data file

• wafer test plans

The cassette plan then accesses this data. If the probe card file and wafer description
file have already been specified by the cassette plan, they will be ignored if specified in
the wafer plan file.

S530 KTE Software Introduction 1-7
Figure 1-2
Data file hierarchy

Engine

KTXE

Cassette
Test Plan

Probe Card

Wafer Desc.

Lot Data
Filename

Global Def.

Wafer Plans

User Access
Points

Test Exec.
Prober
Operator
Shop Floor

Default
UAPs

Mod. Calls

Probe
Card File

Name, Value
Wafer

Description
File

Site
Locations

Probe
Patterns

Sub Site
Locations

Global
Def. File

Name,
Type, Value

Wafer Desc.

Wafer Test
Plans

Probe Card

Limits

Site Plans

Test
Instructions

KTM

Parameter
Set Files

Sub Site

USRLIB

Plans

Parameter
Limits File

ID, Name,
Units

Category

Target

VAL, SPC,
CNT, ENG

Aborts

RPT, CRTTest Structure
Files

Test
Structure

File

Device,
Name

Device__data,
Type,
Value

Parameter
Set Files

Module Name

PARAMSET,
Name

Param,
Type,
Value

•
•
•

1-8 Introduction S530 KTE Software
Production-quality test plans are created using KTPM, the Keithley Test Plan Manager.
KTPM allows you to create sophisticated test plans without having to edit, compile, and
link C language source files. Instead, you create your test plans by selecting from vari-
ous pre-built program elements and allow KTPM to “bind” them together to produce the
final cassette plan. Figure 1-3 shows the test plan creation process.

Figure 1-3
Test plan generation block diagram

Test Plan Generation

Variable Declarations
Test Sequences
Data Logging

"Test Macros"

User Access Points

Cassette Plan
File

Wafer Descriptions

User Libraries

Keithley Libraries

Limit Files

Step #1

Step #3

Step #2

Step #4

Step #7

Steps #5&6

Wafer
Description

Utility

Test Structure
File

Test Structure
File Editor

Limits
File

Editor

KULT KITT

Global Data File
Probe Card File

Keithley
Data
Editor

Test Plan
• Wafer Plan
• Global Data Files
• Probe Card File
• Cassette Plan

Execution
Engine

Parameter Set
File

Optional Step #2

Parameter
Set Editor

Step #8

Operator
Interfaces
(KOP and

KIDS)

S530 KTE Software Introduction 1-9
The software that is used by the system is the Keithley Test Equipment (KTE) Software
platform. With the KTE software tools you will be able to create and execute the test
programs that will be performed by the parametric test system. The KTE software tools
contain:

Wafer Description Utility (WDU) — Captures information to describe a wafer’s size,
orientation, sites, and subsites.

Test Structure File Editor (TSE) — Used to create test structure files that contain
device specific parameters.

Keithley Interactive Test Tool (KITT) — Used to create test macros (including the
data used), and interactively debug the macros on the tester.

Keithley Data Editor (KDE) — Used to create/modify global data files and probe card
files.

Parameter Set Editor (PSE) — Used to edit/add parameter for a library module rou-
tine.

Keithley User Library Tool (KULT) — Used to create test modules and user libraries
that can be used in KITT and/or as UAPs to control the testing process.

Limits File Editor (LFE) — Used to capture information describing the criteria for judg-
ing the measured parameters identified in KITT.

Keithley Test Plan Manager (KTPM) — Used to create wafer test plans, cassette
plans, and cassette plan documentation.

Keithley Operator Interface Editor (KOPED) — Used to create the operator's cas-
sette plan selection tree that will be presented to the operator in KOP.

Keithley Operator Interface (KOP) — Used by the operator to select and execute a
cassette plan.

Keithley Test Execution Engine (KTXE) — Executes the cassette plans created using
KTPM. The KTXE used is specified in the cassette plan.

KTE Integrated Display Service (KIDS) — Used for recipe selection, execution,
display status, and 300mm Automation option (if installed).

Keithley Summary Utility (KSU) — Used to view the results, comparing them against
the parameter limits entered in LFE.

Keithley Curve Analysis Tool (KCAT) — Used to create a graphical representation of
array results data generated from a test run using KITT.

For more information regarding the KTE software tools, refer to Sections 2, 3, 4, and 5
of this manual.

2
Creating Test Plans

2-2 Creating Test Plans S530 KTE Software
Introduction
This section covers the tools required to create the files used when building a test plan.
In this section the following will be discussed:

• Wafer Description Utility (WDU) — This section will describe how to use WDU to
create a wafer description file that describes the wafer used during the testing pro-
cess.

• Test Structure Editor (TSE) — This section will describe how to use TSE to create
parameters for a specified device located at a specific wafer subsite.

• Keithley Interactive Test Tool (KITT) — This section will describe how to use KITT to
create a test macro containing the tester commands.

• Parameter Set Editor (PSE) — This section will describe how to use PSE to modify
parameter set data assigned to a library module.

• Keithley User Library Tool (KULT) — This section will describe how to use KULT to
create a user library that contains test modules which can be used when creating a
test macro.

• Limits File Editor (LFE) — This section will describe how to use LFE to create a lim-
its file containing parameter limits that are compared to the results acquired during
testing.

• Keithley Test Plan Manager (KTPM) — This section will describe how to use KTPM
to create a cassette plan file (.cpf) that can be executed by KTXE.

• Keithley Tool Pallet (KTP) — The tool palette provides a point and click interface into
the KTE development environment. The tool palettes for the S530 system, shown in
Figure 2-1, contain an icon for each of the test plan development and utility func-
tions. Refer to the System Administration section for further details about KTP.

Figure 2-1
Keithley tool palette

When you have completed this section, you will be able to utilize WDU, KITT, KULT,
and LFE to create files necessary to the test plan building process.

S530 KTE Software Creating Test Plans 2-3
Wafer Description Utility (WDU)
WDU captures the size and location information that describes where the test
structures that will be probed are when this wafer description file is used. This
information is entered through seven different windows within WDU:

• Wafer Setup

• Target Setup

• Probe Pattern Editor

• Site Editor

• Site Optimization

• Wafer Graph Editor

• User Defined Values

The resulting file is saved in an easy-to-read ASCII format.

WDU main window

The WDU main window appears when WDU is initiated.

A description of the main window components follows.

Figure 2-2
WDU main window

A description of the main window components follows:

2-4 Creating Test Plans S530 KTE Software
Title bar — The title bar displays the filename of the current wafer description file, and
the read/write status of the file.

Menu bar — The menu bar contains selections used to modify the information in the
main window work area.

Control buttons — The control buttons (New, Open, Import, Save, Save As, and Help)
give you control over the information in the main window work area.

Main window work area — The main window work area contains all the windows used
to enter the data for each wafer description file.

WDU File menu

Selecting File produces the menu shown in Figure 2-3.

Figure 2-3
WDU File menu

The menu items include the following:

New — Initializes a new .wdf file as either single or multiple project.

Open — Opens an existing .wdf file.

Import — Imports or converts a file to a .wdf file. Import script must be specified in the
wdu.ini file. See WDU on-line help for more details.

Save — Writes the current .wdf to the path and filename shown in the title bar.

Save As — Writes the current .wdf file to a user-specified path and filename.

Delete — Opens a window allowing you to delete a file.

Print — Allows you to print data from the Site Editor, Wafer Graph Editor, Target Setup,
Wafer Setup, Probe Pattern Editor, and Site Optimization screens.

Print Setup — Lets you set up the printed page parameters.

Exit — Exits WDU.

S530 KTE Software Creating Test Plans 2-5
WDU Options menu

Selecting Options from the menu bar produces the menu in Figure 2-4.

Figure 2-4
WDU Options menu

The menu items are as follows:

Check Pattern Editor Duplicates — If selected, checks for duplicate probe pattern IDs,
cross-checks the site IDs in the Probe Pattern Editor against those in the Site Editor,
and checks for duplicate site locations within a pattern, all when saving the file.

Check Site Pattern Duplicates — If selected, checks for duplicate subsite IDs and for
duplicate site IDs when saving the file.

Check Subsites Within Die Size — If selected, verifies that all subsite coordinates are
within the die size when saving the file. WDU uses the absolute values of subsite
coordinates in its comparison against the die size.

Re-number Sites — If selected, re-numbers site IDs. Any existing site IDs will be
replaced with the default names, Site_N, where N is an increasing number. This will
allow the user to re-order site names/numbers. The user is prompted before any action
is taken.

WDU Window menu

Selecting Window from the menu bar produces the menu in Figure 2-5.

Figure 2-5
WDU Window menu

The menu items are as follows:

Cascade — Arranges all windows so the title bars of each can be seen in the main
window.

Tile — Arranges all the windows so they are viewed in the main window work area.

Arrange Icons — Arranges the icons for all the closed windows along the bottom of the
main window work area.

2-6 Creating Test Plans S530 KTE Software
WDU Help menu

Selecting Help produces a menu that accesses the following items:

WDU Documentation — Provides help for WDU.

About — Displays the installed WDU version number.

Control buttons

Clicking on a control button performs one of the following procedures:

New... — Allows the selection of Single or Multi-project mode, and initializes WDU for
the entry of a new .wdf file.

Open... — Opens an existing .wdf file.

Import... — Imports or converts a file to a .wdf file. Import script must be specified in the
wdu.ini file. See WDU on-line help for more details.

Save — Writes the current .wdf file to the path and filename shown in the title bar.

Save As... — Writes the current .wdf file to a user-specified path and filename.

Help... — Provides on-line help information about WDU.

Main window work area

The main window work area is directly below the control buttons. This area contains all
the windows used to enter data for each wafer description file. These windows are as
follows:

Wafer Setup — Lets you enter data describing the wafer. (For example: wafer size and
notch location.)

Target Setup — Lets you position the wafer target and change the wafer orientation.

Probe Pattern Editor — Lets you add or remove wafer locations from probe patterns
(group of site locations on the wafer).

Site Editor — Lets you add or remove subsites from within site(s).

Site Optimization — Lets you select the site probing order.

Wafer Graph Editor — Graphically shows die locations that are selected (single
project only) and allows cursor selection of additional die locations.

NOTE The center mouse button can be used to select any of these win-
dows when the cursor is in the main window work area.

The functions of each window are discussed in detail in the subsections that follow.

Wafer Setup window

The Wafer Setup window, Figure 2-6, is used to enter all the wafer size, die size, site
definition, and auto align distance data.

S530 KTE Software Creating Test Plans 2-7
Figure 2-6
Wafer Setup window

Control buttons

Apply — Applies the wafer setup information to all other windows.

Undo — Resets the field values to the values present at the time of the previous Apply.

Wafer setup data fields

Wafer Description — Lets you enter a short description of the .wdf file.

Diameter — Lets you set the diameter of the wafer (inches or millimeters) from a
default list of sizes stored in the wdu.ini file by clicking on the down arrow and making
the desired selection.

Die Size — Lets you enter the X and Y die size (mils or millimeters). These fields are
not used for multi-project wafers.

Auto Align Distance — Lets you enter the X,Y position for a prober move that could be
used to position the wafer for manual adjustments. User Access Point (UAP) code must
be written and referenced in the cassette plan to use this data at run-time.

English/Metric selector buttons

The top set of buttons lets you select English (inches) or Metric (millimeters) as the
measurement setting for the wafer diameter. The bottom set of buttons lets you select
English (mils) or Metric (millimeters) as the measurement setting for the rest of the
wafer data.

2-8 Creating Test Plans S530 KTE Software
Wafer orientation buttons

Pop-up windows are activated when positioning the cursor on the following selection
rectangles and holding the left mouse button down.

Button preceded by “Wafer has a” (Flat/Notch button) — Select flat or notch.

Orientation buttons — Specify the flat or notch position to be on the left, right, bottom,
or top of the wafer in the following two categories:

• “In Definition” (Bottom/Top/etc. button) — Specifies the normal flat or notch ori-
entation.

• “While Running” (Bottom/Top/etc. button) — Specifies the orientation to which
the flat or notch may be rotated when in the prober (for example, to probe the
“streets” in a particular direction).

Site definition area

Sites are Dies button — Specifies that each site is an individual die, in contrast to a
group of dies, as defined by a reticle. Accordingly, the reticle dimension and coordinate
fields in the site definition area are disabled.

Sites are Reticles button — Specifies that each site is a group of dies, as defined by a
reticle. The three sets of fields described below specify the size and coordinates of the
reticle.

Reticle Size field — When Sites are Reticles is selected (see above), Reticle Size
specifies the X,Y dimensions of a reticle in terms of the number of sites in each
direction. For example, if X: is 4 and Y: is 4, the reticle is 4 sites wide and 4 sites deep
and contains 16 dies.

Reticle Target field — When Sites are Reticles is selected (see above), defines the
relative X,Y coordinates of the reticle’s target die in terms of the number of sites in each
direction. For example, if Reticle Target coordinates are 2,2 and Reticle Offset
coordinates are 0,0 (see below), the target die is located in the second column from the
left and the second row from the bottom.

Reticle Offset field — When Sites are Reticles is selected (see above), Reticle Offset
defines the relative X,Y location on the reticle from which internal coordinates are
measured. For example, if Reticle Offset is 0, 0, the internal coordinates are measured
from origin of the reticle (lower left corner).

Target Setup window

The Target Setup window, Figure 2-7, sets the X,Y coordinates of the target site (die or
reticle) and the direction for increases in the X,Y coordinate values.

S530 KTE Software Creating Test Plans 2-9
Figure 2-7
Target Setup window

Control buttons

Recalc. — Saves target information and adjusts the coordinate values of all specified
sites so that the relative position of the target site is maintained.

Apply — Saves target information only. Sites specified will “shift” relative to the new
target.

Undo — Resets the field values to the values present at the time of the previous Apply.

X and Y data fields

These fields let you specify the target X and Y coordinate values in site (die or reticle)
units for single project wafers, or in mils and millimeters for multi-project wafers (multi-
project wafers have more than one repeating reticle pattern).

X dir/Y dir arrow buttons

These buttons let you set the direction in which the X and Y position values increase.

Probe Pattern Editor window

The Probe Pattern Editor window, Figure 2-8, is used to specify site probe patterns
during testing. These site probe patterns will be paired with tests in the KTPM tool’s
Wafer Plan Editor window. This allows a simple method for specifying different tests at
different sites. All the tests for a specific site from multiple patterns will be combined by
the execution engine so that each site is visited by the test probe one time only. Default
site names are given to each site in a pattern. The user can change this default name
by clicking on the site name and entering the desired name for the site.

2-10 Creating Test Plans S530 KTE Software
Figure 2-8
Probe Pattern Editor window

Right-clicking the mouse button in the Pattern Name field brings up a menu that lets
you move quickly through the different patterns you have created. The commands that
are accessed through this menu are:

Goto Next Pattern — Jumps to the next pattern in the list.

Goto Previous Pattern — Jumps to the previous pattern on the list.

Find Pattern — Opens a dialog box that lets you enter the name of the pattern you
want to change.

Find Site — Opens a dialog box that lets you enter the name of the site you want to
change.

Find Site Location — Opens a dialog box that lets you enter the coordinates of the site
location you want to change.

Reset Pattern/Site List — Removes all patterns and sites from the Pattern Editor
window.

S530 KTE Software Creating Test Plans 2-11
Control buttons

There are six control buttons along the top of the Probe Pattern Editor window. These
buttons function for both single and multi-project files. The function of each button is as
follows.

Add Patt Aft. — Adds a pattern name field to the pattern listing after the currently
selected field.

Add Patt Bef. — Adds a pattern name field to the pattern listing before the currently
selected field.

Add Site Aft. — Adds a site name field to the site listing after the currently selected
field. Site names are not necessary for single project wafers because all sites are
identical.

Add Site Bef. — Adds a site name field to the site listing before the currently selected
field. Site names are not necessary for single project wafers because all sites are
identical.

Delete — Deletes the currently selected field.

Copy Rows — Will copy the rows indicated in the Copy Rows window, Figure 2-9, after
the row where the cursor is currently positioned.

Figure 2-9
Copy Rows window

Pattern Name/Site Name data field

The information in this field depends on the project type selected with the New button.
A pattern name must be entered before any sites can be added. The default name
Pattern_1 is entered by WDU when a new .wdf file is started.

Single project — Site names are not necessary, but can be entered for a single project
wafer, because all the dies on the wafer are the same. A .wdf file can contain many
probe patterns.

Multi-project — Each site within a pattern must be given a name because a multi-
project pattern is not restricted to a single, repeating reticle frame. Many probe patterns
are also supported in a multi-project wafer file.

X and Y offset fields

The information in these fields will differ depending on the project type selected.

Single project — The X,Y offset values are based on site (die or reticle) coordinates.
The coordinate values are set by the user through the Target Setup window.

2-12 Creating Test Plans S530 KTE Software
Multi-project — The X,Y values provided are position information in millimeters or mils.
These values are absolute position information. The wafer alignment could be used to
put the wafer in the correct initial position.

Site Editor window

The Site Editor window, Figure 2-10, is used to specify the different sites and their
subsites. The information required depends on the project type selected.

Figure 2-10
Site Editor window

Single-project wafers have only one site type. Therefore, no site information is
necessary, only subsite information. Multi-project wafers can have more than one site
type. Therefore, both the site’s description and subsite locations must be provided.

Specify subsite X,Y coordinates as follows:

• For a site that is defined as a die, specify subsite coordinates relative to the dimen-
sional origin of the die (typically the lower left corner of the die). See Figure 2-11.

Figure 2-11
Subsite coordinates 0,200 for a site that is defined as a single 300 mil x 300 mil
die

��� ��� ���
�

���

���

���

�

���	
��
�����
��
���
��
	
�
�

��	�
	��������

S530 KTE Software Creating Test Plans 2-13
• For a site that is defined as a reticle, specify subsite coordinates relative to the
dimensional origin of the reticle (typically the lower left corner of the reticle), even
though the subsite may be a test-structure on one of the dies that compose the reti-
cle. See Figure 2-12.

Figure 2-12
Subsite coordinates 0,200 for a site defined as a reticle with nine 100 mil x 100 mil
dies

Right-clicking the mouse button in the Site Name field brings up a menu that lets you
move quickly through the different patterns you have created. The commands that are
accessed through this menu are:

Find Site — Opens a dialog box that lets you enter the name of the site you want to
change.

Find Subsite — Opens a dialog box that lets you enter the name of the subsite you
want to change.

Find Subsite Location — Opens a dialog box that lets you enter the coordinates of the
subsite location you want to change.

Reset Site/Subsite List — Removes all sites and subsites from the Editor window.

Open .tsf — Opens the corresponding test structure file in the Test Structure Editor
(TSE). If the file does not exist, you will be prompted to create the file or cancel.

Control buttons

There are six control buttons along the top of the Site Editor window. The function of
each button is as follows:

Add Site Aft. — Used for multi-project wafers to provide site information after the
currently selected field for a site name listed in the Probe Pattern Editor.

Add Site Bef. — Used for multi-project wafers to provide site information before the
currently selected field for a site name listed in the Probe Pattern Editor.

Add Subsite Aft. — Adds a subsite after the currently selected field.

Add Subsite Bef. — Adds a subsite before the currently selected field.

� ��� ��� ���
�

���

���

���

���	
��
�����
��
���
��
	
���
���

��	�
	��������
�
�

��
�

�

�	

���
�
�	

2-14 Creating Test Plans S530 KTE Software
Delete — Deletes the currently selected field.

Copy Rows — Will copy the rows indicated in the Copy Rows window after the row
where the cursor is currently positioned.

Site Optimization window

The Site Optimization window, Figure 2-13, is used to specify the order in which each of
the test sites on the wafer are tested.

Figure 2-13
Site Optimization window

You may choose from eight different patterns and the List selection. When a pattern is
selected, the tester starts at the site closest to the chosen location and then proceeds to
all selected sites on the wafer, following the selected serpentine pattern. When the List
selection is chosen, the system tests each of the sites in the order they are listed in the
Probe Pattern Editor window.

Wafer Graph Editor window

The Wafer Graph Editor window, Figure 2-14 and Figure 2-15, works with single-project
.wdf files only. This window displays a single probe pattern at a time or all probe
patterns contained in a .wdf file (see the Show All Patterns button above the wafer
display). The left mouse button can be used to select additional site locations to be
included into a probe pattern.

S530 KTE Software Creating Test Plans 2-15
Figure 2-14
Wafer Graph Editor when “Sites are Dies” is selected in
the Wafer Setup window

Figure 2-15
Wafer Graph Editor when “Sites are Reticles” is selected in
the Wafer Setup window

Note in Figure 2-15 that the graphical site display at left shows both the full reticles as
well as the individual dies within each reticle.

Large control buttons

Probe All — Selects all possible sites on the wafer.

2-16 Creating Test Plans S530 KTE Software
Clear All — Clears all selected sites on the wafer.

Complete Dies/Partial Dies — (Visible only when Sites are Dies is selected in the
Wafer Setup window.) Selects whether partial dies or only complete dies can be
selected for testing.

• If you choose Partial Dies, you may then select dies that do not fall completely within
the usable wafer space.

• If you choose Complete Dies, you may not select dies that do not fall completely
within the usable wafer space. (For example, a Probe All action will then select only
dies that are fully within the usable wafer space.) Moreover, if any previously
selected dies straddle usable wafer boundaries, such dies will be deselected when
you click Refresh or Clear Inval Dies.

Complete Rets/Partial Rets — (Visible only when Sites are Reticles is selected in the
Wafer Setup window.) Selects whether partial reticles or only complete reticles can be
selected for testing.

• If you choose Partial Reticles, you may then select reticles that do not fall com-
pletely within the usable wafer space.

• If you choose Complete Reticles, you may not select reticles that do not fall com-
pletely within the usable wafer space. (For example, a Probe All action will then
select only reticles that are fully within the usable wafer space.) Moreover, if any pre-
viously selected reticles straddle usable wafer boundaries, such reticles will be
deselected when you click Refresh or Clear Inval Rets.

Clear Inval Dies — (Visible only when Sites are Dies is selected in the Wafer Setup
window.) When Complete Dies has been previously selected, clears all the dies
selected for testing that do not fall completely within the usable wafer space.

Clear Inval Rets — (Visible only when Sites are Reticles is selected in the Wafer Setup
window.) When Complete Rets has been previously selected, clears all the reticles
selected for testing that do not fall completely within the usable wafer space.

Cell Select/Row Select/Col Select — Lets you select test sites by individual site,
entire row, or entire column. Clicking on the button scrolls through the selections.

Refresh — Refreshes the Wafer Graph Editor window with all changes or updates
made to the data from all the other windows.

Graphical editing features

Graphical site displays

The specific sites represented in the
large pattern at left correspond to the
sites inside the selection frame of the
small pattern at right. In turn, the size of
the selection frame is determined by the
Zoom settings, as discussed below
in“Zoom settings.” The selection
rectangle may be moved with the
mouse to any location on the wafer. Therefore, using a
combination of Zoom settings and selection rectangle
positions, the sites on any part of the wafer can be viewed

and edited at various magnifications.

Target sites in the large pattern on the left may be directly selected or deselected by
clicking. Target sites may be manipulated by the arrows and selections at the lower

Selection frame

S530 KTE Software Creating Test Plans 2-17
right of the Wafer Graph Editor. Refer to “Move target arrow buttons and location
display” on page 2-20.

Zoom settings

The Zoom settings at the far right control the size of the selection frame (see figure
above) and the magnification of the sites displayed in the large graphical pattern. See
Figure 2-16.

Figure 2-16
Using Zooms

Controls located above the graphical site displays

• Next Pattern — Selects the next pattern in the Probe Pattern Editor’s sequential list
of patterns to be the current pattern.

• Prev Pattern — Selects the preceding pattern in the Probe Pattern Editor’s sequen-
tial list of patterns to be the current pattern.

• Show All Patterns — Selects simultaneous display of all probe patterns in the .wdf.
Figures 2-17 and 2-18 illustrate the Wafer Graph Editor when Show All Patterns is
selected.

Selection rectangle

Selection rectangle size at
25% Zoom (entire graphic)

size at 400% Zoom

2-18 Creating Test Plans S530 KTE Software
Figure 2-17
Effects of selecting Show All Patterns for a Sites are Dies .wdf (compare
Figure 2-14)

Figure 2-18
Effects of selecting Show All Patterns for a Sites are Reticles .wdf (compare
Figure 2-15)

Note that color codes distinguish the sites in the current probe pattern from the sites in
other probe patterns. The color codes in Figures 2-17 and 2-18 show that the other
(non-current) probe pattern in this example has a rectangular configuration, as defined
by the blue-colored and cyan-colored sites. The cyan-colored sites are locations where
current-pattern sites overlap other-pattern sites. The next subsection describes the
color codes in detail.

+

Current
pattern

Other
pattern

+

Current
pattern

Other
pattern

S530 KTE Software Creating Test Plans 2-19
Legend

The site colors in the graphical site displays are coded as shown in the legend. This
subsection explains the meaning of each color, as follows:

• Tgt (red) — Target-only site (not tested).

• Tgt Prb Cur (yellow) — Target site that is tested in the current
probe pattern.

• Tgt Prob Cur Oth (white) — Target site that is tested in the current
probe pattern, overlapping at least one other target site that is
tested in another probe pattern. (Applicable only when Show All
Patterns is selected.) See Figure 2-19.

Figure 2-19
Scenario that results in Tgt Prob Cur Oth (white) color-coded target site

• Tgt Prob Oth (magenta) — Target-only site (not tested) in the current probe pat-
tern, overlapping at least one other target site that is tested in another probe pattern.
(Applicable only when Show All Patterns is selected.) See Figure 2-20.

Figure 2-20
Scenario that results in Tgt Prob Oth (magenta) color-coded target site

NOTE However, note that when a tested target site in the current probe
pattern overlaps an untested target site(s) in another probe pat-
tern, the target site color is yellow. See Figure 2-21.

Target site that is
tested in current

probe pattern

Target site that is
tested in other
probe pattern

Overlapping target
sites when Show All
Patterns is selected

...on top
of...

... displays
as...

Target site that is
tested in current

probe pattern

Target site that is
tested in other
probe pattern

Overlapping target
sites when Show All
Patterns is selected

...on top
of...

... displays
as...

2-20 Creating Test Plans S530 KTE Software
Figure 2-21
Tested target site in the current probe pattern overlapping another untested tar-
get site

• Prb Cur (green) — Probed (non-target) site that is tested in the current probe pat-
tern.

• Prb Oth (blue) — Probed (non-target) site that is tested in another probe pattern.
Applicable only when Show All Patterns is selected.

• Prb Cur Oth (cyan) — Probed (non-target) site that is tested in the current probe
pattern, overlapping one or more probed sites that are tested in another probe pat-
tern. Applicable only when Show All Patterns is selected. See Figure 2-22.

Figure 2-22
Example of overlapping probed sites in current and non-current probe patterns

Controls located below the graphical site displays

• Allow edge adjust — This allows the relative positioning of the die grid on the wafer
to be shifted up to one die size in both the X and Y directions. Shifting the wafer out-
line does not affect any of the information used for the test process. It is intended for
display purposes only and is not used by the system during wafer testing.

• Offset X,Y and Dist X,Y — These fields show the current position of the cursor
arrow relative to the target site. Offset is in site (die or reticle) size units and Dist. is
in mils or millimeters.

Move target arrow buttons and location display

The Target X and Target Y values display the target site X,Y location. The arrow buttons
let you change this location in one of three ways.

Target site that is
tested in current

probe pattern

Target site that is
tested in other
probe pattern

Overlapping target
sites when Show All
Patterns is selected

...on top
of...

... displays
as...

Sites that are tested
in the current
probe pattern

Sites that are tested
in another probe

pattern

Overlapping sites
when Show All

Patterns is selected

...on top
of...

... displays
as...

S530 KTE Software Creating Test Plans 2-21
• Move the target site by clicking the arrows —

1. First select the Only Tgt button, which allows only the target site to move.

2. Then, click on an arrow button to move the target site one position in a given
direction.

• Move the target site by selecting a destination —

1. First, select both the Only Tgt and Select buttons.

2. Then, select a new target site location by clicking it on the graphical display. The
target site, only, moves to the new location.

• Move all selected sites by clicking the arrows —

1. First, select the Select button.

2. Then, click on the arrow buttons to move both the target site and the prober sites,
together, to a new position.

Wafer information area

This area, located below the small graphical site display, contains the following
information for the current .wdf file:

• Wafer diameter.

• Die X and Y dimensions.

Site name/subsite name data fields

Site names are not necessary for a single project wafer since all the sites on the wafer
are the same.

A site name must be entered for a multi-project wafer before any subsites can be
added. A site description can be added to each site name.

X and Y offset fields

These fields list the subsite X and Y offsets within each site. The values are in mils or
millimeters depending on the units selected in the Wafer Setup window.

User Defined Values window

The User Defined Values window contains ten fields. See Figures 2-23 and 2-24.

2-22 Creating Test Plans S530 KTE Software
Figure 2-23
User Defined Values window, as it first appears

Figure 2-24
User Defined Values window, expanded

In these fields, optionally enter information that you would like to be available to KTXE
— for example, as parameters for UAP code that you write. The information must meet
the following requirements:

• Data type — char string (without the quotation marks)

• Maximum string length — 128 characters

The WDFRec pointer in the datapool will contain these user-defined values. This
pointer can be used in UAP routines after KTXE loads the Wafer Description file.

NOTE If this window is not visible among
the layers of WDU windows, bring it
forward by 1) clicking the middle
mouse button and 2) selecting User
Defined Values from the menu that
appears.

S530 KTE Software Creating Test Plans 2-23
Test Structure File Editor (TSE)
The Test Structure File Editor allows you to create parameters for a specific device
located at a wafer subsite previously created using WDU. The device parameters can
then be ‘plugged in’ with the test macro parameter data to create a more precise test
that takes into account the specifications of the device.

TSE main window

Figure 2-25 shows the TSE main window that appears on screen when the TSE is first
activated. A brief description of each feature follows.

Figure 2-25
Test structure file editor main window

Title bar

The title bar lists the name of the currently open test structure file and the read/write
status of the file.

TSE file menu

New — Clears the editor screen of all data.
Open — Opens a currently existing test structure file.
Launch Template File — Opens a new instance of TSE, and loads the template.tsf file.
This allows you to select devices from the template and copy/paste them into another
instance of TSE to quickly add devices.
Save — Saves any changes made to the current test structure file.
Save As — Requests a filename before saving the current test structure file.
Exit — Exits the Test Structure File Editor.

2-24 Creating Test Plans S530 KTE Software
TSE edit menu

Cut — Removes highlighted text, which can be restored to a new location using the
Paste
function.
Copy — Copies highlighted text, which can be placed in a new location using the Paste
function.
Paste — Places cut or copied text in a new location.
Insert Device — Adds a device to the Device List.
Delete Device — Removes a device from the Device List.
Add Info After — Adds device information after the currently selected data.
Delete Info — Deletes the currently selected data.

Each of the items in the Edit menu also has a corresponding button on the toolbar,
which is located directly below the menu bar.

TSE options menu

ID/Comment String — Opens a text box that allows you to enter additional information
about the device.

TSE Help menu

TSE Documentation — Displays current TSE help documentation.

About — Displays the software revision level.

Device list

The Device List is located on the left side of the main window. It provides a list of all of
the device parameters that are available for the current subsite. Clicking on one of the
devices listed opens that device’s parameters into the Device Data window.

Device data window

The Device Data window is located on the left side of the main window. This window is
a table that lists all of the parameters that apply to the device selected in the Device
List. The parameters in this window can be modified by clicking in any of the cells.

Copying device data

Device data may be cut, copied, and pasted within the same instance of TSE, or
between separate instances. To cut or copy device data, select the device data and
click the right mouse button. A Device Actions pop-up menu will appear. Select Cut or
Copy to place the device data on the clipboard. Cut will remove the device data from
the current location and place it on the clipboard. Copy will leave the device data in its
current location and only place a copy of it on the clipboard.

Select a new location in either the same instance of TSE, or in another instance, and
right click again. The Device Actions pop-up menu will appear. Select Paste Before or
Paste After and the device data will be inserted in the selected location.

S530 KTE Software Creating Test Plans 2-25
Creating a test structure file

To create a test structure file, perform the following steps:

1. Select New from the File menu. A text box, Figure 2-26, will appear asking you for
the Subsite name. Enter the name of a subsite that is currently in use in a wafer
description file (.wdf) and click OK.

Figure 2-26
Subsite name test box

2. Next a text box, Figure 2-27, will appear asking for a device name. Enter the name
of the device and click OK. To add additional devices to the current list, click on the
last device in the Device List and select the Add Device After icon or the menu item
from the Edit menu. Repeat this process until you have added all of the devices
required.

Figure 2-27
Device name text box

3. To enter device data, select the device from the Device List, then select the Add Info
After icon or menu item. The first row will already contain the default parameter
name, new_name. Enter the parameter name to be used.

2-26 Creating Test Plans S530 KTE Software
4. In the Type column, click in the cell to activate the pop-up menu. Click on the arrow
to the right of the cell to open the menu, and select the proper parameter type. The
parameter type, IDENTIFIER, references pre-defined probe card or global identifier
data.

NOTE IDENTIFIER values must start with a non-numeric character, and
can only contain letters, numerals, and underscores.

5. In the Value column, enter the actual value for the parameter.

6. Once all of the device data for the subsite has been entered, select Save from the
File menu. The test structure file (.tsf) is now complete, see Figure 2-28, and can be
accessed by the KITT Parameter Entry window if that subsite is selected in the KITT
subsite box.

Figure 2-28
Completed test structure file

S530 KTE Software Creating Test Plans 2-27
Keithley Interactive Test Tool (KITT)
KITT provides a software environment that gives you immediate access to standard
test libraries. KITT provides language-independent calls to create test macros and
allows interactive, immediate execution of test macros and prober calls. KITT is useful
to diagnose instrument, prober, and device measurement problems and create test
macros.

KITT main window

Figure 2-29 shows the KITT main window that appears on the screen when KITT is first
activated. A brief description of each feature follows.

Figure 2-29
KITT main window

Title bar

The title bar lists the name of the currently open test macro file and the read/write status
of the file.

KITT file menu
The File menu items let you:

• Start a new KTM.

• Open test macro files into the Test Macro Editor window.

• Include an existing test macro.

• Save test macro files shown in the Test Macro Editor window.

• Delete macro files.

• Print test macro files.

2-28 Creating Test Plans S530 KTE Software
• Exit KITT.

KITT view menu

The View menu contains:

• Command Help — Opens or closes the Command Help window. This can also be
done from the Help button in the parameter entry window or KITT main window.

• Parameter Entry — Opens or closes the KITT Parameter Entry window for the
presently selected test command.

• Results — Opens or closes the KITT Results window.

• Keithley Data Editor — Opens the Keithley Data Editor.

• Results Settings — Opens the Results Settings window where the plot, log, and
user parameters can be set for the present macro.

• Test Macro Description — Lets you attach notes to the present test macro.

KITT options menu

The option menu controls:

• Whether the tester hardware is online or offline.

• If auto-plotting is on and KCAT will be used to plot the results, with the plot value set
to X or Y.

• Whether or not results are grouped by result name in the KITT results window.

• Determines whether just the filename or the entire path will be saved in the .ktm file.
If the entire path is to be saved, it is recommended that the environment variables
be used. This will make subsequent file retrieval easier.

• Whether the wafer and subsite data is saved with the .ktm file.

• Whether the probe card file is saved with the .ktm file.

• Whether the global data file is saved with the .ktm file.

• Whether or not to create a kitt.ini file to save the current status of the Options menu.

• Whether the execution time for the test macro and of test modules will be shown in
the Messages window.

• Whether or not Probe Card values and Global Data values are resolved in the
Parameter entry window.

• Whether or not Strict Parameter Resolution is enforced.

• Prober error and transaction logging, and viewing the error or transaction logs.

• The user-defined level of the error log.

• Whether or not the results are overwritten in the KITT results window when a test
macro
is run.

• Whether all of the results are shown in the KITT results window, or only those
selected to be viewed in the Results Settings window.

KITT libraries menu

The Libraries menu lets you select the following command libraries:

• Prober

• LPT

S530 KTE Software Creating Test Plans 2-29
• PAR

• User Libraries

KITT program menu

Program menu items let you:

• Run or loop program test macros.

• Generate C programming language code.

• Debug C programming language code before running the macro (practice task).

• Clear messages previously written in the Messages window.

• Remove error identifier strings from text in the Test Macro Editor window.

KITT help menu

Help menu items display KITT help documentation and software revision level.

Test data fields

These fields include:

• Wafer File — The wafer description file to be used during testing.

• Subsite — The wafer subsite the test macro is to be run on.

• Probe Card File — The probe card file used when the current test macro is run.

• Global Data File — The global data file used when the current test macro is run.

Right-clicking on any of the data fields will display a pop-up menu. The menu allows
you to open the data file in the appropriate tool for editing. For example, right-clicking in
the Wafer File field will allow you to open the wafer file in WDU.

This information is written into the macro file (.ktm) so future work in KITT can be
continued without reentering these selections. However, the wafer files, probe card
files, and global data files used in production runs by the execution engine are specified
in the wafer plan and cassette plan editors. The execution engine uses the subsite
information stored in the test macro (.ktm) to figure out what subsite the macro is to run
on.

Commands scroll box

The commands scroll box displays and allows selection of the various commands for
the selected library. To display information about the selected command, click on the
Command Help button. A pop-up window will display pertinent information about the
selected command including parameters that it uses.

Test macro editor window

The Test Macro Editor window is the primary work area for generating your test macros.
Commands may be moved from the Parameter Entry window to the Test Macro Editor
window by the OK and Apply buttons. Control buttons associated with the Test Macro
Editor window are:

2-30 Creating Test Plans S530 KTE Software
• Run — Runs the entire test macro listed in the Test Macro Editor window, or just the
highlighted lines.

• Abort — Aborts the test macro presently being executed.

Messages window

The Messages window displays event and error messages that occur during KITT
operation. You can clear the Messages window by selecting the Clear Messages menu
item in the Program menu.

Command help

The Command Help button will display help information for the test command currently
selected in the Command help window, as shown in Figure 2-30.

Figure 2-30
Command help window

Prober

The Prober displays the name of the currently configured prober driver. You can toggle
between Fake and Real Prober by clicking on the Prober selection box. The commands
supported by the currently configured prober driver will be displayed in the Commands
box when “Prober Library” is selected under the “Libraries” menu.

KITT results window

Figure 2-31 shows the KITT Results window. Results data from the test macros are
displayed in a spreadsheet format. Each column displays one result when the test
macro is run. The column heading identifies the result name. Each row is a separate
execution of the macro.

KITT Results window menu items include:

• File — Lets you open, save, and print results data, and clear the results data win-
dow.

• Options — Lets you select the delimiter to be used to separate individual data ele-
ments in the output file. This ASCII-delimited format allows data to be read into most
spreadsheet and data analysis tools.

S530 KTE Software Creating Test Plans 2-31
Figure 2-31
KITT results window

KITT Math, Array and Logic Expression Support

Math

Refer to your C language reference manual for more information on proper syntax use.

Definition

KITT supports the following math operators and functions:

• Addition ‘+’

• Subtraction ‘-’

• Multiplication ‘*’

• Division ‘/’

• Parentheses ‘(‘ and ‘)’

The parentheses ‘(’ and ‘)’ operators may be used to define precedence of the math
operations.

• int abs(int val);

abs() returns the absolute value of its int operand.

• double fabs(double x);

fabs(x) returns the absolute value of x.

• double exp(double x);

exp(x) computes the exponential function e**x.

• double log(double x);

log(x) computes the natural logarithm of x.

• double log10(double x);

log10(x) computes the base-10 logarithm of x.

• double pow(double x, double y);

pow(x, y) computes x raised to the power y.

The operators/functions may be used as part of a calculation to define a parameter
value to a test. The operators/functions may act on data associated with identifiers from
the following data sources:

• Pre-defined identifiers within a test macro file (.ktm)

• global data from a global data file (.gdf)

2-32 Creating Test Plans S530 KTE Software
• probe card data from a probe card file (.pcf)

• device data from a test structure file (.tsf)

• literal values (i.e. 1.23e-4)

The operators/functions above may also be used with the equal sign (=) assignment
operator. This operator can assign a new value to previously defined identifiers or
create results identifier. If this result value is not previously defined, the result will be
type DOUBLE.

Parameter values are resolved as each macro line is executed.

Restrictions

• Operators are not valid with parameter set identifiers.

• Parameters with operators will not be saved in parameter sets.

• Variable MUST NOT be named with a digit and an “E” or “e” as the last two charac-
ters.

For example:

The variable name “foo2e” is invalid.

The variable name “Foo2” is valid.

This restriction is due to the expression “Foo2e - 5” being confused with the number
“2e-5.”

• A runtime error will occur if a divide by 0 is attempted. The macro execution will only
terminate at that point.

Examples

• Math in Parameters

Test(param1, (R1 /(ss_dev1_width * ss_dev1_length),
output_result)

• Assignment Operator

Area = ss_dev1_width * ss_dev1_length
AnotherResult = ((result_array[0] * 3.14) / some_identifier)

The results “Area” and “AnotherResult” will be type DOUBLE if not previously defined.

• The compiler requires the use of decimal points to signify floating point notation.

For example:

1 / 8 = 0
1.0 / 8.0 = 0.125

Array Support

Definition

Arrays must be defined before their use. Definition can occur as:

• pre-defined identifiers within a test macro file (.ktm)

• global data from a global data file (.gdf)

S530 KTE Software Creating Test Plans 2-33
A complete array or a single element may be an input or an output parameter. If a
complete array is passed into or out of a test, the array index is not specified. If a single
array element is passed into or out of a test, the array index is defined by using
brackets “[” and “].” An expression may be used to define the array index.

If a variable is to be used as an array index, this variable MUST BE type INT. This is
necessary for the “Practice Task” and “Save As C” features to function correctly.

Examples

Array elements as outputs

The array result_array is defined previously as array data. The result_array[]
parameters are output parameters. The complete result_array is passed into the
Fit_function. The number_of_elements_in_array parameter indicates to
the function how many array elements to use.

Test(ss_dev1_pad1, ss_dev1_pad2, input_item, result_array[0])
Test(ss_dev2_pad1, ss_dev2_pad2, input_item, result_array[1])
Test(ss_dev3_pad1, ss_dev3_pad2, input_item, result_array[2])
Test(ss_dev4_pad1, ss_dev4_pad2, input_item, result_array[3])
Fit_function(result_array, number_of_elements_in_array,
result_value)

Also, arrays may contain function return values.

Result_array[1] = Test(param1)

Restrictions

There are some minor restrictions on result array assignment notation. No nested array
notation and no complex math expressions are allowed as index expressions. The
following list of examples should help explain.

Supported:

gdfArray[1] = function()
pdiArray[x + 2] = function()
resultArray[3] = 4.53

Not Supported:

AnyArray[(x + 2) * 3] = function()
AnyArray[anotherArray[3] + 1] = function()

Array elements as inputs

The array input_array is defined previously as array data or as a result output from a
function. In the following example resulta, resultb, and resultc are output
parameters.

TestB(ss_dev1_pad1, ss_dev1_pad2, input_array[0], resulta)
TestB(ss_dev1_pad1, ss_dev1_pad2, input_array[1], resultb)
TestB(ss_dev1_pad1, ss_dev1_pad2, input_array[2], resultc)

Also,

Test(parm1, input_array[(identifier*2)], result_array[identi-
fier])

2-34 Creating Test Plans S530 KTE Software
Array as Output

In the following example result_array is an output parameter and
number_of_elements_in_array is input parameter.

TestSweep(param1, param2, result_array,
number_of_elements_in_array)

This is already supported in V3.2 and up.

Array as Input

In the following example result_array and number_of_elements_in_array are
input parameters.

Fit_function(result_array, number_of_elements_in_array,
result_value)

This is already supported in V3.2 and up.

if-then-else and Logical Expressions

KITT supports the if-then-else statement with the following Boolean operators for int,
float, and double data types:

• < less than

• <= less than or equal to

• > greater than

• >= greater than or equal to

• == equal to

• != not equal to

The following Boolean operators are supported for int data types:

• && logical AND

• || logical OR

• ! logical NOT

Each of the Boolean operators will generate a 0 or 1 response. If a result is created
and assigned using a Boolean operator, the result type will be treated as a double if the
result has not been previously defined otherwise.

Restrictions

• When using the “if” statement, the open and close braces must be used and be on
separate lines.

Example:

if (a > b)
{

value = 4
}
else
{

value = 0
}

• Nesting is supported up to 32 levels

S530 KTE Software Creating Test Plans 2-35
Using Generated Identifiers in a Test Macro

Generated identifier are of three types:

• Test Structure Data Identifier

• Parameter Set Data Identifier

• Generated Result Identifier

Test Structure Data Identifiers

Test Structure Data Identifiers take the form device_parameter.

The device part of the identifier is set in the KITT Parameter Entry window by selecting
the device to use at a subsite.

The parameter part of the identifier is associated with the name of the parameter.

These Test Structure Data Identifiers are only generated for parameters that have the
same name as an item in the selected device’s test structure file. The test structure file
used is based on the subsite name set in the KITT main window.

Parameter Set Data Identifiers

Parameter Set Data Identifiers take the form module_paramset_parameter.

The module part of the identifier is the name of the test module.

The paramset part of the identifier is the name given to the parameter set.

The parameter part of the identifier is associated with the name of the parameter.

Selecting a parameter set in the KITT Parameter Entry window will place the parameter
set data identifiers in all symbolic value fields that have a matching parameter. If a
parameters symbolic value field contains test structure data and a parameter set
contains a matching parameter, the parameter set data identifier will replace the test
structure data identifier in the field.

Generated Result Identifiers

Generated Result Identifiers take the form subsite_device_parameter.

The subsite part of the identifier is the subsite name set in the KITT main window.

The device part of the identifier is the device selected in the KITT Parameter Entry
Window.

The parameter part of the identifier is the output parameter name.

Custom Identifier Separators

The generated identifier separator may be changed from the default “_” to any single
letter a-z or A-Z. This is set in the kitt.ini file.

2-36 Creating Test Plans S530 KTE Software
KTE data usage

Datapool

• A data storage area generated during KTXE and KITT execution.

• Run-time storage of Probe Card File (.pcf) data, Global Data File (.gdf) data, Global
PDI data, KTXE control data, and data generated with dpAdd functions. Each run
will start with a clean datapool.

Data precedence

KTXE and KITT resolve parameters from the data sources in the following order:

• Local PDI

• Test Structure Data

• Parameter Set Data

• Probe Card File Data

• Global Data File Data

• Global PDI

• Generated Results

Data sources

Local predefined identifiers (PDI)

• A Local PDI is a value local to a KTM.

• A Local PDI is highest in the data precedence. A Local PDI value will be used before
the datapool.

• Useful for local constants and defining data types of intermediate variables.

Test structure data

• Loaded into internal Test Structure memory.

• Used to define test structure/device specific data.

• Changing test structure data will effect all test modules that use the data as a
parameter.

• Use to define pad to structure mapping. Example: drain = pad3.

• Use to define test structure characteristics. Example: length = 100.

Parameter set data

• Loaded into internal Parameter Set memory.

• Used as templates for standard test parameters.

• Changing a parameter set will permit modification of all KTMs that use the parame-
ter set.

Probe card file data (PCF)

• Probe Card File data is loaded into the datapool during the wafer loading phase of
KTXE.

• Since the PCF file data is loaded for each new wafer plan, items from previous PCF
files may be in the datapool.

• KITT will load the PCF file at the start of each run.

S530 KTE Software Creating Test Plans 2-37
• Use to define tester pin to pad mapping. Example: test pin 8 = pad3.

Global data file data (GDF)

• Global Data File data is loaded into the datapool during cassette plan loading phase
of KTXE.

• .gdf files are loaded in the order of definition. If two .gdf files load items of the same
name, the value in the last file will be used.

• KITT will load the .gdf file at the start of each run.

• Useful for passing data between KTMs.

• Useful for passing global test parameters into tests.

• KTXE supports loading of multiple global data files.

• Can be used to change execution behavior of KTXE.

• UAPs can access this data.

Global predefined identifiers (PDI)

• A Global PDI value is available to the defining KTM. After KTM execution, they are
placed into the datapool. Any KTM executed following the defining KTM or re-execu-
tion of the defining KTM will get the value of the Global PDI from the datapool.

• A Global PDI is lowest in the data precedence.

• Useful for passing data between KTMs. (Global data is more flexible.)

Generated results

• Output variables generated by KTXE or KITT.

KTXE control data

• KTXE places items in the datapool at run-time. This data is used internally by KTXE
and may be altered to change KTXE execution behavior.

• See Appendix D, Datapool, for a list of these items.

• During KITT execution, no KTXE Control Data exists.

Passing data between KTMs

Data is passedbetween KTMs through the datapool. KTMs may place data into the
datapool by outputting the results to a GDF defined name or a Global PDI, or using a
dpAdd function in a user library. Datapool items accessed by a KTM must exist before
executing a macro line. If not, a run-time error will occur and the KTM currently
executing will terminate.

Example:

Two KTMseach generate one result that is used by a third KTM. Two values will be
placed in the global data file that is loaded in the datapool.

Global Data File — passedresults.gdf

slope_5x20, DOUBLE_P, 0
slope_5x10, DOUBLE_P, 0

KTM — x20.ktm

nvth5x20 = vth_ext(p10,p11,p13,p24,0.1,0.0,2.0,1e-6,100,
slope_5x20)

KTM — x10.ktm

nvth5x10 = vth_ext(p9,p11,p13,p24,0.1,0.0,2.0,1e-6,100,
slope_5x10)

2-38 Creating Test Plans S530 KTE Software
KTM — calc.ktm

deltaw(slope_5x20, 20, slope_5x10, 10, result)

Use of ibupu in KITT

In KULT user library routines, the ibupu() functions are called using the following
syntax:

ibupu(unit, IBUPU_CLEAR, slot)
ibupu(unit, IBUPU_DEFINE, slot, tad, lad, sad, rmd, eod, wmd)
ibupu(unit, IBUPU_FINISH)
ibupu(unit, IBUPU_LOCAL, slot)
ibupu(unit, IBUPU_READ, slot, *read_buff, count)
ibupu(unit, IBUPU_SRPOLL, slot)
ibupu(unit, IBUPU_SRQWAIT, slot, timeout)
ibupu(unit, IBUPU_TRIGGER, slot)
ibupu(unit, IBUPU_WRITE, slot, *write_buff, length)

When using these functions from KITT, use the following syntax:

ibupu_clear(unit, slot)
ibupu_define(unit, slot, tad, lad, sad, rmd, eod, wmd)
ibupu_finish(unit)
ibupu_local(unit, slot)
ibupu_read(unit, slot, *read_buff, count)
ibupu_remote(unit, slot)
ibupu_srpoll(unit, slot)
ibupu_srqwait(unit, slot, timeout)
ibupu_trigger(unit, slot)
ibupu_write(unit, slot, *write_buff, length)

Parameter Set Editor (PSE)
The Parameter Set Editor allows the user to add, remove, or edit parameter set data
assigned to a library module. The PSE does not modify the default data created in
KULT, but allows you to create additional parameter sets that can be used when
creating a test macro.

New parameter sets can be created by pressing the Save button on the KITT
parameter entry screen. If the Parameter Set Editor is active when this save occurs, the
Parameter Set Editor will not be refreshed with the new data until the desired Module
name is re-opened. Clicking on the folder icon for the Module will refresh the display.

PSE main window

There are two main areas to PSE, shown in Figure 2-32:

The Library Browser — Allows the user to navigate through a directory tree of
available user libraries and modules to select the desired parameter data.

The Parameter Data list box — Lists all of the available parameter data for a module
that is selected from the library browser.

S530 KTE Software Creating Test Plans 2-39
Figure 2-32
PSE main window

Title bar

The title bar lists the name of the currently open parameter set file and the read/write
status of the file.

PSE file menu

The PSE File menu contains the following items:

• Save — Saves any changes made to the parameter set data.

• Exit — Closes the PSE.

PSE edit menu

The PSE Edit menu contains the following items:

• Cut — Removes highlighted text, which can be restored to a new location using the
Paste function.

• Copy — Copies highlighted text, which can be placed in a new location using the
Paste function.

• Paste — Places cut or copied text in a new location.

• Add New Set After — Adds a new set of parameters after the currently selected set

• Delete Parameter Set — Deletes the current parameter set.

Each of the items in the Edit menu also has a corresponding button on the toolbar, which is
located directly below the menu bar.

PSE view menu

• Parameter Sets — Toggles the Parameter Set Editor between showing the entire
main window and just the Library Browser.

2-40 Creating Test Plans S530 KTE Software
PSE help menu

• PSE Documentation — Displays current PSE help documentation.

• About — Displays the software revision level.

Library browser

To navigate through the available libraries, click on the plus (+) icons to expand the
library tree and the minus (-) icon to collapse the library tree. A folder icon indicates a
user library module that could contain parameter set data. If parameter set data exists
for a module, clicking on the folder icon opens the parameter data contained in the
selected module into the Parameter Data list box.

If the directory tree is longer than the viewable window, a vertical scroll bar will appear
that can be used to scroll the library/module list into view. Holding the left-mouse button
down and dragging on an empty section of the directory tree background will also allow
you to move the view area.

Parameter data list box

NOTE The default data for a parameter cannot be modified from the
Parameter Set Editor, it can only be changed using KULT.

The first row of the parameter set edit panel lists the column heading for the library
module: parameter set name and parameter names.

The first column displays the parameter set name. If the library has defaults set for any
parameters, the parameter set name “Defaults” will displayed in the first column with
the values in the appropriate field. Parameter set names may contain any alpha-
numeric character or an underscore character. The name of the parameter set is made
available in the Parameter Set Selection box in the KITT Parameter Entry window.

The second and greater columns display the parameter values or identifiers. Valid
values must be appropriate for the data type of the parameter. Identifiers must be
resolvable by KITT and KTXE.

This field will display a message about the item that has focus. For parameter set
parameters the following items are presented: parameter data type and value range.

To edit data in one of the cells, click in the cell and enter the new value. To remove a
parameter set data value, clear the contents of the cell, or select Cut from the Edit
menu.

To add a new parameter set, click on the row above where you wish the new parameter
set to be. Select Add New Set After from the Edit menu. A new parameter set will be
created. Enter the name of the new parameter set in the first column. Enter the rest of
the parameter set data as needed.

To delete an entire parameter set, click on the parameter set name cell and press the
Delete Parameter Set button. You will be asked to confirm the deleting. Please note
that the “Cut” option does not function for entire parameter sets.

To refresh the library listing to view new or remove deleted libraries and/or modules,
minimize and then maximize the root directory labeled Libraries in the Library browser
area.

S530 KTE Software Creating Test Plans 2-41
If a module is deleted from a library, all parameter set data will be purged from the data
structures. The user must save this parameter set in order to completely remove the
data from future use.

Keithley User Library Tool (KULT)
KULT is a tool used to create and manage user modules and libraries. It performs a
different function than the other KTE tools. The other tools are used to capture data to
describe the wafer, tests, parameter limits, wafer test plans, cassette test plans and
operator test selections. KULT is used to make code additions and organize the code
into modules and libraries. In KULT, the user will edit and compile C code.

KULT is used to extend the testing capabilities of a standard software distribution. A
structured graphical user interface is provided to facilitate the code and data entry. The
module calling structure, code, parameters, description, and include files are all entered
separately. This structured entry allows the user extensions to be functionally integrated
with the KTE test plan development and production testing tools. Thus, proprietary test
algorithms, shop floor control procedures, and other unique site requirements can be
added without vendor supplied software upgrades. Also, KULT created user library
extensions will be compatible with future software upgrades.

KULT libraries are created to allow for easy and quick extensions to the capabilities of
the parameter test routines (PAR), prober drivers, and the production test execution
engine (KTXE). Once a “user library” is developed, it is available for test macro
development in KITT. Or, the module can be included in KTXE for execution at the User
Access Point (UAP) specified in the Cassette Plan.

KULT libraries are dynamically loaded when used by KITT and KTXE. All the file control
benefits of libraries are realized (single master copy, reuse, and control). Site specific
test modules can be created once and then called by many different product test plans.
A new user library can call the system libraries and other user libraries.

KULT main window

The KULT main window is shown in Figure 2-33. The library name, module name,
module call, and code are presented to the user in this window. Other windows are
used to present the module’s arguments and description.

2-42 Creating Test Plans S530 KTE Software
Figure 2-33
KULT main window

Title bar

The title bar lists the name of the currently open library module and the read/write
status of the file.

KULT file menu

The File menu shown in Figure 2-34 contains the following items:

• New Library — Produces the new library name dialog box and initializes the new
library.

• Open Library — Lists available user libraries.

• Copy Library — Permits creating a copy of an existing Library.

• Delete Library — Deletes the selected library and all of its contents.

• New Module — Produces the module name dialog and initializes the new module.

• Open Module — Lists available modules.

• Copy Module — Permits copying the current module into an existing Library.

• Save Module — Saves changes made to a module.

• Delete Module — Deletes the selected module from a library. Note that you must
rebuild the library to ensure the module has been deleted.

S530 KTE Software Creating Test Plans 2-43
• Include — Inserts other modules into the module body area. This function lets you
alter an existing module or create a new module.

• Exit — Exits KULT.

Figure 2-34
KULT file menu

KULT edit menu

The Edit menu shown in Figure 2-35 contains file editing functions.

The edit options are:

• Cut — Removes highlighted text, which can be restored to a new location using the
Paste function.

• Copy — Copies highlighted text, which can be placed in a new location using the
Paste
function.

• Paste — Places cut or copied text in a new location.

NOTE When cutting, copying, and pasting between the main window
and the Description window, use the Cut or Copy commands from
the window that contains the text, and use the Paste command
from the window where the text is being placed.

Figure 2-35
KULT edit menu

The Main Body Area, Description Window, and Include Files window all support the
following menu items from the menu that appears when the middle mouse button is
pressed:

• Cut — Same as Cut in Edit menu.

• Copy — Same as Copy in Edit menu.

• Paste — Same as Paste in Edit menu.

2-44 Creating Test Plans S530 KTE Software
• Select All — Highlights all text in selected window for cutting or copying.

• Search — Opens a dialog box that lets you specify a text string to search for.

• User Paste Strings — Reveals Add User Paste Strings, which lets you enter a text
string that you want to paste into the selected window.

KULT view menu

The View menu lets you display or conceal the parameter box or the description box.
See Figure 2-36 for the View menu options.

Figure 2-36
KULT view menu

KULT options menu

The Options menu shown in Figure 2-37 contains the following functions:

• Compile — Compiles source files into object files and checks for errors in the mod-
ule.

• Compile and Build — Performs both the Compile and Build Library functions.

• Build Library — Creates a user library and establishes help files for the module.

• Compile All and Build — Performs the Compile and Build Library operations for all
modules that are part of the current library.

• Hide Library — Toggles the availability of the presently open library to a test macro,
in KITT, between visible and hidden.

• UAP Library — Toggles the availability of the presently open library for use at a
UAP.

• Library Dependencies — Allows the user to specify other user libraries to link to.

Figure 2-37
KULT options menu

KULT help menu

The Help menu contains online help information about KULT.

S530 KTE Software Creating Test Plans 2-45
Module identification area

The module identification area is located directly below the menu bar and defines the
active library and module. The components of this area are:

• Library Name — Defines the active library.

• Module Name — Defines the active module.

• Return Type — Defines the format of the module’s output. The standard variable
types used in KULT are:

– double — double precision data

– float — single precision, floating point data

– int — integer data

– long — 32-bit integer data

– void — no data returned

• Apply — Updates the module name and return type of the present library.

• Library Hidden, Library Visible, Library UAP/Hidden, or Library UAP/Visible
(one of these is displayed) — Indicates whether the presently open library is hid-
den or visible to test macros in KITT and/or available to UAPs in KTPM. For details,
refer to “Changing library attributes” on page 2-52.

Include area

The include area is located directly below the module identification area and displays
header files and constants specified in the parameter box. The include area only
displays information and cannot be accessed.

Module body area

The module body area is located below the include area and displays code of the active
module for developing and editing purposes. Scroll bars located to the right and below
the module body area lets you move through the code.

Error/warning message area

This area will contain any error and/or warning messages generated by the C compiler.
Selecting (double-clicking) a compile error listed in this window will move the cursor to
the line that caused the error in the module body area. This facilitates error corrections.
If no errors are generated during a compile, the following message will appear: “No
error/warnings reported, compilation/build was successful.”

Parameter window

The Parameter window shown in Figure 2-38 is located at the top right side of the KULT
screen and defines the variables specified in the module.

The Parameter window components are:

• Parameter definition area

• Include files area

• Control button area

2-46 Creating Test Plans S530 KTE Software
Figure 2-38
Parameter window

Parameter definition area

The parameter definition area is the primary function of the Parameter window. The
parameter definition area defines the Parameter Name, Data Type, and I/O field for all
data included in the module call.

Parameter Name

The Parameter Name identifies the specified parameter.

Data Type

The Data Type specifies the parameter type. Clicking on the arrow to the right of the
data type field activates a pop-up menu listing the available data types, which are:

• char — character data

• char* — pointer to character data

• float — single precision, floating point data

• float* — pointer to single precision, floating point data

• double — double precision data

• pointer — double precision, floating point data

• int — integer data

• int* — pointer to integer data

• long — 32-bit integer data

• long* — pointer to 32-bit integer data

• F_ARRAY_T — float array type

• I_ARRAY_T — integer array type

• D_ARRAY_T — double precision array type

I/O field

The I/O field defines whether the parameter is an input or output type. Clicking on the
arrow to the right of the I/O field will activate a pop-up menu that shows the input and
output selections.

S530 KTE Software Creating Test Plans 2-47
Default, min, and max fields

These three fields are used to specify the following:

– Default field — For input parameter: sets the default value for the specified
parameter. For output parameters: the default identifier name is set.

– Min field — Sets the suggested minimum value for the specified parameter, if
applicable.

– Max field — Sets the suggested maximum value for the specified parameters, if
applicable.

Include files area

The include files area is located at the bottom of the parameter box and lists the header
files used within the module. This area can be used to add include files and #defines to
the present module.

Control button area

The control button area is aligned vertically along the right side of the parameter box
and is composed of the following functions:

• Add — Adds a parameter template to the parameter definition area after the present
parameter template.

• Delete — Removes a parameter template from the parameter definition area.

• OK — Updates the parameter list and header files of the module. The parameters
and header files will appear in the main window, and the Parameter window
becomes hidden.

• Apply — Updates the constants and header files of the module. The parameter list
and header files appear in the main window.

Description window

The Description window shown in Figure 2-39 is located at the bottom of the KULT
screen. Information entered in this window is for module documentation and KITT user
library help. For more information on KITT, refer to the Keithley Interactive Test Tool
section.

Figure 2-39
Description window

File menu

The File menu shown in Figure 2-40 has the following options:

2-48 Creating Test Plans S530 KTE Software
• New — Clears the description area of text.

• Include — Lets you include an existing file in the description. Selecting Include pro-
duces the include dialog box. Use this box to locate the file you wish to include.

Figure 2-40
Description window file menu

Edit menu

The Edit menu shown in Figure 2-41 contains the following selections:

• Cut — Removes highlighted text, which can be restored to a different location using
the Paste function.

• Copy — Copies highlighted text, which can be placed in a different location using
the Paste function.

• Paste — Places cut or copied text at the cursor location.

• Select All — Lets you highlight all of the information entered in the description area
for the purpose of cutting, copying, and pasting to a different location.

NOTE When cutting, copying, and pasting between the main window
and the Description window, remember to use the Cut or Copy
command from the window that contains the text, and the Paste
command from the window where the text is being placed.

You can also use the Edit commands that are accessed by click-
ing the middle mouse button as described earlier in this section.

Figure 2-41
Description window edit menu

Description area

The description area is located below the menu bar and provides the area to enter help
information.

S530 KTE Software Creating Test Plans 2-49
NOTE Do not place a period in the first column of any line in the descrip-
tion area. Any text after the period in the description area will not
be available from KITT Command Help.

Command line interface

The KULT command line interface lets you load, build, or delete libraries and add or
delete modules from the command line. The format for command line instruction is:

kult subcommand [options] [filename...]

The subcommands include:

• new_lib

• bld_lib

• del_lib

• add_mod

• del_mod

• compile_mod

• update_mod

The options include:

• -l<library_name>

• -d<directory_name>

• -hide

• -nohide

• -uap

• -nouap

• -dep [library_name].....[library_name]

new_lib

The new_lib subcommand lets you start KULT and immediately load a new library from
the command line. The command is:

kult new_lib -1<library_name>

bld_lib

The bld_lib subcommand lets you start creating a new library immediately after starting
KULT from the command line. The command is:

kult bld_lib -1<library_name>

del_lib

The del_lib subcommand lets you delete a library from the command line. The
command is:

kult del_lib -1<library_name>

add_mod

The add_mod subcommand lets you add a module immediately after starting KULT
from the command line. The command is:

kult add_mod-1<library_name> -d<directory_name> <module>

2-50 Creating Test Plans S530 KTE Software
The -d option is needed when the modules you want to add are not in the present
directory.

del_mod

The del_mod subcommand lets you delete a module from the command line. The
command is:

kult del_mod -1<library_name> <module>

compile_mod

The compile_mod subcommand lets you compile a module into the library
Library_name. The module must already exist. The command is:

kult compile_mod -l<library_name> <module>

update_mod

The update_mod subcommand generates the prototype file, wrapper files, and help file
for a module in the library Library_name, then compiles the module. The module must
already exist. The command is:

kult update_mod -l<library_name> <module>

The following is an example of how to use the command line to create a new library,
add an existing module to the library, and then build the new library. This need can
occur when you wish to add a usrlib module from another facility or project to the
current project. Please note that the new module name MUST BE UNIQUE from any
other module name in other user libraries.

In this example, you will be creating the new library, mylib2, and adding the module,
res3. Both the old library and the new library are contained in the /home/kthmgr
directory.

Example

kult new_lib -lmylib2
kult add_mod -lmylib2 -d/home/kthmgr res3
kult bld_lib -lmylib2

If you wish to add the module to an existing library, simply omit the “kult new_lib -
lmylib2” step above. This assumes that the user library mylib2 already exists and does
not already contain a module named res3.

Copying user libraries with kult_copy_lib

The kult_copy_lib utility can be used to copy all or listed user library source files (.c)
from the current or specified directory to a new user library in the current
KI_KULT_PATH.

Usage:

kult_copy_lib -llibrary [-ddirectory [files]]

library = new user library name

directory = directory path that contains the.c user library files

files = one or more files from the directory to include (default is *.c)

Example:

> ls *.c
module1.c module2.c

S530 KTE Software Creating Test Plans 2-51
> kult_copy_lib -lmy_lib
Library “my_lib” was created!
module module1 added to library my_lib
module module2 added to library my_lib
Library my_lib built.
done.

or

> ls ~/libfiles/*.c
file1.c file2.c file3.c
> kult_copy_lib -lmy_lib2 -d~/libfiles file1.c file3.c
Library “my_lib2” was created!
module file1 added to library my_lib2
module file3 added to library my_lib2
Library my_lib2 built.
done.

Migrating user libraries with migrate_usrlib

The migrate_usrlib utility provides an easy method of copying usrlibs from previous
KTE installation packages to the current KTE installation package when the current
package is installed in an alternate directory. In fact, it can be used to copy any usrlib
from any project of any previously installed package into the current KI_KULT_PATH
directory.

migrate_usrlib first looks for previously installed packages, then prompts the user to
select the one where the source usrlib is located. If the -p option is used, it then
displays a list of projects associated with the package, and prompts the user to select
one. If -p is not used, or if no projects (other than the default) are associated with the
selected package, the script assumes that the default project contains the source usrlib.
It then displays a list of usrlibs in the selected package/project, and prompts the user to
select one (or all) to copy. It proceeds to call kult_copy_lib to copy the selected usrlib(s)
into the KI_KULT_PATH directory, and then exits.

Usage:

migrate_usrlib [-p]

Locking a module

Each time a module is opened within KULT, a lockfile is created at $KI_KULT_PATH/
“libname”/lock that prevents other users from modifying the module while it is open. The
module may be accessed and used, but no changes can be made to the module
without changing the name of the file.

When an attempt is made to access a module that is already open, a dialog box will
appear stating that the module selected is locked and will give the present user’s name
and PID.

After clicking on the OK button, the module will open normally. If any changes are made
to the module while it is locked by another user, this edited module must be given a new
name. This new name cannot be a name that is already being used, or KULT will not
allow the module to be saved.

WARNING If a library is deleted while another user is working on a mod-
ule from that library, the module will still be deleted without
warning, even though it is locked, and the user will be

2-52 Creating Test Plans S530 KTE Software
prompted that the file no longer exists when a Save is
attempted. The user should then save the file to a new mod-
ule.

NOTE It is good practice to periodically check the home directory of the
lock files and clean up any files that no longer require locks.

When a module is opened, a lockfile is created at $KI_KULT_PATH/“libname”/lock in
the following manner:

The lockfile is named X - Y .lck, where X is the library name and Y is the module
name.

The following information is contained within the lockfile:

PID:****The processor ID.
USER:****User name.
HOST:****Host computer name.
TIME:****Time lock was created.
LIB:****Library name.
MOD:****Module name.
FILE:****Path/Lockfilename.

Changing library attributes

Hiding libraries from KITT macros

A library that you create may contain modules that will not work if called by KITT
macros — for example, modules that are designed only to be called by other modules
in other user libraries. The “Hide Library” menu item, as well as the analogous - hide
command-line option, allows you to make such a library unavailable to macros by
hiding the library from KITT.

Application example

Suppose user library LibB contains low level modules that only modules in user library
LibA can call. By setting the dependency of LibA on LibB and then hiding LibB, only the
modules in LibA will be able to call the modules in the hidden LibB.

Procedures

• To hide a user library from KITT, use either of the following methods.

– Using the KULT window, do the following:

1. Open the library in KULT.

2. From the Options menu, select the “Hide Library” toggle. The “Library Visible”
or “Library UAP/Visible” indication — located in the upper right of the KULT
main window — changes to “Library Hidden” or “Library UAP/Hidden.”

3. In the Options menu, select “Build Library” to rebuild the library as a hidden
library.

– Using the command line, enter the following:

kult bld_lib -l<library_name> -hide

• To make a user library visible in KITT, use either of the following methods.

– Using the KULT window, do the following:

1. Open the library in KULT.

S530 KTE Software Creating Test Plans 2-53
2. From the Options menu, deselect the “Hide Library” toggle. The “Library Hid-
den” or “Library UAP/Hidden” indication — located in the upper right of the
KULT main window — changes to “Library Visible” or “Library UAP/Visible.”

3. In the Options menu, select “Build Library” to rebuild the library as a library
that is hidden from KITT.

– Using the command line, enter the following:

kult bld_lib -l<library_name> -nohide

Table 2-1 summarizes “Hide Library” use combined with “UAP Library” use (discussed
next).

Setting library availability at UAPs

Some libraries that you create may contain modules that do not work in UAPs. The
“UAP Library” toggle, when deselected, as well as the analogous - nouap command-
line option, make such libraries unavailable at UAPs and in KTPM. Refer to the
procedures below and Table 2-1.

• To make a user library unavailable at UAPs and in KTPM, use either of the following
methods:

– Using the KULT window, do the following:

1. Open the library in KULT.

2. From the Options menu, deselect the “UAP Library” toggle (“UAP Library” is
selected by default). The “Library UAP/Visible” or “Library UAP/Hidden”
indication — located in the upper right of the KULT main window— changes
to “Library Visible” or “Library Hidden.”

3. In the Options menu, select “Build Library” to rebuild the library.

– Using the command line, enter the following:

kult bld_lib -l<library_name> -nouap

Table 2-1
Effect of library options on library availability to macros and UAPs

Combination of options that is set at the
command line OR in the Options menu Library state

Indication that displays
above the “Apply”

button.

bld_lib
command
options2

Options menu
selections2

Available to test
macros and

visible in KITT
Available at UAPs

and in KTPM3

-nohide1

-uap1 • •
-nohide1

-nouap • No

-hide
-uap1

No •
-hide

-nouap
No No

1. Default state.
2. These commands or Options menu selections change the present state of the library by overriding and changing values in the

settings.ini file.
3. Modules used at KUAP locations must be compiled with the -uap bld_lib command option.

2-54 Creating Test Plans S530 KTE Software
• To make a user library available at UAPs and in KTPM, use either of the following
methods.

– Using the KULT window, do the following:

1. Open the library in KULT.

2. From the Options menu, select the “UAP Library” toggle. The “Library Visible”
or “Library Hidden” indication — located in the upper right of the KULT main
window — changes to “Library UAP/Visible” or “Library UAP/Hidden.”

3. In the Options menu, select “Build Library” to rebuild the library.

– Using the command line, enter the following:

kult bld_lib -l<library_name> -uap

KTE library locking

Run-time library locking

LIBRARY reader locks for KTXE, KSOX, and KITT

These locks will be set when a process opens the library for use. These locks reside in
the LIBRARY lock directory ($KI_KULT_PATH/lock). The lock file is named:

libName.pid.hostname

where:

libName = the name of the library
pid = the pid of the process that is using the library
hostname = the hostname of the machine using the library

The following programs/tools use the Library reader locks:

KSOX

When we attempt to open a usrlib, check for the existence of a build lock. If a build lock
exists for this library, skip the dlopen call. No reader lock will be created since the
dlopen was not called. Delete the reader lock when a library is closed.

KITT

KITT will only open the usrlib when it needs references for syntax checking or for
loading the command list.

KITT will use the KSOX utilities to create and delete the reader locks. The same rule
applies if a build lock exists while attempting to open a library; the open will fail.

KTXE

KTXE will use KSOX utilities to create and delete the reader locks. The same rule
applies if a build lock exists while attempting to open a library; the open will fail.

Edit-time library locking

LIBRARY write lock for KULT

This lock will be created and exist only while KULT is building the library. This lock
resides in the LIBRARY lock directory. ($KI_KULT_PATH/lock) The lock file is named:

S530 KTE Software Creating Test Plans 2-55
libName

where:

libName = the name of the library

KULT will check for the presence of any reader locks before attempting a “build library”
operation. If a read lock exists, a warning message will be shown to the user and the
library build will not occur.

KULT will create a write lock before the build operation starts. This write lock will be
removed when the build operation has completed.

KULT uses the existing module lock scheme.

KULT uses the existing module lock scheme to prevent multiple edits of the same
module. The location of these lock files changed from the old lock directory, $KIHOME/
lock, to a new
location:

$KI_KULT_PATH/libName/lock

where:

libName = the name of the library.

Troubleshooting

Occasionally, an error occurs and lock files will not be deleted or removed by the
appropriate application. The following are some situations that can cause problems:

• Using the debugger and not running the program to completion:
Using the debugger to test a program and aborting the session before the program
can complete normally, will leave reader locks present in the $KI_KULT_PATH/lock
directory.

• Using the “kill -9” command:
If a process is stopped via the “kill -9” command, reader locks will not be removed
automatically from the $KI_KULT_PATH/lock directory.

 Simply deleting the lock files will resolve the above problem(s).

Limits File Editor (LFE)
LFE creates and edits limits files (.klf). Spreadsheet and Dialog views are provided for
data manipulation. The Dialog view is restricted to a single parameter at a time. The
following information is included in the file for every test parameter:

Character fields: ID, Name, Units, Category.

Choice fields: Report, Critical, Abort Action, Abort Limit, and Enabled.

Data Fields: Target, four limit pairs (Valid, Spec, Ctrl, and Engr), Class, and three user
data fields (User 1, User 2, and User 3).

LFE data is used both during test execution and after test execution. Abort flags can be
set to interrupt testing if preliminary test results (on a few parameters) include gross
errors. In such cases, testing can be delayed for operator intervention, corrective
action, and retry. User Access Point (UAP) code can use LFE data to perform simple or
complex run-time actions.

LFE data is also used by the Keithley Summary Utility (KSU) and the Lot Summary
program to create reports. These reports show the acquired data compared against the

2-56 Creating Test Plans S530 KTE Software
Valid, Spec, Ctrl, and Engr limit pairs. The limits file used during production testing is
specified in the Wafer Plan.

LFE main window

The LFE Main window shown in Figure 2-42 is the primary interface of LFE.

LFE is a full-screen graphical application with a spreadsheet format. The main window
contains four pulldown menus, seven pushbuttons that correspond to menu selections,
and a data entry area organized by five tabs.

Figure 2-42
LFE main window

Title bar

The title bar lists the name of the currently open limits file and the read/write status of
the file.

The pulldown menus contain the functions to select and save parameter limits files; to
exit LFE; to manipulate data in a limits file; to view limits file information in a different
format; and to access help. The following paragraphs contain a brief overview of each
menu.

LFE file menu

You can use the File menu to reinitialize the main window (new), to load or save limits
files, to delete limit files, to generate limits from KTM (Keithley Test Macros) files, to set
a limit as the default limit, to save column settings, and to exit LFE.

S530 KTE Software Creating Test Plans 2-57
LFE edit menu

You can use the Edit menu to manipulate limits by cutting, copying, pasting, and
inserting. You can also do a search for specific data (character strings) or sort the data
by the selected data field.

LFE view menu

You can use the View menu to access the Limits Editor Dialog window and enter a
comment line that will be stored with the file.

LFE help menu

You can use the Help menu to acquire online help information about LFE and the
release version of the LFE being run.

Pushbuttons

Seven pushbuttons located beneath the menu bar provide shortcuts to menu
selections.

Limits data entry area

The limits data associated with each parameter is arranged along one row. Multiple
rows contain the same limits data for multiple parameters. The information is organized
by tabs, allowing the user to quickly find and modify the desired fields. There are five
tabs:

• Identification — Contains the ID, Name, Units, Category, and Critical fields.

• Actions — Contains the ID, Name, Enabled, Class, Report, Abort Action, and Abort
Limit fields.

• Limit Values — Contains the ID, Name, Target, Valid (H/L), Spec (H/L), Control (H/
L), and Engineering (H/L) fields.

• User Information — Contains the ID, Name, User 1, User 2, and User 3 fields.

• All Items — Contains all the fields.

ID

The ID uniquely identifies each test parameter. This entry must be a legal “C” name.
The string may contain a maximum of 128 characters. This field is required.

Name

The name field provides for a “friendly” name, perhaps describing the parameter more
clearly than the ID. The data in this field is used by the Keithley Summary Utility (KSU).
This field may contain non-alphanumeric characters (including spaces) and need not be
a legal “C” name. The only constraint is that it must not include commas. The string
may contain a maximum of 40 characters.

Units

The Units field defines the units for the limit’s test results. This field may contain non-
alphanumeric characters (including spaces) and need not be a legal “C” name. The

2-58 Creating Test Plans S530 KTE Software
only constraint is that it must not include commas. The string may contain a maximum
of 10 characters. Examples of entries for this field are volts, amps, etc.

Category

The Category field allows you to specify what group the results data will belong to when
all of the results data is sorted into database groups. Each category must be a single-
word string. One parameter can belong to several categories, as long as all the
categories are listed (comma- or whitespace-delimited). This field may contain a
maximum of 20 characters.

RP

RP (Report) determines whether or not the limit is included in the lot summary report
compiled in KSU. The entry for this field is “Y” for yes and “N” for no.

CR

CR (Critical) allows parameters to be tagged as not critical (N) or as critical with one of
nine different critical flags (1,2,3,4,5,6,7,8,9).

Target

The Target field identifies the ideal result expected for the specified result ID. The entry
for this field is a numeric value.

Abort Action

The Abort Action field identifies the sequencer execution engine level to proceed to if
the measured result fails the abort limit check. This field toggles between the following
values: subsite, site, wafer, lot, or none.

Abort Limit

The Abort Limit field specifies the limits to use for the Abort Action results comparison in
the execution engine. If an abort flag is triggered by the measured value, the sequencer
will loop to the sequencer level specified by the Abort Action field. This field toggles
between the following values: Valid, Spec, Ctrl, or Engr.

Valid, Spec, Ctrl, and Engr high and low parameters

Each limit has up to four different high and low limits that can be set. These limits can
be used during test program execution to establish testing abort criteria. These limits
are used to sort parameter test results in the KSU lot summary report. These ranges
can be set to any user-specified parameters and are expressed in scientific notation.
Following are four typical applications for the parameters.

• Valid — This limit pair can be used to check for faults within the testing system.
Numbers outside of this range indicate that the data being produced by the system
are invalid usually due to an equipment malfunction.

• Spec — This limit pair be used to check for manufacturing standards. Numbers out-
side of this range indicate that the device being tested does not meet manufacturing
specifications.

• Ctrl — This limit pair can be used to check process control limits.

S530 KTE Software Creating Test Plans 2-59
• Engr — This limit pair can be used by engineers to ensure the components meet
design
standards.

Enabled

The Enabled field is used only with the Adaptive Test option software. This field
determines whether this parameter will be included in the test. The entry for this field is
“Y” for yes and “N” for no.

Class

The Class field can be used with the enabled flag or as user data. This field may
contain a maximum of 255 characters.

User fields

The User fields may contain a maximum of 255 characters of information. There are
three user data fields:

• User Field 1.

• User Field 2.

• User Field 3.

Limits editor dialog window

The Limits Editor Dialog window displays all of the elements for a parameter, one
parameter at a time, as shown in Figure 2-43. A single parameter in the spreadsheet
format is one row. The parameter that appears in this window is the parameter that is
highlighted in the main window.

This window also tracks the movement of the cursor in the LFE Main window. As
changes are made in the main window, the information in the Limits Editor Dialog
window is automatically updated.

There are two check boxes in this window for the Report (RP) and Enabled columns in
the main window. Checking these boxes is the same as entering “Y” in the
corresponding box in the main window. There are choice boxes for the Critical (CR),
Abort Action, and Abort Limit fields, allowing the user to select one of the available
options for each field.

2-60 Creating Test Plans S530 KTE Software
Figure 2-43
Limits editor dialog window

Keithley Test Plan Manager (KTPM)
The following paragraphs contain basic information on the Keithley Test Plan Manager
(KTPM). Brief descriptions of the Wafer Plan Builder, the Cassette Plan Builder, and the
Test Documentation Tool are included.

KTPM is a graphical user interface used by the test engineer to create a cassette plan
file (.cpf) that can be executed using the Keithley Test Execution Engine (KTXE). The
information that is entered into the .cpf file determines the parameters of the test
process that will be executed.

Wafer plan builder
The Wafer Plan Builder is used to create a wafer testing plan. The most important
function performed in the wafer plan builder is the binding of tests to wafer probe
patterns. This can be simplified for many wafer plans by using the feature of grouping
test macros into site plans.

Wafer plan builder main window

The Wafer Plan Builder window shown in Figure 2-44 contains the following areas:

• Main menu bar — Contains the File, Options, and Help menus.

• Wafer description file selection field — Used to select the wafer description file.

• Limits file selection field — Used to select the limits file.

• Probe card file selection field — Used to select the probe card file.

• Sort Subsites button — Used to modify the subsite probing sequence.

• Plan type selection button — Used to select between building a Wafer Plan or a
Site Plan.

S530 KTE Software Creating Test Plans 2-61
• Probe Patterns/Site Plan list — Gives a listing of all of the probe patterns or site
plans available.

• Test Macros/Site Plans list — Gives a listing of all the valid test macros and site
plans for the wafer description file specified.

• Site plan/Wafer plan builder field — For site plans, this field contains the macros
in the site plan. For wafer plans, this field contains the macros and site plans bound
to the probe pattern.

• Insert buttons — Used to place selected files before or after a file in the builder
field, or to delete a file from the builder field.

• New site plan button — (Available only when the plan type button is set to Site
Plan.) Opens a dialog box that allows you to enter the name and description of a
new site plan.

• Wafer plan file description field — Lets you enter a description of the wafer plan
file.

• Wafer description file description field — Displays the description of the selected
.wdf file. This field cannot be edited.

Figure 2-44
Wafer plan builder

Title bar

The title bar lists the name of the currently open wafer plan file and the read/write status
of the file.

Wafer plan builder file menu

The File menu contains the following selections:

2-62 Creating Test Plans S530 KTE Software
• New — Clears the Wafer Plan Builder main screen to prepare for creating a new
wafer plan file.

• Open — Opens an existing wafer plan file.

• Save — Saves the currently displayed wafer plan file under the current name.

• Save As — Saves the currently displayed wafer plan file under a new or pre-existing
user-specified name.

• Delete — Opens a window allowing you to delete a wafer plan file.

• Exit — Exits the Wafer Plan Builder.

Wafer plan builder options menu

The Options menu contains the toggle: Save Default Path. This toggle enables/disables
the storing of the various filenames within the .wpf file. The default environment
variables will be assumed and used for file locations. If this toggle is disabled and the
user selects a file that is not in the default location, the path is saved with the filename.
If the toggle is enabled, the path will always be saved in the .wpf file.

Wafer plan builder help menu

The Help menu provides on-line help and release version information about the Wafer
Plan Builder. The Documentation option allows access to the on-line KTPM manual.
The About option displays the software revision information.

Wafer description file selection field

The wafer description file selection field lets you select the .wdf file that will be used
during test execution of this wafer plan. The .wdf file selected will be read to display the
defined probe patterns. Right-clicking on the filename in this field displays a pop-up
dialog allowing you to open the wafer file for editing.

If a test macro/site plan has been entered into the wafer plan and the .wdf folder button
is selected, a warning box shown in Figure 2-45 will appear telling you that there are
wafer plan entries that will be deleted if you continue selecting a new .wdf file. Select
Yes to cancel the procedure or No to continue.

Figure 2-45
Wafer plan entry warning box

Limits file selection field

Clicking on the limits file selection field folder icon lets you select the .klf file that will be
used during wafer plan execution. Right-clicking on the filename in this field displays a
pop-up dialog allowing you to open the limits file for editing.

S530 KTE Software Creating Test Plans 2-63
Probe card file selection field

Clicking on the probe card file selection field folder icon lets you select the .pcf file that
will be used during wafer plan execution. Right-clicking on the filename in this field
displays a pop-up dialog allowing you to open the probe card file for editing.

Plan type selection button

Click and hold on this button and there will be a choice between building a Wafer Plan
and building a Site Plan.

Sort subsites button

When this button is selected, the subsites will be sorted for testing by their increasing
X-axis and Y-axis values. When this button is not selected, the subsites are tested in
the order they appear on the subsite list.

Probe patterns/site plans list

When the plan type selection button is set to Wafer Plan, this area will contain a list of
all the probe patterns available from the wafer description file selected. When Site Plan
is selected, this area will list all of the site plans available for use when building the
wafer plan. Site plans are saved within each .wpf file only; there is no master list of site
plans accumulated across .wpfs.

Test macros/site plans list

When the plan type selection button is set to Wafer Plan, this area will contain a list of
all the test macros and site plans available. When Site Plan is selected, this area will list
all of the test macros available for use when building a site plan.

Site plan/wafer plan builder field

This field is used to build the wafer plan or site plan. By clicking on the different files in
the Probe Pattern/Site Plan list and the Test Macros/Site Plan list, and then clicking on
the Insert Bef. or Insert Aft. buttons, you will add the highlighted files to the site plan or
wafer plan you are building. When macros or site plans are bound to probe patterns,
those macros/site plans are removed from the list of available macros/site plans. Each
macro/site plan can be bound to only one probe pattern.

Insert buttons

Used to move the files from the Probe Pattern/Site Plan list and the Test Macros/Site
Plan list into the Site Plan/Wafer Plan Builder field. The functions of each of these
buttons is:

• Insert button — Will insert the highlighted files from the Probe Pattern/Site Plan list
and the Test Macros/Site Plan list before the highlighted file in the Site Plan/Wafer
Plan Builder field.

• Append button — Will insert the highlighted files from the Probe Pattern/Site Plan
list and the Test Macros/Site Plan list after the highlighted file in the Site Plan/Wafer
Plan Builder field.

2-64 Creating Test Plans S530 KTE Software
• Delete button — Will remove the file highlighted in the Site Plan/Wafer Plan Builder
field.

New site plan button

This button appears when the plan type selection button is set to Site Plan. Clicking on
this button opens a dialog box that lets you enter the name and description of a new
site plan. Once a site plan description is entered and a site plan is formed, it cannot be
viewed or edited in the wafer plan editor, and will only appear in the .wpf file whenever
the site plan is used in that .wpf. This new site plan will appear in the Site Plan list when
the plan type selector button is set to Site Plan, and in the Test Macros/Site Plans list
when the Plan Type selector button is set to Wafer Plan.

Wafer plan file description field

This field lets you enter a description of the wafer plan file, which can be edited and
saved.

Wafer description file description field

Displays the description of the selected .wdf file. This field cannot be edited.

Cassette plan builder
The Cassette Plan Builder shown in Figure 2-46 contains the following areas:

• Main menu bar — Contains the File, Options, and Help menus.
• File description field — Used to enter a description of the cassette plan file.
• Execution engine selection field — Used to select a specific execution engine.
• Probe card file selection field — Used to select the probe card file to be used for

all wafers in the cassette.
• Wafer description file selection field — Used to select the wafer description file to

be used for all wafers in the cassette.
• Lot ID data field — Used to enter the ID of the lot that is to be tested.
• Global data file selection field — Used to enter the files containing all the global

data
definitions.

• Wafer test plan area — Used to identify the Wafer Test Plan to be used for each
wafer
during testing.

• Standard UAP file field — Used to identify the file(s) containing any standard user
routines to be added to the execution engine. If multiple files are identified they will
be executed in the order entered.

• UAP Module/KTM area — Used to identify any additional modules or KTMs to be
added to the execution engine at the specified User Access Point (UAP).

S530 KTE Software Creating Test Plans 2-65
Figure 2-46
Cassette plan builder

Title bar

The title bar lists the name of the currently open cassette plan file and the read/write
status of the file.

Cassette plan builder file menu

The File menu contains the following selections:

• New — Clears the Cassette Plan Builder main screen to create a new cassette plan
file.

• Open — Opens an existing cassette plan file.

• Save — Saves the currently displayed cassette plan file under the current name.

• Save As — Saves the currently displayed cassette plan file under a new or pre-
existing user-specified name.

• Delete — Opens a window allowing you to delete a cassette plan file.

• Exit — Exits KTPM.

2-66 Creating Test Plans S530 KTE Software
Cassette plan builder options menu

The Options menu contains the following selections:

• Wafer Plan Editor — Opens the Wafer Plan Editor window, allowing you to create
or modify a wafer plan.

• Test Documentation Tool — Opens the Test Documentation Tool, allowing you to
view the cassette plan as it will be executed by the selected execution engine.

• Save Default Path — This toggle enables/disables the storing of the various filena-
mes within the .cpf file. The default environment variables will be assumed and used
for file locations. If this toggle is disabled and the user selects a file that is not in the
default location, the path is saved with the filename. If the toggle is enabled, the path
will always be saved in the .cpf file.

Cassette plan builder help menu

The Help menu provides on-line help and release version information about KTPM. The
Documentation option allows access to the on-line KTPM manual. The About option
displays the software revision information.

File description field

The file Description field is used to enter a short description about the cassette plan file.

Execution engine selection field

The execution Engine selection field lets you select the execution engine that will run
the cassette plan.

Probe card file selection field

The Probe Card File selection field lets you select the .pcf file that will be used during
test execution. This is an optional field that, if entered, will override the .pcf file specified
in any wafer plan file used. Right-clicking on the filename in this field displays a pop-up
dialog allowing you to open the probe card file for editing.

Wafer description file selection field

The Wafer Description File selection field lets you select the .wdf file that will be used
during test execution. This is an optional field that, if entered, will override the .wdf file
specified in any wafer plan file used. Right-clicking on the filename in this field displays
a pop-up dialog allowing you to open the wafer description file for editing.

Lot ID data field

This is an optional field that lets you identify the lot that will be tested. This data will be
used as the default if none is specified at run time by the operator or shop floor control
system.

Global data file selection field

The Global Data File selection field is an optional field that lets you specify any .gdf files
that will used to define data during plan execution. The full path name of the file should
be given.

S530 KTE Software Creating Test Plans 2-67
Slot ID type selection buttons

These buttons apply to the Slot ID column in the wafer test plan. Four different
selections are
possible:

• All — All wafers within a cassette will be tested with the same wafer plan.

• Relative — Each wafer should be identified by its slot position relative to the other
wafers in the cassette.

• Absolute — The wafer should be identified by its actual slot position in the cassette.

• Operator — Allows the operator to select which wafers to test.

Wafer test plan field

The Wafer Test Plan field lets you specify the wafer test plan for a specific wafer. This
area lets you specify the slot that contains the wafer, the wafer ID (optional), and the
path and filename of the wafer test plan.

Standard UAP file field

The Standard UAP file field is optional and lets you specify files that contain module and
KTM routines to be used at UAPs in the execution engine.

UAP module/KTM area

The UAP Module/KTM area lets you specify the module or .ktm file that will be executed
at the UAP listed. Available UAPs are shown by clicking the right mouse button in this
field and selecting Add New UAP After or Insert New UAP. A list arrow will appear that
lets you select from all the UAPs available to the selected execution engine. Each
engine will have a different list of available UAPs. The UAP list, and descriptions, are
stored in the ktpm.ini file.

Test documentation tool
The Test Documentation Tool is used to view the test that will be performed by the
cassette plan file specified in KTPM. The tool provides a report that shows each UAP
and .ktm file that is executed, in the order of execution for all wafers, sites, and
subsites.

Main window

The Test Documentation Tool main window, shown in Figure 2-47, contains the
following areas:

• Main menu bar — Contains the File and Help menus.

• Create report button — Will regenerate the report with any new options specified.

• KTM details toggle — Will enable or disable the display of KTM details.

• GDF details toggle — Will enable or disable the display of Global Data File details

• PCF details toggle — Will enable or disable the display of Probe Card File details.

• Validate toggle — Will enable or disable additional cassette plan validation steps.

• Display toggle — Will enable or disable displaying the test plan sequence report.

2-68 Creating Test Plans S530 KTE Software
• PgUp/PgDn buttons — Lets you scroll through the report page-by-page rather than
line-by-line.

• Report field — Shows the report created by the Test Documentation Tool.

Figure 2-47
Test documentation tool

File menu

The File menu contains the following selections:

• Save As — Saves the information to a new file.

• Print — Provides a complete printout of the Report.

• Exit — Exits the Test Documentation Tool.

Help menu

The Help menu provides on-line help and release version information about the Test
Documentation Tool. The Documentation option allows access to the on-line KTDT
manual. The About option displays the software revision information.

Create report button

When this button is clicked, the report will be created with either the KTM, GDF, and
PCF Details enabled or disabled.

S530 KTE Software Creating Test Plans 2-69
KTM details toggle

This toggle button is used to enable or disable the display of all KTM details. These
details consist of the actual test commands within the KTM. Enabling this option could
cause the report to be very large. This option provides a way to create a detailed
printout for archiving purposes.

GDF details toggle

This toggle button is used to enable or disable the display of the Global Data File
details. These details consist of the actual global data names and values. Enabling this
option could cause the report to be very large. This option provides a way to create a
detailed printout for archiving purposes.

PCF details toggle

This toggle button is used to enable or disable the display of the Probe Card File
details. These details consist of the actual pin names and assignments. Enabling this
option could cause the report to be very large. This option provides a way to create a
detailed printout for archiving purposes.

Validate toggle

This toggle button is used to enable or disable additional cassette plan validation steps.
These additional steps include checking the pathnames and file locations of all the files
associated with the selected cassette plan. Any errors that are identified are logged to
the
$KI_KTXE_CPF/cassPlanName.cpf.err file. These errors are also shown in the
documentation window.

Display toggle

This toggle button is used to enable or disable displaying the test plan sequence report
after the report has been created. A printout of the report can be created even if the
report is not displayed on screen.

PgUp/PgDn buttons

These buttons allow you to scroll through the report page by page. To move through the
report at smaller intervals, use the scroll bar along the right side of the report field.

Report field

This field is where the entire test report can be viewed. If a wafer plan file has been
specified for multiple slots, only the full details of the first occurrence of the wafer plan
file will be shown.

Using the test documentation tool

Once you have completed building your cassette plan file, you can preview the actual
test plan using the Test Documentation Tool.

2-70 Creating Test Plans S530 KTE Software
Select Test Documentation Tool from the Options menu. The Test Documentation Tool
will appear as shown in Figure 2-48.

Figure 2-48
Test documentation tool

S530 KTE Software Creating Test Plans 2-71
Enable/disable the appropriate options for your report and press the Create Report
button. The system will create and display the execution report in the display window.
From this window you can review your cassette plan to ensure that the test plan will
perform the desired tests in the proper sequence. For all wafers, sites, and subsites,
you can also examine each of the test macros by clicking on the KTM Details toggle
button and then the Create Report button. You can also print out a copy of the entire
test plan by selecting Print from the File menu. This will give you a printed copy of the
test plan that can be stored in your archives. The Save As option from the File menu
enables you to save an electronic copy of the report for archival.

Generating documentation during testing

It is possible to generate documentation during ktxe execution with the addition of a
command line switch to ktxe. The switch used is “-doc DOC_ON”. After ktxe completes
execution, a file is placed in the $KITMP directory with the same base name as the
cassette plan with the extension .cpf.kxd. The utility CreateExecDoc should then be
executed to produce a report. The report will be written to the $KITMP directory with the
cassette plan base name .cpf.kxd.txt. For more information on CreateExecDoc, enter
“CreateExecDoc -help”.

Usage:

ktxe -cpf cassette_plan -doc DOC_ON
CreateExecDoc -cpf cassette_plan

Example:

> ktxe -cpf myplan.cpf -doc DOC_ON
> CreateExecDoc -cpf myplan.cpf
> ls myplan.*
myplan.cpf myplan.cpf.kxd myplan.cpf.kxd.txt

Adaptive testing

Overview

Adaptive testing is an optional component of KTE that enables the test plan to change
for each wafer being tested. There are two main components of adaptive testing: zone
based testing and result based testing. Zone based testing creates random site test
patterns, and result based testing changes the sites or tests to be used based on the
results of previous site tests. Both of these methods are described below.

Zone based testing

Zone based testing is a test method where the sites to be tested are generated at run-
time. The sites to be tested are selected randomly from pre-defined zones, or patterns,
contained in the wafer definition file. For information on creating patterns in the wafer
definition file, refer to The Wafer Description Utility (WDU).

Zone based test modes

Zone based testing can be initiated by two different methods. The first method,
described below, is a command line switch for use with KTXE. The second method,

2-72 Creating Test Plans S530 KTE Software
described under Global Data Variables, is with the use of the KTXE_RP_test_mode
variable. There are four modes available when using zone based testing. Testing
modes are selected from the command line by specifying the “-u X” argument when
executing KTXE, where X is the test mode desired. For example:

ktxe -cpf MyPlan.cpf -u “A” -w TestZones.wdf

The four test modes are as follows:

• N – Normal Test — When the normal testing is selected, no patterns are generated
at run time. This is the default behavior of KTXE. If the -u command line argument is
not specified when executing KTXE, this mode is used.

• R – Runtime — This test mode generates random patterns based on the initial
wafer description file and the frequency of sites on each wafer. The frequency of
sites per wafer is defined in global data by KTXE_RP_max_freq. The initial wafer
pattern defines zones for testing. Each zone is defined by a pattern. Each pattern is
associated with a wafer plan file generated at run time from an initial wafer plan file.

• A – Additional Sites — Retests wafers based on a previously generated wafer
description file. The previous wafer description filename is LotID_retest.wdf. The
wafers will be retested using (pattern number + 1) of the original so different sites
are tested.

• S – Runtime with Skip — This test mode generates a random pattern for all wafers
that have a wafer plan that matches the name found in the datapool string
KTXE_RP_random_wpf. This mode must be used with absolute or relative wafer
Slot ID Types.

KTXE_RP user library

Zone based testing is accomplished with the use of calls to the user library KTXE_RP
at various UAPs. The following routines are included in the KTXE_RP user library:

• KTXE_RP_CleanUpWDF — This function renames the randomly generated WDF
file to lot_XXX_wdfname. This preserves the WDF file used in the test for a future
adaptive retest. This routine is used if a lot execution is suspended.

This function should be called at UAP_LOT_END.

• KTXE_RP_CreateRandomWDF — This function creates a wafer file based on the
maximum frequency and number of wafers. The name of the wafer description file is
saved in the cpf_info structure. This function uses the rand_pat utility to generate
random patterns. For information on the rand_pat utility, refer to KTE Support Utili-
ties.

This function should be called at UAP_WRITE_LOT_INFO.

• KTXE_RP_CreateWPF — This function creates a new wafer plan file to use the
appropriate probe pattern name. The new wafer plan file is created by duplicating
the base file and modifying the probe pattern name.

This function should be called at UAP_WAFER_PREPARE.

• KTXE_RP_GetUsrArgs — This function checks the command line arguments used
to invoke KTXE to determine the test mode. This overrides the global data entry,
KTXE_RP_test_mode, if used.

This function should be called at UAP_PROG_ARGS.

• KTXE_RP_RemoveWPF — This function deletes wafer patterns that were gener-
ated at run time.

This function should be called at UAP_WAFER_END.

S530 KTE Software Creating Test Plans 2-73
Required UAP files

A UAP file, adapt_zone.uap, has been provided to illustrate the usage of these library
commands. This UAP file must be specified in KTPM to enable zone based testing.

As an alternative to specifying this UAP file in every cassette plan file, this UAP file can
be specified to affect all cassette plans executed. This is accomplished by setting the
environment variable $KI_KTXE_SYSTEM_AP to point to the desired UAP file. Care
should be taken in using the UAPs. Execution order is important. Refer to Appendix E
for more information on UAPs and Section 5, Environment variables, for more
information on environment variables.

Global data variables

There are three global data values that affect the behavior of zone based testing. These
variables are normally defined in a global data file attached to the cassette plan file
through KTPM. These variables are as follows:

• KTXE_RP_max_freq — This variable defines the number of sites to be tested per
wafer when using zone based testing.

• KTXE_RP_random_wpf — This variable is only used by the Runtime Test with Skip
method of zone based testing. When using this test method, random wafer patterns
will be generated for all wafers having a wafer pattern name matching the value of
this variable.

• KTXE_RP_test_mode — This global data variable allows for all tests executed by
KTXE to be conducted using one of the zone based testing modes. This has the
same effect as using the four options for the command line argument “-u”. If you use
KTXE_RP_test_mode to define the test mode, remove any KTXE_RP_GetUserArgs
from the UAP list. KTXE_RP_GetUserArgs will override this global data variable.
The following are the four valid values for KTXE_RP_test_mode:

Sample GDF files are provided illustrating the use of these global data values. For each
Test Mode, a global data file with a name of the form adapt_KTXE_RP_n.gdf is
included; where n is the test mode number.

Result based testing

Result based testing is a test method where the tester changes the sites and/or tests
used in response to the test results received on previous sites. Result based testing
can be used to throw out bad wafers when a certain amount of failing data is received,
minimizing the collection of bad data. It can also be used to reduce test time on good
wafers by scaling back testing if all results are good. During data collection, results can
be evaluated and additional tests run immediately when failing data is encountered.
This can remove the need to re-probe the wafer.

Value
Command

Line Equivalent Test Mode

0 N Normal Test

1 R Runtime

2 A Additional Sites

4 S Runtime with Skip

2-74 Creating Test Plans S530 KTE Software
KTE uses six global variables in conjunction with the limits file to determine whether a
site or wafer is good or bad. The limits file determines which parameters are monitored
to determine failed sites. The global data variables determine how many tests can fail
before a site fails, and how many sites can fail before the wafer fails. Complete
descriptions of these global data variables are provided later in this section.

Result based test modes

There are four test modes available for use with result based testing. These four modes
operate as follows:

• Alternate Sites on Current Wafer — When testing on the current site fails, an addi-
tional alternate site is tested when the current site is completed. The alternate sites
are pre-defined in WDU using alternate test patterns, and have a 1-to-1 relationship
with the normal sites. Normal testing resumes on the next site.

• More Sites on Current Wafer — When testing on any site fails, additional pre-
defined sites are tested. There is a 1-to-many relationship between the normal sites
and the alternate sites. Normal testing does not resume on the next wafer, the addi-
tional sites will still be tested. The additional sites will continue for the remainder of
the lot on all wafers with the same wafer plan, as long as no new wafer plan is
encountered.

• More Tests on Current Wafer — When testing on a site fails, additional tests are
used on the next site (current wafer only). On the next wafer, the original testing
occurs (no additional tests will be performed). The additional testing occurs on the
current wafer but not the next wafer because the function KTXE_AT_wafer_begin
(at UAP_WAFER_BEGIN) sets the flag KTXE_AT_alternate_site_test_mode to 0.

• More Tests on Next Wafer — When testing on a site fails, a new wafer plan will be
executed on the next wafer, and all following wafer plans using the same name. This
is done with a new wafer file.

Global data variables

There are six global data values that affect the behavior of result based testing. These
variables are normally defined in a global data file attached to the cassette plan file
through KTPM. These variables are as follows:

• ktxe_at_ed_active — This variable must be enabled (by setting to 1) to enable
result based testing. When this global data item is enabled, tests using parameters
marked as disabled in the Limits File Editor will not be performed. This variable is
only used with the More Tests on Current Wafer test mode.

• KTXE_AT_critical_param_failure_limit — This variable defines how many critical
parameters on a site must fail before the site itself fails. This variable is used with all
result based testing modes. To fail a site on any parameter failure, set the variable to
0. To permit two failures, set the variable to 2; the third failure will fail the site.

• KTXE_AT_critical_site_failure_limit — This variable defines how many sites on a
wafer must fail before the wafer itself fails. If the wafer fails, testing on the wafer is
aborted. This variable is used with all result based testing modes. To fail a wafer on
any site failure, set the variable to 0. To permit two wafer failures, set the variable to
2; the third failure will fail the wafer. Note that critical site failures are only counted
for the original sites.

• KTXE_AT_limit_code — This variable defines which specific limit is used for a crit-
ical parameter. The following values are used to determine which limit is used:

Value Limit used

1 Valid

S530 KTE Software Creating Test Plans 2-75
• KTXE_AT_alternate_test_class — This variable defines the class of extra tests to
be enabled when a site fails. The class corresponds to the value of the Class field
assigned in the Limits File Editor (LFE) to the extra tests that will be performed. The
default value for this variable is “extra_tests”. This variable is only used with the
More Tests on Current Wafer testing mode. For more information on LFE, refer to
Limits File Editor (LFE).

• KTXE_AT_alternate_wafer_plan — This variable defines the alternate wafer plan
to be used when the next wafer will be tested with a new wafer plan. This variable is
only used with the More Tests on Next Wafer testing mode.

There are three demo global data values that are used with KTXE_AT_generate_val to
generate demo data. For more information, refer to the description of
KTXE_AT_generate_val later in this section. These variables are as follows:

• demo_type — This variable is a number (0 - 12) which defines result failures based
on site location on wafer.

• demo_high_lim — This variable defines the upper bound of passing results.

• demo_low_lim — This variable defines the lower bound of passing results.

Preparing result based tests

Implementing result based testing requires several additional steps beyond creating
normal tests. Depending on the testing mode used, modifications will need to be made
to the wafer definition file, wafer plan file, and limits file. Additional UAP and GDF files
also need to be specified.

For information on using the Limits File Editor, refer to Limits File Editor (LFE). For
information on using the Wafer Description Utility, refer to The Wafer Description Utility
(WDU).

The following paragraphs describe the requirements for each of the four modes of
result based testing.

General procedure for result based testing

The following is a general procedure for setting up an existing cassette plan to use
result based testing. This procedure assumes that a cassette plan file has already been
created using the desired tests.

1. Start KTPM and open the CPF file that will be adapted to use result based testing.

2. Add the required UAP file that corresponds to the desired test mode. The specific
files required are listed in the description of the individual test modes.

3. If using the Alternate Sites Current Wafer or More Sites Current Wafer testing mode,
modify the WDF file to include the alternate site pattern.

4. If using the More Tests Next Wafer testing mode, create a new wafer plan file to use
as the alternate wafer plan.

5. Specify the required GDF file that corresponds to the desired test mode. The spe-
cific files required are listed in the description of the individual test modes. Set the
global data variables as required by the desired testing mode.

6. Set up the limits file using LFE. Define the critical parameters and test classes if
required by the selected testing mode.

7. Save the cassette plan file.

2 Spec

3 Control

4 Engineering

2-76 Creating Test Plans S530 KTE Software
When the cassette plan file is executed, the desired result based testing mode will be
enabled.

Alternate sites on current wafer

When using this test mode, the test results on each site are evaluated before moving to
the next site. If the number of failed critical parameters on a site exceeds the value
specified in KTXE_AT_critical_param_failure_limit, then the site fails. When a site is
determined to have failed, the corresponding alternate site is tested.

The first step in implementing this test mode is to define the critical parameters using
LFE. This is done by specifying a value in the CR field for each parameter to be
evaluated for result based testing. Valid values for the CR field are N and 1 through 9.
For the purposes of result based testing, all values other than N are treated as critical
parameters.

After specifying the critical parameters, alternate test sites need to be specified.
Alternate test sites are created by creating a new pattern and adding an “_ALT” to the
pattern name. The alternate pattern must have the same number of sites as the original
pattern.

After specifying the alternate sites, the appropriate global data values need to be
specified. The global data item KTXE_AT_critical_param_failure_limit must be set to
the number of critical tests to fail on a site before the site itself is considered to have
failed.

After all the component files have been set up, the test is set up as normal with KTPM.
The only exception is that the appropriate GDF and UAP files must be added to the test
plan. For this test mode, the GDF and UAP files to be added are
adapt_alternate_site.gdf and adapt_alternate_site.uap.

More sites on current wafer

When using this test mode, the test results on each site are evaluated before moving to
the next wafer. If the number of failed critical parameters on a site exceeds the value
specified in KTXE_AT_critical_param_failure_limit, then the site fails. When any site
fails, all of the alternate sites are tested.

The first step in implementing this test mode is to define the critical parameters using
LFE. This is done by specifying a value in the CR field for each parameter to be
evaluated for result based testing. Valid values for the CR field are N and 1 through 9.
For the purposes of result based testing, all values other than N are treated as critical
limits.

After specifying the critical parameters, alternate test sites need to be specified.
Alternate test sites are created by creating a new pattern and adding an “_ALT” to the
pattern name. The alternate pattern can have more sites than the normal pattern.

After specifying the alternate sites, the appropriate global data values need to be
specified. The global data item KTXE_AT_critical_param_failure_limit must be set to
the number of critical tests to fail on a site before the site itself is considered to have
failed.

After all the component files have been set up, the test is set up as normal with KTPM.
The only exception is that the appropriate GDF and UAP files must be added to the test
plan. For this test mode, the GDF and UAP files to be added are
adapt_more_sites_cur_wafer.gdf and adapt_more_sites_cur_wafer.uap.

More tests on current wafer

When using this test mode, the test results on each site are evaluated before moving to
the next site. If the number of failed critical parameters on a site exceeds the value
specified in KTXE_AT_critical_param_failure_limit, then the site fails. When a site is

S530 KTE Software Creating Test Plans 2-77
determined to have failed, additional tests are immediately run on the site. The
additional tests will continue to be run on all sites for all wafers in the lot, as long as no
new wafer plan is encountered.

The first step in implementing this test mode is to define the critical parameters using
LFE. This is done by specifying a value in the CR field for each parameter to be
evaluated for result based testing. Valid values for the CR field are N and 1 through 9.
For the purposes of result based testing, all values other than N are treated as critical
limits.

In addition to specifying the critical parameters, the additional tests must also be
specified. These are specified by setting the eClass of the parameter to the value
defined in the global data item KTXE_AT_alternate_test_class. The eClass is set to
“extra_tests” by default. Tests associated with this class will not be performed until a
site fails.

After specifying the additional tests, the appropriate global data values need to be
specified. The global data item ktxe_at_ed_active must be enabled. The global data
item KTXE_AT_critical_param_failure_limit must be set to the number of critical tests to
fail on a site before the site itself is considered to have failed. The global data item
KTXE_AT_alternate_test_class must be set to the class used in the Class field in LFE.

After all the component files have been set up, the test is set up as normal with KTPM.
The only exception is that the appropriate GDF and UAP files must be added to the test
plan. For this test mode, the GDF and UAP files to be added are
adapt_more_tests_cur_wafer.gdf and adapt_more_tests_cur_wafer.uap.

More tests on next wafer

When using this test mode, the test results on each site are evaluated before moving to
the next wafer. If the number of failed critical parameters on a site exceeds the value
specified in KTXE_AT_critical_param_failure_limit, then the site fails. When a site is
determined to have failed, testing on all future wafers in the lot with the same wafer plan
name will use an alternate wafer plan.

The first step in implementing this test mode is to define the critical parameters using
LFE. This is done by specifying a value in the CR field for each parameter to be
evaluated for result based testing. Valid values for the CR field are N and 1 through 9.
For the purposes of result based testing, all values other than N are treated as critical
limits.

After specifying the critical parameters, the appropriate global data values need to be
specified. The global data item KTXE_AT_critical_param_failure_limit must be set to
the number of critical parameters to fail on a site before the site itself is considered to
have failed. The global data item KTXE_AT_alternate_wafer_plan must be set to the
name of the alternate wafer plan to be used if a site fails.

After all the component files have been set up, the test is set up as normal with KTPM.
The only exception is that the appropriate GDF and UAP files must be added to the test
plan. For this test mode, the GDF and UAP files to be added are
adapt_more_tests_next_wafer.gdf and adapt_more_tests_next_wafer.uap.

2-78 Creating Test Plans S530 KTE Software
KTXE_AT user library
Result based testing is accomplished with the use of calls to the user library KTXE_AT
at various UAPs. The following routines are included in the KTXE_AT user library:

KTXE_AT_alternate_site_site_end

Format KTXE_AT_alternate_site_site_end()

Description This function is used to determine, at completion of site testing, if an
alternate site should be tested.

Use at UAP_SITE_END

KTXE_AT_alternate_site_test_end

Format KTXE_AT_alternate_site_test_end()

Description This function is used to determine if any test results failed during
the testing of a ktm.

Use at UAP_TEST_END

KTXE_AT_AlterWWP

Format int KTXE_AT_AlterWWP(long *current_wwp_list,
float altx, alty)

Description This function is used to alter the wwp list to add all ktms that have
failed on the current site to be executed at an alternate site. This
function is used internally.

KTXE_AT_CheckResWithLimits

Format int KTXE_AT_CheckResWithLimits(char *Result_Name,
double Result_Value, int Limit_Code, char *Limit_List)

Description This routine should be called from another routine or from a UAP to
check the value of a result with the limits specified in a limit list or a
limit sublist. This function is used internally.

Parameters Result_Name — Character string specifying the name of the result.
The name should exist in the limit list.

Result_Value — Double value of the result.

Limit_Code — An integer value between 1 and 4. The result is
checked against Valid, Spec, Ctrl or Engr limit based on the code. 1
= check against "Valid" limit. 2 = check against "Spec" limit. 3 =
check against "Ctrl" limits. 4= check against Engr limits.

Limit_List — The name of the limit list to use for looking up the
result. You can pass the default "limit_list" or pass in a limit sublist
name for this parameter.

Return value If the result is within the limits TRUE is returned; FALSE is returned
otherwise.

Run at UAP This routine can be run at any UAP as long as the Result and the
limit list exist in the datapool at that UAP. This routine can also be
called from other routines (Example: KI_SubsiteTest).

Helpful hints • This routine returns a TRUE or a FALSE. The return value
should be checked after this routine is called and action should
be taken based on the returned value.

• To see the errors generated by this macro when running in
KTXE, set the KI_KTXE_ERROR_LOG environment variable.

KTXE_AT_cleanup_site

Format KTXE_AT_cleanup_site()

S530 KTE Software Creating Test Plans 2-79
Description This function is used to reset counts and clean up data structures.
This function is used internally.

KTXE_AT_debug_print

Format KTXE_AT_debug_print()

Description This function is used to print the internal flags and counters used in
KTXE_AT.

Use at UAP_SITE_END

KTXE_AT_demo_data_func

Format double KTXE_AT_demo_data_func(double x)

Description This function will generate demo data. It is called internally by
KTXE_AT_generate_val.

KTXE_AT_enable_kdf

Format KTXE_AT_enable_kdf()

Description KTXE_AT_enable_kdf is used to enable kdf logging if disabled ear-
lier.

Use at UAP_TEST_DATA_LOG

KTXE_AT_FindAltSite

Format KTXE_AT_FindAltSite()

Description This function is used to find the alternate site coordinates for the
current site. This function is used internally.

KTXE_AT_generate_val

Format double KTXE_AT_generate_val(int demo_type,
double highV, double lowV)

Description This demo data generation function returns a value for each vari-
able tested based on highV and lowV, which are upper and lower
bounds, and the demo_type:

0random high/low fail
1inside fails high
2outside fails high
3top fails high
4bottom fails high
5right fails high
6left fails high
7inside fails low
8outside fails low
9top fails low
10bottom fails low
11right fails low
12left fails low

Call this function from a ktm as follows:

result = KTXE_AT_generate_val(demo_type, demo_high_lim,
demo_low_lim)
result — (double) a test results
demo_type — (int) a number 0 - 12 which defines result failures
based on site location on wafer
demo_high_lim — (double) upper bound of passing results
demo_low_lim — (double) lower bound of passing results

Define demo_type, demo_high_lim, and demo_low_lim as global
data for ease of use.

2-80 Creating Test Plans S530 KTE Software
KTXE_AT_LogResultList

Format KTXE_AT_LogResultList(char *result_list_name)

Description This function is used to log saved result lists to kdf. The function is
used internally.

KTXE_AT_more_sites_cur_wafer_site_end

Format KTXE_AT_more_sites_cur_wafer_site_end()

Description This function is used to determine, at completion of site testing, if
more sites should be tested on the current wafer.

Use at UAP_SITE_END

KTXE_AT_more_tests_curr_wafer_site_end

Format KTXE_AT_more_sites_cur_wafer_site_end()

Description This function is used to determine, at completion of site testing, if
more tests should be executed on the current wafer.

Use at UAP_SITE_END

KTXE_AT_more_tests_curr_wafer_wafer_begin

Format KTXE_AT_more_tests_cur_wafer_wafer_begin()

Description This function is used to add results in the alternate test class to the
list of results that are disabled during initial execution.

Use at UAP_WAFER_BEGIN

KTXE_AT_more_tests_next_wafer_site_end

Format KTXE_AT_more_tests_next_wafer_site_end()

Description This function is used to change wafer plan to be used for the next
wafer that has the same wafer plan name as the current wafer plan.

Use at UAP_SITE_END

KTXE_AT_wafer_begin

Format KTXE_AT_wafer_begin()

Description Library initialization module.

Use at UAP_WAFER_BEGIN

Installation of adaptive testing user libraries

To install the adaptive test user library for zone based testing, enter the following at the
command line:

> cd $KIHOME/src/KTXE_RP
> kult_copy_lib –lKTXE_RP

To install the adaptive test user library for result based testing, enter the following at the
command line:

> cd $KIHOME/src/KTXE_AT
> kult_copy_lib –lKTXE_AT

S530 KTE Software Creating Test Plans 2-81
Installation of demonstration files

Keithley has provided a collection of demonstration files for zone and result based
testing. To install these files execute the script KTXE_RP_demo_install for zone based
files and KTXE_AT_demo_install for result based files. These scripts will copy the files
for these demos to the current projects directories.

To install files for zone based demo, enter the following at the command line:

> cd $KIHOME/src/KTXE_RP
> KTXE_RP_demo_install

To install files for result based demo, enter the following at the command line:

> cd $KIHOME/src/KTXE_AT
> KTXE_AT_demo_install

The installed demo files for adaptive testing start with “adapt_”.

KTE Support Utilities

Random Pattern Generation (rand_pat)

The rand_pat utility provides the ability to read in a .wdf file containing zones (patterns)
and create a new .wdf file containing randomly generated patterns covering the given
zones. This function may be used as a stand-alone utility.

Syntax of command:

rand_pat infile [-s sites/wafer] [-w wafers/cassette] [-o outfile]

where infile = input .wdf file with define zones (patterns),

[sites/wafer] = number of sites per wafer,

[wafers/cassette] = number of wafers per cassette,

[outfile] = output .wdf file.

Each time the routine is called, a new random seed is generated based on the date and
time returned by the system. This guarantees full randomness over the set of all
possible combinations of sites and sectors. The output file will contain patterns named
pattern_n, where n is the number of the pattern. For example, if the output file contains
two patterns, the patterns would be named pattern_1 and pattern_2.

Note that if neither the -s or -w options are used, the routine will set the number of sites
per wafer equal to the number of zones, and then generate a natural set of patterns
without any re-testing. If the number of wafers is a multiple of the number of zones, and
each zone has the same number of sites, then even coverage will be uniformly
achieved.

At this point, the utility allows you to specify a number of sites per wafer different from
the number of patterns. It will also allow you to generate a number of patterns different
from the natural number. If fewer patterns are specified, there may be untested sites; on
the other hand, if more are specified, then there will be redundant coverage. Note that if
more than the natural set is generated, the random seed will be reinitialized, and all
following patterns will again be truly random.

Example:

Upon executing

2-82 Creating Test Plans S530 KTE Software
> rand_pat mywdf.wdf -o randwdf.wdf

where the input file zones have the following form:

The output patterns look like:

S530 KTE Software Creating Test Plans 2-83
File filtering

All KTE tools use a standard window to open and save files. Directories are displayed
with a folder icon before the name, and read-only files are identified by a lock icon
before the filename. A Choose Filter drop-down box allows for the selection of
predefined filter patterns. Files may be filtered by entering a new pattern in the Filter
field and clicking the Filter button.

The pre-defined filter list provides a simple way to filter files by picking from a list of
custom filters. These filters are listed by a simple name for easy recognition. The filter
list can be customized using a plain text editor. The filter list is located in the file
$KIHOME/filters.ini. The format of the file is as follows:

[filter nice name]filterPattern

where “filter nice name” is the name that will appear in the window drop-down listing.
“filterPattern” is a simple expression filter used for pattern matching. The filter pattern
supports only two wildcard characters: “?” to indicate any single character, and “*” to
indicate any substring of characters. The filter name must be enclosed by the brackets.
For example:

[Project 1 Files]project_1_*

This filter would be displayed in the open and save windows as “Project 1 Files”, and
would display all filenames that started with the characters “project_1_”.

Comments may be added to the filters.ini file by preceding them with the “#” character.
The comment will not appear in the Choose Filter drop down box. The period character
(.), may not be used as part of the filter pattern.

3
Test Execution

3-2 Test Execution S530 KTE Software
Introduction

You can execute a cassette plan one of four ways:

• Using KIDS
• Using KOPED and KOP
• Directly accessing KTXE
Figure 3-1 shows a diagram of the test execution process.

Figure 3-1
Test plan execution flow diagram

This section covers the tools required to execute a completed test plan. In this section
the following will be discussed:

• Keithley Operator Interface Editor (KOPED) — This section will cover how to
create a series of test processes that can be activated from the Keithley Operator
Interface (KOP).

• Keithley Test Execution Engine (KTXE) — This section will cover how to use
KTXE to execute the test plans created using KTPM.

• KTE Integrated Display Service (KIDS) — This section will cover KIDS operation
for recipe selection, execution, and display status.

When you have completed this section, you will be able to utilize KSU and KCAT,
covered in Section 4, to analyze your test results and generate a report.

Keithley Operator Interface Editor (KOPED)
This section includes basic information for using KOPED. Brief descriptions of KOPED’s
main window and menus are also included.

KOPED is a graphical user interface used by the test engineer to create a test
initialization file. The information entered into the initialization file determines the
operator choices available when KOP is run. There are three levels in the selection tree

Shop
Floor

Control

Instruments

Measurement
Results

Measurement
Commands

Execution
Engine

Factory Integration

Operator Interface Data
Files

Prober

Keithley Operator
Interface

(KOP)

Cassette Plan
Selection

Test
Plan Files

Cassette
Plan

Selection
Tree

Keithley Operator
Interface Editor

(KOPED)

KTE Integrated
Display Service

(KIDS)

S530 KTE Software Test Execution 3-3
available to be set up: Level 1, Level 2, and Level 3. These can be set to any string the
user wishes.

KOPED main window
The main window shown in Figure 3-2 contains the following areas:

• Main menu bar — Contains the File, Edit, Options, and Help menus.
• Data Entry Level 1 — Used to enter the label for column one in KOP.
• Data Entry Level 2 — Used to enter the label for column two in KOP.
• Data Entry Level 3 — Used to enter the label for column three in KOP.
• Window work area — Shows a flow tree for all of the possible test routines that can

be accessed through KOP.
• Engineering data entry Level — Used to enter the name that appears in the

highlighted box in the tree in KOPED.
• Plan or Program (with path) — Used to enter the cassette plan filename or

executable program name and directory path.
The Engineering and Operator Levels do not appear until a Level 1 is created or an
existing .ini file is loaded. The Plan field will appear when an entry in Level 3 is created.

Figure 3-2
KOPED main window

KOPED file menu

The file menu contains the following selections:

• New — Clears the KOPED main window to create a new initialization file.
• Open — Opens an existing initialization file.
• Save As — Saves the present initialization file using a new filename.
• Save — Saves the present initialization file using the present filename.
• Exit — Exits KOPED.

3-4 Test Execution S530 KTE Software
KOPED edit menu

The Edit menu contains the following selections:

• Window label — Lets you enter the window label for the operator interface (when
KOP
is run).

• Delimiter — Lets you enter the delimiter of the initialization file.
• Add Level 1 — Lets you add a new top level field to the main window work area.

KOPED options menu

This menu lets you enable or disable Test Plan Validation. If enabled, the operator will
be able to use the Verify button on the KOP screen to validate the information in a
cassette plan before execution. If disabled, the Verify button on the KOP screen will be
disabled, preventing the operator from cassette plan validation.

KOPED help menu

The Help menu provides on-line help and KOPED version information. The
Documentation option allows access to on-line Help. The About option displays the
release version.

Pop-up menus

With the exception of the Level 1 pop-up menu, the pop-up menus are accessed by
placing the cursor in the boxes, and pressing and holding the right mouse button.
Selections are made by pulling the cursor down to the desired selection and releasing
the mouse button.

The New Level 1 pop-up menu is accessed by pressing and holding the right mouse
button anywhere in the window area of KOPED. The pop-up menus include:

• New Level 1 pop-up menu — Lets you Add or Paste Level 1 data.
• Edit Level 1 pop-up menu — Lets you Cut or Copy data, and Add or Paste Level 2

data.
• Edit Level 2 pop-up menu — Lets you Cut or Copy data, and Add or Paste Level 3

data.
• Edit Level 3 pop-up menu — Lets you Cut or Copy data.

Keithley Test Execution Engine (KTXE)
This section includes basic information on the Keithley Test Execution Engine (KTXE).
A brief description of KTXE’s main window is included.

KTXE is a graphical user interface used by the test engineer to execute a cassette plan
file (.cpf) that can be created using the Keithley Test Program Manager (KTPM).

It is possible to define an alternate localization file. Refer to KTE KUI localization in
Appendix B.

The KTXE interface can be viewed in any language. Refer to Appendix F, KTE
Localization.

S530 KTE Software Test Execution 3-5
KTXE main window
The KTXE main window shown in Figure 3-3 contains the following areas:

• Operator data field — This field is used to enter the ID of the operator running the
test.

• Lot Id data field — This field is used to identify the test path and filename. This data
is entered when the cassette plan file is specified when KTXE is started.

• Process data field — This field is used by the operator to enter information about
the test process.

• Device data field — This field is used by the operator to enter any necessary
information about the device.

• Test Name data field — This field is used to identify the test name. This data is
entered when the cassette plan file is specified when KTXE is started.

• Limit Id data field — This field is used by the operator to enter the limit file that will
be used during testing.

• System Id data field — This field is used to identify the system that is running the
test.

• Test Station field — This field is used to select the test station that the test will be
run on.

• Search key data fields — The search keys are used to further identify the test
process when test results are being searched for in the Keithley Summary Utility
(KSU).

• Comments field — This field is used to enter any comments about the test being
run.

• Control Buttons — Used to start the test process, abort the test process, and to
receive on-line help for KTXE.

Figure 3-3
Lot dialog window

Test execution from KTXE

It is also possible to execute your cassette plan by directly accessing KTXE.

1. Start KTXE from the command line by entering the following: ktxe -cpf
fname.cpf where fname.cpf is the name of the cassette plan.

3-6 Test Execution S530 KTE Software
2. Verify all the test execution data that appears in the Lot Dialog window as shown in
Figure 3-4.

3. Click on OK to begin the testing process.

Figure 3-4
Lot dialog window

Command-line options for KTXE

The following is a listing of all the command-line options that can be entered when
starting KTXE.

-c text lot information comment field
This switch can be used to add comment text to the lot header.

-cass n select cassette n: 1-4
This switch is used to select a specific cassette for a prober with
multiple cassettes.

-cpf fname cassette plan filename
This switch is required if the -krf switch is not used, and it specifies the
name of the cassette plan to execute.

-d text lot information device field
This switch can be used to specify the device field of the lot header.

-doc “options” Documentation tool info
This switch is used to disable portions of the execution to allow test
documentation information to be collected. These switches can also
be used to customize KTXE execution.

NO_LOT Disable default lot reporting .kdf
NO_KUI Disable the User Interface
NO_PROBER Disable Prober activity
NO_KTM Disable KTM execution
NO_UAP Disable UAP execution

S530 KTE Software Test Execution 3-7
DOC_ON Enable Test Plan Document data
generation. This will cause KTXE to create
a datafile containing execution information.
This datafile is named
casPlanName.cpf.kxd and will be placed in
the directory specified by the $KITMP
environment variable.

DOC_ONLY Configure for Test Plan Doc Gen ONLY

Several of the above -doc options can be used together. For example,
to disable the default .kdf logging and default prober activity, use the
following command-line switch for KTXE: -doc
“NO_LOT,NO_PROBER”.

-e n [fname] error reporting mode n: 0 - 3
0 - None
1 - Display messages
2 - Log messages
3 - Display and Log messages

-ev n [fname] event reporting mode n: 0 - 3
The -e and -ev switches enable the error and event logging. The error
and event reporting capability of KTXE can be used to determine
possible problems with macros and test plans.

-h display command line options (shown here)

-i id lot information lot id field
The lot id determines the name of the .kdf lot file. The actual .kdf lot
filename is $KI_KTXE_KDF/lot_id.kdf.

-k n text lot search key n: 1 - 3 field
This switch allows the search key fields in the.kdf lot file to be filled with
the specified text. Use a separate -k for each field.

-krf fname uses specified recipe name
See the Keithley Recipe Manager documentation for more
information.

-l id lot information limit id field
This switch will specify the limits file to use for processing test data.
The limits file specified by this switch will override any limits files
specified in wafer plan file(s).

-o text lot information operator field
This switch allows the operator field in the.kdf lot file to be filled with
the specified text.

-p text lot information process field
This switch allows the process field in the.kdf lot file to be filled with the
specified text.

-r “options” lot summary report options
This switch allows the sum_report_options datapool entry to be filled
with the text string specified. Calling the
KTXEAddIn:KTXESummaryReport function at UAP_LOT_END allows
the LotSummary program to be executed with the specified options.

3-8 Test Execution S530 KTE Software
-s text lot information system field
This switch allows the system field in the.kdf lot file to be filled with the
specified text.

-u text user argument
This switch can be used for additional user command-line arguments.

-w fname wafer description filename
This switch will specify the Wafer Description file to use for processing
test data. The Wafer Description file specified by this switch will
override any Wafer Description file specified in the Cassette plan or
Wafer plan file.

-x n debug flag n: 0 - 32767
This switch can be used for user command-line arguments.

fname — valid filename and path
options — options must be enclosed in quotes
text — command line arguments will be concatanated to the switch argument until
the next switch (dash-letters) occurs
id — valid file name, no paths or extensions
n — numeric

The execution process
Once test execution has begun, the execution engine begins working its way through the
cassette plan you specified. KTXE uses the engine you selected for your cassette plan
as the format for how KTXE will proceed when accessing and executing the data files
specified in the cassette plan file. Figure 3-5 shows a flow diagram of how the execution
engine proceeds through all of the test data.

The execution engine begins at the cassette level, gathering cassette information and
collecting lot and prober information. The engine then moves on to the wafer level. Here,
the engine loads all the data specified in the wafer plan. When all the wafer information
is loaded, the engine moves on to the KTM level where the test execution process
begins. The engine finds each specified site and subsite then performs the specified test
at each selected position. The execution engine continues this process until either it has
exhausted all the information specified within the cassette plan or logged test data has
signaled an abort.

The execution engine will order probing and testing based on the following:

• If the Optimize Site Processing button (in WDU) is selected, the execution engine
will process sites based on Y and X coordinate positioning. If the Optimize Site
Processing button is not selected, the site order will be as specified in the Probe
Pattern Editor in WDU (first occurrence, first probed). In both cases, each site will be
probed only one time, as the execution engine merges all tests across probe
patterns.

• Tests will occur in the order they are specified in the Wafer Plan Editor (KTPM).

• Subsites will be probed in the order they are specified in the Site Editor (WDU).

S530 KTE Software Test Execution 3-9
Figure 3-5
Test execution engine

The following is an in-depth description of what happens at each UAP during test
execution. Each UAP is listed, followed by a description of the actions that UAP causes
to occur.

KTXE INITIATED

Initialize engine variables.
Set datapool value “ManualProberType” to FALSE; use global data to set otherwise.
Process the command line arguments.
Initialize error logging.
Determine Documentation Tool Command-line options and configure the execution
engine appropriately. First store the default values into the DataPool. The
GetDocumentationConfig routine will adjust the values if necessary.
Load cassette plan.
Load Global Data files only IF there are files to load.
Refresh “ManualProberType” variable from Global Data Load.

�����������	�
 ����
���	�
 ������	�

��������	
�������
����
��������
	�
����������		�����

������������	
��	���	���
����
�		�����
���
����
�������
����������	�������������

�
�	������������������	
��������		�
���������������
�����	������	���	������������		�
������������	���
�
�������������
���
�������		�����
���������
�����

�		���������
�����������������������	�����
�	
������	�������������
�
�
������������	����������
���������
����������
�������
���	����	��	���	�����
	����������
������	��
�������
����������

�����
���������
������	��������
�������
���
����������	� ���	�������	�����������

��������	�

�������������
���	���
�����������	����	�����
�����
�!	������
��������	�
����
���	���
�������	�	����	�����
����
������
����
	��	
�

��

�����������������
�����	
�����������

�����	
�����������������
�����	
������	������
������������������	��
�����
��������	
��������	�����������

���������	
���	��
������
�������
�
���	��������
������	����	�����
���������������

��
���	�

������������
����	��	
��	��	���	�
����	����
�����
���	����	����	��	����	�����
������������
����	��	
��	��	������	�
����	��	����
�����
������	�������
�!���	��	
���	�
������	�����
���	�������	��	����	�����
������	�������
��
�
��������	������"�����	����������	
��������
�������
����	��	�������
����	�������

���������
����	����	

��������
�������
����������

�������

��������������	�

#
�������	��	
�����	������!���	����	�	
��	����	
�����
	�
����
�$

���������
�������
���������	��������
�	��
����	���������
��������������������
�$

3-10 Test Execution S530 KTE Software
UAP_PROG_ARGS

Get LOT ID. Check command line first, then the cassette plan.

Check for Suspended Lot information.

UAP_CASSETTE_LOAD

Check for empty slot list. Exit if empty.

Collect any additional lot related information at this UAP before displaying lot dialog
screen to operator.

UAP_LOT_INFO

Display Lot dialog screen and gather information from Operator.
Display status dialog on screen.

Starting Tester Control.
Add the LOT ID to the data pool.
The product filename should be set at this UAP if used.

UAP_PROBER_INIT

If the “KI_PRB_AUDIT_LOG” environment variable is set, then:

EnableTransactionLogging(); /* prober transactions */

Load the product file. If it is non-null:

if (product_file[0] != ‘\0’)

KTXELoadProductFile(product_file);

NOTE Check options after product file load since product file could
enable/disable options.

Check Prober Options.
Prompt operator to load Cassette onto Prober.
Determine the slot mode: all (ALL), index (nn), or relative (Rnn).

Check only first slot.
wafer->boat = 1;/* assume cassette 1 only */

FindWafersToProbe -
Determine which wafers are to be probed and set the prober’s slot status

accordingly.

Get a Cassette Mapping from the prober regardless of the slot mode.
Error if “Cassette not loaded”, if there are “unmapped wafers”, or if “No Unprobed wafers
found”, try again.

Determine the slot mode: all (ALL), index (nn), relative (Rnn)
(Check only first slot in the slot list.)

S530 KTE Software Test Execution 3-11
If “ALL” mode “where All Mode means test ALL WAFERS”
Build a slot list using all available wafers in cassette.

If “Relative” Mode
find the nth slot with a wafer in cassette.

NOTE If no more wafers are found unprobed, no errors are generated.
PrLoad Cassette complete will handle the completion.

Any non-relative slots will be skipped.

If “indexed slot” mode:
set slot status IF a wafer is really there.

Send new cassette slot status to prober.

UAP_WAFER_MISMATCH

END FindWafersToProbe

Load the Wafer Description File so the prober can be initialized.

 Hierarchy of loading:
1 - Command-line arg.
2 - Cassette Plan.
3 - Wafer Description File of *FIRST* Wafer Plan.

UAP_ACCESS_WDF_INFO

This UAP allows access to the .wdf file before the call to PrInit.

Initialize the Prober. (PrInit)

UAP_POST_PROBER_INIT

Any extra changes to the LOT header should be made at this UAP.

UAP_WRITE_LOT_INFO

Write LOT structure into .kdf file.
Register exit handler for kdf (EndWafer).

UAP_POST_LOT_INFO

This UAP may be used to add tag data to the lot file before the first wafer is tested.

Do we skip the first wafer?
 Reload from datapool in case a UAP modified the value.

This datapool value can be set for probers that need the first wafer manually
loaded.
(P8 and others)

If not skip_first_wafer_load
Load Wafer

UAP_WAFERLOAD_STATUS

if (TRUE == ManualProberType)
 Prompt operator to “Load/Unload Wafer from chuck”.

UAP_PROFILE_WAFER

This UAP may be used to provide time for the hot chuck to warm up the wafer
 before profiling.

Profile first WAFER.
Align first WAFER.

3-12 Test Execution S530 KTE Software
UAP_ALIGN_ERROR

Error recovery after wafer alignment.

UAP_POST_INITIAL_WAFER_LOAD

Perform AutoZ after the first wafer load.

NOTE AutoZ is a function of the SofTouch optional licensed feature for
KTE. For more information on SofTouch, refer to the Prober and
Prober Drivers Manual.

Loop through slots defined in the cassette plan.

Wafer Loop

UAP_WAFER_PREPARE

Get wafer plan name from the slot list entry.
Keep count of wafers defined in cassette wafers_tested++;

Determine if the previous wafer plan is the same as the current wafer plan.
If the previous wafer had the same wpf, do not reload the wwp, test enable all tests in
wwp since there may have been a previous abort.

if (previous_wafer_has_same_wpf == FALSE)
Load the wafer plan for the wafer.
Load the probe card file.
Load the Limits filename.
Update the “limit_list” datapool pointer.
Load Wafer Description File.
Prepare a complete wafer plan for execution.
Load all the KTMs in wafer patterns.
Keep track via DataPool of the KTM list.

Place the address of the wwp into the data pool.

dpAddPointer(“wwp_list”, LONG_P, wwp_list);

Read Wafer ID from prober.

UAP_VALIDATE_OCR

Start of the wafer tests (start_wafer_test:)
Reset the “KI_ktxe_retest_wafer” datapool flag.

Write Wafer header to the LOT file.

UAP_WAFER_BEGIN

Execute a wafer plan.

Add result_list, failed_result_list & abort level to data pool for use at
UAP_HANDLE_ABORT.
Get site and subsite pointers from the data pool.
Get a working copy of wwp_list and place into DataPool as “current_wwp_list”.

LOOP: (Execute only tests that are enabled in wafer plan)

Reset “KI_ktxe_redo_macro” datapool flag.
Reset “ktxe_disable_kdf” datapool flag to initial value.

Move probe chuck to the test site if x or y values changed.

UAP_SITE_CHANGE

Write Site data to LOT file.
Move probe chuck to the test subsite if changed.

S530 KTE Software Test Execution 3-13
Raise the Chuck to make contact with pins.

UAP_SUBSITE_CHANGE

Save copy of this subsite as the prev or last subsite.

UAP_TEST_BEGIN

Execute the KTM.
Update the result_list DataPool value with new results.

UAP_TEST_END

Write results to LOT file.

UAP_TEST_DATA_LOG

If (KI_ktxe_skip_limits_check = = 0)
check limits file/results for abort conditions.

disable tests based on abort flags.
if subsite or site aborts, disable tests in wwp

UAP_HANDLE_ABORT

if WAFERABORT we will leave execution loop.
if LOTABORT we will leave execution loop.
if (ktxe_abort_logging)

log Abort Reason

If “KI_ktxe_redo_macro” datapool flag is not set then

UAP_SUBSITE_END

UAP_SITE_END

increment to next test.

Update “current_wwp_list” datapool value with new entry.

END LOOP: (Execute only tests that are enabled in wafer plan)

Do a Prober PrRelReturn to clean up for the next wafer.
Call EndSite to close up KDF file.

End of execute a wafer plan.

UAP_WAFER_END

Handle Wafer and Lot abort as needed.

Write end of wafer to LOT file.

Check if we want to redo this wafer via “KI_ktxe_retest_wafer” datapool flag.
if so

goto start_wafer_test
else

load next wafer

UAP_WAFERLOAD_STATUS

if (TRUE == ManualProberType)
Prompt operator to “Load/Unload Wafer from chuck”

UAP_PROFILE_WAFER
This UAP may be used to provide time for the hot chuck to warm up the wafer
 before profiling.

3-14 Test Execution S530 KTE Software
Profile next WAFER
Align next WAFER

UAP_ALIGN_ERROR

If cassette is complete...
 Clean up the WWP list
else

Advance to next slot in slot list.
If no more slots, or next slot uses different Wafer Plan:

Clean up the WWP list
Set flag saying different WPF for next slot

else
Next wafer exists and uses same wafer plan so Enable Tests in WWP.

End of Wafer Loop.

Write end of lot to LOT file.

UAP_LOT_END

Release the tester via tstdsl()
Set datapool flag for no error...normal exit mode...

UAP_ENGINE_EXIT

Pause the status dialog so the operator can inspect the display.
Clean up internal memory structures.
Release user interface support.
Set flag so the AbortExitHandler routine will skip execution

NormalExit = TRUE ;
exit(KI_OK);

NOTE The following UAPs (UAP_ABORT_EXIT_HDLR,
UAP_PRB_ERR_HDLR, and UAP_STATUS_CHANGE) are
executed at the time the event occurs.

UAP_ABORT_EXIT_HDLR

At UAP_ABORT_EXIT_HDLR, KUI functions may not be used to display information. An
external program may be used to check KTXE exit status and prompt with a GUI if
necessary.

void KTXEAbortExitHdlrStub()
{
 We only want to do this if we abort...
}

NOTE Here is the list of the atexit() functions that we use and their order
of placement onto the stack. The execution order is the reverse.

Install order:
• AbortExitHdlr
• tstdsl
• Endlot

Execution order:
• Endlot
• tstdsl
• AbortExitHdlr routine(s)

S530 KTE Software Test Execution 3-15
Since the abort exit handler routine is the last to execute, if the
user wishes to do prober or LPT calls, they will have to perform a
tstsel call first and then a tstdsl call to release.

Also, keep in mind that we are executing this abort exit routine
because the KTXE process is being terminated. Certain “system”
items may not be stable at this time. For this reason, KUI calls are
illegal at this UAP point.

UAP_PRB_ERR_HDLR

If a prober error occurs, this UAP is used to call user created recovery code.

UAP_STATUS_CHANGE

This UAP is called when the operator presses the Pause or Continue buttons on the
Status Dialog Window, causing an execution state change. This UAP point can be used
to notify a shop-floor control system that the tester has been paused.

User Library files required for KTXE execution
During KTXE execution not all user library files are required to be on a tester. If a file
server is used to store and develop user libraries, it may be convenient to only copy the
files needed for executing tests.

The following user library files are required by KTXE in the KI_KULT_PATH directory at
execution time:

• libaaaa.so
• libkittaaaa.so
• aaaa_proto.h
aaaa_paramset.psf (if parameter sets are used from this library)

where “aaaa” is the name of the user library.

If the KI_KULT_PATH is not mapped to the default location, the following Keithley
provided files must be in the KI_KULT_PATH directory.

Prober user library -

• libprbxxxx.so
where “xxxx” is the prober driver type in use. Example “xxxx” equals “EG40” for the
Electroglas 4090 prober.

Keithley provided user library -

• libuuuu.so
• libkittuuuu.so
• uuuu_proto.h
where “uuuu” is any Keithley UAP user library. Example “uuuu” equals “KTXEAddIn” for
libKTXEAddIn.so, libkittKTXEAddIn.so, and KTXEAddIn_proto.h.

The KTXEErrorHandler function
This function will output additional information to the user. A data pool item,
ktxe_error_gui, can be set by the user, and will have the following effect:

If ktxe_error_gui is set to 1 — The operator will be prompted with a choice of continuing
with the error or aborting the test program.

3-16 Test Execution S530 KTE Software
If ktxe_error_gui is set to 2 — The operator will be notified that the test program will
abort. The operator can only select OK.

If ktxe_error_gui is set to any other value or not defined at all, the error will be logged to
the KTXE error log.

In addition, if KUI (ktxe_disable_kui controls, if the GUI is used) is disabled, output to the
operator will be disabled.

In general, this functionality will be available in conjunction with selected errors that the
operator may be able to correct or control.

Error and event logging
With KTXE, it is possible to create a log containing a report of the events and errors that
occur during test execution. There are two ways to set the path for the event logs:

• Specify the log path at the command line when starting KTXE.
• Set the environment variables so they contain the log path.

NOTE If the “-e” (error) and “-ev” (event) command line options are
specified, the filename specified with these options override the
filename set by the environment variables.

To set the log path at the command line when KTXE is started, enter

ktxe -cpf cassettePlan -e 2 /mydir/file.log -ev 2 /mydir/
file.log

to enter the events (-ev) and errors (-e) into the logfile file.log.

To accomplish the same event and error logging with the environment variables, enter:

prompt> setenv KI_KTXE_EVENT_LOG /mydir/file.log

prompt> setenv KI_PRB_AUDIT_LOG /mydir/file.log

prompt> setenv KI_KTXE_ERROR_LOG /mydir/file.log

prompt> setenv KI_LPT_DEBUG_LOG /mydir/file.log

An example of an event log is shown in Figure 3-6.

Figure 3-6
Event log window

S530 KTE Software Test Execution 3-17
Lot suspend/resume
When the Abort button is pressed on the Status Dialog window, the operator can abort
immediately, suspend, or cancel. If suspend is selected, KTXE will stop execution at
completion of the current macro. Data files are created to keep track of current execution
status so if the engine is started with the same cassette plan again, the operator is asked
if they would like to resume the suspended lot.

WARNING The .kdf file will contain multiple entries for the wafer/site
that execution was suspended on.

Example:
Assume that each wafer has 5 sites, 4 subsite per site, one macro per subsite.

Assume execution was suspended on wafer 2, site 4, subsite 2. Then the lot execution
was resumed to completion.

The KDF file will contain data for wafer 1, wafer 2 up to site 4, and parameters including
data for subsite 2. Then, there will be another entry for wafer 2, site 4 and parameters
for subsite 3 and 4, then site 5, and the rest of the lot data.

Rules:
The execution status files are named casPlanName_QMO.sav and
casPlanName_QMO.wwp, located in $KI_KTXE_CPF. This means that you cannot
suspend LOT1 using casPlanName and then run and suspend LOT2 using
casPlanName. The data for LOTl suspension will be lost. YOU MUST resume a test
before suspending another test using the same cassette plan.

Multi-cassette Multi-lot Testing Utility (multi_cassette)
The multi-cassette multi-lot ktxe launcher (multi_cassette) utility will collect the standard
lot dialog information for one to four cassettes to be tested.

For each lot the wafer ids for each wafer may be entered. After all data is available, the
cassettes will be tested without further information from the operator. Cassette plans that
are launched by the multi_cassette program require the UAP module
KTXEExtSetWaferId from the KTXEAddIn library to be placed at the
UAP_WRITE_LOT_INFO.

Also, to disable the standard operator dialogs used during testing, the following items
should be placed in a Global Data File (gdf) included in the cassette plan:

ktxe_disable_load_cassette_msg,INT,1
display_lotdlg,INT_P,0
ktxe_disable_plan_complete_msg,INT,1

Sources for the multi_cassette program are included in the $KIHOME/src directory if
customization is required.

To rebuild the multi_cassette program enter:

> compile_ktxe.sh multi_cassette.c

Wafer id usage in KTXE
KTXE will query the prober, lookup in the cassette plan, or generate a wafer id during
execution.

If the prober has a wafer id reader, the id is returned to the prober_wafer_id datapool
value if non-null. Or, if the cassette plan contains, or the operator entered, a wafer id, the

3-18 Test Execution S530 KTE Software
wafer id is returned to the prober_wafer_id datapool value. Or, a wafer id is generated in
the form “Wafer_nn”, where “nn” is the cassette slot number.

At UAP_VALIDATE_OCR the datapool value prober_wafer_id can be checked or
altered. See Appendix D for more datapool usage information.

Abort flags
KTXE has the ability to check the results generated from the execution of a test macro
against the specified limits file. If a certain result is out of the acceptable limits range,
KTXE takes the appropriate abort action as specified in the limits file. The following is a
more detailed description of how limits checking and abort conditions are handled by
KTXE.

Limits checking

After KTXE executes a test macro at a subsite, it checks all the results against the limits
specified in the limits file. For each result, the acceptable range is determined using the
specified abort limit for that result. A linked list of all the failed results is created. If a result
is outside the acceptable limit, it is added to the failed results linked list. Also, the highest
level of the abort action is determined out of all the failed results, and that abort action is
put into the data pool. At the user access point UAP_HANDLE_ABORT, which is
encountered after the execution of each of the test macros, the user has access to the
failed results list and the abort action flag.

At the user access point UAP_HANDLE_ABORT, the user can extract useful information
regarding the failed results and determine the highest level of abort (i.e., LOT, WAFER,
SITE or SUBSITE) caused by the failed results. There are five different abort levels. The
following is the list starting from highest to lowest:

NOTE Although there are five abort levels, only the first four listed have
failed results. Therefore, the user may have action taken based
on the abort level using UAP_HANDLE_ABORT for the first four
levels (not NOABORT).

• LOTABORT — Testing on the lot is aborted due to the failed result.
• WAFERABORT — Testing on the current wafer is aborted due to the failed result.
• SITEABORT — Testing on the current site is aborted due to the failed result.
• SUBSITEABORT — Testing on the current subsite is aborted due to the failed result.
• NOABORT — There were no failed results; therefore, no abort action was taken.

If the user wants to take some action based on the abort level, he can do it at the
UAP_HANDLE_ABORT. For example, if the user wants to take different actions at
different levels of abort, he can write the following code in a KULT module and run the
module at the UAP_HANDLE_ABORT:

In the include files section in the KULT parameter window, append:

#include "COM_usrlib.h"

#include "ktxe_types.h"

S530 KTE Software Test Execution 3-19
In the KULT main window, type code similar to the following:
{

int abort;

/* get the abort flag from the data pool */

abort = *(int *) dpGetPointer("abort_level", INT_P);

/* take action based on the abort flag */

switch(abort)

{

case LOTABORT:

{

/* User Lot abort code */

break;

}

case WAFERABORT:

{

/* User Wafer abort code */

break;

}

case SITEABORT:

{

/* User Site abort code */

break;

}

case SUBSITEABORT:

{

/* User Subsite abort code */

break;

}

default:

{

/* default code */

}

}

}

Failed results linked list

The failed results are logged to the event log by default. The user can enable event
logging by using the -ev flag at the command line when starting KTXE. The logging of
the failed results in the event log will be of the following format:

“ABORT REASON id = ... limit high = ... low = ... value = ...”

If the failed results information in the event log is not sufficient for the user, he also has
access to the failed results linked list at UAP_HANDLE_ABORT. The structure for a node
of the linked list (defined in ktxe_types.h) is:

typedef struct _failed_result_list
{
char id[PARAM_ID_LENGTH]; /* failed result name */
float high; /* high limit */
float low; /* low limit */

3-20 Test Execution S530 KTE Software
char abortflag[LIMIT_ABORTSTR_LENGTH];
/* abort level - LOT, WAFER, etc. */

char abortfield[LIMIT_ABORTSTR_LENGTH];
/* abort limit - Spec, Ctrl, etc. */

float value; /* failed result value */
struct _failed_result_list *next;

/* pointer to the next failed result */
}
failed_result_list_t;

The following is an example KULT module that the user can create and run at
UAP_HANDLE_ABORT. The code below traverses through the failed results linked list
to find out if a specific result failed and takes the appropriate action in such a situation.

In the include files section in the KULT parameter window, append:

#include "COM_usrlib.h"
#include "ktxe_types.h"

In the KULT main window, type code similar to the following:

{
 failed_result_list_t *failed_result_ptr;
 /* get the pointer to the beginning of the list from the
datapool */
 failed_result_ptr = (failed_result_list_t*)
dpGetPointer("failed_result_list", LONG_P);
 /* Traverse through the linked list to find the required result
name */
 while(failed_result_ptr != NULL)
 {
 if(!strcmp(failed_result_ptr->id, "MyResult"))
 {
 /* found the required result in the linked list */
 /* Take the appropriate actions -- USER CODE*/
 break;
 }
 failed_result_ptr = failed_result_ptr->next;
/* Required result not found yet, go to the next node of the
linked list */
 }
 if(failed_result_ptr == NULL)
 {
 /* "MyResult" was not in the failed result list */
 /* Take any default action if required -- USER CODE */
 }
}

The following are notes about the abort action flag and the failed results linked list:

• The user access point UAP_HANDLE_ABORT is encountered after the execution of
every test (i.e., KTM). Therefore, the abort flag and the failed results list are created
for each test.

• Both the abort action flag and the failed results list are available only at
UAP_HANDLE_ABORT. They are put into the data pool after
UAP_TEST_DATA_LOG and are removed from the data pool after
UAP_HANDLE_ABORT. If the user wants to preserve the values of the abort flag or
the failed results list, he must create his own working copy at
UAP_HANDLE_ABORT.

S530 KTE Software Test Execution 3-21
• The abort action flag represents the highest level of abort action in the list of failed
results. For example, if you have a list of five failed results and four of them have an
abort level of SUBSITE and one has an abort level of WAFER, the abort flag will be
set to WAFERABORT.

• If there were no failed results generated from the execution of a test, the
failed_result_list in the data pool will be NULL.

Refer to LFE documentation for more information on creating the limits files and setting
the abort actions and abort limits for results.

KTXE results and their structures
The result structures and results are available after an execution of a KTM by KTXE. The
result structures are:

• result_list_t — results from KTMs
• failed_result_list_t — failed results from a KTM

The result variables are:

• result_list — results from KTMs
• failed_result_list — failed results from a KTM

After execution of a KTM, the result_list contains a list of all results. These results in the
result_list are available at UAP_TEST_END and UAP_TEST_DATA_LOG. The
result_list is also available at UAP_HANDLE_ABORT if a result failed to pass the check
against the limits.

The failed_result_list contains only the results that failed. These results failed to pass the
check against the limits. The failed_result_list is available at UAP_HANDLE_ABORT.
The structures listed below are located in ktxe_types.h with definitions in ktxe_defs.h.

result_list

typedef struct _result_list
{

char id[PARAM_ID_LENGTH];
float value;
int log; /* True or False Flag to determine if the

result is logged*/
int user; /* True or False Flag for User Data

Logging */
struct _result_list *next;

}
result_list_t;

failed_result_list

typedef struct _failed_result_list
{

char id[PARAM_ID_LENGTH];
float high;
float low;
char abortflag[LIMIT_ABORTSTR_LENGTH];
char abortfield(LIMIT_ABORTSTR_LENGTH];
float value;
struct _failed_result_list *next;

}
failed_result_list_t;

4
Data Analysis

4-2 Data Analysis S530 KTE Software
Introduction

This section covers the tools required to analyze results data once testing has been
completed. In this section the following will be discussed:

• Data output formats — This section will discuss the different formats that the
results can be reviewed in.

• Keithley Summary Utility (KSU) — This section will cover how to use the features
within KSU to analyze your results data.

• Keithley Curve Analysis Tool (KCAT) — This section will cover how to use KCAT
to analyze your results data.

When you have completed this section you will be able to utilize KSU and KCAT to
analyze your test results data and generate the desired report.

Data output formats

There are two different ways to view test results from within the KTE software system:

• Keithley Summary Utility (KSU) — This tool is used to review results data in a tab-
ular
format.

• Keithley Curve Analysis Tool (KCAT) — This tool can be used to plot results data
that is generated from a test run within KITT in a graph format.

Each of these programs uses different parameters to produce results data output. This
section will give an explanation of the output generated by these two software tools.

Also included is conversion utility to export data from the Keithley Data File format.

– KDFtoKCS File Conversion Utility

Preview

This section describes in detail the Keithley Summary Utility (KSU) interface including
menu options, controls, and report formats. KSU takes measurement data from a
Keithley data file (.kdf) and applies limits from a Keithley limits file (.klf) to create a
report with summary statistics.

Keithley Summary Utility (KSU)

KSU takes parameter information and measured data from a Keithley data file (KDF)
and applies limits from a Keithley limits file (.klf) to create a report with summary
statistics.

The KSU software provides you with the capability to:

• Generate two types of reports: a standard report and a raw report. Reports can
include raw reporting of all measurements recorded and a summarized report that
includes means, standard deviations, and ranges.

• Export data in delimited format to most databases and spreadsheets.

• Use the browser utility to search for lots based on a series of search criteria.

S530 KTE Software Data Analysis 4-3
All these features are provided in an easy-to-use graphical user interface.

Summary reports

KSU provides two report forms, standard and raw. The standard report provides a table
of tests indexed with a series of data from each test to include mean, minimum, and
maximum. The report is preceded by a report header similar to the one shown in
Figure 4-1. The report header displays information about the lot, process, and device.
The header lines are displayed on each report page.

The raw report includes the same header file displayed in the standard report form. It
displays the test data in columns and indexes the data by site, which lets you compare
test results between the various sites. At the end of each column is the data contained
in a standard report.

Both the standard and raw reports let you create an export version of the summary file
with delimited fields. You can specify any single character field delimiter enabling the
file to be exported to a spreadsheet or database for additional analysis.

If a test is aborted, all data gathered up to and including the last test performed, is
recorded in the KDF file. This means that the summary will reflect the abort data. In
fact, the values that are out of range will be flagged to show that they meet the criteria
required to abort, which are prescribed in the limits file.

Figure 4-1
Sample standard report header

4-4 Data Analysis S530 KTE Software
Standard report

The standard report form shown in Figure 4-2 consists of the report header field,
included in all but export report forms, followed by the lot data. The header is placed at
the top of each page of the summary report. An empty field in the header indicates the
corresponding field in the data file was empty at the time of the search. The data is
listed with test names as row labels on the left, and test information in columns across
the top. The test information consists of the mean, minimum, and maximum for the sites
based on the test performed.

Following the header is a series of column field labels. These fields contain various
data derived from the .kdf file. Some fields, such as %Spec and %Vld, include an
asterisk next to the data points. This asterisk indicates the data is out of range and
alerts you to potentially bad data points. The following paragraphs describe the fields
that are the column indexes for the standard report shown in Figure 4-2.

Figure 4-2
Standard report

If a result is outside user-specified limits (specification limits by default) and the critical
flag in the Limits File Editor was set to true, a “#” is displayed on the report, and the
result is not used in any calculations.

Name

This is the parameter name to which the data corresponds. The Name field is the row
index of the summary report.

Units

This is the data units specified in the limits file. This field is blank if no limits file is
specified.

SpecL and SpecH

These are the specification constraints from the limits file. These values let you quickly
identify data points that are out of range. If no limits file is specified, they default to -
1.00e+15 and 1.00e+15, respectively.

S530 KTE Software Data Analysis 4-5
Mean

The Mean for each parameter is calculated from the data of all test sites. It is the
arithmetic mean of all the results for the wafer and that parameter.

Min and Max

These are the minimum and maximum for the parameter’s data points.

SDEV

This is the standard deviation from the mean of the parameter’s data points.

%SDEV

This is the standard deviation expressed as a percentage plus or minus from the mean.

CNT

This is the number of data points used in calculations.

%Vld

This is the percentage of data points that are within the valid range specified in the
limits file. This will be 100.0% if no limits file was specified.

%Spec

This is the percentage of data points that are within SpecL and SpecH.

4-6 Data Analysis S530 KTE Software
Raw report

The raw report is an expanded version of the standard report. The additional data found
in the raw report consists of the actual data points derived from the .kdf file.

The raw report uses the same header file as the standard report. In a raw report, the
parameters are listed in columns instead of rows. The information found in a standard
report is listed in the bottom rows of each raw report page. This information is
calculated in the same manner as a standard report. In rows above the standard report
data are the Wafer and Site names for each data point. A particular data point for a test
is found as follows:

1. Find the appropriate Wafer and Site in the rows along the left of the summary report.

2. Read across the row until the appropriate parameter/test is found. This value is the
desired data point.

3. The relative information for the other data points in this parameter/test can be found
by reading down the column until the Mean, MIN, and MAX are found.

Figure 4-3 is a raw report generated from the same .kdf file as the standard report
shown in Figure 4-2.

Figure 4-3
Raw report

S530 KTE Software Data Analysis 4-7
KSU description

The KSU graphical user interface lets you choose one of several lots to use in summary
report creation. This section provides detailed information and procedures for using the
KSU graphical user interface and KSU tools.

Starting KSU

KSU can be started from the KSU icon or the command line. Some examples are:

• Double-click on the KSU icon or the executable file.

• Click on the KSU icon or the executable file, and select Run.

• Enter the executable file at a command line prompt, and press <Enter>.

After activating KSU, the KSU main window shown in Figure 4-4 will be displayed.

Figure 4-4
KSU main window

KSU main window

The KSU main window menu bar contains four selections:

• File menu

• View menu

• Options menu

• Help menu

4-8 Data Analysis S530 KTE Software
File menu

Selecting File produces the menu shown in Figure 4-5. The menu items are:

• Open — Produces the KSU Lot Browser window discussed below.

• Save — Saves the presently displayed summary file using the present name.

• Save As — Saves the presently displayed summary file using a new name.

• Print — Produces the print cascade menu allowing you to choose print options.

• Exit — Exits KSU.

Figure 4-5
KSU file menu

KSU lot browser window

The Lot Browser window shown in Figure 4-6 appears when you select Open from the
File menu.

The lot browser allows data entry in all of the 14 provided fields. These fields are
defined in the .kdf file, and only those defined are available to the lot browser search
fields. Undefined fields appear blank.

The lot browser search fields support the asterisk (*) and question mark (?) standard
wildcard characters. The asterisk (*) is used as a default character in any search field
left blank. When the browser is first opened, it performs a search using the standard
wildcards. Table 4-1 contains a list of valid search criteria and a list of lots displayed. In
the example, the possible lots are test 1, test 1-1, test 2, testing, testit, and best1.

The lot browser’s main function is to search the .kdf file and produce reports based on
that search. The user function controls can be found on the panel below the window
that displays the available lot files.

S530 KTE Software Data Analysis 4-9
Figure 4-6
KSU lot browser window

Table 4-1
Sample search criteria

Lot browser controls

The lot browser functions are controlled with four screen buttons: Search, Clear, OK,
and Cancel.

• Search — Initiates a new lot file search based on the present search criteria. A
search is initiated the first time in a session you access through the Lot Browser win-
dow from the Open selection of the File menu. Each time the Lot Browser window is
accessed thereafter, you must press this button to initiate a search.

• Clear — Clears all search criteria and returns each field to the * default.

• OK — Closes the KSU Lot Browser window and causes the selected lot file to trans-
fer to the KSU Main window for report generation.

• Cancel — Exits the KSU Lot Browser window and returns to the KSU main window.

The Search results display in the Files that satisfy search criteria list box. To select a lot
for search and report generation, click on the lot and click on the OK button, or double-
click on the lot.

The Lot Browser window will close, and the selected lot will be transferred to the KSU
window for processing. Selecting the Cancel button removes the Lot Browser window
from the screen and returns control to the KSU main window.

Search
criteria Lots displayed

*
test*
test?
test1*
?est1
test??

test1, test1-1, test2, testing, testit, best1
test1, test1-1, test2, testing, testit
test1, test2
test1, test1-1
best1, test1
testit

4-10 Data Analysis S530 KTE Software
Print menu

When the Print option in the File menu is selected, the menu shown in Figure 4-7
appears with the following options:

• Text — Prints to non-postscript printers according to formatting data in print setup.

• PostScript — Prints to postscript printers according to formatting data in print setup.

• Print Setup — Sets up page format for printing.

Figure 4-7
KSU print menu

Print Setup

Use the Print Setup selection to set up the page format:

1. Select Print Setup from the Print menu. The Page Setup window shown in
Figure 4-8 appears.

2. Select the page options as desired:

• Paper Type

• Paper Width

• Paper Height

NOTE The width and height of the paper can only be changed if a paper
type of Other is selected.

• Margins

• Orientation (Portrait or Landscape)

S530 KTE Software Data Analysis 4-11
Figure 4-8
Page setup window

NOTE Landscape prints sideways on a printer. Make sure your printer
will support this option before printing.

• Scaling and Overlap — Scaling Mode selections include:

– Same factor in X and Y — The X and Y axes will be changed by the same
percentage.

– Separate X and Y factors — The X and Y axes will be changed indepen-
dently.

– Fit to page — The X and Y axes will be changed accordingly to fit the paper
size selected.

– Fill one page (unequal) — The data will be sized to fill one page, and the X
and Y axes will be unequal.

– Fit page width — The data will be sized to fit the width of the paper size
selected.

– Fit page length — The data will be sized to fit the length of the paper size
selected.

If the data area is too large to fit the width and height of the paper, select Poster Layout.
The X and Y overlap determines how much data is repeated on each sheet so the
sheets can be pasted together.

• Units (inch, mm, or point)

3. Click OK to accept the page setup or choose Cancel to abort the printer setup oper-
ation.

View menu

Selecting View lets you select the KSU window’s display format.

4-12 Data Analysis S530 KTE Software
Options menu

The Options menu shown in Figure 4-9 contains the following selections:

Figure 4-9
KSU options menu

• Limit File — Lets you select a limit file to apply to the KSU.

• Limit Type — Lets you choose specific limits from the chosen limits file. Refer to
Figure 4-10.

Figure 4-10
Limit type menu

S530 KTE Software Data Analysis 4-13
• Set Delimiter — Lets you choose a delimiter to apply when the KSU file is exported
using the Export option. Refer to Figure 4-11.

Figure 4-11
Set delimiter menu

• All Param — Includes all available parameters in the KSU report.

• Raw Report — Accesses all information contained in the selected lot file.

• Export — Lets you export the KSU report with the delimiter chosen using the Set
Delimiter option.

• Order by Limit — Creates report results in the order specified in the limits file.

Help menu

The Help menu item contains the following two selections:

• KSU Documentation — Provides help information on selected topics about KSU.

• About — Displays the installed KSU version number.

4-14 Data Analysis S530 KTE Software
Other KSU main window controls

The KSU main window contains the following six control selections. Refer to
Figure 4-12.

Figure 4-12
Control selections

• Create Report — Initiates KSU report generation using the selected parameters.

• All Params — Includes all available data file information in the KSU report.

• Order by Limit — Directs KSU to produce its report in the same manner as the -e
command line switch.

• Raw Report — Directs KSU to produce its report in the same manner as the -r
command line switch.

• SPEC, CNTL, ENGR — Allows you to choose which parameter set to apply to KSU
report generation.

• PgUp and PgDn — Lets you scroll through the displayed report one page at a time.

• Scroll Bars — The scroll bars found at the right side and bottom of the window that
allow you to position the displayed file within the limits of a single displayed screen.

• Limits File — Displays the presently selected limits file.

S530 KTE Software Data Analysis 4-15
Command-line options for KSU

The following is a listing of the command-line options that can be entered when starting
KSU.

-a Report on all parameters whether or not they are in the limits file.

-c Disable GUI interface (use lotsummary interface).

-e Order results as specified in the limits file.

-f<filename>Specify the limits file to use. Default is limits file within lot.

-d<char>Set the delimiter. Default is a space except for the Export version in which
case it is a comma.

-h Display the help information.

-l<char>Specify which limits to use in addition to the valid limits where <char> is
s = spec (default), c = control, e = engineering.

-n Do not print report header.

-o<filename>Set the output filename. Default is <lotname>.sum.

-p Send the output to a printer. Default is no print.

-r Generate a raw report. Default is Lot Level Summary Report.

-s Send the output to the screen. Default is no screen.

-x Generate an export version of the report. Default is no export.

4-16 Data Analysis S530 KTE Software
Keithley Curve Analysis Tool (KCAT)

This section describes the windows and features associated with the Keithley Curve
Analysis Tool (KCAT). For complete details on using the KCAT graphical interface, refer
to the KCAT tutorial. The main function of KCAT is to graph results data and calculate
slopes, intercepts, and tangents on the resulting curves.

KCAT main window

Figure 4-13 shows the KCAT main window, which is the primary interface to the
graphing capabilities of KCAT. When KCAT is executed, the main window appears in
the upper left quadrant of the screen.

Figure 4-13
KCAT main window

The main window has four sections:

• Menu bar

• Tool bar

• Graph area

• Data fields

S530 KTE Software Data Analysis 4-17
Menu bar

The menu bar contains six menus. The following list describes each of these menus.

File — Lets you load, save, or print Keithley plot files, and exit KCAT.

Edit — Allows customizing of the X and Y axis labels.

View — Allows you to display the full KCAT Main window, show the KCAT Data window,
and/or the KCAT Scaling window.

Options — Lets you Select color or monochrome graphing, line or scatter graph, and
the marker type.

Cursor — Lets you customize how the cursor interacts with the graphing area.

Help — Displays KCAT documentation and KCAT software revision level.

Tool bar

The tool bar contains plotting tools that let you:

• Place and clear markers and endpoints on the graph.

• Draw tangents.

• Zoom in and zoom out, and autoscale the viewing area of the graph.

• Change the interaction of the cursor with the graph.

• Access online help documentation.

Graph area

The graph area contains the following:

• The plotted graph.

• The graph label.

• The graph legend.

• The X and Y axis labels.

Data fields

The data fields display information about the graph. The status line gives a description
of the present menu or tool being used.

4-18 Data Analysis S530 KTE Software
Scaling window

The Scaling window, shown in Figure 4-14, lets you manipulate the graph by turning on
various check boxes or by scaling the range of the axes.

Check boxes associated with the Scaling window include:

• Log check box — Lets you change either the X axis data or the Y axis data to the
logarithmic equivalent.

• Invert check box — Lets you invert either the X axis data or the Y axis data.

Figure 4-14
Scaling window

S530 KTE Software Data Analysis 4-19
Data window

The Data window, shown in Figure 4-15, contains a listing of all the data points
associated with the present graph.

Figure 4-15
Data window

Pop-up tools menu

The pop-up tools menu contains a listing of all of the tools in the tool bar. It is accessed
by pressing the center mouse button when the cursor is anywhere over the graph area.

4-20 Data Analysis S530 KTE Software
KDFtoKCS File Conversion Utility

This utility reads a specified Keithley Data File (kdf) and writes an equivalent
Cornerstone format file (kcs). Both are ASCII comma-delimited data files. This utility is
useful for those who wish to use a spreadsheet or other Cornerstone-compatible
document reader to interpret and edit their data.

Syntax of command:

KDFtoKCS [-c category][-f substitution_string][-h]
 [-l limit_file][-o outfile][-p] kdf

where:

category is the limits category of interest
substition_string is an optional string to be substituted into the kcs file wherever

the datavalue is invalid
limit_file is the name of an appropriate Keithley Limits File (klf)
outfile is the name of the intended output kcs file
kdf is the name of the kdf to be converted

The program first accesses the Keithley Limits File (as specified in the kdf or by using
the -l command line option) to write the header row to the .kcs file. The user has several
ways to manipulate this header row, which lists the names and units of the data
parameters (see the command line options list below). The header row has the
following format:

Wafer,Site,Col,Row,Param1.name Param1.units,Param2.name
 Param2.units,…,ParamN.name ParamN.units

The program then proceeds to write each data row, containing the site-specific data
defined in the header row. The data rows have the following format:

WaferID,SiteID,ColNum,RowNum,Param1.val,Param2.val,…,ParamN.val

When finished, the output .kcs file can be found in folder specified by the environment
variable $KIDB, and has the name of the lot as defined in the kdf (or, alternately, the
name supplied using the -o option).

The command line options are as follows:

-conly the parameters of the specified category are listed. Only one category may be
specified with this option, and it must match at least one category of the parameter
exactly, or else the parameter will be discarded. (NOTE: Any given parameter may
have several categories, as long as they are comma- or whitespace-delimited within the
category field of their entry in the klf.)

-fthe program substitutes the string argument for data values that do not lie within
the valid limits (or omits these values if no substitution string is supplied).

-hdisplays a help file on the screen.

-lsets the limits filename.

-osets the output kcs filenamefilename.

-puses the parameters as they appear in the klf. (Default is to get the parameters
from thefirst site entry in the kdf.)

Example:

S530 KTE Software Data Analysis 4-21
Given the following kdf and klf:

Upon executing

KDFtoKCS lotData1

The following Cornerstone file would be generated:

When this file is viewed in a spreadsheet program such as Microsoft Excel, it appears
like this:

NOTE The extension was changed from kcs to csv in order for Excel to
recognize the format.

4 lotData1.kdf

TYP,KDF V1.0
LOT,lotData1
TST,ktxe
SYS,Q22
TSN,1
OPR,operator1
LMT,detailLimit
STT,01-Jan-1999 13:26
<EOH>
Wafer_01,,1,1
1,-4,1
icur,1.3124e-10
<EOS>
Wafer_01,,1,1
1,-4,2
icur,1.3126e-10
<EOS>
<EOW>

detailLimit.klf

#Keithley Parameter Limits File
Version,1.0
File,/TestArea/detailLimit.klf
Date,01/01/1999
Comment,KLF
<EOH>
ID,icur
NAM,current
UNT,mA
RPT,1
CRT,0
TAR,0.0000e+00
AF,0
AL,0
VAL,1.3100e-10,1.3125e-10
SPC,-2.0000e-10,2.0000e-10
CNT,-2.0000e-10,2.0000e-10
ENG,-2.0000e-10,2.0000e-10
<EOL>

5 lotData1.kcs

Wafer,Site,Row,Col,current mA
Wafer_01,1,-4,1,1.3124e-10
Wafer_01,1,-4,2,1.3126e-10

5
System Administration

5-2 System Administration S530 KTE Software
Introduction

This section covers setting up and using the Keithley Test Environment (KTE) software
for use with the KTE system. This section contains the following:

• Workstation applications — This will cover the Keithley Tool Palette, configuring
the system software, file management, and customizing the workstation, for the KTE
system.

• Integrating the system into the customer network — This section will cover inte-
gration of the KTE into the current system and logging test data.

Workstation applications

Keithley tool palette

The tool palette provides a point and click interface into the KTE development environ-
ment. The tool palette for the S530 system, shown in Figure 5-1, contain an icon for
each of the test plan development and utility functions.

Figure 5-1
Keithley tool palette

S530 KTE Software System Administration 5-3
After clicking on an icon, the command related to that icon appears in the Command
field and a brief description of the selected tool appears in the Description field. You can
access more information about the selected command by clicking on the Info button
located in the lower right corner of the tool palette. This will open the Help window
shown in Figure 5-2.

Figure 5-2
Tool window

To start the currently selected tool, click on the Run button in the lower right corner of
the tool palette or double-click on the icon of the software tool you want to initiate. The
status of the program selected will appear directly below the Description field.

Menu bar

The menu bar is located across the top of the tool palette and provides access to the
following system related functions.

File menu

• Exit — Closes the Keithley tool palette.

Edit menu

• Edit tool.tpi — Provides user modification access to the tool palette. The tool.tpi file
controls the icons displayed by each of the View menu selections.

• Reload tool.tpi — Re-initializes the program using the modified tool.tpi file. The
tool.tpi file must be reloaded after any changes have been made for modifications to
take effect.

5-4 System Administration S530 KTE Software
View menu

• Keithley tools — Displays Keithley Development Tools icons.

• Tester Tools — Displays the Tester Tools icons.

• Linux® tools — Displays the System Tools icons.

• Linux administration — Displays the Administrator Tools icons.

• User programs — Displays the User programs icons.

• All — Displays all of the icons listed above.

• Task list — Displays a dialog box containing presently running programs, shown in
Figure 5-3, and lets you stop individual program execution.

• Icon only view — Removes everything from the tool palette except the icons, and
opens the task list. The right mouse button accesses a dialog box that lets you tog-
gle between the icon only view and the full view of the tool palette.

Figure 5-3
Task list window

Help menu

• KTP documentation — Lists version information about the KTE software.

• About — Opens the help window related to the software tool selected in the same
manner as clicking on the Info button.

Project field

The project field lets you select a specific project environment that describes the loca-
tion of the KTE directory tree that will be utilized during testing.

System field

The system field lets you specify the test system to which your workstation should con-
nect.

System configuration

kth.ini file

The KTE system uses a system-wide initialization file called kth.ini to configure some of
the software components. The format for each entry within the kth.ini file is:

<COMPONENT>

S530 KTE Software System Administration 5-5
item=value

The definition for each of these parameters is:

• <COMPONENT> — One of the KTE software subsystems.

• item — The customizable parameter for the subsystem.

• value — The value associated with the item.

When started, Keithley application programs will search three different locations for the
kth.ini file:

• Your current working directory.

• Your login directory.

• The master version in $KIHOME.

The following is an example of a kth.ini file:

<KDF>

#Datapath=$KIDB

Error_Log=/$KIHOME/log/kdf_error.log

<SUM>

Lprint=lpr

LinesPerPage=55

ParamsPerLine=10

<GPIB232CT-UNIT#1>

BAUD=9600

TIMEOUT=10

TTYDEV=/dev/ttya

Any parameters defined by kth.ini can be changed by editing the file with an ASCII edi-
tor. The new values are used the next time the program executes.

When you make changes that you do not want other users affected by, copy the kth.ini
file from $KIHOME to your present or login directory and edit it there. For example,
assume you want to modify the Summary Report Generator <SUM> to print 5 parame-
ters per line, rather than its default setting of 10 per line. Perform the following:

1. Copy kth.ini to your working directory:

prompt> cp $KIHOME/kth.ini

2. Edit the file with text edit or any other ASCII editor.

3. Modify the <SUM> parameter ParamsPerLine as needed. Do not use spaces
around the = sign.

NOTE If you make an invalid change, for example ParamsPerLine=-10,
the software will ignore the setting and use a reasonable default
value when it executes.

4. Generate your Summary Report. The Summary Report Generator will use the new
value of ParamsPerLine as long as you execute it from the working directory.

If you wish to make this change universal, replace the file in $KIHOME with the new
version.

5-6 System Administration S530 KTE Software
ktpm.ini file
The ktpm.ini file allows you to set the User Access Points (UAPS) that are associated
with each engine used in the Keithley Test Program Manager (KTPM). The ktpm.ini
file, shown below, is located in the $KI_KTXE_CPF directory.

When an engine is selected, the UAPs associated with that engine are accessible to
the UAP Module/KTM area in KTPM. Only the UAPs listed with the selected engine can
appear in this area. Each selection in this field has an associated list of UAPs that
become active when the engine version is selected.

/* Start of File */

<Engine_List>
Engine1 = ktxe,$KIBIN,Initial KI Execution Engine for V5.x

<ktxe>
UAP1 = UAP_PROG_ARGS,process user’s ktxe command line arguments
UAP2 = UAP_CASSETTE_LOAD,start processing the cassette plan
UAP3 = UAP_LOT_INFO,start setting up the lot file
UAP4 = UAP_PROBER_INIT,start of prober initialization
UAP5 = UAP_WAFER_MISMATCH,missmatch detected between cassette plan and prober
UAP6 = UAP_ACCESS_WDF_INFO,allow access to wdf before call to PrInit
UAP7 = UAP_POST_PROBER_INIT,called to send init commands to prober
UAP8 = UAP_WRITE_LOT_INFO,before writing lot information
UAP9 = UAP_POST_LOT_INFO,write usertag data after LOT header
UAP10 = UAP_WAFERLOAD_STATUS,after a wafer load and the wafer is rejected
UAP11 = UAP_ALIGN_ERROR,error recovery after wafer alignment
UAP12 = UAP_POST_INITIAL_WAFER_LOAD,perform AutoZ after first wafer load
UAP13 = UAP_WAFER_PREPARE,start processing next wafer plan
UAP14 = UAP_VALIDATE_OCR,after OCR and before wafer ID is logged to data file
UAP15 = UAP_WAFER_BEGIN,start executing wafer plan
UAP16 = UAP_SITE_CHANGE,start of next site processing
UAP17 = UAP_SUBSITE_CHANGE,start of next subsite processing
UAP18 = UAP_TEST_BEGIN,start of next ktm processing
UAP19 = UAP_TEST_END,end of processing a ktm
UAP20 = UAP_TEST_DATA_LOG,after test data has been logged
UAP21 = UAP_HANDLE_ABORT,processing an abort condition
UAP22 = UAP_SUBSITE_END,end of current sub-site processing
UAP23 = UAP_SITE_END,end of current site processing
UAP24 = UAP_WAFER_END,end of processing a wafer plan
UAP25 = UAP_LOT_END,end of processing the cassette plan file
UAP26 = UAP_ENGINE_EXIT,before leaving the execution engine
UAP27 = UAP_ABORT_EXIT_HDLR,called as an atexit function
UAP28 = UAP_PRB_ERR_HDLR,called if prober err and function exists
UAP29 = UAP_STATUS_CHANGE,called when pause/cont is pressed on StatDlg
UAP30 = UAP_PROFILE_WAFER,before profiling a wafer

Place probers that support PrSetSlotStatus here in this list.
The YES is mandatory!!!
<AbsProbers>
EG40=YES
EG2X=YES
TSK9=YES
P8=YES
This is used for working off-line. Comment this out if desired
FAKE=YES

/*End of File */

The ktpm.ini file searches through the different directories for the data associated with
each UAP in the following order:

$KI_KTXE_CPF
$KIHOME
$HOME

To modify the ktpm.ini file, use textedit or any other ASCII text editor program.

S530 KTE Software System Administration 5-7
Environment variables

The following list outlines the environment variables used by the various KTE tools and
execution engines. Environment variables can be set to determine the default location
of data files. Environment variables also provide a mechanism to manipulate different
sets of data with the same tools. Simply set the environment variables to the desired
location(s) and start the tool.

Scripts can be developed that set these variables to point to different areas of the file
system. For example, a script, “SetProduction”, could be used to set the environment
variables to point to the production data file system. Another script, “SetDevelopment”,
could be used to set the environment variables to point to a development data file sys-
tem.

NOTE If the environment variables are changed AFTER the tool has
started execution, you MUST exit the tool and restart in order for
the change(s) to take effect.

NOTE The Wafer Plan Editor (WPE) is part of the Keithley Test Plan
Manager (KTPM). There are references to both KTPM and WPE.
They are combined into one tool.

KTPM (path is stored with .wpf, .pcf, and .gdf)

Cassette:Uses $KI_KTXE_CPF

Global:Uses $KI_KTXE_GDF

ktm:Uses $KI_KTXE_KTM

wafer plan:Uses $KI_KTXE_WPF

Prober Card:Uses $KI_KTXE_PCF

Wafer Desc.:Uses $KI_KTXE_WDF

UAP:Uses $KI_KTXE_UAP

SYSTEMAP File:Uses $KI_KTXE_SYSTEM_AP

WPE(part of KTPM)

Open:Uses $KI_KTXE_WPF

Wafer Desc.:Uses $KI_KTXE_WDF

Limits:Uses $KI_KTXE_KLF

Probe Card:Uses $KI_KTXE_PCF

KITT

Open:Uses $KI_KTXE_KTM

Wafer Desc:Uses $KI_KTXE_WDF

Global Data:Uses $KI_KTXE_GDF

Probe Card:Uses $KI_KTXE_PCF

Test Structure:Uses $KI_KTXE_TSF

Parameter Set:Uses $KI_KTXE_PSF

Practice Task:Uses $KIPGM

5-8 System Administration S530 KTE Software
LFE

Open:$KI_KTXE_KLF

Read ID:Uses $KI_KTXE_KTM

WDU

Open: Uses $KI_KTXE_WDF

TSE

Open: $KI_KTXE_TSF

KCAT

Open: $KI_KTXE_KDF

PSE

Open: $KI_KTXE_PSF

KOPED

Open: Uses $KIDAT

KSU

Open: $KI_KTXE_KDF

KOP

.ini file loadUses $KIDAT

The Keithley startup and login files define the following environment variables, shown in
Table 5-1 through Table 5-7, for your use. It is good programming practice to use these
variables whenever possible. This allows you to move the location of the Keithley direc-
tory tree without affecting your programs and scripts.

Table 5-1
Keithley directory environment variables

Variable Definition Meaning

KIHOME Installation dir (/opt/ki) KI HOME directory

KIBIN ${KIHOME}/bin KI Binaries directory

KIDAT ${KIHOME}/dat KI Data directory

KIDB ${KIHOME}/db KI Data Base

KILIB ${KIHOME}/lib KI Libraries directory

KILOG ${KIHOME}/log KI Log files directory

KITMP ${KIHOME}/tmp KI Temporary directory

KIINCLUDE ${KIHOME}/include KI Include directory

KI_LOCK_LOC ${KIHOME}/lock KI_lock_file directory

KIPGM ${KIHOME}/pgm .ktm and .wdf directory

S530 KTE Software System Administration 5-9
Table 5-2
Open interface environment variables

Variable Definition Meaning

ND_HOME ${KIHOME}openint OI Home Directory

ND_PATH ${ND_HOME}/lib:$KIDAT OI Search file path

ND_LIB ${ND_HOME}/shr OI Library subdirectory

OIT_LOOK MOTIF OI GUI “Look & Feel”

OIT_PATH ${OIT_HOME}/lib:$KIDAT

OIT_LIB ${OIT_HOME}/shr

OIT_HOME ${KIHOME}/openint

Table 5-3
System environment variables

Variable Definition Meaning

KI_SYSTEM System name string

KI_PRB_CONFIG ${KIDAT}/
prbconfig_xxxx.dat

Prober configuration for
system

KI_CONFIGURATION ${KIDAT}/acconfig_QMO.ini Configuration file for
system

KI_KUI_CLASSIC Default state - Undefined.
Set to 1 to use old-style KUI
windows.

Provides a way to use
existing KUI.

KI_ENBALE_2010_DISPLAY Set to 1 to activate the front
panel display of the optional
2010 DMM.

KI_ENBALE_2410_DISPLAY Set to 1 to activate the front
panel display of the HV
2410 SMU.

KI_DEFAULT_LIM_MODE Set to “KI_INDICATOR” to
use the KI_INDICATOR
value (7.0e22) instead of the
measured value.

KI_ONLY_GND_CHUCK Set to 1 to automatically
connect the CHUCK to GND
if CHUCK is unused.

Note that the
KI_GND_UNUSED
environment variable
must also be set in order
to have this behavior.

KI_GND_UNUSED Set to 1 to automatically
connect unused pins
(inclduding CHUCK) to
GND.

KI_MATRIX_PRINT Set to 1 to enable debug
messages from the matrix
driver to be displayed.

KI_SC_PRINT Set to 1 to enable the
SmartClear debug
messages to be displayed.

5-10 System Administration S530 KTE Software
KI_KELVIN_CHECK Set to ON to enable or OFF
to DISABLE kelvin check.

Undefined means
disabled.

Table 5-4
Diagnostics environment variables

Variable Definition Meaning

KI_PLATFORM S530 Platform type

KI_DIAGTOOLS_CONFIG ${KIHOME}/dat Configuration file

KI_DIAGTOOLS_LOG ${KIHOME}/log Log output file

Table 5-5
User library tool environment variables

Variable Definition Meaning

KI_KULT_PATH ${KIHOME}/usrlib Location of user libraries

Table 5-3
System environment variables

Variable Definition Meaning

S530 KTE Software System Administration 5-11
Table 5-6
Test plan manager environment variables

Variable Definition Meaning

KI_KTXE_CPF ${KIHOME}/plans Location of cassette plan
files

KI_KTXE_GDF ${KIHOME}/plans Location of global data files

KI_KTXE_KDF ${KIHOME}/db Location of data files

KI_KTXE_KLF ${KIHOME}/db Location of limit files

KI_KTXE_PCF ${KIHOME}/plans Location of probe card files

KI_KTXE_PLANS ${KIHOME}/plans Plans directory

KI_KTXE_UAP ${KIHOME}/plans Location of UAPs

KI_KTXE_WDF ${KIHOME}/pgm Location of wafer description
files

KI_KTXE_WPF ${KIHOME}/plans Location of wafer plan files

KI_KTXE_KTM ${KIHOME}/pgm Location of test macros

KI_KTXE_TSF ${KIHOME}/plans Location of test structure
files

KI_KTXE_PSF $KI_KULT_PATH Location of parameter set
files

KI_LOCALIZE_CFG Defined by user (optional) KTXE/KUI localization file

Table 5-7
Log file environment variables

Variable Definition Meaning

KI_KTXE_ERROR_LOG Defined by user KTXE error log file
location

KI_KTXE_EVENT_LOG Defined by user KTXE event log file
location

KI_KTXE_DEBUG_LOG KTXE debug log file
location.

KI_PRB_AUDIT_LOG Defined by user Prober transaction log
file location

KI_IC_AUDIT_LOG Undefined Determines where any
IC ERROR messages
will be stored.

KI_TRACE_LEVEL Undefined Can be set to TRACE,
DEBUG, or ERROR.
This determines what
level of log messages
are displayed by the IC
process. Default level is
DEBUG.

5-12 System Administration S530 KTE Software
Log file environment variables

Classification of errors:

• Prober Errors — Recover if possible. Notify, user abortable, logable.

• LPT Errors — No recovery. Logable, abort on fatal errors. See exithandlers.

• Data Logging Errors — Notify and abort, logable.

• Engine Data Errors — Non-fatal: notify and continue, logable. Fatal: notify and
abort, logable.

If these environment variables are defined, the respective log messages will be placed
in the file specified.

NOTE If the “-e” and “-ev” command-line options for the execution
engine have a filename specified, this filename overrides the
environment
variables.

KI_KTXE_ERROR_LOG — determines the path and filename of the KTXE error log
file.

KI_PRB_AUDIT_LOG — determines the path and filename of the transaction log file.

KI_LPT_ERRORLOG — determines the path and filename of the LPT error log file.

KI_PRB_ERROR_LOG — determines the path and filename of the prober error log file.

KI_DISABLE_TRACE Undefined Will disable any IC log
messages from being
displayed. Note that if
the KI_IC_AUDIT_LOG
is defined, ERROR level
messages will still be
logged.

KI_KISA_DEBUG Set to 1 to enable
debug messages from
the kisa process.

KI_KISA_SHOW_LOG Set to 1 to enable
print-type logging in
addition to file logging
for the kisa process.

KI_KTXE_STARTUP_MSGS Set to 1 to enable
KTXE process startup
messages.

KI_ALWAYS_SHOW_DIAGS Set to 1 to enable
version control
operation debug
messages.

KI_HIDE_UNSUPPORTED_MSGS Set to 1 to disable the
“UNSUPPORTED LPT
COMMAND”
messages.

Table 5-7
Log file environment variables

Variable Definition Meaning

S530 KTE Software System Administration 5-13
KI_PRB_ERRM — determines the path and filename of the prober error message file.

Example: To log KTXE events and errors, prober errors, and LPT errors to same file:

prompt> setenv KI_KTXE_ERROR_LOG /mydir/file.log

prompt> setenv KI_PRB_AUDIT_LOG /mydir/file.log

prompt> setenv KI_LPT_ERRORLOG /mydir/file.log

prompt> setenv KI_PRB_ERROR_LOG /mydir/file.log

prompt> setenv KI_PRB_ERRM /mydir/file.log

or start the execution engine as:

prompt> ktxe -cpf cassettePlan -e 2 /mydir/file.log -ev 2 /mydir/file.log

This will log KTXE errors to /mydir/file.log.

File management

The system disk on the KTE system contains the standard operating system partitions /
, /user, and /home. All of the KTE software is located under the /opt/ki path. The follow-
ing is a list of all of the directories located under the /opt/ki/ path:

• bin — Keithley executable files and shell scripts.

• dat — Keithley and GUI data files.

• db — Data files.

• doc –— KTE Tools online help.

• include —– Keithley C header files.

• install — Installation tools.

• lib — Keithley static and shared libraries.

• lock — Keithley lock files. To protect against multiple access writes.

• log — System log files.

• openint — Open interface files.

• pgm — Test macro and wafer description files.

• plans — Test plan files.

• skel — Default login scripts.

• src — Source files for some system files.

• tmp — System temporary/scratch directory.

• unsupported — Unsupported utilities.

• usrlib — KULT user libraries.

5-14 System Administration S530 KTE Software
KCM utility description

Use the KCM utility to package and transfer test plans from one location to another.
This utility selects all files required by the test plan and places them into a *.tar file.
Specify the -u switch to include all usrlibs in addition to the required files.

Usage

kcm -e efile [-u] [-o <fname>]
kcm -i ifile [-u] [-f]

-e | -iexport or import files (mutually exclusive)

ifilename of file to be imported. The file must be generated by kcm. Paths are sup-
ported.

efilename of file to be exported. Non-usrlib files must include file extension. Paths are
ignored.

-u optional parameter to include dependent usrlibs. Unless specified, usrlibs are not
included in the "efile" or installed from the "ifile". If the file specified is a
usrlib, the -u switch has no effect. Only the usrlib specified is bundled.

-f optional parameter to force overwriting local files and usrlibs without asking for con-
firmation.

-o <fname>optional export parameter to specify output filename. Default output file-
name is "efile.tar".

Samples

Using "kcm -e sample.cpf -u" will create a package that contains all KTE files necessary
to execute the sample.cpf cassette plan.

Using "kcm -i sample.cpf -u" will install this package into the current environment.

Project environments

The .ki_setup file has been modified to dynamically adjust a user’s environment vari-
ables on a project level basis. This allows users to set up different areas to store, run,
and load their product specific files...or for the separation of production and develop-
ment code.

Users may use the make_project script to create a new tree containing, if desired, the
following directories:

• db

• pgm

• plans

• usrlib

The script will prompt for each of these possibilities and create the directories as neces-
sary. In the case of the usrlib directory, our original KIHOME/usrlib directory will be cop-
ied over to the new location.

The following example will create a new project named dev1Area and the tree “root” of
the project will be placed in /kte/ProjectTree.

S530 KTE Software System Administration 5-15
Prompt> make_project

Usage: make_project tree projname

Prompt> make_project /kte/ProjectTree dev1Area
Creating Project
Would you like to create a new db directory? y
Would you like to create a new usrlib directory? n
Would you like to create a new plans directory? y
Would you like to create a new pgm directory? y
Creating /ki/dat/dev1Area.env
Creating /ki/dat/dev1Area.set
Finished Creating Project

Prompt>

The creation of a project places a new file, projectname.env, into the KIDAT directory.
The example above create the file dev1Area.env which is shown below:

setenv KIPROJ /kte/ProjectTree/dev1Area
setenv KI_PROJ_DB /kte/ProjectTree/dev1Area/db
setenv KI_PROJ_USRLIB /ki/usrlib
setenv KI_PROJ_PLANS /kte/ProjectTree/dev1Area/plans
setenv KI_PROJ_PGM /kte/ProjectTree/dev1Area/pgm
setenv KI_PROJ_NAME dev1Area.env

There are two ways to reset your environment for a different project.

Invoke select_project which will scan the KIDAT directory for all possible env files, and
then present an enumerated list, and ask which one you want. You may cancel by hit-
ting 0, or reload the original variables by entering 111.

Prompt> select_project

Your choices are:

Project 1 is DemoProject.env
Project 2 is Keithley_Orig.env
Project 3 is current.env
Project 4 is dev1Area.env

Enter your selection...
 or 0 to cancel
 111 to load KI Original
>>---> 0

Prompt>

The process used by the select_project script will set the following environment vari-
ables:

KIPROJ — Points to the base path of the project tree.
KI_PROJ_DB — Points to path of directory where KDF and KLF files are stored.
KI_PROJ_USRLIB — Points to usrlib directory where KULT libraries are stored.
KI_PROJ_PLANS — Points to directory where CPF, WPF, GDF, and PCF files are
stored.
KI_PROJ_PGM — Points to directory where WDF, and KTM files are stored.
KI_PROJ_NAME — Project Name.

5-16 System Administration S530 KTE Software
The .ki_setup file will use these base variables to configure the remaining KTE environ-
ment variables.

A GUI window is provided in KOP and KTP. By changing the project within these tools,
all applications started by these tools will use the project environment specified.

When you start a new shell, or log in, the last project environment saved in $HOME/cur-
rent.env will be loaded. If this file does not exist, then the system will look for the exist-
ence of $KIDAT/current.env. If that does not exist, then the system will take the Keithley
defaults using the tree off of $KIHOME.

The make_project and select_project scripts are located in the $KIBIN directory. They
are C-Shell scripts and can be modified to add additional environment variables and
capabilities. For example, you may wish to add other project specific environment vari-
ables for use in project specific KULT functions as shown below:

Add the following to the $KIDAT/development_project.env file:

 setenv MY_ENV_STRING “>>> development shell”

Add the following to the KIDAT/production_project.env file:

 setenv MY_ENV_STRING “>>> production shell”

Now a KULT function can use this environment variable and determine the project and
adjust behavior based upon this information. For example:

 printf(“This is the %s\n”,getenv(“MY_ENV_STRING”));

Select tester

Setup Information

A $KIDAT/kitester.dat file contains a list of the QMO numbers of the testers to which the
workstation is permitted to connect. To allow connection to additional testers, modify
the
$KIDAT/kitester.dat file to include the QMO number(s). You must also create a $KIDAT/
acconfig_QMO#.ini file for each QMO listed in the $KIDAT/kitester.dat file.

The select_tester script will create a .ki_define_config file in the user’s home directory.
This file is then “source’d” if select tester is executed interactively. If select_tester is
called non-interactively, the user MUST source ~/.ki_define_config in order that the
KTE environment is configured correctly.

select_tester script

The select_tester routine will enable the operator to specify to which tester the KTE
toolset will connect. A $KIDAT/kitester.dat file contains a list of the QMO numbers of the
testers the workstation is permitted to connect with. This file is accessed by the
select_tester script and the list of available testers is shown. The operator can then
choose the tester from the list, or accept the currently selected tester if shown. (sample
display)

This script can be executed interactively or integrated into a .cshrc file for automatic
tester selection at login.

Interactive Execution:

prompt> source select_tester
 or
prompt> select

S530 KTE Software System Administration 5-17
no parameters are permitted. Tester selections will be interactive. “select” is an alias for
“source ${KIBIN}/select_tester”

Non-interactive Execution:

prompt> select_tester 2

a parameter is permitted to specify tester. BUT the ~/.ki_define_config execution will
have no effect.

To use from the .cshrc file include after “source ~/.kth_startup”

Example:

source ~/.kth_startup
select_tester 2
source ~/.ki_define_config

Sample display

The following example display shows select_tester being executed with the operator
choosing the current tester, QMO 4001.

prompt>source select_tester

Keithley S530 System Selection Utility:

NumberQMOSystem Name

 -->1 - 4001 Tester1Nice Name
 2 - 4002 Tester2Nice Name
 3 - 4003 Tester3Nice Name
99 - Debug Tester
 0 - Exit

 Enter Number: [1]

Configuring Environment for QMO:4001 - Tester1Nice Name
prompt>

--

Selecting tester 99, the debug tester, will use the fake prober. The user will not control
an actual tester or prober.

.ki_define_config

The select_tester script creates a .ki_define_config file in the user’s home directory.
This file is then “source’d”, if in interactive mode, to initialize the proper environment
variables based upon the tester selected.

S530 environment variables

The following environment variables are defined by select_tester that allow the KTE
toolset to communicate with the proper tester:

setenv KI_CONFIGURATION ${KIDAT}acconfig_$QMO.ini
setenv KI_PRB_CONFIG ${KIDAT}prbcnfg_$QMO.dat

5-18 System Administration S530 KTE Software
setenv KI_SYSTEM $SystemName

$QMO = the QMO of the tester selected by the select_tester script.

$SystemName = the SystemName value found in the $KIDAT/acconfig_QMO#.ini file.

ki_setup_$QMO

Additional tester-specific setup can occur via the use of a $KIHOME/ki_setup_$QMO
file. This file, if it exists for a particular QMO number, is also “source’d” so that additional
environment variables or other customizations can be initialized.

kitester.dat

The following sample kitester.dat file will allow the workstation to connect to testers with
QMO numbers 4002, 4003, and 4010.

#
QMO numbers of testers accessible by this workstation account
Modify this file as necessary to allow/disallow access to testers
Only the QMO number is necessary.
#
There MUST be a acconfig_nnnn.ini file for each QMO number listed!!!
#
example:
#4001
4002
4003
4010

System customization

Logging in the workstation

The KTE system ships with four default user accounts installed:

• System Administrator — This account is for the person responsible for overall
operation of the system and workstation. The system manager typically performs
system backups, generates new accounts for users, installs software upgrades, and
maintains the Linux environment.

• Test System Manager — This account is for the person responsible for maintaining
files on the system. In many environments, the System Administrator and Test Sys-
tem Manager roles are assigned to the same person.

• Test Engineer/Programmer — This account is for the engineers writing parametric
test plans. This account has the access privileges required to create, modify, and
run test plans.

• Test Station Operator — This account is for anyone responsible for operating a
wafer prober, running test plans, or other application programs.

S530 KTE Software System Administration 5-19
These four accounts are summarized in Table 5-8.

You can customize your system to change the level of access for each type of account
by modifying the Login directory to limit or expand access as required. You can also
change the access password for each account.

Configuring the tool.tpi file

The tool.tpi file is the main configuration for the Keithley Tool Palette (KTP) and con-
tains the names of all of the other files needed to access the tools available from the
KTP.

The tool.tpi has four major categories to be defined:

• Keithley-Tools
• Unix-Tools
• Unix Administration
• User Programs

These categories correspond to the four different icon sets available in the KTP. All four
categories use the same configuration scheme.

The first line of each category within the tool.tpi file is defined by the category name
enclosed by less than (<) and greater than (>) symbols. The following describe the con-
tents for one entry within a category:

ICON#=iconfile,scriptfile,infofile,terminal,warning

• “#” is the number of the icon in the KTP. Icons are numbered sequentially, starting
at 1.

• “iconfile” is the bitmap icon filename.

• “scriptfile” is the file containing the command to be executed. An example is pro-
vided below:

<KTP>

COMMAND=(the full pathname of the program to start)
DESCRIBE=(a line description of the program)

• “infofile” is the file you create that contains help text for the program. The help file
is read as an ASCII file and can be created with any text editor.

• “terminal” is the flag that specifies whether the program needs to be started in its
own terminal window. Programs that do not require terminal windows are those that
have their own graphical user interface, such as KITT. The valid entries for this input
are Y for yes and N for no.

• “warning” is the flag that specifies whether the user should be warned before exe-
cuting the program. The valid entries for this input are Y for yes and N for no.

Table 5-8
Login accounts

Type of Account
Log-in
name Password Login directory

System Administration
Test System Management
Test Program Development
Operators Login

root
kthmgr
kthprg
kthopr

keithley
kthmgr
kthprg
kthopr

/
/export/home/kthmgr
/export/home/kthprg
/export/home/kthopr

5-20 System Administration S530 KTE Software
All of the required scriptfiles (file type .src) must reside in the $KIDAT/directory.

When you put all of this together, you get an entry in your tools.ini file that looks like
this:

<KEITHLEY-TOOLS>
ICON1=kitt.ico,kitt.src,kitt.inf,N,N

You can modify the programs that are activated from one of the major categories by
adding the correct definition for your additional tool. Ensure that the required files are
located in the proper directories.

Here is an example of the tool.tpi file:

<Keithley-Tools>
ICON1=config.ico,config.scr,config.inf,Y,N
ICON2=diags.ico,diags.scr,diags.inf,Y,Y
ICON3=ksu.ico,ksu.inf,N,N
ICON4=download.ico,lownload.scr,download.inf,Y,Y
ICON5=kitt.ico,kitt.src,kitt.inf,N,N
ICON6=limitx.ico,limitx.scr,limitx.inf,N,N
ICON7=ktpm.ico,ktpm.scr,ktpm.inf,N,N
ICON8=wdu.ico,wdu.scr,wdu.inf,N,N
ICON9=kop.ico,kop.scr,kop.inf,N,N
ICON10=koped.ico,koped.scr,koped.inf,N,N
ICON11=kult.ico,kult.scr,kult.inf,N,N
ICON12=kcat.ico,kcat.scr,kcat.inf,N,N

<Unix-Tools>
ICON1=terminal.ci,terminal.scr,terminal.inf,N,N
ICON2=textedit.ico,textedit.scr,textedit.inbf,N,N
ICON4=calendar.ico,calendar.scr,calendar.inf,N,N
ICON5=clock.ico,clock.scr,clock.inf,N,N
ICON6=mail.ico,mail.scr,mail.inf,N,N

<Unix Adminstration>
ICON1=xman.ico,xman.scr,xman.inf,N,N

<User Programs>
ICON1=user.ico,user.scr,user.inf,N,N

Here is an example of the script file for kitt.

<KTP>
COMMAND=kitt
DESCRIBE=StartstheKeithleyInterativeTestTool.

System integration

To simplify integrating the KTE system into your testing environment, Keithley has
developed a series of test libraries that contain commands used during test plan gener-
ation, commonly used test procedures, system prober commands, commands used to
control and monitor testing, and commands used to handle and store test data. The fol-
lowing paragraphs discuss these different libraries and provide information on test data
handling.

S530 KTE Software System Administration 5-21
Linear Parametric Test Library (LPTLIB)

LPTLIB is a high-speed data acquisition and instrument control software system. It is
the lowest level of command interface to the systems instrumentation. This library con-
tains commands to program the system instrumentation for parametric testing. Access
to this library is available through the Keithley Interactive Test Tool (KITT) and the Kei-
thley User Library Tool (KULT). For more information about the commands, refer to the
LPTLIB Programming manual.

Keithley Data Files (KDF) library

KDF is a series of routines to organize and save parametric test data into simple ASCII
data files. KDF is discussed further in Appendix A.

Keithley User Interface (KUI) library

KUI contains a series of subroutines that support the creation of user interface dialogs
for your test programs. Using KUI, you will be able to control and monitor test activities
during the test process. For more information about the KUI subroutines, refer to
Appendix B.

A
KDF

A-2 S530 KTE Software
Test data logging

The following paragraphs describe control and handling of the test data.

Keithley Data Files (KDF) library

The KDF Library is a set of routines to organize and save parametric test data into sim-
ple ASCII data files. The following paragraphs discuss the .kdf file, and how to control
the output of this data once it has been stored.

KDF does not make use of any special environment variables. It does, however, use
the Keithley initialization file, kth.ini, to define the directory used to store and retrieve
data files. By default, all data files are created in the $KIHOME/db directory. You can
modify this by changing the kth.ini file.

All programs that contain KDF library functions must include the kdf.h header file,
located in the $KIINCLUDE directory. This file declares the functions and allows the
ANSI-C compiler to validate calling arguments. The proper way to declare a KDF func-
tion is:

#include “kdf.h”

File structure

A KDF data file is stored as a tagged, ASCII file. The lot level header information varies
in length and is terminated by the <EOH> symbol. It is followed by one or more wafer
blocks, each of which is terminated with the <EOW> symbol. Each wafer block is made
up of one or more site blocks, each of which contains the result data for a single site. A
site block within a wafer block is terminated by the <EOS> symbol. Refer to the exam-
ple in Table A-1.

Table A-1
KDF output description file

Data file
record Description of data

TYP,KDFV1.0
LOT,test1
PRC,CMOS
DEV,TNG-121
TST,Test1
TSN,1
LMT,limits
<EOH>
1,,0,0
1,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
<EOW>

Identifies the file as a valid V1.0KDF Data
File
Lot ID=“test1.kdf”
Process=“CMOS”
Device=“TNG-121”
Test name=“Test1”
Test Station Number=1
Limits Filename=“limits.klf”
<End of Header>
Wafer Id = 1
Site Id = 1
Tag=1, Value=1.0
Tag=2, Value=3.0
<End of sight data>
<End of Wafer data>

S530 KTE Software A-3
The lot level header is a variable length structure. Each record in the header section is
tagged with the identifiers in Table A-2.

Data logging interfaces

Refer to the “Data logging routines” on page A-12 for information on the different inter-
faces used to perform data logging.

KDF storage limits

A summary report of the test results is provided by the Keithley Summary Utility (KSU).
This report combines the test results from the .kdf file and the assigned limits located in
the .klf file. When combined into a report, you get a picture of which results met or
exceeded the desired limits.

Using limits files

All Parametric Test Results (PTRs) are logged into storage with either the LogPtr or
PutParam commands. Each command logs the result data with an associated result
tag.

A Limits File associates result tags with result names, units of measurement and result
limits. Use the Keithley Limits File Editor to create new limit files or edit existing ones.
Limits files are created with a .klf extension, Keithley limit file, and must be located in
the same directory as the .kdf data files.

Normally there is a single limits file for each of your test programs. You may, however,
decide to create a single Master limits file that is shared by all your test programs.

The limits file is only used by the Summary Report Generator. It contains the informa-
tion required to properly label the individual results, and to determine whether the

Table A-2
Optional lot-header parameters

Lot header
parameters KDF tag Length Description

id
process
device
testname
system
teststation
operator
starttime
stoptime
sk1
sk2
sk3
limitcode
comment

LOT
PRC
DEV
TST
SYS
TSN
OPR
STT
SPT
SK1
SK2
SK3
LMT
COM

51
51
51
256
21
integer
31
21
21
31
21
11
81
257

50 character lot identification (used for lot
name)
50 character process name
50 character device name
255 character test name
20 character system identification
Test station number (1-4)
30 character operator name
20 character test start time
20 character test completion time
30 character User Search Key #1
20 character User Search Key #2
10 character User Search Key #3
80 character limits filename
256 character user-definable comment

A-4 S530 KTE Software
results pass or fail the different validation limits. If the Summary Report Generator is run
without a limits file, all validation limits default to +/-1E16.

Limits file structure

A limits file is an ASCII file organized into records. Each record consists of 18 attributes
that identify and process each measured test result. The following list describes each
attribute:

1. ID, limit record ID tag

2. NAM, limit record name

3. UNT, limit record units

4. CAT, category description

5. RPT, report option: 1 = use in Summary Report, 0 = ignore

6. CRT, critical level

7. TAR, target value of parameter

8. AF, abort flag setting

9. AL, limit abort flag is to be compared to

10. VAL, low and high VALID limits

11. SPC, low and high SPECIFICATION limits

12. CNT, low and high CONTROL limits

13. ENG, low and high ENGINEERING limits

14. ena, enabled flag (only for adaptive test): 1 = test, 0 = ignore

15. cla, class data field

16. usr1, user data field

17. usr2, user data field

18. usr3, user data field

<EOL>, marks end of limit record

When a limits file is loaded into memory, the cla, usr1, usr2, and usr3 fields will contain
a NULL pointer, not an empty string, if the data is not defined in the limits file. The NAM,
UNT, and CAT fields will contain an empty string if the data is not defined in the limits
file.

These eighteen attributes are repeated for each result ID in the limits file. The following
limits file contains the file header and two separate result ID records:

Version,1.0
File,/home/kiSys/db/tutor.klf
Date,07/21/1996
Comment,KLF
<EOH>
ID,moda_n13x1_vtati
NAM,moda_n13x1_vtati
UNT,volts
CAT,test
RPT,1
CRT,1
TAR,1.32
AF,N
AL,VAL
VAL,-1.0000e+16, 1.0000

S530 KTE Software A-5
SPC,-1.0000e+16, 1.0000e+16
CNT,-1.0000e+16, 1.0000e+16
ENG,-1.0000e+16, 1.0000e+16
ENA,1
CLA,main
USR1,user 1
USR2,user 2
USR3,user 3
<EOL>
ID,i_res
NAM,ires test
UNT,ohms
CAT,test
RPT,1
CRT,0
TAR,1.000000
AF,SS
AL,SPC
VAL,-1.0000e+20, 1.0000e+21
SPC,-1.0000e+16, 1.0000e+16
CNT,-1.0000e+16, 1.0000e+16
ENG,-1.0000e+16, 1.0000e+16
ENA,1
CLA,main
USR1,user 1
USR2,user 2
USR3,user 3
<EOL>

Each result ID record within a limits file can be viewed individually. By selecting Dialog
from the View menu, you can view and modify the currently selected limit in the Limits
Editor Dialog window, shown in Figure A-1.

Figure A-1
Limits editor dialog window

A-6 S530 KTE Software
Programming examples

Logging data using KDF

The following sample program demonstrates how to log data to a .kdf file. It loops
through two simulated wafers, each with three sites, and logs two parameters per site.
The programs use both of the available data logging interfaces to create the same out-
put file. The final output files are named and displayed after the source code listing.

#include <stdio.h>
#include <stdlib.h>
#include "kdf.h"
void main(void)
{
LOT*testlot;
WAFER*testwafer;
SITE*testsite;
PARAM*testparam;
int waferloop,siteloop;
int status;
int total_wafers=2;
int sites_per_wafer=3;
floatvalue;
charwafer_id[4];
charsite_id[4];

/**************** S T A R T O F C O D E ******************/

/* Initialize kdf data structures */
testlot = CreateNewLot ();
testwafer = CreateNewWafer();
testsite = CreateNewSite ();
testparam = CreateNewParam();

/* Initialize some of the lot header items */
strcpy (testlot->id, "test1");/* lot name */
strcpy (testlot->process, "CMOS");/* process name */
strcpy (testlot->device, "TNG-121");/* device name */
strcpy (testlot->testname, "Test1");/* test name */
strcpy (testlot->limitcode, "limits");/* limits filename */
testlot->teststation=1;/* test station 1 */

/* Actually create the lot file */
status = PutLot(testlot, CREATELOT);
if (status < 0) exit(status);
printf(“\n\nStart Test #1\n”);

/* Start Testing: Loop through all wafers & sites */
tstsel(1);
for (waferloop = 1;waferloop <= total_wafers;waferloop++)
{

sprintf(testwafer->id,"%i",waferloop);
status = PutWafer(testlot,testwafer);

S530 KTE Software A-7
if (status < 0) exit(status);
printf("Logging Wafer %i\n", waferloop);

for (siteloop = 1; siteloop <= sites_per_wafer; siteloop++)
{

sprintf(testsite->id,"%i",siteloop);
status = PutSite(testlot,testwafer,testsite);
if (status < 0) exit(status);
printf("\tLogging Site %i\n", siteloop);

/* calculate the beta*/
strcpy(testparam->id, "1");
testparam->value = beta1(1,4,7,-1, 0.5e-3, 2.0, ‘N’);
status = PutParam(testlot,testwafer,testsite, testparam);
if (status < 0) exit(status);

/* test the capacitance when the bias voltage is 1.0 */
strcpy(testparam->id, "2");
testparam->value = cap(3,5,7,1.0);
status = PutParam(testlot,testwafer,testsite, testparam);
if (status < 0) exit(status);

/* Site complete */
EndSite();

/* Insert prober code here to move to next site */
}

/* Wafer complete */
EndWafer();

/* Insert p/rober code here to move to next site */
}

/* Lot complete. Close data file */
EndLot();

/* Initialize kdf data structures */

status = LogLot("test2", 0, "CMOS", "TNG-121", "Test1", "", "",
"Limits", "", CREATELOT);
if (status <0) printf(“Error in LogLot, status %i\n”,status);

/* Start Testing: Loop through all wafers & sites */
tstsel(1);
printf(“\n\nStart Test #2\n”);
for (waferloop = 1;waferloop <= total_wafers;waferloop++)
{

sprintf(wafer_id,"%i",waferloop);
status = LogWaf(wafer_id,0);
if (status <0) printf("Error in LogWaf, status %i\n",status);
printf("Logging Wafer %i\n", waferloop);

for (siteloop = 1; siteloop <= sites_per_wafer; siteloop++)
{

sprintf(site_id,"%i",siteloop);

A-8 S530 KTE Software
status = LogSit(site_id, 0);
if (status <0) printf("Error in LogSit, status %i\n",status);
printf("\tLogging Site %i\n", siteloop);

/* calculate the beta*/
value = beta1(1, 4, 7, -1, 0.5e-3, 2.0, ‘N’);
status = LogPtr(1, value);
if (status <0) printf("Error in LogPtr, status %i\n",status);
/* test the capacitance when the bias voltage is 1.0 */
value = cap(3,5,7,1.0);
status = LogPtr(2, value);
if (status <0) printf("Error in LogPtr, status %i\n",status);

/* Site complete */
EndSite();

/* Insert prober code here to move to next site */
}

/* Wafer complete */
EndWafer();

/* Insert prober code here to move to next site */
}

/* Lot complete. Close data file */
EndLot();
}

S530 KTE Software A-9
The two data files created by this example are shown in Table A-3.

The resulting summary report is shown below:

Lot Summary Report KDF V1.0
Lot : test1 Operator :
Process : CMOS Starttime :
Device : TNG-121 System :
Testname : Test1 Teststation : 1 Limits File: limits
#Wafers : 2
#Sites : 6

Data retrieval using KDF

The following sample program demonstrates how to read data from a .kdf file. The pro-
gram will attempt to read all of the data from “test1.kdf” (created in the previous exam-
ple, and display the results on the screen).

#include <stdio.h>
#include <stdlib.h>
#include "kdferr.h"

Table A-3
PUTxxx and LotLog/LogWat/LogSit data files

File created by Putxxx
Interface

File created by LogLot/
LogWaf/LogSit
Interface

File created by Putxxx
Interface

File created by LogLot/
LogWaf/LogSit
Interface

TYP,KDFV1.0
LOT,test1
PRC,CMOS
DEV,TNG-121
TST,Test1
TSN,1
LMT,limits
<EOH>
1,,0,0
1,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
2,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>

TYP,KDF V1.0
LOT,test2
PRC,CMOS
DEV,TNG-121
TST,Test1
TSN,1
LMT,limits
<EOH>
1,,0,0
1,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
2,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>

3,0,0
1,1.0000E+00
2,3.0000E+00
<EOS>
<EOW>
2,,0,0
1,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
2,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
3,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
<EOW>

3,0,0
1,1.0000E+00
2,3.0000E+00
<EOS>
<EOW>
2,,0,0
1,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
2,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
3,0,0
1,1.0000e+00
2,3.0000e+00
<EOS>
<EOW>

Name
units SpecL SpecH Mean Min Max SDEV %SDEV CNT %Vld %Spec

1
2

-
1.00e+15
-
1.00e+15

1.00e+15
1.00e+15

1.00e+00
3.00e+00

1.00e+00
3.00e+00

0.00e+00
3.00e+00

0.00e+00
0.00e+00

0.0
0.0

6
6

100.0
100.0

100.0
100.0

A-10 S530 KTE Software
#include "kdf.h"

void main(void)
{
LOT*searchlot,*gotlot;
WAFER*searchwafer,*gotwafer;
SITE*searchsite,*gotsite;
PARAM*searchparam,*gotparam;

int waferloop,siteloop;
int status;

/************ START DATA RETRIEVAL *****************/
searchlot = CreateNewLot();
gotlot = CreateNewLot();

/* Retrieve all the data from lot test1.kdf */
strcpy(searchlot->id, "test1");
GetLot(searchlot, gotlot);

/* Get all the wafers in the lot */
searchwafer = CreateNewWafer();
gotwafer = CreateNewWafer();
strcpy(searchwafer->id, "*");
GetWafer(gotlot, searchwafer, gotwafer);

while (gotwafer != NULL)
{

printf("\tWafer %s\n", gotwafer->id);
searchsite = CreateNewSite();
gotsite = CreateNewSite();
/* Get all the sites in this wafer */
strcpy(searchsite->id, "*");
GetSite(gotlot, gotwafer, searchsite, gotsite);

while (gotsite != NULL)
{

printf("\t\tSite %s\n", gotsite->id);
searchparam = CreateNewParam();
gotparam = CreateNewParam();
/* Get all the parameters in this site */
strcpy(searchparam->id, "*");
GetParam(gotlot, gotwafer, gotsite, searchparam, gotparam);

while (gotparam != NULL)
{

printf("\t\t\tId, Value = %s, %e\n", gotparam->id, gotparam->value);
gotparam = FindNextParam(gotparam);

}

gotsite = FindNextSite(gotsite);
}
gotwafer = FindNextWafer(gotwafer);

}
/************* CLEANING UP MEMORY *****************/

RemoveParam(searchparam);
RemoveSite (searchsite);
RemoveWafer(searchwafer);
RemoveLot (searchlot);
RemoveLot (gotlot);

while (gotwafer != NULL)
gotwafer = RemoveWafer(gotwafer);

S530 KTE Software A-11
while (gotsite != NULL)
gotsite = RemoveSite(gotsite);

while (gotparam != NULL)
gotparam = RemoveParam(gotparam);

}

The resulting output is:

Wafer 1
Site 1

Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Site 2
Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Site 3
Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Wafer 2
Site 1

Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Site 2
Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Site 3
Id, Value = 1, 1.000000e+00
Id, Value = 2, 3.000000e+00

Data logging routines

PutLot

Purpose This routine will log the header information to the DB or FF. Lotadd is used to either append
(Lotadd = APPENDLOT), create new (Lotadd = CREATELOT), or to replace an existing lot
(Lotadd = CREATELOT). Opens a file, writes to it, and then closes it.

Format Status = PutLot(*LotStruct, Lotadd)

LOT *LotStruct — the lot where data is logged.

int Lotadd — Can be set to either CREATELOT or APPENDLOT and determines what will hap-
pen if a lot file already exists.

Remarks You cannot use the ‘*’ or the ‘?’ characters in the Lot structure fields because they are the wild-
card characters. Use of these characters will result in an error.

The Lot ID will be used as the lot filename, with the ‘.kdf’ extension added.

PutLot logs all the data up to and including the ‘<EOH>’ marker.

If a lot file already exists, it will be renamed from a .kdf extension to a .kd% extension.

Example Full code can be found in sample program 1.

A-12 S530 KTE Software
strcpy (testlot->id, "test1");
strcpy (testlot->testname, "Voltage 1");
GetStartTime(testlot->starttime);

/* Start the logging of the new lot "test1". The lot has 3 wafers and 10
sites to be logged.
*/
status = PutLot(testlot, CREATELOT);
if (status < 0)
return(status);

PutWafer

Purpose This routine will log the information in the wafer structure to the DB or FF for a specific
instance of a lot. Opens a file, writes to it, and then closes it. Must be followed at some point by
EndWafer.

Format Status = PutWafer(*LotStruct, *WafStruct)

LOT *LotStruct — The lot where data is logged.

WAFER *WafStruct — The wafer to log to the lot.

Remarks After a call to PutWafer, you must make a call to EndWafer before calling PutWafer again.

You cannot use the ‘*’ or the ‘?’ characters in the Wafer structure fields because they are the
wildcard characters. Use of these characters will result in an error.

Example Full code can be found in sample program 1.

for (waferloop = 1;waferloop <= 3;waferloop++)
{
sprintf(testwafer->id,"%i",waferloop);
status = PutWafer(testlot,testwafer);
if (status < 0)
return(status);

PutSite

Purpose This routine will log the information contained in the Site Structure to the DB or FF for a spe-
cific instance of a lot and wafer. Opens a file, writes to it, and then leaves it open for parameter
data. Must be followed at some point by an EndSite.

Format status = PutSite(*LotStruct, *WafStruct, *SiteStruct)

LOT *LotStruct — The lot where data is logged.

WAFER *WafStruct — The wafer to log to the lot.

SITE *SiteStruct — The site to log to the lot.

Remarks After a call to PutSite, you must make a call to EndSite before calling PutSite again.

S530 KTE Software A-13
You cannot use the ‘*’ or the ‘?’ characters in the Site structure fields because they are the wild-
card characters. Use of these characters will result in an error.

Example Full code can be found in sample program 1.

for (siteloop = 1; siteloop <= 10; siteloop++)
{
sprintf(testsite->id,"%i",siteloop);
status = PutSite(testlot,testwafer,testsite);
if (status < 0)
return(status);

PutParam

Purpose This routine will log the information contained in the Param Structure to the DB or FF for a spe-
cific instance of a lot, wafer, and site. Writes to the already open file.

Format Status = PutParam(*LotStruct, *WafStruct, *SiteStruct,*ParamStruct)

LOT *LotStruct — The lot where data is logged.

WAFER *WafStruct —The wafer to log to the lot.

SITE *SiteStruct — The site to log to the lot.

PARAM *ParamStruct — The parameter to log to the lot.

Remarks You cannot use the ‘*’ or the ‘?’ characters in the Param structure fields because they are the
wildcard characters. Use of these characters will result in an error.

EndSite should be called after the last parameter for the current site is logged.

Remarks Full code can be found in sample program 1.

strcpy(testparam->id, "beta1");
/* calculate the beta*/
testparam->value = beta1(1, 4, 7, -1, 0.5e-3, 2.0, ’N’);
status = PutParam(testlot,testwafer,testsite,testparam);
if (status < 0)
return(status);

PutParamList

Purpose This routine will log a list of param Structures to the DB or FF for a specific instance of a lot,
wafer, and site. The next pointer set to NULL will signify the end of the list to be logged.

Format Status = PutParamList(*LotStruct, *WafStruct, *SiteStruct, *Param)

LOT *LotStruct — The lot where data is logged.

WAFER *WafStruct — The wafer to log to the lot.

SITE *SiteStruct — The site to log to the lot.

PARAM *ParamStruct — The linked list of parameters to log to the lot.

A-14 S530 KTE Software
Remarks PutParamList makes a series of calls to PutParam as it traverses the linked list, so it has the
same rules as PutParam.

After calling PutParamList, remember to free up the memory from the list (use a while loop with
RemoveParam).

Example Full code can be found in sample program 2.

testparam=CreateNewParam();
strcpy(testparam->id, "Volts 1e-2");
/* voltagetest is an example test routine that would return a voltage */
testparam->value = voltagetest(1e-2);

new=CreateNewParam();

strcpy(new->id, "Volts 1e-1");
/* voltagetest is an example test routine that would return a voltage */
testparam->value = voltagetest(1e-1);
/* Add current into the list following testparam */
AddNewParam(testparam,new);
testparam = FindNextParam(testparam);
new = CreateNewParam();

strcpy(new->id, "Volts 1");
/* voltagetest is an example test routine that would return a voltage */
testparam->value = voltagetest(1);
/* Add current into the list following testparam */
AddNewParam(testparam,new);

/* Go to the first param in the list to get ready for PutParamList */
testparam=FindFirstParam(testparam);
PutParamList(testlot,testwafer,testsite,testparam);

EndLot

Purpose This routine ends the logging of the current lot. It must be called before another lot can be
logged.

Format status = EndLot()

Remarks EndLot must be called before PutLot can be called again, otherwise an error is generated.

The end of the lot is signified by the end of the lot file.

EndWafer

Purpose This routine ends the logging of the current wafer. It must be called after a call to PutWafer.

Format status = EndWafer()

Remarks EndWafer must be called before PutWafer can be called again, otherwise an error is gener-
ated.

S530 KTE Software A-15
EndWafer write the ‘<EOW>’ marker to the file.

EndSite

Purpose This routine ends the logging of the current site. It must be called after a call to PutSite.

Format status = EndSite()

Remarks EndSite must be called before PutSite can be called again, otherwise an error is generated.

EndSite write the ‘<EOS>’ marker to the file.

GetLot

Purpose This routine returns a NULL terminated list of lots, starting with LotStructGot, that match the
criteria specified in LotStructWanted. The LotStructGot pointer should already point to a struc-
ture when the routine is called (i.e. LotStructGot = CreateNewLot). Wild Cards are supported
in the wanted structure. Wildcards can not be entered in the integer fields. (A value of zero in
an integer position is the same as ‘*’.)

Format Status = GetLot(*LotStructWanted,*LotStructGot)

LOT *LotStructWanted — Lot structure containing the information on the lot to be retrieved. It
can be very general (using wildcards) or very specific.

LOT *LotStructGot — Lot structure to which the found data is returned. It must be an allocated
structure when it is sent to GetLot.

Remarks Note: The Lot ID is the only required field.

Using wildcards may cause a noticable decrease in performance in a directory with many files.

If the status returned is greater than or equal to zero, then it is the number of Lots found. If it is
less than zero, it is an error code.

Example Full code can be found in sample program 1.

gotlot = CreateNewLot();

strcpy(testlot->id, "test1");
/* Retrieve all the data that was just logged */
GetLot(testlot, gotlot);

GetWafer

Purpose This routine returns a NULL terminated list of wafers, starting with WaferStructGot, that match
the criteria specified in WafStructWanted for the specific (single) LotStruct. Wild Cards are
supported in the wanted structure. The WafStructGot pointer should already point to a struc-
ture when the routine is called (i.e. WafStructGot = CreateNewWafer). Wildcards are not sup-
ported for the integer fields. (A value of zero in an integer position is the same as ‘*’.) If an
empty (NULL) wanted structure is passed in, the routine will return all wafers in the specified
lot.

A-16 S530 KTE Software
Format Status = GetWafer(*LotStruct, *WafStructWanted,*WaferStructGot)

LOT *LotStruct — The specific lot in which the wafer should be found.

WAFER *WaferStructWanted — Wafer structure containing the information on the wafer to be
retrieved. It can be very general (using wildcards) or very specific.

WAFER *WaferStructGot — Wafer structure to which the found data is returned. It must be an
allocated structure when it is sent to GetWafer.

Remarks If the status returned is greater than or equal to zero, then it is the number of Wafers found. If
it is less than zero, it is an error code. The wanted structure must contain a valid string or wild-
card for the “id” and “split” string items. A null string in either of these string items will not return
a match.

Example Full code can be found in sample program 1.

gotwafer = CreateNewWafer();

/* Get all the wafers in the lot */
strcpy(testwafer->id, “*”);
GetWafer(gotlot, testwafer, gotwafer);

GetSite

Purpose This routine returns a NULL terminated list of sites, starting with *SiteStructGot, that match the
criteria specified in SiteStructWanted for the specific (single) LotStruct and WafStruct. The Sit-
eStructGot pointer should already point to a structure when the routine is called (i.e. Sit-
eStructGot = CreateNewSite). Wild Cards are supported in the wanted structure. Wildcards
are not supported for the integer fields. (A value of zero in an integer position is the same as
‘*’.)

Format Status = GetSite(*LotStruct, *WafStruct, *SiteStructWanted, *SiteStructGot)

LOT *LotStruct — The specific lot in which the wafer should be found.

WAFER *WaferStruct — The specificwafer in which the site should be found.

SITE *SiteStructWanted — Site structure containing the information on the site to be retrieved.
It can be very general (using wildcards) or very specific.

SITE *SiteStructGot — Site structure to which the found data is returned. It must be an allocated
structure when it is sent to GetSite

Remarks If the status returned is greater than or equal to zero, then it is the number of sites found. If it is
less than zero, it is an error code.

Example Full code can be found in sample program 1.

gotsite = CreateNewSite();

/* Get all the sites in this wafer */
strcpy(testsite->id, “*”);
GetSite(gotlot, gotwafer, testsite, gotsite);

S530 KTE Software A-17
GetParam

Purpose This routine returns a NULL terminated list of parameters, starting with the *ParamStructGot,
that match the criteria specified in ParamStructWanted for the specific (single) LotStruct, Waf-
Struct, and SiteStruct. The ParamStructGot pointer should already point to a structure when
the routine is called (i.e. ParamStructGot = CreateNewParam). Wild Cards are supported in
the wanted structure. Wildcards are not supported for the integer fields. (A value of zero in an
integer position is the same as ‘*’.)

Format Status = GetParam(*LotStruct, *WafStruct, *SiteStruct, *ParamStruct-
Wanted, *ParamStructGot)

LOT *LotStruct — The specific lot in which the wafer should be found.

WAFER *WaferStruct — The specificwafer in which the site should be found.

SITE *SiteStruct — The specificsite in which the param should be found.

PARAM *ParamStructWanted — Parameter structure containing information on the parameter
to be retrieved. It can be very general (using wildcards) or very specific.

PARAM *ParamStructGot — Parameter structure to which the found data is returned. It must
be an allocated structure when it is sent to GetParam.

Remarks If the status returned is greater than or equal to zero, then it is the number of parameters
found. If it is less than zero, it is an error code.

Example Full code can be found in sample program 1.

gotparam = CreateNewParam();

/* Get all the parameters in this site */
strcpy(testparam->id, “*”);
GetParam(gotlot, gotwafer, gotsite, testparam, gotparam);

GetParamList

Purpose This routine returns a NULL terminated list of parameters to *ParamStruct that are included in
the *ParamStructList list. Wild Cards are supported at the parameter level.

Format Status = GetParamList(*LotStruct, *WafStruct, *SiteStruct, *Param-
StructList, *ParamStruct)

LOT *LotStruct — The specific lot in which the wafer should be found.

WAFER *WaferStruct — The specificwafer in which the site should be found.

SITE *SiteStruct — The specificsite in which the param should be found.

PARAM *ParamStructList — List of parameter structures to be retrieved. Each parameter in the
list can be very general (using wildcards) or very specific.

PARAM *ParamStruct — Head of the list of parameter structures to which the found data is re-
turned. It must be an allocated structure when it is sent to GetParamList.

Remarks If the status returned is greater than or equal to zero, then it is the number of parameters
found. If it is less than zero, it is an error code.

A-18 S530 KTE Software
GetLotData

Purpose This routine returns a tree structure of all the wafers, sites, and parameters in LotWanted. The
returned list begins with the next field of the lot structure sent to the function.

Format Status = GetLotData (*LotWanted)

LOT *LotWanted - put the specific lot data that you want to find in this structure and the found
lot will be returned in the LotWanted->next field.

Remarks The data is returned in LotWanted->next. Then the data follows a tree structure from there.

LotWanted->wafers points to the first wafer in the lot.

LotWanted->wafers->sites points to the first site in the first wafer.

LotWanted->wafers->sites->params points to the first parameter in the first site of the first wa-
fer.

Wildcards are not supported.

Example Full code can be found in sample program 1.

gotlot = CreateNewLot();

strcpy(gotlot->id, "test1");
/* Retrieve all the data that was just logged */
GetLotData(gotlot);

MatchParam2Limit

Purpose This routine takes the list of parameters and matches them to the corresponding limit codes.
Each parameter points to its corresponding limit code and each limit points back to the param-
eter. If no match is found for a parameter, the pointer is set to NULL.

Format Status = MatchParam2Limit(*ParamList, *LimitList)

PARAM *ParamList — List of parameters.

LIMIT *LimitList — List of limits to match to the above parameters.

FileExist

Purpose Checks for the existance of a file in the current data directory (where the lot files are being
stored). Returns TRUE (1) if the file is in the directory, FALSE (0) if the file is not in the direc-
tory.

Format Status = FileExist(filename).

char filename[] — Name of the file to find.

Remarks The current data directory is determined by the value in the kth.ini file after “Datapath=”.

S530 KTE Software A-19
LotExist

Purpose Checks for the existance of a lot file in the current data directory. Returns TRUE (1) if the lot is
in the directory, FALSE (0) if the lot is not in the directory.

Format Status = LotExist(*LotStruct).

LOT *LotStruct — The lot structure containing the information to be found.

Remarks The current data directory is determined by the value in the kth.ini file after “Datapath=”.

GetStartTime

Purpose Returns a time and date string in the format “DD-MM-YYYY hh:mm” where DD=day,
MM=month, YYYY=year, hh=hour, and mm=minutes.

Format GetStartTime(timestring)

char timestring[] — String to which the current time is returned. Must be at least 20 characters.

DeleteLot

Purpose This routine will delete all lot associated data for the specified lot structure. All Lots in the
NULL terminated linked list will be deleted. The DELETELOT routine is responsible for ensur-
ing referential integrity.

Format Status = DeleteLot(*LotStruct)

LOT *LotStruct — The lot or linked list of lots to be deleted.

Remarks Wildcard deletes are not allowed.

When a lot is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

DeleteWafer

Purpose This routine will delete all wafer information for the specified lot and wafer. All wafers for the
NULL terminated linked list wafers will be deleted. Wild cards are not allowed in either struc-
ture.

Format Status = DeleteWafer(*LotStruct, *WafStruct)

LOT *LotStruct — The lot that contains the wafer to be deleted.

WAFER *WafStruct — The wafer or linked list of wafers to be deleted.

Remarks Wildcard deletes are not allowed.

When a wafer is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

A-20 S530 KTE Software
DeleteSite

Purpose This routine will delete all site information for the specified lot, wafer, and site. All sites for the
NULL terminated linked list of sites will be deleted. Wildcards are not allowed in any of the
structures.

Format Status = DeleteSite(*LotStruct, *WafStruct, *SiteStruct)

LOT *LotStruct — The lot that contains the wafer to be deleted.

WAFER *WafStruct — The wafer that contains the site to be deleted.

SITE *SiteStruct — The site or linked list of sites to be deleted.

Remarks Wildcard deletes are not allowed.

When a site is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

DeleteParam

Purpose This routine will delete the parameter information for the specified lot, wafer, site, and param.
All params for the NULL terminated linked list of params will be deleted. Wildcards are not
allowed in any of the structures.

Format Status = DeleteParam(*LotStruct, *WafStruct, *SiteStruct, *ParamStruct)

LOT *LotStruct — The lot that contains the wafer to be deleted.

WAFER *WafStruct — The wafer that contains the site to be deleted.

SITE *SiteStruct — The site that contains the parameter to be deleted.

PARAM *ParamStruct — The parameter or linked list of parameters to be deleted.

Remarks Wildcard deletes are not allowed.

When a parameter is deleted, the lot is renamed from the .kdf extension to a .kd% extension.

DeleteLimitCode

Purpose This routine is used to delete entire sets of limits defined by a limit code. All limits specified in
the NULL terminated list of Limitcodes will be deleted.

Format Status = DeleteLimitCode(*LimitcodeStruct)

LIMITCODE *LimitcodeStruct — The limitcode or linked list of limitcodes to be deleted.

Remarks Wildcard deletes are not allowed.

Limitcode information is used to generate the limits filename.

When a limitcode is deleted, the lot is renamed from the .klf extension to a .kl% extension.

S530 KTE Software A-21
DeleteLimit

Purpose This routine is used to delete limit records from the DB. All limits specified in the NULL termi-
nated list of Limits will be deleted.

Format Status = DeleteLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE *LimitcodeStruct — The limitcode containing the limit to be deleted.

LIMIT *LimitStruct — The limit or linked list of limits to be deleted.

Update comment routines

GetComment

Purpose This routine will fetch the comment from the .kdf file for a specific lot occurance.

Format Status = GetComment(*LotStruct, comment)

LOT *LotStruct — The lot to retrieve the comment from.

char comment[] — The string where the comment is returned.

PutComment

Purpose This routine will overwrite the comment in the .kdf file for a specific lot occurance.

Format Status = PutComment(*LotStruct, comment[])

LOT *LotStruct — The lot where the comment is to be changed.

char comment[] — The string sent to be logged as the new comment.

Update limits routines

GetLimitCode

Purpose This routine will fetch a list of limitcodes that match the criteria specified in the wanted struc-
ture.

Format Status = GetLimitCode(*LimitcodeStructwanted, *LimitcodeStructlist)

LIMITCODE *LimitcodeStructwanted — The limitcode information to search for in the logging
directory.

LIMITCODE *LimitcodeStructlist — The returned list of limitcodes that were found in the search.

Remarks Limitcode information is used to generate the limits filename.

A-22 S530 KTE Software
Wildcards can be used in the *LimitcodeStructwanted structure.

The return value is the number of limitcodes found or an errorvalue if it is less than zero.

GetLimit

Purpose This routine will fetch a NULL terminated linked list of limit structures with the specified Limit-
code and limit information. The head of the linked list of limits is returned in both the *Limit-
Sturct and in the LimitcodeStruct->limits fields.

Format Status = GetLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE *LimitcodeStructwanted — The limitcode to retrieve the limits from.

LIMIT *LimitStruct — The returned list of limits that were found in the limitcode.

Remarks Limitcode information is used to generate the limits filename.

The return value is the number of limits found or an errorvalue if it’s less than zero.

PutLimit

Purpose This routine will write a list of limits to the DB or FF for the Limitcode specified. If the Limitcode
already exists, the new limits will overwrite and append.

Format Status = PutLimit(*LimitcodeStruct, *LimitStruct)

LIMITCODE *LimitcodeStructwanted — The limitcode to log the limits to.

LIMIT *LimitStruct — The list of limits to log to the limitcode.

Remarks If the Limitcode already exists, it will be renamed from a .klf extension to a .kl% extension.

S530 KTE Software A-23
Structure handling routines

There is a version of each of the structure handling routines for every structure (LOT, WAFER,
SITE, PARAM, and LIMITCODE).

AddNewLimitCode
AddNewLot
AddNewWafer
AddNewSite
AddNewParam

Purpose This routine adds “new” to the list following “current.”

Format AddNewLimitCode(*current, *new)
AddNewLot(*current, *new)
AddNewWafer(*current, *new)
AddNewSite(*current, *new)
AddNewParam(*current, *new)

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

LIMITCODE *new — The new LimitCode to be added.
LOT *new — The new Lot to be added.
WAFER *new — The new Wafer to be added.
SITE *new — The new Site to be added.
PARAM *new — The new Param to be added.

Example LIMITCODE *current, *new;

AddNewLimitCode(current, new);

CreateNewLmtCode
CreateNewLot
CreateNewWafer
CreateNewSite
CreateNewParam

Purpose This routine allocates the memory for and returns a pointer to the new LimitCode, Lot, Wafer,
Site, or Param.

Format LimitCodePtr = CreateNewLmtCode()
LotPtr = CreateNewLot()
WaferPtr = CreateNewWafer()
SitePtr = CreateNewSite()
ParamPtr = CreateNewParam()

A-24 S530 KTE Software
LIMITCODE *LimitCodePtr — Pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

Remarks This routine must be called before performing operations with LimitCodePtr, LotPtr, WaferPtr,
SitePtr, or ParamPtr.

Example LIMITCODE *LimitCodePtr;

LimitCodePtr = CreateNewLmtCode();

FindFirstLmtCode
FindFirstLot
FindFirstWafer
FindFirstSite
FindFirstParam

Purpose This routine returns the first LimitCode, Lot, Wafer, Site, or Param that “current” points to in the
list. NULL is returned if “current” is NULL.

Format LimitCodePtr = FindFirstLmtCode(*current)
LotPtr = FindFirstLot(*current)
WaferPtr = FindFirstWafer(*current)
SitePtr = FindFirstSite(*current)
ParamPtr = FindFirstParam(*current)

LIMITCODE *LimitCodePtr — Pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

Example LIMIT *LimitCodePtr, *current;

LimitCodePtr = FindFirstLmtCode(current);

S530 KTE Software A-25
FindLastLimitCode
FindLastLot
FindLastWafer
FindLastSite
FindLastParam

Purpose This routine returns the last LimitCode, Lot, Wafer, Site, or Param that “current” points to in the
list. It returns NULL if “current” is NULL.

Format LimitCodePtr = FindLastLimitCode(*current)
LotPtr = FindLastLot(*current)
WaferPtr = FindLastWafer(*current)
SitePtr = FindLastSite(*current)
ParamPtr = FindLastParam(*current)

LIMITCODE *LimitCodePtr — Pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

Example LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindLastLimitCode(current);

FindNextLimitCode
FindNextLot
FindNextWafer
FindNextSite
FindNextParam

Purpose This routine finds the next LimitCode, Lot, Wafer, Site, or Param after the position that “cur-
rent” points to in the list. NULL is returned if “current” is at the end of the list.

Format LimitCodePtr = FindNextLimitCode(*current)
LotPtr = FindNextLot(*current)
WaferPtr = FindNextWafer(*current)
Site = FindNextSite(*current)
Param = FindNextParam(*current)

LIMITCODE *LimitCodePtr — Pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

A-26 S530 KTE Software
LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

Example LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindNextLimitCode(current);

FindPrevLimitCode
FindPrevLot
FindPrevWafer
FindPrevSite
FindPrevParam

Purpose This routine finds the previous LimitCode, Lot, Wafer, Site, or Param before the position “cur-
rent” points to in the list. NULL is returned if “current” is at the beginning of the list.

Format LimitCodePtr = FindPrevLimitCode(*current)
LotPtr = FindPrevLot(*current)
WaferPtr = FindPrevWafer(*current)
Site = FindPrevSite(*current)
Param = FindPrevParam(*current)

LIMITCODE *LimitCodePtr - pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

Example LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = FindPrevLimitCode(current);

InsertNewLmtCode
InsertNewLot
InsertNewWafer
InsertNewSite
InsertNewParam

Purpose This routine adds “new” into the LimitCode Lot, Wafer, Site, or Param list before “current.”

Format InsertNewLmtCode(*current, *new)
InsertNewLot(*current, *new)

S530 KTE Software A-27
InsertNewWafer(*current, *new)
InsertNewSite(*current, *new)
InsertNewParam(*current, *new)

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

LIMITCODE *new— The new LimitCode to be inserted.
LOT *new — The new Lot to be inserted.
WAFER *new — The new Wafer to be inserted.
SITE *new — The new Site to be inserted.
PARAM *new — The new Param to be inserted.

Example LIMITCODE *current, *new;
InsertNewLmtCode(current,new);

RemoveLimitCode
RemoveLot
RemoveWafer
RemoveSite
RemoveParam

Purpose This routine removes the LimitCode, Lot, Wafer, Site, or Param pointed to by “current” and
returns a pointer to the next LimitCode, Lot, Wafer, Site, or Param in the list. If the next pointer
is NULL, the previous LimitCode, Lot, Wafer, Site, or Param is returned. If the previous Limit-
Code, Lot, Wafer, Site, or Param is also NULL, then NULL is returned.

Format LimitCodePtr = RemoveLimitCode(*current)
LotPtr = RemoveLot(*current)
WaferPtr = RemoveWafer(*current)
SitePtr = RemoveSite(*current)
ParamPtr = RemoveParam(*current)

LIMITCODE *LimitCodePtr — Pointer to a LimitCode structure.
LOT *LotPtr — Pointer to a Lot structure.
WAFER *WaferPtr — Pointer to a Wafer structure.
SITE *SitePtr — Pointer to a Site structure.
PARAM *ParamPtr — Pointer to a Param structure.

LIMITCODE *current — Pointer to the current LimitCode.
LOT *current — Pointer to the current Lot.
WAFER *current — Pointer to the current Wafer.
SITE *current — Pointer to the current Site.
PARAM *current — Pointer to the current Param.

Example LIMITCODE *LimitCodePtr, *current;

LimitCodePtr = RemoveLimitCode(current);

A-28 S530 KTE Software
LimitExist

Note: This routine is only for the LIMITCODE structure.

Purpose This routine tests for the existance of a Limit File in the current Limit File data directory based
on the LimitCode “limitin.” TRUE (1) is returned if the Limit Files exist, and FALSE (0) is
returned otherwise.

Format Status = LimitExist(*limitin)

int Status — the result value of the call.

LIMITCODE *limitin — The LimitCode to search for.

Example int Status;
LIMITCODE *limitin;

Status = LimitExist (limitin);

KDF user tag data

The KDF library is being modified to support “user-defined” data. This information is
contained within the .kdf file with the following format:

<TAG>”tagName”,tag value string

• The “<TAG>” field is required.

• The “tagName” field can contain any characters except the double-quote character.
The max length of the tagName is PARAM_ID_LENGTH (128) characters.

• The comma is required and separates the tagName field from the tag value string
field.

• The “tag value string” has a max length of 512 characters and cannot contain the
new-line character.

Four routines have been added to the KDF library: PutTag, GetTag, PrintTagList, and
ClearTagList. The API descriptions are as follows:

int PutTag(char *tagName, char *valueString) ;

Return values:
0 = Success
<0 = Error. (error codes can be found in the kdferr.h header file)

BAD_CALL_ORDER (-14) = called before PutLot() called
ERR_WRITE_FILE (-21) = error from fprintf call to write data
ERR_OPEN_FILE (-20) = error from fopen call
ERR_CLOSE_FILE (-22) = error from fclose call
ILLEGAL_TAG (-25) = illegal character in tag name
TAG_STR_LEN_ERR (-26) = tag string length too long
TAG_NAM_LEN_ERR (-27) = tag name too long

PutTag will write a user tag into the KDF file using “tagName” and “valueString”.

• tagName can contain any printable ASCII character except the double-quote char-
acter. Max length is PARAM_ID_LENGTH, or 128 characters. tagName must be
null-terminated.

S530 KTE Software A-29
• valueString has a max length of 512 characters and can contain any printable ASCII.
The valueString cannot contain the new-line character. valueString must be null-ter-
minated.

Example status = PutTag(“myWaferTag”, “wafer tested using Base algorithm”) ;

will cause the following data to be written into the .kdf file at the current location:

<TAG>”myWaferTag”,wafer tested using Base algorithm

int GetTag(LOT *wantedLot,

 WAFER *wantedWafer,
 SITE *wantedSite,
 char *tagName,
 tagList **got) ;

 typedef struct _tagList
 {
 char *tagName ;
 char *tagString ;
 _tagList *next ;
 } tagList ;

GetTag returns a null-terminated list of tag data whose head is the ‘got’ parameter. This
list is malloc’d and needs to be free’d by the calling routine.

• wantedLot is the specific lot in which the tagName should be found.

• wantedWafer is the specific wafer in which to start searching for tags. If wantedWa-
fer is NULL, all tags for all wafers will be returned in the list. If wantedWafer is a spe-
cific wafer, just tags associated with the wafer will be returned. Wafer tags are tags
located between the Wafer header line and the <EOW> marker.

• wantedSite is the specific site in which to start searching for tags. If wantedSite is
NULL, all tags for all sites on the wafer will be returned in the list. If wantedSite is a
specific site, just tags associated with the site will be returned. Site tags are tags
located between the site header line and the <EOS> marker.

• tagName is the name of the desired tag. If tagName is NULL, all tags will be
returned in the list else just the tags named tagName will be returned. Wildcard
characters are supported in the tagName field.

void PrintTagList(tagList *head) ;

PrintTagList is a debug routine that can be used to display the list of tags pointed to by
the ‘head’ parameter. The tags are written to stdout.

void ClearTagList(tagList **head) ;

ClearTagList is a routine that will ‘free’ the tagList created by a call to GetTag.

Example The following code sequence will return a list of all user tags for all wafers and sites in the
specified lot file. The list is pointed to by the gotTagList variable. PLEASE NOTE that the tag
list is malloc’d by the GetTag routine and must be free’d by the user. The ClearTagList() routine
can be used for this operation.

tagList *gotTagList = NULL ;

GetTag(lot, NULL, NULL, NULL, &gotTagList) ;
PrintTagList(gotTagList) ;
ClearTagList(&gotTagList) ; /* free list created by GetTag */

A-30 S530 KTE Software
Example of use within a Cassette Plan

You need to add additional data for the Lot and wafer. Using the PutTag routine at
UAP_WAFER_PREPARE will allow you to add information after the lot header.
UAP_WAFER_BEGIN can be used to add information after the Wafer Header section
of the .kdf file.

If the following are called up at UAP_WAFER_PREPARE:

PutTag(“LotType”, “CMOS”) ;
PutTag(“LotPlant”, “Cleveland”) ;

And the following is called at UAP_WAFER_BEGIN:

PutTag(“WaferPlanUsed”, “WPFbase”) ;

The resulting .kdf file will be:

TYP,KDF V1.1
LOT,lotName
TST,ktxe sample
SYS,s530q4000
TSN,1
OPR,williamson
STT,2-Nov-1999 13:23
WDF,sample.wdf
<EOH>
<TAG>”LotType”,CMOS
<TAG>”LotPlant”,Cleveland
Wafer_01,,1,1
<TAG>”WaferPlanUsed”,WPFbase
Site_1,1,1
Parm1, 5.0000e+00
<EOS>
<EOW>

UAP points

The following is a list of UAP points within KTXE and when the KDF logging routines
are executed. The PutTag routine can be called anytime after the PutLot() routine is
called.

UAP_PROG_ARGS
UAP_CASSETTE_LOAD
UAP_LOT_INFO
UAP_PROBER_INIT
UAP_WAFER_MISMATCH
UAP_ACCESS_WDF_INFO
UAP_POST_PROBER_INIT
UAP_WRITE_LOT_INFO

PutLot()
UAP_POST_LOT_INFO
UAP_ALIGN_ERROR
UAP_POST_INITIAL_WAFER_LOAD

/* Start of Wafer Loop */
UAP_WAFER_PREPARE
UAP_VALIDATE_OCR

S530 KTE Software A-31
PutWafer()
UAP_WAFER_BEGIN
UAP_SITE_CHANGE

EndSite()
PutSite()

UAP_SUBSITE_CHANGE
UAP_TEST_BEGIN
UAP_TEST_END

PutParam()
UAP_TEST_DATA_LOG
UAP_HANDLE_ABORT
UAP_SUBSITE_END
UAP_SITE_END

EndSite()
UAP_WAFER_END

EndWafer()

UAP_ALIGN_ERROR

/* End of Wafer Loop */

EndLot()
UAP_LOT_END
UAP_ENGINE_EXIT

UAP_ABORT_EXIT_HDLR

Structure definitions

For structure definitions of LOT, WAFER, SUBSITE, SITE PARAM, LIMITCODE, and
LIMIT, refer to the include file in $KIINCLUDE/kdf.h.

Sample programs

Logging one PARAM at a time, Data Retrieval through Get routines

#include <stdio.h>
#include <stdlib.h>
#include "kdferr.h"
#include "kdf.h"

void main(void)
{
LOT *testlot, *gotlot;
WAFER *testwafer, *gotwafer;
SITE *testsite, *gotsite;
PARAM *testparam, *gotparam;

A-32 S530 KTE Software
int waferloop,siteloop;

int status;

testlot = CreateNewLot ();
testwafer = CreateNewWafer();
testsite = CreateNewSite ();
testparam = CreateNewParam();

strcpy (testlot->id, "test1");
strcpy (testlot->testname, "Voltage 1");
GetStartTime(testlot->starttime);

/* Start the logging of the new lot "test1". The lot has 3 wafers and 10
sites to be logged.
*/
status = PutLot(testlot, CREATELOT);
if (status < 0)
return(status);

for (waferloop = 1;waferloop <= 3;waferloop++)
{
sprintf(testwafer->id,"%i",waferloop);
status = PutWafer(testlot,testwafer);
if (status < 0)
return(status);

for (siteloop = 1; siteloop <= 10; siteloop++)
{
sprintf(testsite->id,"%i",siteloop);
status = PutSite(testlot,testwafer,testsite);
if (status < 0)
return(status);

strcpy(testparam->id, "beta1");
/* calculate the beta*/
testparam->value = beta1(1, 4, 7, -1, 0.5e-3, 2.0, ’N’);
status = PutParam(testlot,testwafer,testsite,testparam);
if (status < 0)
return(status);

strcpy(testparam->id, "cap 1.0");
/* test the capacitance when the bias voltage is 1.0 (Parlib routine)*/
testparam->value = cap(3,5,7,1.0);
status = PutParam(testlot,testwafer,testsite,testparam);
if (status < 0)
return(status);

EndSite();
/* Prompt user to move to the next site */
printf(“Please move the prober to the next site and hit a key\n”);
getchar();
}

EndWafer();
/*Prompt user to move to the next wafer */
printf(“Please move the prober to the next wafer and hit a key\n”)
getchar();

S530 KTE Software A-33
}
EndLot();
GetStartTime(testlot->stoptime);

/* Append the stoptime into the header. (Doesn’t change any of the data that
was already logged.)
*/
status = PutLot(testlot,APPENDLOT);
if (status < 0)
return(status);

/************ END OF DATA LOGGING *****************/
/************ START DATA RETRIEVAL *****************/

gotlot = CreateNewLot();

strcpy(testlot->id, "test1");
/* Retrieve all the data that was just logged */
GetLot(testlot, gotlot);

gotwafer = CreateNewWafer();

/* Get all the wafers in the lot */
strcpy(testwafer->id, “*”);
GetWafer(gotlot, testwafer, gotwafer);

while (gotwafer != NULL)
{
gotsite = CreateNewSite();

/* Get all the sites in this wafer */
strcpy(testsite->id, “*”);
GetSite(gotlot, gotwafer, testsite, gotsite);

while (gotsite != NULL)
{
gotparam = CreateNewParam();

/* Get all the parameters in this site */
strcpy(testparam->id, “*”);
GetParam(gotlot, gotwafer, gotsite, testparam, gotparam);

/* If the first parameter result is greater than 1, remove that site from the lot */
if (gotparam->value > 1)
DeleteSite(gotlot,gotwafer,gotsite)

gotsite = FindNextSite(gotsite);
}
gotwafer = FindNextWafer(gotwafer);
}

/************ CLEANING UP MEMORY *****************/
RemoveParam(testparam);
RemoveSite (testsite);
RemoveWafer(testwafer);
RemoveLot (testlot);

RemoveLot (gotlot);

A-34 S530 KTE Software
while (gotwafer)
gotwafer = RemoveWafer(gotwafer);
while (gotsite)
gotsite = RemoveSite(gotsite);
while (gotparam)
gotparam = RemoveParam(gotparam);
}

Logging a Linked List of PARAMs, Data Retrieval using GetLotData

#include <stdio.h>
#include <stdlib.h>
#include "kdferr.h"
#include "kdf.h"

void main(void)
{
LOT *testlot, *gotlot;
WAFER *testwafer, *gotwafer;
SITE *testsite, *gotsite;
PARAM *testparam, *gotparam;
PARAM *new;
int waferloop,siteloop;
int status;

testlot = CreateNewLot ();
testwafer = CreateNewWafer();
testsite = CreateNewSite ();

strcpy (testlot->id, "test1");
strcpy (testlot->testname, "Voltage 1");
GetStartTime(testlot->starttime);

/* Start the logging of the new lot "test1". The lot has 3 wafers and 10
sites to be logged.
*/
status = PutLot(testlot, CREATELOT);
if (status < 0)
return(status);

for (waferloop = 1;waferloop <= 3;waferloop++)
{
sprintf(testwafer->id,"%i",waferloop);
status = PutWafer(testlot,testwafer);
if (status < 0)
return(status);

for (siteloop = 1; siteloop <= 10; siteloop++)
{
sprintf(testsite->id,"%i",siteloop);
status = PutSite(testlot,testwafer,testsite);
if (status < 0)
return(status);

testparam=CreateNewParam();
strcpy(testparam->id, "Volts 1e-2");

S530 KTE Software A-35
/* voltagetest is an example test routine that would return a voltage */
testparam->value = voltagetest(1e-2);

new=CreateNewParam();

strcpy(new->id, "Volts 1e-1");
/* voltagetest is an example test routine that would return a voltage */

testparam->value = voltagetest(1e-1);
/* Add current into the list following testparam */
AddNewParam(testparam,new);
testparam = FindNextParam(testparam);
new = CreateNewParam();

strcpy(new->id, "Volts 1");
/* voltagetest is an example test routine that would return a voltage */
testparam->value = voltagetest(1);
/* Add current into the list following testparam */
AddNewParam(testparam,new);

/* Go to the first param in the list to get ready for PutParamList */
testparam=FindFirstParam(testparam);
PutParamList(testlot,testwafer,testsite,testparam);

EndSite();
/* Some routine to get the next site ready for testing */
move_next_site();
}

EndWafer();
/* Some routine to get the next wafer ready for testing */
move_next_wafer();
}
EndLot();
GetStartTime(testlot->stoptime);

/* Append the stoptime into the header. (Doesn’t change any of the data that was already logged.)
*/
status = PutLot(testlot,APPENDLOT);
/************ END OF DATA LOGGING *****************/
/************ CLEANING UP MEMORY *****************/
while(testparam != NULL)
RemoveParam(testparam);
RemoveSite (testsite);
RemoveWafer(testwafer);
RemoveLot (testlot);
/************ START DATA RETRIEVAL *****************/

gotlot = CreateNewLot();

strcpy(gotlot->id, "test1");
/* Retrieve all the data that was just logged */
GetLotData(gotlot);

gotwafer = gotlot->wafers;

while (gotwafer != NULL)
{
gotsite = gotwafer->sites;

A-36 S530 KTE Software
while (gotsite != NULL)
{
gotparam = gotsite->params;

/* If the result was greater than 1, remove that site from the lot */
if (gotparam->value > 1)
DeleteSite(gotlot,gotwafer,gotsite)

gotsite = FindNextSite(gotsite);
}
gotwafer = FindNextWafer(gotwafer);
}

}

B
Keithley User Interface

B-2 S530 KTE Software
Introduction

The Keithley User Interface Library contains functions that provide the program devel-
oper with a basic set of user interfaces for operator data entry and program status mon-
itoring program specifically for test programs.

The location of the library and files depends on the specific platform and product. Refer
to the specific platform’s manual for location of the library.

An include file named kui_proto.h for the library is provided. The following line should
placed in every test program or file which will be linked with the kui library:

#include “kui_proto.h”

Starting with KTE v5.1.0 and higher, the following KUI window routines will be displayed
on the “Dialog” Tab on the KIDS interface. If this behavior is not desired, set the
KI_KUI_CLASSIC environment variable to 1 to cause KUI routines to use the old-style
windows.

If the KIDS interface is not running or connections are not being accepted by KIDS, KUI
will default to the “Classic” windowing mode.

Note that the WfrIdDlg window is not supported by the KIDS interface. The “Classic”
windows (KOP) will be used for WfrIdDlg routines.

User interface constants

DLG_ABORT
DLG_EXIT
DLG_NO
DLG_OK
DLG_SKIP
DLG_YES

Constants corresponding to values returned by the dialogs indicate how the dialog was
exited. The returned value is then used to determine further program execution.

DLG_LOOK_MOTIF
DLG_LOOK_MSW
DLG_LOOK_OPENLOOK
DLG_LOOK_PM
DLG_LOOK_PM2

Constants which can be used to determine the look and feel of the user interface dia-
logs. They are intended for use with the InitUI function.

FIELD_ENABLED
FIELD_DISABLED

Constants are provided for those dialogs which allow selecting which of the dialog’s
fields can be edited by the user by passing a field edit enable array as a part of a dia-
log’s function call.

KI_ABORT
KI_CONTINUE
KI_PAUSE

Constants intended for use with the pause, continue, and abort flag (pca_flag) used by
the Status dialog. Refer to the StatusDlg function.

S530 KTE Software B-3
NUM_LOT_FIELDS

Constant which specifies the number of fields within the Lot Information Dialog (LotDlg).
Used to declare the lot_dlg_flds array with the proper dimension.

MAX_DLG_LOOK

Constant that indicates the highest value allowed for dialog look selection. Refer to the
GetProgramArg function gui look command line argument switch and the InitUI func-
tion.

EXIT_LOT_DLG
OPERATOR
LOT_ID
PROCESS
DEVICE
TEST_NAME
SYSTEM_ID
TEST_STATION
SEARCH_KEY1
SEARCH_KEY2
SEARCH_KEY3
LIMIT_FILE
LOT_COMMENT

Enums corresponding to fields in the Lot Information Dialog (LotDlg). Intended for use
as indexes into the lot_dlg_flds array in order to select FIELD_ENABLED or
FIELD_DISABLED. Refer to LotDlg.

User interface library variables
lot_dlg_fields[]

Array which assigns an element to each field in the Lot Information Dialog (LotDlg). The
value for the element determines whether the field can be edited by the operator when
the lot information dialog is displayed. It is declared within the LotDlg source file and
defined as an external int array in the header file to make it accessible to the user pro-
gram. Refer to LotDlg.

pca_flag

Variable which flags the execution state of the test plan as controlled b the Status Dia-
log. There is a routine that can be used to query the state of the pca_flag.

int Get_pca_flag;

If KTXE is running with the KUI disabled, using the Get_pca_flag() routine will allow
your UAP code to detect that a tester fatal event has occurred and can force the engine
to exit. The KTXEUpdateStatusAbort call within the execution engine checks this flag
automatically. Your UAP code can also check the flag to detect state changes earlier.

B-4 S530 KTE Software
User interface library functions

GetProgramArgs — Get Program Command Line Arguments

Purpose GetProgramArgs allows values for specific test program global variables to be passed in via
the command line.

Format void GetProgramArgs(int argc, char *argv[],

int *debug,
int *err_report_mode,
char **err_log_fname,
int *gui_look,
LOT **lot,
char **sum_report_options,
char **kwf_fname,
char *user_arg)

Remarks GetProgramArgs will parse the command-line arguments to match switches assigned to the
test program variables. When a match is found, GetProgramArgs will then try to parse in it’s
argument, converting and bounding it per the variable’s type, as required.

If an error occurs in interpreting the command-line arguments, GetProgramArgs will print an er-
ror message explaining the reason as well as the allowable command-line arguments to stderr,
and exit the test program.

The allowable command-line arguments can be displayed by typing -h at the command line fol-
lowing the test program’s name.

Valid switches are:

-c text lot information comment field
-d text lot information device field
-e n [fname] error reporting mode

n:0-3
0 - None
1 - Display Error Messages
2 - Log Error Messages
3 - Display and Log Error Messages

[fname] - error log file path and name
-g n gui look and feel operation

n:0-4
0 - Motif
1 - OpenLook
2 - Microsoft Windows

-h display command line options
-i id lot information lot id field
-k n text lot search key

n:1-3 field
-l id lot information limit id
-o text lot information operator field
-p text lot information process field
-r “options”lot summary report options

S530 KTE Software B-5
-s text lot information system field
-t n test station

n:1-4
-w fname wafer description filename
-u text user argument
-x n debug flag

n:-32767 - 32768

fname - valid filename and path
options - options must be enclosed in quotes
text - command line arguments will be concatenated to the switch argument until the next
switch (dash-letter) occurs

Example The following illustrates how test program global variables can be set
with default values within the program and optionally overridden from
the command line:
/* KI_Strncpy guarantees the member will be xxx_LENGTH & null terminated */
KI_Strncpy(lot->limitcode, "tutorial_limits", LIMITCODE_LENGTH);
KI_Strncpy(lot->id, "tutorial_lot", LOT_ID_LENGTH);
lot->teststation = 1;
GetStartTime(lot->starttime);

if(getenv("USER")!=NULL)
KI_Strncpy(lot->operator, getenv("USER"), LOT_OPERATOR_LENGTH);

if(getenv("HOST")!=NULL)
KI_Strncpy(lot->system, getenv("HOST"), LOT_SYSTEM_LENGTH);

/*>> set default Keithley wafer (description) file name */
kwf_fname = "sample.wdf";

/*>> default lot summary report options */
sum_report_options = "-s";

/*>> set/override program run time values and flags w/ command line args */
GetProgramArgs(argc, argv, &debug, &err_report_mode, &err_log_fname,
&gui_look, &lot, &sum_report_options, &kwf_fname, user_arg);

InitUINew — Initialize User Interface Library

Purpose InitUI is used to perform initialization so that dialogs can be displayed and become operable. It
must be called before any dialogs are called. In addition, it also allows specifying the look and
feel of the displayed dialogs as provided in the DLG_LOOK_XXXX constants. It also starts the
control thread of
execution.

Format InitUINew(int look, void *Main ());

Remarks The KUI system is now threaded for better response to operator input. As a result, the control
thread process name is specified in the InitUINew function. The look program variable is
defined in kui_proto.h. It is used with the GetProgramArgs function in order to set the look via
the test program command line.

B-6 S530 KTE Software
InputMsgDlg — Input Message Dialog

Purpose InputMsgDlg displays a modal dialog window containing the passed message string and pro-
vides the user with a text edit widget to enter information into the program.

Format int InputMsgDlg(char *msgstr, char *inputstr)

Remarks The program remains in the dialog until the user presses one of the buttons. The text edit wid-
get text is then placed in the inputstr buffer. The dialog then returns either DLG_OK or
DLG_EXIT per the "OK" or "CANCEL" buttons. The input string pointer cannot contain a null
value. It should point to some allocated memory space to place the entered string. If you do
not want to use the string, pass '0' as the argument.

LotDlg — Lot Information Dialog

Purpose LotDlg displays a modal dialog window in order to collect lot information from the operator. It
has as arguments a pointer to a lot structure, a field enable array, and a bound for the maxi-
mum test station, that can be selected.

Format LotDlg(LOT *lot, char lot_dlg_fields[NUM_LOT_FIELDS], int
max_teststation)

Remarks Default entries for the lot dialog fields can be passed through this structure prior to calling Lot-
Dlg as follows:

(KI_Strncpy guarantees the member will be xxx_LENGTH & null terminated)

LOT *lot;
KI_Strncpy(lot->limitcode,"tutorial_limits", LIMITCODE_LENGTH);
KI_Strncpy(lot->id, "tutorial_lot", LOT_ID_LENGTH);
lot->teststation = 1;

“lot_dlg_fields” is an array passed to the lot information dialog to indicate the fields which can
be altered by the user. The “lot_fields” enum corresponds to indexes within that array and
should be used along with FIELD_ENABLED and FIELD_DISABLED constants to set array el-
ements as desired prior to calling LotDlg as follows:

lot_dlg_fields[SYSTEM_ID] = FIELD_DISABLED;
lot_dlg_fields[TEST_NAME] = FIELD_DISABLED;
LotDlg(lot, lot_dlg_fields, max_teststation);

All fields are enabled by default.

LotDlg returns either DLG_OK or DLG_ABORT per the “OK” and “ABORT” buttons. If exited
with “OK,” the dialog fields are updated and returned in the lot structure. The return value can
then be used to determine further program execution.

Note: InitUI must be called before to LotDlg.

S530 KTE Software B-7
OkCancelAbortMsgDlg — Ok Cancel Abort Message Dialog

Purpose OkCancelAbortMsgDlg displays a modal dialog window containing the passed message string
and requires the user acknowledge it by pushing either “OK” or “CANCEL” before the program
can continue.

Format int OkCancelAbortMsgDlg(char *msgstr)

Remarks The message should be phrased to state the test program can be aborted by pressing “CAN-
CEL”. If “OK” is pressed, the dialog returns DLG_OK. If “CANCEL” is pressed, the user is then
prompted through another modal dialog to verify aborting the test program. The dialog will
then return either DLG_ABORT if “OK” was pressed, or DLG_NO if “CANCEL” was pressed in
the verification dialog.

OkCancelMsgDlg — Ok Cancel Message Dialog

Purpose OkCancelMsgDlg displays a modal dialog window containing the passed message string and
requires the user acknowledge it by pushing either “OK” or “CANCEL” before the program can
continue.

Format int OkCancelMsgDlg(char *msgstr)

Remarks Returns either DLG_OK or DLG_EXIT.

OkMsgDlg — Ok Message Dialog

Purpose OkMsgDlg displays a modal dialog window containing the passed message string and
requires the user acknowledge it by pushing “OK” before the program can continue.

Format void OkMsgDlg(char *msgstr)

Remarks OkMsgDlg does not return a value. It is used to pause the test program and require the opera-
tor to acknowledge the message before the program can continue.

QuitUI — Quit User Interface

Purpose It will remove any remaining displayed dialogs as well as perform clean-up actions required for
using the dialogs in the User Interface library.

Format int QuitUI()

Remarks QuitUI should be called prior to program exit.

ScrollMsgDlg — Scrollable Message Dialog

Purpose ScrollMsgDlg is used to set a label of a dialog window.

Format void ScrollMsgDlg(char *label)

Remarks Messages accumulate and can be scrolled through in the visible area until it is cleared or Qui-
tUI is called. ScrollMsgDlg is called with a label to display at the top of the dialog window.

B-8 S530 KTE Software
Refer to UpdateModelessDlgs and UpdateStatusDlg for issues regarding the responsiveness
of the ScrollMsgDlg.

ScrollMsgDlgClr — Scrollable Message Dialog Clear

Purpose ScrollMsgDlgClr is used to clear all messages from the scrolling message dialog.

Format void ScrollMsgDlgClr()

Remarks The scrolling message dialog will remain displayed and the first message sent will be placed
at the top of the scrolling area.

ScrollMsgDlgMsg — Scrollable Message Dialog Message

Purpose ScrollMsgDlgMsg is used to post a message to the scrolling message dialog.

Format void ScrollMsgDlgMsg(char *msgstr)

Remarks The passed string should make use of “\n” as needed. If ScrollMsgDlg was not called previous
to ScrollMsgDlgMsg, it will be called from within it, and the dialog label set as “Test Program
Messages.” The buffer size is limited by the maxScrollLines variable which defaults to ~500
lines. When this buffer size is exceeded, the oldest 2/3 of the buffer is thrown away and the
buffer will continue to grow. The max value can be adjusted via the datapool. Refer to the
Datapool documentation for an example.

StatusDlg — Status Dialog

Purpose StatusDlg provides a modeless dialog window which will remain displayed from when Status-
Dlg is first called until QuitUI releases the user interface on program exit. Besides providing
display fields for key test program variables, it also provides a single text display line on which
a program-specific status message can be displayed as well as a level of program execution
control through the “PAUSE,” “CONTINUE” and “ABORT” buttons.

Format void StatusDlg(LOT **lot,

WAFER **wafer,
SITE **site,
SUBSITE **subsite,
int *total_wafers,
int *wafers_tested,
int *total_sites,
int *sites_tested,
kui_support_t **KUI_Support,
kui_user_t **KUI_User);

Remarks StatusDlg was designed in conjunction with guide test program data. In order to minimize the
argument list required for UpdateStatusDlg, StatusDlg establishes pointers to the test program
variables from which the dialog fields will obtain their display information for the remainder of
the test program. The status dialog treats all these variables as “read-only.” The lot, wafer, site,
and subsite pointers point to structures with members corresponding to status dialog display
fields. Since the addresses passed for these structures also point to the “present” structure in
their respective linked list, the status dialog automatically track and display the correct infor-
mation. The status dialog is called as follows:

S530 KTE Software B-9
StatusDlg(&lot, &wafer, &site, &subsite,
&total_wafers, &wafers_tested,
&total_sites, &sites_tested,
&KUI_Support, &KUI_User);

The status dialog contains a Total Time field. This field displays a running timer indicating
elapsed time for test plan execution. Two user fields are also available for custom use.

There is a pointer to the KUI_User structure in the datapool. Populating this structure will
enable/
disable the user fields. These fields must be initialized at UAP_LOT_INFO or earlier for proper
operation. Once the fields are initialized, changing the values and calling the KTXEUpdateSta-
tusAbort() function will cause an immediate update. If the user fields are left uninitialized, they
will not be present on the Status dialog window.

Figure B-1 shows a sample status dialog window.

Figure B-1
Status dialog window

UpdateModelessDlgs — Update Modeless Dialogs

Purpose UpdateModelessDlgs is used to update and display the scroll message dialog when their con-
tents change.

Format void UpdateModelessDlgs()

B-10 S530 KTE Software
UpdateStatusDlg — Update Status Dialog

Purpose UpdateStatusDlg is provided to update and display the status dialog fields when their contents
change in the test program, as well as pass a status message appropriate for that point in the
program.

Format int UpdateStatusDlg(char *user_msg)

Remarks Although the status dialog remains displayed throughout the test program, even while other
dialogs are displayed, the fields are only updated and buttons checked when UpdateStatusDlg
is called as in the following example:

UpdateStatusDlg("Loading Wafer ... ");

When UpdateStatusDlg is called, it first checks for differences between the test program vari-
ables and their display fields, updating them if necessary. The status message is then placed
in it’s field. The “PAUSE,” “CONTINUE,” and “ABORT” buttons are then checked.

The pause-continue-abort “pca_flag” reflects the state of program execution. (By default, it is
set to “KI_CONTINUE”.) When the status dialog buttons are checked by UpdateStatusDlg, if a
button is pressed, it will set the flag appropriately.

Just before the UpdateStatusDlg function returns, it checks the pca_flag. If paused, the test
program will remain within the UpdateStatusDlg function call until either “CONTINUE” or
“ABORT” are pressed. The pca_flag will be set appropriately and allow the function to return
with either DLG_OK or DLG_ABORT, respectively. The return value can be used to determine
further program execution.

The responsiveness of updating the status dialog and the “PAUSE,” “CONTINUE,” and
“ABORT” buttons is directly a result of where and how often UpdateStatusDlg appears in the
test program. For example, if a number of tests which require significant time appear in the
test program, it may be necessary to intersperse UpdateStatusDlg between them.

NOTE InitUI must be called before StatusDlg. UpdateStatusDlg may
appear in the test program before StatusDlg, but will be ignored
as the status dialog pointers and the window itself have not been
established.

VarMsgDlg — Variable Message Dialog

Purpose VarMsgDlg will create a window with a scrolling text region and multiple push buttons. In addi-
tion, each push button has a user-defined label.

Format int VarMsgDlg(*VarMsgDlgDataPtr) ;

Remarks This routine is passed a structure containing configuration data for the window. The structure
definition is shown below:

typedef struct _VarMsgDlgData
{
int no_buttons;
int no_lines;
char **button_labels;
char *win_label;
char *ted_string;

S530 KTE Software B-11
}
VarMsgDlgDataRec, *VarMsgDlgDataPtr;

• no_buttons — The number of pushbuttons displayed. There is no limit to the num-
ber of buttons, but screen space and size will impose a practical limit.

• no_lines — How many lines of text will be displayed in the scrolling region.

• button_labels — An array of text for labels.

• win_label — The text used for the title bar on the window.

• ted_string — The message to be displayed in the scrolling window.

This routine will return the index number of the button that was pressed by the user.
The first button is index 0.

There is an example program located in the distribution showing sample KUI library
calls and their uses. This file can be located in $KIHOME/src/gui_template.c.

Figure B-2 shows an example of a dialog window created using this routine.

Figure B-2
Variable message window

WfrIdsDlg — Multiple Wafer Information Dialog

NOTE This window is not supported in the KIDS GUI. The standard KUI
Classic window will be used.

Purpose WfrIdsDlg displays a modal dialog window in order to collect information from the operator for
multiple wafers to be tested by the test program. It facilitates automated testing as the wafer id
will not have to be prompted as each wafer is tested.

It has as arguments a pointer to a wafer structure pointer, a bound for the highest cassette
which can be selected, and a pointer to the variable which will contain the total number of wafers
to be tested.

Format int WfrIdsDlg(WAFER **wafer_ptr, int max_cassette, int *total_ptr)

Remarks The multiple wafer information dialog allows the user to enter from 1 to max_cassette lists of
wafer ID's and split entries corresponding to 25 slots on each cassette. While the dialog is dis-

B-12 S530 KTE Software
played, the user can switch between cassettes and can enter id's in any order. A split entry
can only be made if the slot has a corresponding id entry.

The WfrIdsDlg is passed a pointer to the test program’s “present” WAFER structure pointer. A
pointer to the pointer is required to allow WfrIdsDlg to modify the test program’s “present” WA-
FER structure pointer that is passed in and return a different pointer value.

For example, the wafer structure pointer may point to NULL when WfrIdsDlg is called, but points
to an allocated wafer structure in the wafer linked list upon return.

As the user enters wafer information, the WfrIdsDlg will allocate elements and maintain a linked
list of wafer structures. When the user exits the multiple wafer information dialog, the entered
wafers will be in cassette-slot order in the linked list. The test program variable pointed to will
contain the number of wafers in the linked list.

WfrIdsDlg returns either DLG_OK or DLG_ABORT per the “OK” and “ABORT” buttons. The re-
turn value can then be used to determine further program execution.

In most cases, the pointer to the wafer structure pointer will point to NULL when the dialog is
called as the number of wafers, their position and ids will most likely be determined at program
run-time. The default entries for the ID and Split fields will be empty. However, the ability to pass
in a pointer to an established linked list of wafers is reserved for possible future development.
It is intended for possible use to accommodate situations where wafer id’s might remain the
same from test run to test run, such as program development, where generic wafer id’s are suit-
able, or for validation or editing of id’s obtained through some other means such as optical char-
acter recognition or bar coding.

For this reason, the linked list of wafers passed to the dialog will reflect changes even if the di-
alog is exited with ABORT as no tracking of which wafers were passed in will be maintained by
the dialog.

The multiple wafer information dialog is called as in the following example:

WfrIdsDlg(&wafer, max_cassette, &total_wafers);

NOTE InitUI must be called before WfrIdsDlg.

WfrIdDlg — Single Wafer Information Dialog

NOTE This window is not supported in the KIDS GUI. The standard KUI
Classic window will be used.

Purpose WfrIdDlg displays a modal dialog window in order to collect information from the operator for
single wafers to be tested by the test program. It is intended primarily for situations where an
operator is prompted to enter information on a wafer by wafer basis, such as when manual
wafer loading occurs.

It has as arguments a pointer to a wafer structure pointer, and a bound for the highest cassette
which can be selected.

Format int WfrIdDlg(WAFER **wafer_ptr, int max_cassette)

Remarks The single wafer information dialog allows the user to enter the cassette number bounded
from 1 to max_cassette, the slot from 1 to 25, the wafer id and split information. A split entry
can only be made if the slot has an id entry.

S530 KTE Software B-13
A pointer to a WAFER structure pointer is passed to the WfrIdDlg. A pointer to the pointer is
used only to maintain similar arguments and reduce confusion with the multiple wafer informa-
tion dialog WfrIdsDlg which requires a pointer to a pointer. The passed pointer value will not be
modified by WfrIdDlg.

Unlike the multiple wafer information dialog, WfrIdsDlg, the single wafer information dialog will
not allocate a wafer structure if needed within the dialog call and expects to be passed a pointer
to one.

Since it is passed a pointer to an allocated wafer structure, the dialog fields can be initialized
based on the values of the members of the passed structure.

If the user exits the dialog with “OK,” the structure members are updated with the dialog field
entries and the WfrIdDlg returns DLG_OK. If “ABORT” is used to exit the dialog, the structure
members are not updated and DLG_ABORT is returned. The return value can then be used to
determine further program execution.

The single wafer information dialog is called as in the following example, which allocates a wa-
fer structure and initializes the fields based on the present entry in the wafer linked list, and adds
it to the existing wafer linked list if the dialog is exited with “OK”:

next_wafer = CreateNewWafer();
KI_Strncpy(next_wafer->split, wafer->split, WAFER_SPLIT_LENGTH);
next_wafer->boat = wafer->boat;
next_wafer->slot = wafer->slot;

if(next_wafer->slot < MAX_SLOT)
next_wafer->slot++;
switch(WfrIdDlg(&next_wafer, max_cassette))
{
case DLG_ABORT:
EXIT_PRGM
case DLG_OK:
AddNewWafer(wafer, next_wafer);
wafer = next_wafer;
wafers_tested++;
total_wafers++;

NOTE InitUI must be called prior to WfrIdDlg.

YesNoAbortMsgDlg — Yes No Abort Message Dialog

Purpose YesNoAbortMsgDlg displays a modal dialog window containing the passed message string
and requires the user acknowledge it by pushing either “YES,” “NO,” or “ABORT” before the
program can continue.

Format int YesNoAbortMsgDlg(char *msgstr)

Remarks The message should be phrased to state the test program can be aborted by pressing
“ABORT.” If “YES” is pressed, the dialog returns DLG_YES. If “NO” is pressed, the dialog
returns DLG_NO. If “ABORT” is pressed, the user is then prompted through another modal
dialog to verify aborting the test program. The dialog will then return either DLG_ABORT if
“OK” was pressed, or DLG_NO if
“CANCEL” was pressed in the verification dialog.

B-14 S530 KTE Software
YesNoCancelMsgDlg — Yes No Cancel Message Dialog

Purpose YesNoCancelMsgDlg displays a modal dialog window containing the passed message string
and requires the user acknowledge it by pushing either “YES,” “NO,” or “CANCEL” before the
program can continue.

Format int YesNoCancelMsgDlg(char *msgstr)

Remarks Returns either DLG_YES, DLG_NO, or DLG_EXIT.

ContSkipAbortDlg — Continue Skip Abort Message Dialog

Purpose ContSkipAbortDlg displays a message in a dialog box with the Continue, Skip, and Abort
choices.

Format int ContSkipAbortDlg (char *msg)

Remarks Continue returns DLG_YES, Skip returns DLG_SKIP, and Abort returns DLG_ABORT.

LBoxDlg — List Box Message Dialog

NOTE This window is not supported in the KIDS GUI. The standard KUI
Classic window will be used.

Purpose The LBoxDlg is a window containing a list of items and allows selection of one or more of
these items.

Format int LBoxDlg(char *text_label,

char *windowTitle,
LBOXDLG_ListPtr **listPtr,
int MultipleSelectionEnabled) ;

Remarks text_label — text label over list of items
windowTitle — title text for window frame
listPtr — pointer to a linked list of LBOXDLG_ListPtr items.

typedef struct _lboxDlg
{

char *label ;
int selected ;
struct _lboxDlg *next ;

} LBOXDLG_ListPtr ;

MultipleSelectionEnable — Single or Multiple Selection flag.
Possible values: LBOXDLG_SINGLE_SELECT or LBOXDLG_MULTI_SELECT
Return values:
DLG_OK -Ok button pressed
DLG_EXIT -Cancel button pressed
DLG_ABORT -Abort button pressed

In addition, the listPtr list of items has been modified to reflect any selection changes. These
changes only take effect if the “OK” button is pressed. Pressing the “CANCELl” or “ABORT” but-
tons leaves the list in its original state.

Example int retVal, i ;

S530 KTE Software B-15
LBOXDLG_ListPtr *lboxList, *new, *last ;

/* Create a list of items to display
 */
new = (LBOXDLG_ListPtr *)malloc(sizeof(LBOXDLG_ListPtr)) ;
new->label = strdup("Item 1") ;
new->selected = 1 ;
new->next = NULL ;

last = lboxList = new ;
for (i = 2 ; i < 10 ; i++)
{

char label[64] ;

sprintf(label, "Item %d", i) ;

new = (LBOXDLG_ListPtr *)malloc(sizeof(LBOXDLG_ListPtr)) ;
new->label = strdup(label) ;
new->selected = 0 ;
new->next = NULL ;

last->next = new ;
last = new ;

}

/* Show list and get selection. (Single select mode)
 */
retVal = LBoxDlg("Test lbox text",

“Lbox Title",
&lboxList,
LBOXDLG_SINGLE_SELECT) ;

/* free the list. Display the data while we are here
 */
while(lboxList != NULL)
{

LBOXDLG_ListPtr *tmp ;

if (1 == lboxList->selected)
printf("%s was selected!\n", lboxList->label) ;

free(lboxList->label) ;
tmp = lboxList->next ;

free(lboxList) ;
lboxList = tmp ;

}

KTE KUI localization

The KI_LOCALIZE_CFG environment variable is used to define an alternate localiza-
tion file. Simply setenv KI_LOCALIZE_CFG to a file of the form below, and localization
will automatically take place within KUI. Only the elements that you wish to modify need
to be included in this file.

Note that all defaults are included in this example. Format for the lines of the file
requires:

name,“value”

B-16 S530 KTE Software
Note that other comments may come after the second unescaped quotation mark on
each line, and that blank lines and those starting with a pound sign (#) will be ignored.

NOTE This feature is only used for the KUI_CLASSIC gui windows.
These values will have no effect in the KIDS GUI display. The
guiLabels.xml and ktxe_error_msgs.xml files are used to define
the label values and messages for the KIDS display. This
pathname for these files is determined by the "pathToXMLfiles"
setting in the kth.ini file.

Example:

#Keithley Localization File
Version,1.0
File,/opt/ki/dat/example.loc
Date,
Id,
Comment,
<EOH>
KI_LOTINFO_LBL,"Lot Information - " # Lot Info Title
KI_OPR_LBL,"Operator"
KI_LOT_LBL,"Lot Id"
KI_PROCESS_LBL,"Process"
KI_DEVICE_LBL,"Device"
KI_TESTNAME_LBL,"Test Name"
KI_LIMIT_LBL,"Limit Id"
KI_SYS_LBL,"System Id"
KI_TESTSTN_LBL,"Test Station"
KI_SK1_LBL,"Search 1"
KI_SK2_LBL,"Search 2"
KI_SK3_LBL,"Search 3"
KI_COMMENT_LBL,"Comment"
KI_STATUS_LBL,"Status - " # Status Dlg Title
KI_CPFNAME_LBL,"Cass. Plan"
KI_WPFNAME_LBL,"Wafer Plan"
KI_PCFNAME_LBL,"Probe Card"
KI_GDFNAME_LBL,"Global Data"
KI_WDFNAME_LBL,"Wafer Desc"
KI_TIME_LBL,"Total Time"
KI_WAFID_LBL,"Wafer Id"
KI_CURWAF_LBL,"Wafer"
KI_OF_LBL,"Of"
KI_SLOT_LBL,"Slot"
KI_SPLIT_LBL,"Split"
KI_CASS_LBL,"Cassette"
KI_X_LBL,"X"
KI_Y_LBL,"Y"
KI_COL_LBL,"X"
KI_SSID_LBL,"SubSite"
KI_ROW_LBL,"Y"
KI_SID_LBL,"Site"
KI_OF_LBL,"Of"
KI_WFRIDSDLG_LBL,"Wafer Information - " # Wafer Ids Dlg title
KI_WFRIDDLG_LBL,"Wafer Information - " # Wafer ID Dlg Title
KI_CBCASS_LBL,"Cassette"
KI_CBSLOT_LBL,"Slot"

S530 KTE Software B-17
KI_WFRIDCOL_LBL,"ID"
KI_WFRSPLITCOL_LBL,"SPLIT"
KI_OKBUT_LBL,"OK"
KI_ABORTBUT_LBL,"ABORT"
KI_HELPBUT_LBL,"Help"
KI_YESBUT_LBL,"Yes"
KI_NOBUT_LBL,"No"
KI_SKIPBUT_LBL,"Skip"
KI_CANCELBUT_LBL,"Cancel"
KI_CONTTBUT_LBL,"Continue"

KI_ERROR_LBL,"Error Log for "
KI_EVENT_LBL,"Event Log for "

#
#---
The following are text for System Message Dialog windows
#---
#
KI_SUSPEND_ABORT_MSG,"Abort KTXE?"
KI_ABORT_EXE_MSG,"Are you sure you want to ABORT execution?\n"
KI_SUSPEND_UNLOAD_MSG,"You MUST unload all wafers MANUALLY!"

KI_LOT_EXISTS_USE_MSG,"Lot Data already exists and may be in use!\n\nDo you
want to append data to the lot?\n\nPress YES to append to the existing lot data.\nPress
NO to DELETE the old lot data\nand create a NEW lot data file.\nPress ABORT to stop
execution."

KI_LOT_EXISTS_MSG,"Lot Data already exists!\n\nDo you want to append data to the
lot?\n\nPress YES to append to the existing lot data.\nPress NO to DELETE the old lot
data\nand create a NEW lot data file.\nPress ABORT to stop execution."

KI_OK_CANCEL_MSG,"Press OK to Continue\nCancel to ABORT"
KI_LOAD_CASS_MSG,"Load Wafer Cassette(s).\n\nWhen ready press OK to continue
or CANCEL to ABORT test program"

KI_LOAD_WAFER_MSG,"Load/Unload Wafer from chuck"
KI_FRONT_LOAD_MSG,"Manually Load/Profile/Align Wafer.\n\nMove chuck to target
die"
KI_FRONT_UNLOAD_MSG,"Manually UnLoad Wafer"

KI_NO_MAP_MSG,"Could not map any cassettes."

B-18 S530 KTE Software
#
#---
The following values have sprintf arguments embedded within. The arguments
MUST EXIST in any changes that you make
#---
#
KI_PROBER_ERROR_MSG,"PROBER ERROR %i has occurred.\nPlease clear the
error.\nPress 'Continue' for current wafer\nPress 'Skip' to skip current wafer\nPress
'Abort' to ABORT the test program."

KI_KDF_ERROR_MSG,"KTXE ERROR, %s returned status = %d\nYou can attempt to
correct the problem\nand retry or abort the test program\n\nDo you wish to retry
%s?\n\nPress OK to RETRY the operation\nPress CANCEL to ABORT\n"

KI_RESUME_MSG,"Resume lot id: %s ??"

KI_CASS_NOT_LOADED_MSG,"Cassette %d Not loaded"

KI_CASS_UNMAP_MSG,"Unmapped wafers found in cassette %d. Please wait for
mapping to complete"

<EOLOC>

C
KTE File Formats

C-2 S530 KTE Software
The following are examples of the data files that are created by the different tools in the
KTE software. The extensions for each of the data files are:

• .wdf — The Wafer Description File created by WDU.
• .tsf — The Test Structure File created by TSE.
• .ktm — The Keithley Test Macro created by KITT.
• .pcf — The Probe Card File created by KITT.
• .gdf — The Global Data File created by KITT.
• .psf — The Parameter Set File created by PSE.
• .klf — The Keithley Limits File created by LFE.
• .wpf — The Wafer Plan File created by the Wafer Plan Editor in KTPM.
• .cpf — The Cassette Plan File created by the Cassette Plan Editor in KTPM.
• .krf — The Keithley Recipe File created by the Keithley Recipe Manager tool (KRM).
• .kdf — The Keithley Data File created by an executed test, to be used by KSU.
• .uap — The UAP file used by KTPM and KTXE.
• .kpf — The Keithley Plot File created by KITT, to be used by KCAT.
• .c — The KULT module file. Used/created by KULT.

S530 KTE Software C-3
Wafer description file format
Filename

wafer_description_file.wdf

Format

#Keithley Wafer Description File
Version,n.n
File,file_path_and_name.wdf
Date,mm/dd/yyyy
Comment,comment string
Project,project_type
DiameterUnits,english_or_metric
Diameter,diameter_measurement
Units,english_or_metric
DieSizeX,x.x
DieSizeY,y.y
Orientation,notch_or_flat,position
WaferOffset,x,y
Axis,axis
Origin,x,y
Target,x.x,y.y
AutoAlignLocation,x.x,y.y
Optimize,optimization_style
RevID,$Revision: n.n $
<EOH>
Pattern,pattern_name
site_or_project_name,x,y
site_or_project_name,x,y
Pattern,pattern_name
site_or_project_name,x,y
site_or_project_name,x,y
<EOSITES>
Site,project_name,probe_description
subsite_name,x.x,y.y
subsite_name,x.x,y.y
<EOSUBSITES>

Header=

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .wdf extension) of the Wafer Plan Defi-
nition File.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Comment — may contain any relevant text, up to 256 characters.

• Project — contains the project type (either “Single” or “Multiple”).

• DiameterUnits — contains the diameter measurement system (either “English” or
“Metric”).

• Diameter — contains the diameter measurement in inches or millimeters, selected
from a list of choices as specified in wdu.ini.

• Units — contains the die size measurement system (either “English” or “Metric”).
This is separate from the diameter units, which means that the wafer diameter can

C-4 S530 KTE Software
be specified in English units while the rest of the size and position information can
be specified in Metric units, and vice versa.

• DieSizeX — contains the x measurement of the die size in mils or microns. If this is
a multiple-project wafer, this field must be 0; site x-y values will be specified in mils
or mm instead of die offsets.

• DieSizeY — contains the y measurement of the die size in mils or microns. If this is
a multiple-project wafer, this field must be 0; site x-y values will be specified in mils
or mm instead of die offsets.

• Orientation — contains the orientation marker (either “Notch” or “Flat”) and the
position of the marker (either “Top,” “Bottom,” “Right,” or “Left”).

• WaferOffset — contains two pixels used by WDU only. The wafer offset is for
graphics use only; however, it is very important to be able to align the grid on the
wafer to match the grid as presented by lithography tools. The maximum X and Y
offset values are equal to the die size.

• Axis — contains the proper axis number (1-4). The different numbers stand for the
following orientations:

1. X, right; Y, up

2. X, left; Y, up

3. X, left; Y, down

4. X, right; Y, down

• Target — contains the target die coordinates for alignment. For multiple projects,
this field contains the target offset coordinates for the first probed site.

• AutoAlignLocation — contains the offset coordinates (using the orientation of the
Axis, above) from the notch or flat, to the alignment die. This is an optional line used
to help position the wafer on the prober so the operator must only validate the posi-
tion and, if necessary, do some fine adjustments. This would be unused for fully
automated probers as the alignment information would be in the product files. This
value is saved, but not used in the current KTXE; however, a UAP is provided at the
point where the alignment of the first wafer should be done.

• Optimize — contains the optimization style as a serpentine pattern number (1-8). If
the wafer is to be probed as listed, 0 should be used in this field.

• RevID, $Revision: n.n $ — field for Version Control option, where n.n is the revi-
sion number for the option.

The header section terminates with the <EOH> tag.

Sites

This section contains pattern names with sites. The first line in each pattern defines the
pattern name.

• Pattern — contains the pattern name. This one-word string must be a valid C-identi-
fier: it must start with a nonnumeric character, and must contain only letters (a-z, A-
Z), digits (0-9), and the underscore character (“_”).

This line is followed by any number of sites or projects to be associated with the pat-
tern. Each line contains three fields:

1. The site name (for single-project wafers) or the project name (for multiple-project
wafers) that is to be associated with the pattern.

2. The x coordinate.

3. The y coordinate.

This section terminates with the <EOSITES> tag.

S530 KTE Software C-5
Subsites=

This section specifies subsites. Multiple-project wafers can have several such entries,
while single-project wafers should have only one. The first line of each entry contains
three fields:

1. The keyword “Site.”

2. The project name. For single-project wafers, this is the string “Single.” For multiple-
project wafers, this can be any valid C-identifier as described above, up to 32 char-
acters.

3. The project description. For single-project wafers, this should also be the string “Sin-
gle.” For multiple-project wafers, this can be any relevant text.

This line is followed by a list of subsites, one per line, each containing three fields:

1. The subsite name. This can be any valid C-style string as described above.

2. The x coordinate of the subsite.

3. The y coordinate of the subsite.

This section terminates with the <EOSUBSITES> tag.

General Notes

Lines that begin with a # are ignored.

If a file is multiple-project, that means that multiple site types are possible. A site name
must be entered for each site to be probed. A list of subsites will be entered for each
site type (each site type has a unique site name). Tests will still be bound to subsites. All
sites within a probe pattern must contain the same subsites, although they may be in
different locations.

There is no graphical representation of multiple-project wafers currently in WDU. The
pattern, site, and subsite information is entered directly into the appropriate tables.

Wafer Description Files are generated by WDU, and can be found in the
$KI_KTXE_WDF directory.

C-6 S530 KTE Software
Test structure file format

Filename

subsite_name.tsf

Format

#Keithley Test Structure File
Version,n.n
File,file_path_and_name.tsf
Date,mm/dd/yyyy
Id,id_string
Comment,comment_string
RevID,$Revision: n.n $
<EOH>
devname,STRING,device_name
device_data_name,datatype,value
device_data_name,datatype,value
<EODEV>
devname,STRING,device_name
device_data_name,datatype,value
device_data_name,datatype,value
<EODEV>
<EOTSF>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .tsf extension) of the Test Structure File.
The filename must match a subsite name referenced in the Keithley Test Macro
(.ktm) and the Wafer Description File (.wdf).

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Id — may contain any relevant text, up to 255 characters.

• Comment — may contain any relevant text, up to 255 characters.

The header section terminates with the <EOH> tag.

Devices=

These sections define the devices of the test structure. Each line contains three fields:

1. The data name. This string need not be a valid C-identifier; it may contain non-
alphanumeric characters, including spaces. The only constraint is that it may not
include commas.

2. The data type. All data types defined in kiox_def.h are supported. In addition, a spe-
cial data type, “IDENTIFIER,” may be used to reference a predefined probe card or
global identifier.

3. The data value. This must be of the type specified in the second field. If it is a
STRING, the only constraint is that it may not contain commas.

The first line of each section must have “devname” in the first field, “STRING” in the
second field, and the device name itself in the third field. This device name must be
unique within the test structure (but may be used in other Test Structure Files). Each
device section terminates with the <EODEV> tag.

General Notes

S530 KTE Software C-7
The Test Structure File terminates with the <EOTSF> tag. Lines that begin with a # are
ignored.

Test Structure File is generated by TSE and can be found in the $KI_KTXE_TSF direc-
tory.

Keithley test macro (.ktm)
/*>> KITT MODULE GENERATION VERSION Vn.n date_and_time */

RevID,$Revision: n.n $ /*n.n is the revision number.*/

/*>> KTM TEST MODULE DESCRIPTION FOR macro_name */

/*

description of the macro

*/

/*>> KTM WAFER & SUBSITE NAME

wafer_description_file_name
subsite_name

END KTM WAFER & SUBSITE NAME*/

/*>> KTM PROBE CARD FILE NAME

probe_card_file__name

END KTM PROBE CARD FILE NAME*/

/*>> KTM GLOBAL DATA FILE NAME

global_data_file_path_and_name.gdf

END KTM GLOBAL DATA FILE NAME*/

/*>> KTM CONSTANT & GENERAL PURPOSE VARIABLES */

/*>> KTM TEST MODULE VARIABLES FOR macro_name */

datatype variable_name; /* for module_name */
datatype variable_name; /* for module_name */

/* Global Pre-Defined Identifiers */
datatype constant_name = value; /* Constant Declaration */
datatype constant_name = value; /* Constant Declaration */

/* Local Pre-Defined Identifiers */
datatype constant_name = value; /* Constant Declaration */
datatype constant_name = value; /* Constant Declaration */

/*>> KTM TEST MODULE CONSTANTS SETTINGS

constant_name, datatype,constant_type,value,
constant_name, datatype,constant_type,value,
END CONSTANTS SETTINGS*/

/*>> KTM TEST MODULE PLOT AND LOG ***DO NOT MODIFY***

variable_name,plot_code,log_code,number,user_code
variable_name,plot_code,log_code,number,user_code
END PLOT AND LOG SETTINGS*/

/*>> KTM TEST MODULE BEGIN USRLIB INFORMATION

C-8 S530 KTE Software
user_library_name,user_library_name,
KTM TEST MODULE END USRLIB INFORMATION*/

/*>> KTM TEST MODULE TEST SEQUENCE FOR macro_name */
module(param1,param2);
variable=module(param1,param2);

Header

This section contains general information about the file. The entries in this section are
marked by the following banners:

• KITT MODULE GENERATION VERSION — this banner contains the version num-
ber and the date and time the macro was last edited. The date and time take the
form “day mon dd tt:tt:tt yyyy”. (Example: “Mon Jan 01 01:00:00 2000”.)

• KITT TEST MODULE DESCRIPTION — contains a description of the macro, which
can be any relavent text. The macro name is included in the banner.

• KTM WAFER & SUBSITE NAME — contains the name of the associated Wafer
Description File (without .wdf extension). This may include a path if necessary; if no
path is specified, then the file is presumed to be located in the $KI_KTXE_WDF
directory.

• KTM PROBE CARD FILENAME — contains the name of the associated Probe
Card File (without .pcf extension). This may include a path if necessary; if no path is
specified, then the file is presumed to be located in the $KI_KTXE_PCF directory.
This banner and entry are optional, and may be omitted if no .pcf is associated with
the macro.

• KTM GLOBAL DATA FILENAME — contains the name of the associated Global
Data File (without .gdf extension). This may include a path if necessary; if no path is
specified, then the file is presumed to be located in the $KI_KTXE_GDF directory.
This banner and entry are optional, and may be omitted if no .gdf is associated with
the macro.

Declarations=

This section declares the variables necessary to run the macro, and specifies some
important settings. The entries in this section are marked by the following banners:

• KTM CONSTANT & GENERAL PURPOSE VARIABLES — is a reserved section.

• KTM TEST MODULE VARIABLES — contains the declarations for the variables
necessary to run the macro. The first, untitled segment of this section declares the
variables first used in the body of the macro; each declaration is followed by a com-
ment describing which module uses the variable. The second segment, titled “Glo-
bal Pre-Defined Identifiers,” declares and initializes the global constants specified
under the Pre-Defined Identifiers tab in the Keithley Data Editor. Similarly, the third
section, titled “Local Pre-Defined Identifiers,” declares and initializes the local con-
stants specified under the Pre-Defined Identifiers tab in the Keithley Data Editor. The
macro name is included in the banner.

• KTM TEST MODULE CONSTANTS SETTINGS — contains a list of constants and
their properties. Each line contains three fields:

1. The constant name. This string should be a local or global identifier specified
under the KTM TEST MODULE VARIABLES banner.

2. The datatype. This can be any type specified in kiox_def.h, but it should cor-
respond to the C-type the constant was declared as above.

3. The constant type. This can be either “GLOBAL” or “LOCAL.”

4. The value associated with the constant name.

S530 KTE Software C-9
• KTM TEST MODULE PLOT AND LOG — contains KITT configuration information
for each of the test module variables (but not for the constants). Each line in this
entry contains five fields:

1. The variable name. This string should be an identifier specified under the
KTM TEST MODULE VARIABLES banner.

2. The variable plot code. This can be either “PLOT_X” if KCAT should use the
results of this variable as x values, “PLOT_Y” if the user wishes KCAT to use
the values of this variable as y values, or “PLOT_OFF” if KCAT should ignore
the variable.

3. The variable log code. This can be either “LOG_ON” if the user wishes the
variable results to be written to a log file, or “LOG_OFF” if the results should
not be logged.

4. A number.

5. The variable user code. This can be either “USER_ON” if the user wishes to
see the results of this variable presented in a scrolling window while the test
is running, or “USER_OFF” if the results should remain hidden.

Body=

This section details the macro routine. Each line is composed of a module call using
appropriate parameters. If the module returns a value, then a variable may be used to
capture this return value in the form of “variable = module(param1,param2);”. Each line
ends with a semicolon.

General Notes

A .ktx extension on a Test Macro File means that KITT has tagged the file as containing
errors.

Test Macro Files are generated by KITT and can be found in the $KI_KTXE_KTM direc-
tory.

C-10 S530 KTE Software
Probe card file format

Filename

probecard_file.pcf

Format

#Keithley Probe Card Definition File
Version,n.n
File,file_path_and_name.pcf
Date,mm/dd/yyyy
Id,id_string
Comment,comment_string
RevID,$Revision: n.n $
<EOH>
pin_name,datatype,pin_number
pin_name,datatype,pin_number
<EOPINS>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .pcf extension) of the Probe Card File.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Id — may contain any relevant text, up to 255 characters.

• Comment — may contain any relevant text, up to 255 characters.

The header section terminates with the <EOH> tag.

Pins=

This section maps alphanumeric symbols to actual pin numbers. Each line contains
three fields:

1. The pin name. This one-word string must start with a nonnumeric character, and
must contain only letters (a-z, A-Z), digits (0-9), and the underscore character (“_”).

2. The data type of the pin. Currently, this is always INT, but this field is included here
to allow for future support of other data types (example: Pinlist).

3. The actual pin number.

This section terminates with the <EOPINS> tag.

General Notes

Any line that begins with a # is ignored.

Probe Card Files are generated by the Keithley Data Editor in KITT and can be found in
the $KI_KTXE_PCF directory.

S530 KTE Software C-11
Global data file format

Filename

global_data_file.gdf

Format

#Keithley Global Data Definition File
Version,n.n
File,file_path_and_name.gdf
Date,mm/dd/yyyy
Id,id_string
Comment,comment string
RevID,$Revision: n.n $
<EOH>
data_name,datatype,value
data_name,datatype,value
<EOGDF>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .gdf extension) of the Global Data File.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Id — may contain any relevant text.

• Comment — may contain any relevant text.

The header section terminates with the <EOH> tag.

Data Definitions=

This section defines specific variables. Each line contains three fields:

1. The data name. This one-word string must start with a nonnumeric character, and
must contain only letters (a-z, A-Z), digits (0-9), and the underscore character (“_”).

2. The data type. All data types defined in kiox_def.h are supported.

3. The data value. This must be of the type specified in the second field.

This section terminates with the <EOGDF> tag.

General Notes

Any line that begins with a # is ignored.

Global Data Files are generated by the Keithley Data Editor in KITT and can be found in
the $KI_KTXE_GDF directory.

C-12 S530 KTE Software
Parameter set file format

Filename

Userlibrary_parmset.psf

Format

#Keithley Parameter Set File
Version,n.n
File,file_path_and_name.psf
Date,mm/dd/yyyy
Id,id_string
Comment,comment string
RevId,$Revision: n.n $
<EOH>
MODULE,module_name
PARAMSET,parameter_set_name
module_paramset_parameter,datatype,value
module_paramset_parameter,datatype,value
<EOPS>
PARAMSET,parameter_set_name
module_paramset_parameter,datatype,value
module_paramset_parameter,datatype,value
<EOPS>
<EOMODULE>
<EOLIB>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .psf extension) of the Parameter Set
File. The filename should have the form “userlibrary_parmset.psf”, where userlibrary
is the name of the user library the Parameter Set File is associated with.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Id — may contain any relevant text.

• Comment — may contain any relevant text.

The header terminates with the <EOH> tag.

Modules=

This section defines a module by listing all the parameter sets associated with it. One
line is needed before getting into the parameter sets:

• MODULE — contains the module name. This one-word string must start with a non-
numeric character, and must contain only letters (a-z, A-Z), digits (0-9), and the
underscore character (“_”).

This line is followed by any number of Parameter Sets (see information following). This
section terminates with the <EOMODULE> tag.

S530 KTE Software C-13
Parameter Sets=

These sections define parameter sets. The first line in each section is the PARAMSET
line:

• PARAMSET — contains the name of the parameter set. This one-word string fol-
lows the same rules as the module name, above.

This is followed by a list of parameter definitions, one per line. Each line contains three
fields:

1. The parameter name. This follows the standard naming rules outlined above.

2. The data type. All data types defined in kiox_def.h are supported.

3. The data value. This must be of the type specified in the second field.

Each Parameter Set terminates with the <EOPS> tag.

General Notes

The Parameter Set File terminates with the <EOLIB> tag. Lines that begin with a # are
ignored.

Parameter Set Files are generated by PSE and can be found in the $KI_KTXE_PSF
directory.

C-14 S530 KTE Software
Parameter limits file format
Filename

limits_file.klf

Format

#Keithley Parameter Limits File
Version,n.n
File,file_path_and_name.klf
Date,mm/dd/yyyy
Comment,comment_string
RevID,$Revision: n.n $
<EOH>
ID,parameter_id
NAM,parameter_name
UNT,parameter_units
CAT,parameter_category
RPT,y_or_n
CRT,critical_flag
TAR, target_value
AF,abort_destination
AL,abort_action
VAL,val_low, val_high
SPC,spc_low, spc_high
CNT,cnt_low, cnt_high
ENG,eng_low, eng_high
ena,enabled flag
cla,class data
usr1,user data field 1
usr2,user data field 2
usr3,user data field 3
<EOL>

Header

This section contains general information about the file.

• Version — contains the current version number.
• File — contains the path and filename (with .klf extension) of the Parameter Limits

File.
• Date — contains the date the file was last edited, in Y2K-compliant form.
• Id — may contain any relevant text.
• Comment — may contain any relevant text, up to 246 characters. The default com-

ment created by LFE is “KLF”.

The header section terminates with the <EOH tag.

Limits

These section provides important data about each parameter, including four sets of pro-
duction limits.

• ID — contains the unique ID of the parameter. This string MUST be a valid C-identi-
fier. This string may contain a total of 40 characters.

• NAM — contains the name of the parameter. This string need not be a valid C-iden-
tifier; it may contain non-alphanumeric characters, including spaces. The only con-
straint is that it must not include commas. This string may contain a total of 40
characters.

S530 KTE Software C-15
• UNT — contains the units of the parameter. This string need not be a valid C-identi-
fier; it may contain non-alphanumeric characters, including spaces. The only con-
straint is that it must not include commas. This string may contain a total of 10
characters.

• CAT — contains the category of the parameter. Each category must be a single-
word string, but one parameter can belong to several categories, as long as all the
categories are listed (comma- or whitespace-delimited) on this line, and do not total
more than 20 characters.

• RPT — contains either a “Y” for yes or an “N” for no, depending on whether or not
the limit is to be included in the lot summary report compiled by KSU.

• CRT — contains 0 (zero) if the parameter is non-critical and any single digit number
from 1-9 if the parameter is critical; thus, nine different categories of critical parame-
ters can be designated.

• TAR — contains the target value specification for the parameter. Code can use this
value to calculate, on a percent under/over basis, the limits for runtime or report
comparisons.

• AF — contains the abort action code. If KTXE runs into an abort condition (see AL),
it will go to the next {subsite (SS), site (S), wafer (W), or lot (L)} depending upon the
code in this field.

• AL — contains one of the limits (VAL, SPC, CNT, ENG) to be used for qualifying the
parameter value. KTXE will abort if it comes across a data value that fails to satisfy
the limit conditions specified in this field.

• VAL — contains the validity limits, typically used to check for faults within the testing
system. A low limit and a high limit can be specified.

• SPC — contains the manufacturing standard’s limits. A low limit and a high limit can
be specified.

• CTR — contains the process control limits. A low limit and a high limit can be speci-
fied.

• ENG — contains the engineering limits, typically used by engineers to make sure
components meet design standards. A low limit and high limit can be specified.

• ena — contains either a “Y” for yes or an “N” for no, depending on whether or not
the parameter is to be included in the adaptive test. Used ONLY with the Adaptive
Test option software.

• cla — contains class data. Can be used with the enable flag or as user data.
• usr1 — contains user data. Can contain up to 255 characters of information.
• usr2 — contains user data. Can contain up to 255 characters of information.
• usr3 — contains user data. Can contain up to 255 characters of information.
• Each parameter’s limits section terminates with the <EOL> tag.
General Notes

Lines that begin with a # are ignored.

Parameter Limits Files are generated by LFE and can be found in the $KI_KTXE_KLF
directory.

C-16 S530 KTE Software
Wafer test plan file format

Filename

wafer_plan_file.wpf

Format

#Keithley Wafer Plan Definition File
Version,n.n
File,file_name.wpf
Date,mm/dd/yyyy
Comment,comment string
Wafer,wafer_file_name.wdf
Limits,limits_file_name.klf
Probe,probe_file_name.pcf
SS_SORT,yes_or_no
RevID,$Revision: n.n $
<EOH>
Siteplan,siteplan_name,description of siteplan
macro_file_name.ktm
macro_file_name.ktm
Siteplan,siteplan_name,description of siteplan
macro_file_name.ktm
macro_file_name.ktm
<EOSP>
siteplan_name,probe_pattern
siteplan_name,probe_pattern
macro_file_name.ktm,probe_pattern
macro_file_name.ktm,probe_pattern
<EOW>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the filename (with .wpf extension) of the Wafer Plan Definition File.
This may be preceded by the path to the file, but if no path is specified the file is
assumed to reside in the $KI_KTXE_WPF directory.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Comment — may contain any relevant text, up to 255 characters.

• Wafer — contains the name (with .wdf extension) of the appropriate Wafer Descrip-
tion File. This may be preceded by the path to the file, but if no path is specified the
file is assumed to reside in the $KI_KTXE_WDF directory. This line allows pin map-
pings to be set for each wafer. This line is ignored if the Cassette Plan File specifies
a Wafer Description File.

• Limits — contains the name of the appropriate Parameter Limits File (with .klf
extension). This may be preceded by the path to the file, but if the path is not speci-
fied the file is assumed to reside in the $KI_KTXE_KLF directory. This line is
optional.

• Probe — contains the name (with .pcf extension) of the appropriate Probe Card
File. This may be preceded by the path to the file, but if no path is specified the file is
assumed to reside in the $KI_KTXE_PCF directory. This line allows the probed loca-
tions to be set for each wafer. This line is ignored if the Cassette Plan File specifies
a Probe Card File. This line is optional.

S530 KTE Software C-17
• SS_SORT — contains either “YES” or “NO,” depending on whether the subsites
should be sorted.

The header section terminates with the <EOH> tag.

Site Plans

This section defines site plans. Each site plan entry contains three fields:

1. The keyword “Siteplan.”

2. The site plan name. This one-word string must start with a nonnumeric character,
and must contain only letters (a-z, A-Z), digits (0-9), and the underscore character
(“_”).

3. A description of the site plan.

This line is followed by a list of Test Macro File names (with .ktm extension) to be
included in the site plan, one per a line. Each of these may be preceded by the path to
the file, but if no path is specified the file is assumed to reside in the $KI_KTXE_KTM
directory. This section terminates with the <EOSP> tag.

Probe Patterns

This section associates probe patterns with site plans. Each line has two fields:

1. The name of the object to associate with the probe pattern. This can be either the
name of a site plan (as defined above) or a name and optional path of a Test Macro
File (with .ktm extension) not already associated with a site plan.

2. The name of a probe pattern.

This section terminates with the <EOW> tag.

General Notes

Lines that begin with a # are ignored.

The Execution Engine reads the wafer plans specified in the Cassette Plan File. The
Wafer Plan File contains abort condition checks from the .klf, pin mapping from the .pcf,
and the macro-to-probe-pattern mapping information. The probe pattern and subsite
position information for this Wafer Plan File is contained in the .wdf.

Wafer Plan Files are generated by the Wafer Plan Editor in KTPM, and can be found in
the $KI_KTXE_WPF directory.

C-18 S530 KTE Software
Cassette test plan file format

Filename

cassette_plan_file.cpf

Format

#Keithley Cassette Plan Definition File
Version,n.n
File,file_name.cpf
Date,mm/dd/yyyy
Comment,comment string
Data,lot_id
Engine,execution_engine
Probe,probe_card_file_name.pcf
Wafer,wafer_card_file_name.wdf
Global,global_data_file_name.gdf
UAPdefaults,uap_defaults_file_name.uap
RevID,$Revision: n.n $
<EOH>
slot_id,wafer_id,wafer_plan_name.wpf
slot_id,wafer_id,wafer_plan_name.wpf
<EOS>
uap_name,library_name,uam
uap_name,library_name,uam
<EOUAP>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the filename (with .cpf extension) of the Cassette Plan File. This
may be preceded by the path to the file, but if no path is specified then the file is
assumed to reside in the $KI_KTXE_CPF directory.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Comment — may contain any relevant text, up to 256 characters.

• Data — contains the lot ID. If no output filename is specified at runtime, then the
program will create a file named lot_id.kdf (where lot_id is specified here) in the
$KI_KTXE_KDF directory and use that as the output file.

• Engine — contains the name of the execution engine to be used. There can be
more than one test execution engine; however, most customer sites should require
only one. For example, there could be a production engine and a development
engine; however, UAMs could be used to distinguish these different modes of oper-
ation...switches are available to change what a single KTXE will do for a specific
run.

• Probe — contains the name of the appropriate Probe Card File (with .pcf exten-
sion). This may be preceded by the path to the file, but if no path is specified then
the file is assumed to reside in the $KI_KTXE_PCF directory. This line is optional; if
the .pcf is specified here it will override any .pcf’s specified in any wafer plan files.

• Wafer — contains the name of the appropriate Wafer Description File (with .wdf
extension). This may be preceded by the path to the file, but if no path is specified
then the file is assumed to reside in the $KI_KTXE_WDF directory. This line is
optional; if the .wdf is specified here it will override any .wdf filename specified in the
.wpf.

S530 KTE Software C-19
• Global — contains the name of the appropriate Global Data File (with .gdf exten-
sion). This may be preceded by the path to the file, but if no path is specified then
the file is assumed to reside in the $KI_KTXE_GDF directory. This line is optional.
Global data can be specified in a .gdf file. This information will be created with the
KDE (Keithley Data Editor) and read in by the KTXE. The data precedence is set to:

1. PDI - local scope

2. PCF data

3. GDF data

4. PDI - global scope

Multiple .gdf files can be selected for a single .cpf.

• UAPdefaults — contains the name of the appropriate User Access Points Defaults
File (with .uap extension). This may be preceded by the path to the file, but if no path
is specified then the file is assumed to reside in the $KI_KTXE_UAP directory. This
line is optional. This mechanism will allow multiple UAMs to be grouped into a single
file of type uap. This file can be created with any text editor. Each line in the file must
conform to the syntax as specified in the UAP section of the .cpf file.

The header section terminates with the <EOH> tag.

Slots

This section associates slots with Wafer Plan Files. Each line contains three fields:

1. The slot ID. There are several options here. If the ID is absolute, then this field
should simply contain the slot number. If the ID is relative, than this field should con-
tain the character “R” immediately followed by the slot number. All the slots can be
referenced at one time here by using the keyword “ALL.” Finally, if the keyword
“OPR” is used here, then the operator will be prompted to specify the slot during the
test execution.

2. The wafer ID. This one-word string may contain up to 32 characters, must start with
a nonnumeric character, and must contain only letters (a-z, A-Z), digits (0-9), and
the underscore character (“_”). If the first field reads ALL or OPR, this field should be
left blank.

3. The filename of the appropriate Wafer Plan File (with .wpf extension). This may be
preceded by the path to the file, but if no path is specified then the file is assumed to
reside in the $KI_KTXE_WPF directory.

It must be noted that having multiple wafer plans will have an impact on KSU. Summa-
ries could be per wafer plan (i.e. there could be different parameters, different limits,
etc.). If the same wafer plan will be used for all the wafers in a cassette then only one
line is needed. This line must have the keyword “All” in the first field, a blank second
field, and the path and filename of the designated Wafer Plan File. Absolute and rela-
tive slot references cannot be used in the same file. (The prober must be able to load
the wafers in order.) This section terminates with the <EOS> tag.

C-20 S530 KTE Software
User Access Points

This section modifies the Execution Engine at designated User Access Points. Each
line contains three fields:

1. The UAP name. This is the string that identifies the User Access Point. The ktpm.ini
file contains lists of the UAPs that are included in each of the available test execu-
tion engines.

2. The library name.

3. The UAM. This can be either a module in the user library specified in the second
field, an expression of the form “return_value=module_name(param1,param2)”
using said module, or the name of a Test Macro File (with .ktm extension). If it is the
latter, the second field should be left empty.

This section allows the User to extend (customize) the Test Execution Engine (KTXE)
by creating code to be inserted at designated spots (UAPs) by KTXE. The user can
specify the modules (UAMs) to be included at any UAPs by modifying this section. This
section terminates with the <EOUAP> tag.

General Notes

Lines that begin with a # are ignored.

Cassette Plan Files are created by the Cassette Plan Editor in KTPM and can be found
in the $KI_KTXE_CPF directory.

The KDF library is being modified to support “user-defined” data. This information is
contained within the KDF file with the following format:

<TAG>”tagName”,tag value string

• The “<TAG>” field is required.

• The “tagName” field can contain any characters except the double-quote character.
The max length of the tagName is PARAM_ID_LENGTH (128) characters.

• The comma is required and separates the tagName field from the tag value string
field.

• The “tag value string” has a max length of 512 characters and can not contain the
new-line
character.

S530 KTE Software C-21
Keithley data file format

Filename

data_file.kdf

Format

TYP,file_typ
LOT,lot_name
PRC,process_name
DEV,device_name
TST,test_name
SYS,system_name
TSN,test_station_id_string
OPR,operator_name_string
STT,dd,mmm,yyyy, tt:tt
SK1,usr_data_1
SK2,usr_data_2
SK3,usr_data_3
LMT,limit_file_name
WDF,wafer_description_file_name
COM,comment_string
<EOH>
wafer_id,wafer_split,wafer_boat,wafer_slot
site_id,row,column
param_id,value
param_id,value
<EOS>
site_id,row,column
param_id,value
param_id,value
<EOS>
<EOW>
wafer_id,wafer_split,wafer_boat,wafer_slot
site_id,row,column
param_id,value
param_id,value
<EOS>
site_id,row,column
param_id,value
param_id,value
<EOS>
<EOW>

C-22 S530 KTE Software
Header

This section contains general information about the file.

• TYP — contains the type of the file; typically reads "KDF Vn.n", where n.n is the ver-
sion number.

• LOT — contains the name of the lot. This string may contain up to 50 characters.

• PRC — contains the process name. This string may contain up to 50 characters.

• DEV — contains the device name. This string may contain up to 50 characters.

• TST — contains the test name. This string may contain up to 255 characters.

• SYS — contains the system name. This string may contain up to 20 characters.

• TSN — contains the test station ID integer (1-4).

• OPR — contains the operator name. This string may contain up to 30 characters.

• STT — contains the date and time the file was created, in Y2K-compliant form.

• SK1 — contains a user search key. This string may contain up to 30 characters.

• SK2 — contains a user search key. This string may contain up to 20 characters.

• SK3 — contains a user search key. This string may contain up to 10 characters.

• LMT — contains the Parameter Limits File name. This string may contain up to 80
characters.

• WDF — contains the Wafer Description File name. This string may contain up to 80
characters.

• COM: may contain any relevant text, up to 256 characters.

The header terminates with the <EOH tag.

Wafers

These sections lists all the sites within a given wafer. One line is needed before getting
into the site sections, and that line contains four fields:

1. The wafer ID. This one-word string must be a valid C-style identifier: it must start
with a nonnumeric character, and must contain only letters (a-z, A-Z), digits (0-9),
and the underscore character (“_”).

2. The wafer split. This optional one-word string must be a valid C-style identifier as
described above.

3. The wafer boat. This optional one-word string must be a valid C-style identifier as
described above.

4. The wafer slot. This one-word string must be a valid C-style identifier as described
above.

This line is followed by any number of Sites (see below). Each wafer section terminates
with the <EOW> tag.

S530 KTE Software C-23
Sites

These sections report the data for each site. The first line in each section contains three
fields:

1. The site ID. This one-word string must be a valid C-style identifier as described
above.

2. The site row number.

3. The site column number.

This line is followed by a list of all the measurements which were taken for that site, one
per line. Each line contains two fields:

1. The parameter ID. This is the C-style identifier string that matches a parameter ID in
the Parameter Limits File.

2. The numeric value of the measurement.

Each site section terminates with the <EOS> tag.

General Notes

Lines that begin with a # are ignored.

Data files are generated by test executions, and can be found in the $KI_KTXE_KDF
directory.

User access point file format

Filename

user_access_point_file.uap

Format

#Keithley UAP File
Version,n.n
File,file_path_and_name.uap
Date,mm/dd/yyyy
Id,id_string
Comment,comment_string
RevID,$Revision: n.n $
<EOH>
uap_name,user_library_name,routine_name_or_expression
uap_name,user_library_name,routine_name_or_expression
<EOUAP>

Header

This section contains general information about the file.

• Version — contains the current version number.

• File — contains the path and filename (with .uap extension) of the UAP File.

• Date — contains the date the file was last edited, in Y2K-compliant form.

• Id — may contain any relevant text.

• Comment — may contain any relevant text.

The header section terminates with the <EOH> tag.

UAPs

C-24 S530 KTE Software
This section defines the User Access Points. Each line contains three fields:

1. The UAP name.

2. The user library name of the module the user wishes to use at this UAP.

3. A routine name or an expression using the routine name. If an expression is used, it
must be of the form “return_value = routine_name(param1,param2).”

This section terminates with the <EOUAP> tag.

General Notes

Any line that begins with a # is ignored.

Keithley plot file format

Filename

plot_file.kpf

Format

#<KTE>Keithley Results File
#<VERSION>n.n
#<DELIMITER>,
parameter1_id,parameter2_id,parameter3_id,
site1_parameter1_data,site1_parameter2_data,site1_parameter3_data,
site2_parameter1_data,site2_parameter2_data,site2_parameter2_data,

Header

This section contains general information about the file.

• VERSION — contains the current version number.

• DELIMITER — contains a single character (usually “,”) to serve as a delimiter while
listing the data points.

Every line in this section begins with a #.

Parameters

This section is just one line long. It simply lists the variables specified in KITT, sepa-
rated by the delimiter specified in the header. The delimiter also ends the line.

Data

This section lists the actual data values for each parameter above. Each line represents
one site worth of data values. The values are simply written out in the same order as
the parameter section, separated by the delimiter specified in the header. The delimiter
also ends the line.

General Notes

Plot Files are generated by the Results Window in KITT, and can be found in the
$KI_KTXE_KDF directory.

S530 KTE Software C-25
KULT module file format

Filename

kult_module_file_name.c

Format

/* USRLIB MODULE INFORMATION

MODULE NAME: kult_module_name
MODULE RETURN TYPE: datatype
NUMBER OF PARMS: n
ARGUMENTS:
param, datatype, input_or_output, default, min , max
param, datatype, input_or_output, default, min, max

#include <header_file_name.h>
#include <header_file_name.h>

END USRLIB MODULE INFORMATION

*/
/* USRLIB MODULE HELP DESCRIPTION

END USRLIB MODULE HELP DESCRIPTION */
/* USRLIB MODULE VERSION CONTROL */
static char const vcid[] ="$Id: kult_module_name.c,v 1.2 2000/09/27 14:09:43 user Exp
$";
/* USRLIB MODULE PARAMETER LIST */

#include <header_file_name.h>
#include <header_file_name.h>

datatype kult_module_name(datatype param, datatype param)
{

/* USRLIB MODULE CODE */
code_body
/* USRLIB MODULE END */

}

/*End kult_module_name.c */

INCLUDES:

Header

This section contains general information about the file. There are two banners in this
header. The first banner reads “USRLIB MODULE INFORMATION,” and contains the
following entries:

• MODULE NAME — contains the name of the module. (Incidentally, the KULT Mod-
ule File name itself should be the name of the module with .c extension.)

• MODULE RETURN TYPE — contains the datatype of the module’s return value.
This is restricted to six types: char, float, double, int, long, and void.

• NUMBER OF PARMS — contains the number of parameters the module takes.

C-26 S530 KTE Software
• ARGUMENTS — details information about each of the parameters, one per line.
Each line contains six fields:

1. The name of the parameter. This one-word string should be a valid C-style
identifier: it must start with a nonnumeric character, and must contain only let-
ters (a-z, A-Z), digits (0-9), and the underscore character (“_”).

2. The datatype of the parameter. This can be any of (or a pointer to any of) the
following types: char, double, float, int, long. Three array types are also avail-
able: F_ARRAY_T (for floats), D_ARRAY_T (for doubles), and I_ARRAY_T
(for ints). If an array type is used, then the next line must be the entry for the
number of elements in this array, and should have the form
“ArrSizeForarray_param, int, Input, default, min, max,” where array_param is
the name of the array.

3. Either “Input” or “Output,” depending on the purpose of the parameter.

4. The default value of the parameter. This field is optional, but if it is used then
the type should match the datatype in the second field. If the type in the sec-
ond field is an array, then this field should be left empty.

5. The minimum value of the parameter. This field is optional, but if it is used
then the type should match the datatype in the second field. If the type in the
second field is an array, then this field should be left empty.

6. The maximum value of the parameter. This field is optional, but if it is used
then the type should match the datatype in the second field. If the type in the
second field is an array, then this field should be left empty.

• INCLUDES — lists all of the header files which are to be included in the module, in
the standard C compiler-directive format.

The next banner reads “USRLIB MODULE HELP DESCRIPTION,” which may be fol-
lowed by any number of lines of text commentary about the module.

Include Directives

This section actually instructs the compiler to include the header files listed in the
header section. After the banner “USRLIB MODULE PARAMETER LIST,” the include
files should be listed exactly the way they appear in the header section.

Code Body

This section contains the actual code used by the compiler. The function header (not to
be confused with the header section as detailed above) should include all of the param-
eters listed in the header section. If an array is declared in the header section, then the
parameter should be listed in the function header as a pointer to the type of array
declared (double, float, or int). The function header is followed by a pair of curly brack-
ets; between them is all of the code necessary to execute the module.

General Notes

Every KULT Module File is a C document, but not every C document is a KULT Module
File. To be a KULT Module File, the C document must conform to the format explained
above.

Test Macro Files are generated by KULT and can be found in the $KI_KULT_PATH/usr-
lib directory, where usrlib is the name of the module’s User Library.

D
Data Pool

D-2 S530 KTE Software
Data pool
The data pool is used to hold global data while KTXE is running. When KTXE is started,
the variables declared in the global data files and probe card file are copied into the
data pool. The data pool is accessible at any point during test execution. This allows the
user to access global variables in KITT-generated test macros and also pass data pool
items as parameters to KULT-
generated modules that are run at UAPs.

For example, you could be using global data in your KTM. When KTXE executes a test
macro and encounters a variable, it checks for the variable in the following order:

1. KTXE checks the variable against the list of Pre-Defined Identifiers (PDIs) of local
scope. If the variable is found, it is passed on to the test macro.

2. If the variable is not found in the local PDIs, the data pool is then searched and the
variable is passed on to the test macro.

The data pool is also used to look up variables for parameters that are passed to KULT-
generated modules when they are run at the UAPs. When you select UAPs in KTPM,
and start the user access module selector to choose the KULT module, you will have to
enter the values for each of the parameters of the module. For the values of the param-
eters, you can type in absolute values or specify a variable that is in the data pool.
When KTXE processes the UAPs, it checks to see if the parameter being passed to the
module is an absolute or a variable value. If a variable is being passed, the value of the
variable is looked up in the data pool.

Since the data pool holds global data, the variables in the data pool are updated as they
are changed. For example; if KTXE executes a test macro that contains instructions
that modify the value of a variable in the data pool (i.e., a data pool variable is used as
a return value variable), the data pool is updated as soon as the value of the variable is
changed. This allows the results generated from the execution of one macro to be used
in another macro or at a UAP.

KTXE puts the items listed in Table D-1 into the data pool:

Table D-1
Data pool items

Name Type Initial Value First Available Last Usable

KI_ktxe_redo_macro INT 0 UAP_SITE_CHANGE UAP_SITE_END

Flag that allows a macro to be re-executed. Set this at or before UAP_TEST_END or UAP_TEST_DATA_LOG to retest. Any
non-zero value means retest. This flag is reset automatically to zero once it is set. Multiple retests will require the flag to be set
each time.

KI_ktxe_retest_wafer INT 0 UAP_WAFER_BEGIN UAP_WAFER_END

Flag that allows a wafer to be retested. Set this at or before UAP_WAFER_END to retest. Any non-zero value means retest. This
flag is reset automatically to zero once it is set. Multiple retests will require the flag to be set each time.

KI_ktxe_skip_limits_check INT 0 UAP_TEST_DATA_LOG UAP_TEST_DATA_LOG

If set to 1, causes KTXE to skip the default limit/results checking for abort conditions. The user can use their own custom
checking routine at UAP_TEST_END, or UAP_TEST_DATA_LOG.

If custom routines are used, this flag MUST BE SET at or before UAP_TEST_DATA_LOG, else the default limit check routine
could/would reset the abort flag(s).

S530 KTE Software D-3
KUI_User LONG_P &KUI_User UAP_PROG_ARGS UAP_LOT_INFO

Pointer to the KUI_User structure. This allows access to two user-defined fields on the KTXE Status Dialog window. The
KUI_User structure is initialized to NULL by default, causing the user fields to be invisible. Initializing the “label_1” or “label_2”
fields at or before UAP_LOT_INFO, will enable the user fields and make them visible on the Status Window.

Example:

#include "kui_proto.h"
#include "COM_usrlib.h"

kui_user_t *user ;
long *tmp ;

tmp = (long *)dpGetPointer("KUI_User", LONG_P) ;
if (tmp == NULL)
 return ;

user = (kui_user_t *)*tmp ; /* <---- VERY IMPORTANT to de-reference tmp */

/* Initialize field 1 */
strcpy(user->label_1, "First Label ") ;
strcpy(user->data_1, "Data for first field") ;

/* Initialize field 2 */
strcpy(user->label_2, "Second Label ") ;
strcpy(user->data_2, "Data for second field") ;

KTXEUpdateStatusAbort("Forcing update of display...") ;

ManualProberType INT 0 UAP_PROG_ARGS UAP_PROBER_INIT

Flag to tell KTXE that we have a CM61-type prober that will allow a PrLoad command. You must set this value via a Global Data
file or at UAP_PROG_ARGS in order for this to take effect.

ManualWaferLoad INT 0 UAP_PROG_ARGS UAP_PROBER_INIT

Flag to tell KTXE that we have a prober that allows front-access loading of single wafers. You must set this value via a Global
Data file or at UAP_PROG_ARGS in order for this to take effect.

Example: You have an EG4080 prober and want to load a single wafer via the front access tray. Set the ManualWaferLoad flag to
1 in a global data file referenced by your cassette plan and run KTXE with said cassette plan. You will be prompted to manually
load/profile/align the wafer and press OK. The wafer will be tested normally. You will then be prompted to manually unload the
wafer.

UAP_abort_level INT uap_abort_level after a UAP is executed after a UAP is executed

Return value of a UAP routine if assigned in KTPM. Can be used to cause KTXE to abort after a UAP is executed. If the UAP
returns the value KI_ABORT, KTXE will exit.

Example

A UAP description within a cassette plan file as:

UAP_TEST_END,myLib,UAP_abort_level=MyUAProutine()

will cause KTXE to exit if MyUAProutine returns KI_ABORT.

Table D-1
Data pool items (cont.)

D-4 S530 KTE Software
abort_code INT -1 UAP_PROG_ARGS UAP_ENGINE_EXIT

abort_code_description CHAR_P
&abort_code_descript
ion UAP_PROG_ARGS UAP_ENGINE_EXIT

These two values are used by the UAP_ABORT_EXIT_HDLR routines. They can be set to user-defined values for abort handing.

abort_level INT_P &abort_level; UAP_SITE_CHANGE UAP_ENGINE_EXIT

Value that determines the abort level of a limit.

Example:

int *abort_level ;
enum abort_level_t abort_code ;
/* something happens to require the abort_code to be set to one
 * of the following:
 */
abort_code = NOABORT ;
abort_code = SUBSITEABORT ;
abort_code = SITEABORT ;
abort_code = WAFERABORT ;
abort_code = LOTABORT ;
/* Check abort code and react accordingly
* set the abort level flag for the proper skip action
* (the execution engine will handle the abort just as if a limit/result
* pair had caused an abort...)
*/
abort_level = (int *)dpGetPointer("abort_level", INT_P) ;
*abort_level = abort_code ;
if (NOABORT == abort_code)
 return ;
/* we are here so this means we need to skip something...
 * Skip the "normal" limit/result list abort checking so we don't
 * reset the abort code that we just set up!!
 */
dpAddData("KI_ktxe_skip_limits_check", INT, 1) ;

cl_kwf_fname CHAR_P cl_kwf_fname UAP_PROG_ARGS UAP_ENGINE_EXIT

Wafer description filename entered from “-w” command-line switch.

confirm_oper_wafers INT 0

If this value is set to 1 and the operator selects an empty slot for OPERATOR MODE, an error message will be displayed. This
value is set to off by default.

Table D-1
Data pool items (cont.)

S530 KTE Software D-5
cpf_info LONG_P cpf_info UAP_PROG_ARGS UAP_ENGINE_EXIT

Pointer to the cassette plan info structure.
typedef struct
{

char version[MAXVERSIZE];
char cpfname[MAXFILENAMESIZE];
char ascdatetime[MAXDATESTRSIZE];
char comment[MAXCOMMENTSTRSIZE];
char uapdefaults[MAXENGNAMESTRSIZE];
char engine[MAXENGNAMESTRSIZE];
char pcffname[MAXFILENAMESIZE];
gdffname_list_t *gdffname_list;
char kdffname[MAXFILENAMESIZE];
char wdffname[MAXFILENAMESIZE];
slot_list_t *slot_list;
uap_list_t *uap_list;

}
cpf_info_t;

current_slot_list LONG_P & current_slot_list UAP_LOT_INFO UAP_ENGINE_EXIT

Pointer to the current_slot_list element. Updated each wafer.

Example:

long *tmp ;
slot_list_t *slot ;
/* Get the current slot list pointer..
 */
tmp = (long *)dpGetPointer("current_slot_list", LONG_P) ;
slot = (slot_list_t *) *tmp ;

Structure definition:

typedef struct _slot_list
{

char slot[SLOTNAMESIZE];
char wafer_id[MAXWAFERID];
char split_id[MAXWAFERID];
char wpfname[MAXFILENAMESIZE];
char plan_wpfname[MAXFILENAMESIZE];
struct _slot_list *next;

}
slot_list_t ;

current_wwp_list LONG_P current_wwp_list UAP_SITE_CHANGE UAP_SITE_END

Pointer to the current node of the wwp list. Updated each Macro.

Structure definition: See type definition for wwp_list_t in $KIHOME/include/ktxe_types.h.

Table D-1
Data pool items (cont.)

D-6 S530 KTE Software
cur_wwp_list_ptr LONG_P ¤t_wwp_list UAP_SITE_CHANGE UAP_SITE_END

This is a pointer to the current_wwp_list pointer value. This allows execution flow adjustment by manipulation of the
current_wwp_list pointer value.

Example:

wwp_list_t *wwp ;
long *foo ;
foo = (long *)dpGetPointer("cur_wwp_list_ptr", LONG_P) ;
wwp = (wwp_list_t *) *foo ;
/* Skip until Site_3 node
*/
if(wwp->next != NULL)
{

while (wwp->next != NULL)
{

if (strcmp(wwp->next->siteid, "Site_3") == 0)
break ;

else
wwp = wwp->next ;

}
}
/* adjust the current_wwp_list value
 */
*foo = (long) wwp ;

display_lotdlg INT_P &display_lotdlg UAP_PROG_ARGS UAP_LOT_INFO

Flag to enable/disable Lot Dialog display. Defaults to 1, or enabled. MUST be updated at or before UAP_LOT_INFO.

Example:

int *logDlg ;
/* disable the display of the Lot Dialog screen
 */
lotDlg = (int *)dpGetPointer("display_lotdlg", INT_P) ;
*lotDlg = 0 ;

failed_result_list LONG_P failed_result_list UAP_HANDLE_ABORT UAP_HANDLE_ABORT

Pointer to a results list containing results that failed the limits checking. Use this for any custom abort handling requirements.

ktm_list LONG_P ktm_list_head UAP_VALIDATE_OCR UAP_WAFER_END

Pointer to the list of all KTMs used in a wafer plan. This is updated each wafer before UAP_WAFER_BEGIN.

Structure definition:

typedef struct _ktm_list
{

char ktmfname[MAXFILENAMESIZE];
char wafpatname[MAXWAFPATNAMESIZE];
struct _ktm_list *next;

}
ktm_list_t;

ktxe_abort_logging INT_P &ktxe_abort_logging UAP_PROG_ARGS UAP_ENGINE_EXIT

Flag to enable logging of the limits abort.

ktxe_cpf_mode INT
cassette plan probe
mode UAP_PROG_ARGS UAP_ENGINE_EXIT

Flag that indicates the probe mode of the cassette plan. This value is set when the Cassette plan is loaded. This flag can be
useful for Prober error recovery sequencing.
ALL_MODE = 1 OPR_MODE = 2 ABS_MODE = 3 REL_MODE = 4

Table D-1
Data pool items (cont.)

S530 KTE Software D-7
ktxe_debug INT_P &ktxe_debug UAP_PROG_ARGS UAP_ENGINE_EXIT

Debug flags from “-x” command-line switch.

ktxe_disable_exec_log INT undefined

Flag that prevents the execution log from being placed into KDF file. Define flag (set to 1) at or before UAP_WRITE_LOT_INFO.
This data pool switch is only effective while KTXE is executing a recipe. Refer to the Recipe Manager documentation for
additional information about the execution log.

ktxe_disable_kdf INT FALSE UAP_PROG_ARGS UAP_WAFER_END

Flag for disabling standard kdf data logging.

ktxe_disable_ktm INT FALSE UAP_PROG_ARGS UAP_LOT_END

Flag for disabling macro test execution.

ktxe_disable_kui INT FALSE UAP_PROG_ARGS UAP_LOT_END

Flag for disabling user interface for KTXE.

ktxe_disable_load_cassette_
msg INT FALSE UAP_PROG_ARGS UAP_PROBER_INIT

Flag for disabling “Load Cassette” message dialog.

ktxe_disable_plan_complete_
msg INT FALSE UAP_PROG_ARGS UAP_ENGINE_EXIT

Flag for disabling the “KTXE Plan Complete” message.

ktxe_disable_prober INT FALSE UAP_PROG_ARGS UAP_WAFER_END

Flag for disabling default KTXE prober routines.

ktxe_disable_statdlg INT 0 UAP_PROG_ARGS UAP_LOT_INFO

Flag for disabling KTXE status dialog window. Set this flag to 1 to disable the KTXE status dialog window or add to a global data
file used by the recipe or cassette plan.

ktxe_disable_uap INT FALSE UAP_PROG_ARGS UAP_ENGINE_EXIT

Flag for disabling execution of UAP routines.

ktxe_enable_cl_log INT FALSE UAP_PROG_ARGS UAP_POST_LOT_INFO

Flag for enabling/disabling logging of command line arguments. Set this flag to 1 to log KTXE command-line arguments to the
KDF file. Set this flag to 0 to prevent logging. Defaults: Cassette plan mode: 0 (prevents logging); Recipe mode: 1 (allows
logging). A global data file or a UAP routine can be used to alter the state of this variable.

ktxe_disable_exec_log INT FALSE UAP_PROG_ARGS UAP_POST_LOT_INFO

Flag for disabling logging of list of files. Set this flag to 1 to prevent list of files used by a recipe from being logged into the KDF file.

ktxe_enable_doc INT FALSE UAP_PROG_ARGS UAP_PROG_ARGS

Flag for enabling test execution documentation data collection.

ktxe_error_gui INT 0 UAP_PROG_ARGS UAP_ENGINE_EXIT

Flag for defining the behavior of KTXE when an error occurs. Default, (ktxe_error_gui undefined or set to other than 1 or 2), errors
are written to the error log. If ktxe_error_gui == 1; error msg will be displayed and the user has the option to continue or quit. If
ktxe_error_gui == 2; error msg will be displayed and the user can only quit.

ktxe_fill_opr_dlg INT 0 UAP_PROG_ARGS UAP_PROBER_INIT

Flag for enabling/disabling the initialization of the Wafer ID dialog window. If this flag is set to 1, the Wafer ID dialog window will be
filled with the wafers available from the PrCassetteMap call. If this flag is set to 0, the Wafer ID dialog window will be empty.
Default state is 0.

Table D-1
Data pool items (cont.)

D-8 S530 KTE Software
ktxe_min_SS_touch INT ktxe_min_SS_touch UAP_PROG_ARGS UAP_WAFER_PREPARE

Flag that enables/disables subsite touchdown minimalization to occur. Default state is 1, enabled. This flag is ONLY effective
when the ktxe_sort_subsite_ktms flag is disabled. If the wafer plan file specified multiple macros at a subsite, and the macros are
not listed together, this flag will determine if the probes will touch-down multiple times at the same subsite, or only once. Must be
updated at or before UAP_WAFER_PREPARE.

ktxe_missingSS_ok INT 0

Set to non-zero to suppress the “missing Subsite error” messages. This will allow the KTDT Validation step to pass without error.

ktxe_reload_wafer_plan INT UAP_WAFER_END

Wafer plan reloading may be forced by defining this datapool item. If a wwplist has been modified, it will be necessary to define
this item to force the next wwplist to be reset to the original. This item must be added at or before each UAP_WAFER_END. This
item is removed at the end of each wafer loop.

ktxe_report_no_klf INT 1 UAP_PROG_ARGS UAP_WAFER_PREPARE

This flag defaults to value 1 and if set to 0 will cause KTXE to suppress the generation of a “Missing Limits File” error message.

ktxe_report_no_pcf INT 1 UAP_PROG_ARGS UAP_WAFER_PREPARE

This flag defaults to value 1 and if set to 0 will cause KTXE to suppress the generation of a “Missing Probe Card File” error
message.

ktxe_sort_subsite_ktms INT
ktxe_sort_subsite_kt
ms UAP_PROG_ARGS UAP_WAFER_PREPARE

Flag that enables/disable subsite sorting to occur. Default state is 1, enabled. Disabling this flag will cause macros to be executed
in the order specified by the wafer plan file. Must be updated at or before UAP_WAFER_PREPARE.

last_prober_call CHAR_P last_prober_call

Pointer to the last prober function which encountered an error. This item is updated in KTXESUP/KTXEProberErrorMessage
which is used by the Execution Engine. This datapool value can be used at UAP_PRB_ERR_HDLR.

last_prober_error INT_P last_prober_error

Pointer to the last prober which encountered an error. This item is updated in KTXESUP/KTXEProberErrorMessage which is used
by the Execution Engine. This datapool value can be used at UAP_PRB_ERR_HDLR.

last_subsite LONG_P last_subsite

Pointer to the last subsite structure. Updated after subsite change. This is used to assist in getting subsite timing information.
Refer to KTXEAddIn:KTXEShowSubsiteTime module for details.

limit_list LONG_P limit_list UAP_VALIDATE_OCR UAP_WAFER_END

Pointer to the limits list returned by GetLimit. Updated each wafer, if the Wafer Plan file has a limits file specified.

limithashtab LONG_P &limithashtab[0] UAP_WAFER_BEGIN UAP_WAFER_END

Pointer to the hash table used for fast lookups of limit values.

Example:

LIMIT **limithashtab;
LIMIT *limit_list;

limithashtab = (LIMIT**)dpGetPointer("limithashtab"’ LONG_P);
limit_list = (LIMIT *)limithashtab[hash(result_id, HASHSIZE)];
while(limit_list != NULL)
{
 if (strcomp(result_id, limit_list->id) == 0)
 break ; /* we have the limit we are looking for... */

 limit_list = limit_list->nexth ;
}

Table D-1
Data pool items (cont.)

S530 KTE Software D-9
lot LONG_P lot UAP_PROBER_INIT UAP_ENGINE_EXIT

Pointer to lot structure.

lotadd INT_P &lotadd UAP_PROBER_INIT UAP_WRITE_LOT_INFO

Flag that determines if PutLot will append data to an exist lot file, or create a new lot file. Values are APPENDLOT or
CREATELOT. Must be set before or at UAP_WRITE_LOT_INFO.

Example:

int *lotAdd ;
/* set up for append to lot data
 */
lotAdd = (int *)dpGetPointer("lotadd", INT_P) ;
*lotAdd = APPENDLOT ;

lotid CHAR_P lot->id UAP_PROBER_INIT UAP_ENGINE_EXIT

Lot id string.

maxErrEvtLines INT_P maxErrEvtLines UAP_PROG_ARGS UAP_PROG_ARGS

Pointer to the maxErrEvtLines variable used to determine the maximum buffer size of the Error/Event Message Dialog window.
Value is lines to display. Change this value at UAP_PROG_ARGS.

Example:

int *maxLines ;
/* get pointer from data pool
 */
maxLines = (int *)dpGetPointer("maxErrEvtLines", INT_P) ;
*maxLines = newMaxLinesValue ;

maxScrollLines INT_P maxScrollLines UAP_PROG_ARGS UAP_PROG_ARGS

Pointer to the maxScrollLines variable used to deterimine the maximum buffer size of the Scrolling Msg dialog window. Value is
lines to display. Change this value at UAP_PROG_ARGS.

Example:

int *maxLines ;
/* get pointer from data pool
 */
maxLines = (int *)dpGetPointer("maxScrollLines", INT_P) ;
*maxLines = newMaxLinesValue ;

next_wwp_list LONG_P &previous_wwp_list UAP_SITE_CHANGE UAP_SITE_END

Pointer to the next wwp list node that is scheduled to be executed. This is updated each time a macro is executed.

Structure definition: See wwp_list_t in ktxe_types.h. definition.

next_wwp_list_ptr LONG_P &previous_wwp_list UAP_SITE_CHANGE UAP_SITE_END

This is a pointer to the next_wwp_list pointer value. This can be adjusted to alter execution flow if desired.

previous_wwp_list LONG_P &previous_wwp_list UAP_SITE_CHANGE UAP_SITE_END

Pointer to the previous wwp list node that was actually executed. This is updated each time a macro is executed.

See type definition for wwp_list_t in $KIHOME/include/ktxe_types.h.

prev_wwp_list_ptr LONG_P &previous_wwp_list UAP_SITE_CHANGE UAP_SITE_END

This is a pointer to the previous_wwp_list pointer value. This can be adjusted to alter execution flow if desired.

Table D-1
Data pool items (cont.)

D-10 S530 KTE Software
prober_wafer_id CHAR_P &prober_wafer_id UAP_VALIDATE_OCR UAP_WAFER_END

Pointer to the wafer id as read from the prober OCR, if supported. If prober does not support OCR, wafer id is determined by
value in cassette plan, or default value of Wafer_xx, where xx is the slot number.

Example:

char *stringPtr ;

stringPtr = (char *)dpGetPointer(“prober_wafer_id”, CHAR_P) ;
printf(“old id: <%s>\n”, stringPtr) ;

/* Make sure you do not over-run the array!!
 * Currently prober_wafer_id is sized 256 characters
 */
strcpy(stringPtr, “A different wafer id”) ;

product_file CHAR_P &product_file UAP_PROG_ARGS UAP_PROBER_INIT

Prober Product file string. Must be updated at or before UAP_PROBER_INIT.

result_list LONG_P NULL UAP_TEST_END UAP_HANDLE_ABORT

Pointer to the results list created by a KTM.

site LONG_P site UAP_SITE_CHANGE UAP_SITE_END

Pointer to the site structure. Updated before UAP_SITE_CHANGE.

sites_tested INT_P &sites_tested UAP_SITE_CHANGE UAP_ENGINE_EXIT

Pointer to number of sites tested. Updated before UAP_SITE_CHANGE.

skip_first_wafer_load INT skip_first_wafer_load UAP_PROG_ARGS UAP_POST_LOT_INFO

Flag to skip the first KTXE PrLoad, PrProfile, and PrAlign calls. Must be updated at or before UAP_WRITE_LOT_INFO. Use the
kult routine KTXEAddIn:KTXEOperatorLoadAlign routine at UAP_WRITE_LOT_INFO.
This flag is used for P8 and other probers that need the first wafer loaded manually.

skip_next_wafer_load INT skip_next_wafer_load UAP_PRB_ERR_HDLR UAP_WAFER_END

Flag to skip the next KTXE PrLoad, PrProfile, and PrAlign calls. Must be updated at UAP_PRB_ERR_HDLR. Use the kult routine
KTXEAddIn:KTXESkipNextWaferLoad routine at UAP_PRB_ERR_HDLR.
This flag is used for any prober that the operator can, during testing, cycle to the next wafer manually.

subsite LONG_P subsite UAP_SUBSITE_CHANGE UAP_SUBSITE_END

Pointer to the subsite structure. Updated at subsite change.

sum_report_options CHAR_P sum_report_options UAP_PROG_ARGS UAP_ENGINE_EXIT

Summary report options from KTXE “-s” command-line switch.

total_sites INT_P &total_sites UAP_WAFER_BEGIN UAP_ENGINE_EXIT

Pointer to total number of sites to be tested. Updated before UAP_WAFER_BEGIN.

total_wafers INT_P &total_wafers UAP_POST_PROBER_INIT UAP_POST_ENGINE_EXIT

Pointer to total wafers to be tested value. Updated after UAP_PROBER_INIT.

user_arg CHAR_P user_arg UAP_PROG_ARGS UAP_ENGINE_EXIT

User argument entered from “-u” command-line switch.

wafer LONG_P wafer UAP_VALIDATE_OCR UAP_WAFER_END

Pointer to the wafer structure. Updated at wafer change.

Table D-1
Data pool items (cont.)

S530 KTE Software D-11
Advanced data pool use

The user has the ability to manipulate the data pool in the KULT modules using the data
pool functions. The user must be careful about using these functions because the
improper use may cause fatal errors. The list of functions that follow allow the user to
add, modify, remove, and print data pool information.

To use the data pool functions in KULT, you must include the COM_usrlib.h header file.
Type #include "COM_usrlib.h in the Include Files section of the KULT Parameters win-
dow.

Most of the data pool functions will require you to pass the data type of the variable that
you want to manipulate.You must pass in one of the following data types:

• INT, INT_P — Integer, Integer Pointer

• FLOAT, FLOAT_P — Float, Float Pointer

• LONG, LONG_P — Long, Long Pointer

• DOUBLE, DOUBLE_P — Double, Double Pointer

• CHAR — Character

• CHAR_P — String of Characters

• INT_ARRAY — Array of Integers

• FLOAT_ARRAY — Array of Floats

• DOUBLE_ARRAY — Array of Doubles

The following is a list of data pool functions with the descriptions below:

Adding items to the data pool:
int dpAddData(char *name, int type, ...);
int dpAddPointer(char *name, int type, void *valuep);
int dpAddArray(char *name, int type, void *valuep, int elements);

Getting items from the data pool:
void*dpGetDataPtr(char *name, int type);
void*dpGetPointer(char *name, int type);
void*dpGetArrayElement(char *arrname, int type, int element);

Removing items from the data pool:
voiddpRemoveData(char *name, int type);

Printing items in the data pool:
voiddpPrintData(char *name, int type);
voiddpPrintAllData(void);

wafers_tested INT_P &wafers_tested UAP_WAFER_BEGIN UAP_WAFER_END

Pointer to number of wafers tested. Updated before UAP_WAFER_BEGIN.

wdfptr LONG_P wdfptr UAP_POST_PROBER_INT UAP_POST_ENGINE_EXIT

Pointer to the wdfptr, or wafer description structure. Updated before UAP_POST_PROBER_INIT.

wpf_info LONG_P wpf_info UAP_VALIDATE_OCR UAP_ENGINE_EXIT

Pointer to the wafer plan structure. Used by the Analysis Software.

wwp_list LONG_P wwp_list UAP_WAFER_BEGIN last UAP_SITE_END

Pointer to the working wafer plan list (WWP list). Updated each wafer, each test, each abort.
See type definition for wwp_list_t in $KIHOME/include/ktxe_types.h.

Table D-1
Data pool items (cont.)

D-12 S530 KTE Software
Description of the data pool functions

int dpAddData (char *name, int type, ...);

This function is used to add new non-pointer type data to the data pool. If data of the
same name already exists in the data pool, the type and the value is overwritten with
the new data.

PARAMETERS: This function takes three parameters.

name — character string containing the name of the data.

type — non-pointer type of data (INT, FLOAT, LONG, DOUBLE, CHAR).

value — absolute data value.

NOTE The value is interpreted internally based on the type of data.

Return Value: This function returns one of the following statuses:

OK_dpAdd — The add was successful.

FAILED_dpAdd — There was a problem allocating memory for the data node. The
add was unsuccessful.

Examples:

status = dpAddData(“MyIntData”, INT, 10);

status = dpAddData(“MyFloatData”, FLOAT, 10.11);

int dpAddPointer(char *name, int type, void*valuep);

This function is used to add pointer-type data to the data pool. If data of the same name
already exists in the data pool, the type and the value is overwritten with the new data.

PARAMETERS: This function takes three parameters.

name — character string containing the name of the data.

type — pointer type of data(INT_P, FLOAT_P, LONG_P, DOUBLE_P, CHAR_P).

valuep — value pointer.

When using a dpAddPointer call, the data value being added to the data pool must be
either static or malloc’d. Do NOT use automatic pointers.

Return Value: This function returns one of the following statuses:

OK_dpAdd — The add was successful.

FAILED_dpAdd — There was a problem allocating memory for the data node. The
add was unsuccessful.

Example: status = dpAddPointer(“MyPointerData”, FLOAT_P, floatptr);

int dpAddArray(char *name, int type, void*valuep, int elements);

This function is used to add arrays to the data pool. If data of the same name already
exists in the data pool, the type and the value is overwritten with the new data.

PARAMETERS: This function takes four parameters.

name — a character string containing the name of the data.

type — array type of data (INT_ARRAY, FLOAT_ARRAY,DOUBLE_ARRAY).

valuep — pointer to the first element of the array.

elements — number of elements in the array.

Return Value: This function returns one of the following statuses:

OK_dpAdd — The add was successful.

S530 KTE Software D-13
FAILED_dpAdd — There was a problem allocating memory for the data node. The
add was unsuccessful.

Example: status = dpAddArray(“MyArrayData”, INT_ARRAY, arrayptr, 10);

void *dpGetDataPtr(char *name, int type)

This function is used to get a pointer to a value of non-pointer type data (i.e., INT,
FLOAT, DOUBLE, LONG, CHAR) in the data pool. This function returns a void pointer. It
is the user’s responsibility to typecast the value to the appropriate data type.

PARAMETERS: This function takes two parameters.

name — character string containing the name of the data to be extracted from the
data pool.

type — the data type of the variable.

Return Value:

- If the data of a specified name and type is found in the data pool, a void pointer
to the value is returned. It is the user's responsibility to typecast the data to the
appropriate data type (i.e. int *, float *, double *, long *, char *).

- If the data is not found in the data pool, NULL is returned.

Example: valueptr = (int *)dpGetDataPtr(“MyInt Data”, INT);

void *dpGetPointer(char *name, int type)

This function is used to get the pointer value of pointer type data (i.e. INT_P,FLOAT_P,
DOUBLE_P, LONG_P, CHAR_P) in the data pool. This function returns a void pointer. It
is the user’s responsibility to typecast the value to the appropriate type.

PARAMETERS: This function takes two parameters.

name — character string containing the name of the data to be extracted from the
data pool.

type — data type of the variable.

Return Value:

- If the data of a specified name is found in the data pool, a void pointer to the
value is returned. It is the user’s responsibility to typecast the data to the appro-
priate type (i.e. int., float*,double*,long*,char*).

- If the data is not found in the data pool, NULL is returned.

Example: valueptr = (float *)dpGetPointer(“MyPointer Data”, FLOAT_P);

void *dpGetArrayElement(char *arrname, int type, int element)

This function is used to get a specific element of an array from the data pool.

PARAMETERS: This function takes three parameters.

arrname — character string containing the name of the array.

type — data type of the variable (i.e., INT_ARRAY, FLOAT_ARRAY,
DOUBLE_ARRAY).

element — integer value specifying the index of the array.

D-14 S530 KTE Software
Return Value: Returns a pointer to the specific element in the array.

- If the specified array name is found in the data pool, a void pointer to the speci-
fied element in the array is returned. It is the user’s responsibility to typecast
the data to the appropriate type.

- NULL is returned in one of the following situations:

- If the array name is not found in the data pool.

- If the data requested is not of an array type (i.e. INT_ARRAY, FLOAT_ARRAY,
DOUBLE_ARRAY).

- If the element requested is less than 0 or larger than the number of elements in
the array.

Example: valueptr = (int *)dpGetArrayElement(“MyArray Data”, INT_ARRAY, 7);

void dpRemoveData(char *name, int type)

This function is used to remove specific data from the data pool. It will free up the allo-
cated memory for the node in the data pool and the memory for the value of any of the
non-pointer type data (i.e., INT, FLOAT, LONG, DOUBLE, CHAR). The user is responsi-
ble for reallocating memory for all of the pointer type data and the arrays.

PARAMETERS: This function takes two parameters.

name — character string containing the name of the data to be removed from the
data pool.

type — the data type of the variable.

Return Value: This function does not return anything.

CAUTION Do not remove any variables put into the data pool by KTXE.
This may cause fatal errors.

Examples:

dpRemoveData(“MyArrayData”, INT_ARRAY);

dpRemoveData(“MyPointerData”, FLOAT_P);

void dpPrintData(char *name, int type)

This function allows the user to print a variable and its value in the data pool by passing
the name and type of data.

NOTE All the dpPrint routines print to the location specified in the
KI_KTXE_DEBUG_LOG environment variable. To print to the
screen, set this environment variable to “/dev/tty”.

PARAMETERS: This function takes two parameters.

name — character string containing the name of the data to be printed.

type — data type of the variable.

Return Value: This function does not return anything.

Example: dpPrintData(“MyIntData”, INT);

void dpPrintAllData(void)

This function allows the user to print all the data in the data pool.

NOTE All the dpPrint routines print to the location specified in the
KI_KTXE_DEBUG_LOG environment variable. To print to the
screen, set this environment variable to “/dev/tty”.

S530 KTE Software D-15
PARAMETERS: No parameters are required for this function.

Return Value: This function does not return anything.

Example: dpPrintAllData();

Recommendations, hints, and examples

The following are some recommendations and hints about using the data pool:

• Try to avoid using the dpAdd... and the dpRemove... routines. Remember that when
you define a variable in the global data file, it is automatically added to the data pool.

• When using the dpAdd... functions, make sure the variable of that name does not
already exist in the data pool. If a variable of the same name is already in the data
pool, it will be overwritten by the new value you passed in with the dpAdd functions.

• When you use the dpPrint... functions, make sure the environment variable
“KI_KTXE_DEBUG_LOG” is set to the appropriate file location where you want the
information logged.

• Do not use the dpAdd... or dpRemove... functions on any of the variables that KTXE
puts into the data pool. This may cause fatal errors.

Example:

dpAddData/dpGetDataPtr example:

{
/* create/initialize value in datapool
 */
int value ;

value = 4 ;
dpAddData(“nameOfElement”, INT, value) ;

}

{
/* get value from datapool
 */
int value ;

value = *((int *)dpGetDataPointer(“nameOfElement”, INT)) ;

/* value would now equal 4
}

dpAddPointer/dpGetPointer examples:

/* create/initialize value in datapool
 */
double *dblPtr ;

/* NOTE: This malloc needs to occur only once. DO NOT call
 * this inside of a loop.
 */
dblPtr = (double *) malloc(sizeof(double)) ;
*dblPtr = 5.6 ;

dpAddPointer(“myPtrName”, DOUBLE_P, dblPtr) ;
}

D-16 S530 KTE Software
{
/* Get value from datapool
 */
double *dblPtr ;
double dbl ;

dlbPtr = (double *)dpGetPointer(“myPtrName”, DOUBLE_P) ;
dbl = *dlbPtr ;
/* dbl = 5.6 now */

/* Modify value. NOTE that we do not have to “refresh” the
 * datapool. Since this is a pointer datapool value
 */
*dblPtr = 7.8 ;

}

{
/* Read modified datapool value
 */

double *dblPtr ;
double dbl ;

dlbPtr = (double *)dpGetPointer(“myPtrName”, DOUBLE_P) ;
dbl = *dlbPtr ;
/* dbl = 7.8 now */

}

/* CHAR_P usage:
 */

{
char *stringVar ;

/* Create and initialize datapool entry
 */
stringVar = (char *)malloc(128) ;

/* Make sure you do not over-run the array size!!
 */
strcpy(stringVar, “Message goes here”) ;

dpAddPointer(“myString”, CHAR_P, stringVar) ;
}

{
char *stringPtr ;

stringPtr = (char *)dpGetPointer(“myString”, CHAR_P) ;
/* stringPtr contains “Message goes here” */

S530 KTE Software D-17
/* Make sure you do not over-run the array size!!
 */
strcpy(stringPtr, “A different message”) ;

}

{
char *stringPtr ;

stringPtr = (char *)dpGetPointer(“myString”, CHAR_P) ;
/* stringPtr contains “A different message” */

}

E
User Access Points (UAPs)

E-2 S530 KTE Software
User Access Points (UAPs)

User Access Points (UAPs) are supported to let users extend the features and func-
tions of a Keithley-provided test execution engine. This is done by writing, compil-
ing, and building user libraries. No Keithley-provided code needs to be rebuilt. Multiple
test execution engines are supported; however, it is expected that necessary execution
engine extensions can be accommodated within predetermined UAPs.

UAPs are defined, for all execution engines, in the system ktpm.ini file. For example,
here is a file containing one engine’s UAPs:

/* Start of File */

<Engine_List>
Engine1 = ktxe,$KIBIN,Initial KI Execution Engine for V5.x

<ktxe>
UAP1 = UAP_PROG_ARGS,process user’s ktxe command line arguments
UAP2 = UAP_CASSETTE_LOAD,start processing the cassette plan
UAP3 = UAP_LOT_INFO,start setting up the lot file
UAP4 = UAP_PROBER_INIT,start of prober initialization
UAP5 = UAP_WAFER_MISMATCH,missmatch detected between cassette plan and prober
UAP6 = UAP_ACCESS_WDF_INFO,allow access to wdf before call to PrInit
UAP7 = UAP_POST_PROBER_INIT,called to send init commands to prober
UAP8 = UAP_WRITE_LOT_INFO,before writing lot information
UAP9 = UAP_POST_LOT_INFO,write usertag data after LOT header
UAP10 = UAP_WAFERLOAD_STATUS,after a wafer load and the wafer is rejected
UAP11 = UAP_ALIGN_ERROR,error recovery after wafer alignment
UAP12 = UAP_POST_INITIAL_WAFER_LOAD,perform AutoZ after first wafer load
UAP13 = UAP_WAFER_PREPARE,start processing next wafer plan
UAP14 = UAP_VALIDATE_OCR,after OCR and before wafer ID is logged to data file
UAP15 = UAP_WAFER_BEGIN,start executing wafer plan
UAP16 = UAP_SITE_CHANGE,start of next site processing
UAP17 = UAP_SUBSITE_CHANGE,start of next subsite processing
UAP18 = UAP_TEST_BEGIN,start of next ktm processing
UAP19 = UAP_TEST_END,end of processing a ktm
UAP20 = UAP_TEST_DATA_LOG,after test data has been logged
UAP21 = UAP_HANDLE_ABORT,processing an abort condition
UAP22 = UAP_SUBSITE_END,end of current sub-site processing
UAP23 = UAP_SITE_END,end of current site processing
UAP24 = UAP_WAFER_END,end of processing a wafer plan
UAP25 = UAP_LOT_END,end of processing the cassette plan file
UAP26 = UAP_ENGINE_EXIT,before leaving the execution engine
UAP27 = UAP_ABORT_EXIT_HDLR,called as an atexit function
UAP28 = UAP_PRB_ERR_HDLR,called if prober err and function exists
UAP29 = UAP_STATUS_CHANGE,called when pause/cont is pressed on StatDlg
UAP30 = UAP_PROFILE_WAFER,before profiling a wafer

Place probers that support PrSetSlotStatus here in this list.
The YES is mandatory!!!
<AbsProbers>
EG40=YES
EG2X=YES
TSK9=YES
P8=YES
This is used for working off-line. Comment this out if desired
FAKE=YES

/*End of File */

S530 KTE Software E-3
User access point usage

UAPs can access data items stored or referenced through the data pool. See para-
graph on data pool items for more information.

The following is an explanation of what data is accessed or passed at each UAP:

UAP_PROG_ARGS — At this access point, program arguments passed on the com-
mand line are available.

UAP_CASSETTE_LOAD — Cassette plan processing begins at this point.

UAP_LOT_INFO — This access point is located before the call to lotdlg; if additional
information needs to be added to the Lot Information dialog before the operator sees it,
here is a good spot.

UAP_PROBER_INIT — The prober will be communicated with for the first time after
this access point. If product files on the prober are used, call KTXEGetproductFile to set
the product filename.

UAP_WAFER_MISMATCH — This UAP is positioned such that it may be used to
detect the following situation. In the event of a failure that orphans wafers in the pipe-
line. The pipeline is defined as: Quick Loader, Pre-Aligner and/or Chuck. At the
UAP_WAFER_MISMATCH UAP the wafer positions can be queried (not all probers
allow this action, please refer to the KI specific prober manual), and a determination
can be made either to continue testing or abort the test. This will potentially save load-
ing and unloading time consumed during wafer recovery.

UAP_ACCESS_WDF_INFO — This UAP will allow the user to access wdf information
prior to prober initialization.

UAP_POST_PROBER_INIT — At this access point, any additional prober initialization
commands may be sent.

UAP_WRITE_LOT_INFO — At this access point, any additions to the lot file header
may be made before the lot file header is written.

UAP_POST_LOT_INFO — This UAP may be used to add tag data to the lot file before
the first wafer is tested.

UAP_WAFERLOAD_STATUS — This UAP may be used to notify a shop-floor control
system that the wafer load was completed but the wafer was rejected.

UAP_ALIGN_ERROR — This UAP is positioned after the wafer is commanded to auto-
align (not all probers allow this action, please refer to the KI-specific prober manual). In
the event that the alignment fails, this UAP will allow corrective action to take place.

UAP_POST_INITIAL_WAFER_LOAD — At this access point, AutoZ is performed after
the first wafer load. Note that AutoZ is a function of the SofTouch optional, licensed fea-
ture for KTE. For more information on SofTouch, refer to the Prober and Prober Drivers
Manual.

UAP_WAFER_PREPARE — This is the first access point in the wafer loop. The wafer
plan files have not loaded for this wafer at this time. Also, the working wafer plan has
not been prepared.

UAP_VALIDATE_OCR — At this access point, the wafer ID read from the prober can
be verified or altered. This is the last UAP point before the wafer ID is written to the .kdf
file.

UAP_WAFER_BEGIN — At this point, the working wafer plan has been prepared, the
limits file is loaded into the limits structure, and the probe card file has been loaded. The
wafer id has also been read from the prober or generated by the execution engine, and
the wafer information has been written to the KDF data file.

UAP_SITE_CHANGE — At each site change, this access point is called.

E-4 S530 KTE Software
UAP_SUBSITE_CHANGE — At each subsite change, this access point is called.

UAP_TEST_BEGIN — This UAP is executed immediately before a KTM is executed.

UAP_TEST_END — This UAP is executed immediately after a KTM is executed.

UAP_TEST_DATA_LOG — At this UAP, test results from the most recent KTM may be
logged to another location. Use the “result list” data pool item.

UAP_HANDLE_ABORT — This access point is active if any result generated an abort
action. It uses the failed_result_list structure to determine which result aborted.

UAP_SUBSITE_END — At end of subsite processing, this access point is called.

UAP_SITE_END — At end of site processing, this access point is called.

UAP_WAFER_END — At the end of the working wafer plan execution, this access
point is available. The wafer has not been unloaded. And, the KDF data file has not
been marked as the end of the wafer.

UAP_LOT_END — Testing of the lot is now complete, and the KDF data file is closed.
For a lot summary report, the KTXESummaryReport routine may be used here.

UAP_ENGINE_EXIT — This is the last access point before the execution engine com-
pletes execution.

UAP_ABORT_EXIT_HDLR — This UAP is called when the execution engine is
aborted prior to a test plan completion. The SOLARIS atexit function is used to sched-
ule this routine. KUI functions may not be used to display information. Use an external
program for GUI prompts.

UAP_PRB_ERR_HDLR — If a prober error occurs, this UAP is used to call user cre-
ated recovery code.

UAP_STATUS_CHANGE — This UAP is called when the operator presses the Pause
or Continue buttons on the Status Dialog Window, causing an execution state change.
This UAP point can be used to notify a shop-floor control system that the tester has
been paused.

Types of UAPs
There are two different types of UAPs:

• User Library modules, created by KULT

• .ktm files, created by KITT

1. The format for user library modules created by KULT is:

UAP_aaaa,user_library_name,module_name(argl,arg2)

• input arguments come from the data pool

• output arguments are written to the data pool

example:

UAP_LOT_END,,status = KTXESummaryReport(lot, sum_report_options)

• lot — a pointer to a structure (long *) input

• sum_report_options — a char string (char *) input

• status — the returned value

The parameters lot and sum_report_options must be in the data pool before this mod-
ule is accessed. The status return values is created in the data pool if it does not exist
or it is updated if it does exist.

User libraries must be the directory tree defined by the environment variable
KI_KULT_PATH (Typically, this is /opt/ki/usrlib.).

2. The formats for .ktm files created by KITT are:

S530 KTE Software E-5
UAP_aaaa,,ktm_name (note default path is KI_KTXE_KTM direc-
tory)

UAP_aaaa,,/path/ktm_name (full path used)
UAP_aaaa,,$env_var/ktm_name(environment variable used)

(.ktm file extension is optional)

examples:

UAP_WAFER_BEGIN, ,measure_air.ktm
UAP_WAFER_BEGIN, ,/mydirectory/for/uap/ktms/measure_air.ktm
UAP_WAFER_BEGIN,,$MYUAPKTMS/measure_air.ktm

UAP locations

UAPs are defined in three different locations:

• within a UAP file pointed to $KI_KTXE_SYSTEM_AP

• within a standard UAP file

• within a cassette plan

The UAPs are executed in the order listed above.

Usage of LPTLIB functions at UAPs

LPTLIB functions can not be used at the following UAPs:

• UAP_PROG_ARGS

• UAP_CASSETTE_LOAD

• UAP_LOT_INFO

• UAP_ENGINE_EXIT

LPTLIB functions may not be used within user library functions or ktms called at these
UAPs.

Distributed user libraries

The following libraries and routines are available for use as reference routines for UAP
code development.

• KITTAddIn — Legacy routines that allow the user to insert or extract data elements
into or from arrays. KTE V4.2.2 and up supports array notation within KITT macros,
making these routines obsolete.

• KITTSupport — PutUserDataLoggingKTXE routine to allow the display of run-time
results.

• KI_DEBUG — Debug routines to allow display of datapool and KTE prober structure
contents. Also a routine is provided that creates a .gdf file from the current contents
of the datapool. This .gdf file can be used by KITT to aid in debugging macros.

• KI_UAPLIB — Contains routines that create and use a subset of the limits list.
These routines can be used to validate results against the limits list. These routines
could be modified to perform any custom processing of results that exceed a limit
value. In this library, some KUI functions are included.

• KTXEAddIn — Routines that demonstrate access to datapool values to control
KTXE execution flow. The KTXEOperatorLoadAlign routine, for example, can be
used to prompt the operator to load the first wafer manually for P8-type probers.

E-6 S530 KTE Software
Please note that these routines are part of the KTE distribution and are subject to
change in future releases. It is recommended that the user copy/rename, the desired
routine to their own libraries for use within KITT and KTXE.

Test macro debugging

Since the Datapool is only available while executing KTXE (KITT does not generate a
Global Datapool), debugging your ktm in KITT is very difficult. DBG_gdfCreate helps
solve this problem by creating a “snapshot” of the current Global Datapool while execut-
ing KTXE.

By executing the DBG_gdfCreate macro at a UAP just prior to the point your ktm is
experiencing problems, it is possible to capture the contents of the Global Datapool into
a .gdf file. This .gdf file can then be loaded into KITT along with your ktm to simulate the
conditions of your ktm running in KTXE.

Following is a technical description of DBG_gdfCreate ...

 (void)DBG_gdfCreate(char *gdffile)

DBG_gdfCreate is a KITT macro debugging routine which will generate a valid Global
Data File based on the current contents of the Global Datapool. This Global Data File
will be stored in the location defined by the argument “gdffile.”

DBG_gdfCreate may be executed at any User Access Point to generate a “snapshot” of
the current Global Datapool contents. This gdf file may then be used in KITT as a
means of debugging macros relying on data generated by KTXE at run time.

NOTE The KI_KTXE_DEBUG_LOG environment variable must be set to
a valid filename prior to calling DBG_gdfCreate. An example of
this would be “setenv KI_KTXE_DEBUG_LOG /tmp/log.”
KI_KTXE_DEBUG_LOG must not be set to /dev/tty or /dev/null,
as this log file is used as temporary storage for the datapool data
during the creation of the .gdf file.

This function can be found in the KI_DEBUG KULT library.

Index-1 S530 KTE SoftwareIndex
A
Abort flags .. 3-18
Adaptive test

Installation of demonstration files 2-81
Installation of user libraries 2-80

Adaptive testing .. 2-71
AddNew ..A-23
Addtester .. 5-16
Advanced data pool use D-11
Array Support ... 2-32

C
Cassette plan builder .. 2-64
Cassette plan builder file menu 2-65
Cassette plan builder help menu 2-66
Cassette plan builder options menu 2-66
Cassette test plan file format C-18
Command line interface 2-49
Configuring the tool.tpi file 5-18
ContSkipAbortDlg — Continue Skip Abort Message

Dialog ...B-14
Copying user libraries with kult_copy_lib 2-50
CreateNew ...A-23
Creating Test Plans .. 2-1

D
Data Analysis ... 4-1
Data logging routines ...A-11
Data output formats .. 4-2
Data Pool ... D-1
Data pool ... D-2
Data window ... 4-19
DeleteLimit ...A-21
DeleteLimitCode ...A-20
DeleteLot ..A-19
DeleteParam ..A-20
DeleteSite ...A-20
DeleteWafer ...A-19
Description of the data pool functions D-12
Description window .. 2-47
Distributed user librariesE-5

E
Edit-time library locking 2-54
EndLot ..A-14
EndSite ...A-15
EndWafer ...A-14
Environment variables .. 5-7
Error and event logging 3-16
Execution engine selection field 2-66
Execution process .. 3-8

F
File description field .. 2-66
File management .. 5-11
FileExist ..A-18
FindFirst ...A-24
FindLast ..A-25

FindNext ...A-25
FindPrev ...A-26

G
Generating documentation during testing 2-71
GetComment .. A-21
GetLimit ..A-22
GetLimitCode ... A-21
GetLot ..A-15
GetLotData .. A-18
GetParam ...A-17
GetParamList ... A-17
GetProgramArgs — Get Program Command Line

Arguments ... B-4
GetSite ...A-16
GetStartTime .. A-19
GetWafer ..A-15
Global data file format ..C-11
Global data file selection field 2-66
Global data variables 2-73, 2-74

H
Hidden libraries .. 2-52

I
InitUINew — Initialize User Interface Library B-5
InputMsgDlg — Input Message Dialog B-6
Insert buttons ... 2-63
InsertNew ...A-26
Introduction 1-1, 2-2, 3-2, 4-2, 5-2, B-2

K
KCAT main window .. 4-16
KCM utility .. 5-12
KDF ..A-1
KDFtoKCS File Conversion Utility 4-20
Keithley Curve Analysis Tool (KCAT) 4-16
Keithley data file formatC-21
Keithley Data Files (KDF) library5-19, A-2
Keithley Interactive Test Tool (KITT) 2-27
Keithley Operator Interface Editor (KOPED) 3-2
Keithley plot file formatC-24
Keithley Summary Utility (KSU) 4-2
Keithley Test Execution Engine (KTXE) 3-4
Keithley test macro (.ktm)C-7
Keithley Test Plan Manager (KTPM) 2-60
Keithley tool palette .. 5-2
Keithley User Interface ... B-1
Keithley User Interface (KUI) library 5-20
Keithley User Library Tool (KULT) 2-41
KITT main window ... 2-27
KITT Math, Array and Logic Expression Support

2-31
KITT results window ... 2-30
KOPED edit menu .. 3-4
KOPED file menu ... 3-3
KOPED help menu ... 3-4
KOPED main window ... 3-3
KOPED options menu .. 3-4

S530 KTE Software Index-2
KSU description ..4-7
KSU main window ..4-7
KTE data usage ..2-36
KTE File Formats ... C-1
KTE KUI localization .. B-15
KTE library locking ..2-54
KTE Support Utilities ..2-81
ktpm.ini file ..5-6
KTXE main window ..3-5
KTXE results and their structures3-21
KTXE_AT user library ...2-78
KTXE_RP user library ..2-72
KTXEErrorHandler function3-15
KULT main window ...2-41
KULT module file format C-25

L
LBoxDlg — List Box Message Dialog B-14
LFE main window ...2-56
LimitExist ... A-28
Limits data entry area ...2-57
Limits editor dialog window2-59
Limits File Editor (LFE)2-55
Limits file selection field2-62
Linear Parametric Test Library (LPTLIB)5-19
Localization .. B-15
Locking a module ...2-51
Log file environment variables5-10
Logging a Linked List of PARAMs, Data Retrieval

using GetLotData A-34
Logging one PARAM at a time, Data Retrieval through

Get routines ... A-31
Lot ID data field ..2-66
Lot suspend/resume ...3-17
LotDlg — Lot Information Dialog B-6
LotExist .. A-19

M
Main window ...2-67
Manual addenda ...1-3
Manual contents ...1-2
MatchParam2Limit ... A-18
Math ..2-31
Migrating user libraries with migrate_usrlib2-51
Multi-cassette Multi-lot Testing Utility (multi_cassette)

3-17

N
New site plan button ...2-64

O
OkCancelAbortMsgDlg — Ok Cancel Abort Message

Dialog .. B-7
OkCancelMsgDlg — Ok Cancel Message Dialog B-7
OkMsgDlg — Ok Message Dialog B-7
Other documentation ..1-3
Other KSU main window controls4-14
Overview of the manual ..1-2

P
Parameter limits file format C-14
Parameter Set Editor (PSE)2-38
Parameter set file format C-12

Parameter window ... 2-45
Plan type selection button 2-63
Pop-up menus .. 3-4
Pop-up tools menu ... 4-19
Preview .. 4-2
Probe card file format ...C-10
Probe card file selection field 2-63, 2-66
Probe Pattern Editor window 2-9
Probe patterns/Site plans list 2-63
Programming examplesA-6
Project environments ... 5-12
PSE main window .. 2-38
PutComment ..A-21
PutLimit ..A-22
PutLot ...A-11
PutParam ...A-13
PutParamList ...A-13
PutSite ...A-12
PutWafer ..A-12

Q
QuitUI — Quit User InterfaceB-7

R
Random Pattern Generation (rand_pat) 2-81
Raw report ... 4-6
Recommendations, hints, and examplesD-15
Remove ..A-27
Result based testing .. 2-73
Run-time library locking 2-54

S
S530 environment variables 5-15
Sample display ... 5-15
Sample programs ...A-31
Scaling window .. 4-18
ScrollMsgDlg — Scrollable Message DialogB-7
ScrollMsgDlgClr — Scrollable Message Dialog Clear

B-8
ScrollMsgDlgMsg — Scrollable Message Dialog

Message ..B-8
Select tester ... 5-14
Setup Information ... 5-14
Site Editor window .. 2-12
Site Optimization window 2-14
Site plan/Wafer plan builder field 2-63
Slot ID type selection buttons 2-67
Sort subsites button ... 2-63
Standard report .. 4-4
Standard UAP file field 2-67
Starting KSU .. 4-7
StatusDlg — Status DialogB-8
Structure definitions ...A-31
Structure handling routinesA-23
Summary reports .. 4-3
System Administration ... 5-1
System configuration .. 5-4
System customization .. 5-17
System integration ... 5-19
System software ... 1-3

T
Target Setup window ... 2-8

Index-3 S530 KTE Software
Test data logging ..A-2
Test documentation tool 2-67
Test Execution .. 3-1
Test macro debugging ..E-6
Test macros/Site plans list 2-63
Test Structure File Editor (TSE) 2-23
Test structure file format C-6
transfer test plans ... 5-12
Troubleshooting .. 2-55
TSE main window ... 2-23
Types of UAPs ...E-4

U
UAP files ... 2-73
UAP locations ...E-5
UAP module/KTM area 2-67
Update comment routinesA-21
Update limits routines ...A-21
UpdateModelessDlgs — Update Modeless Dialogs ..

B-9
UpdateStatusDlg — Update Status DialogB-10
Usage of LPTLIB functions at UAPsE-5
Use of ibupu in KITT ... 2-38
User access point file format C-23
User access point usageE-3
User Access Points (UAPs)E-1, E-2
User interface constantsB-2
User interface library functionsB-4
User interface library variablesB-3
User Library files required for KTXE execution .. 3-15
Using Generated Identifiers in a Test Macro 2-35
Using limits files ..A-3
Using the test documentation tool 2-69

V
VarMsgDlg — Variable Message DialogB-10

W
Wafer description file description field 2-64
Wafer description file format C-3
Wafer description file selection field2-62, 2-66
Wafer Description Utility (WDU) 2-3
Wafer Graph Editor window 2-14
Wafer id usage in KTXE 3-17
Wafer plan builder .. 2-60
Wafer plan builder file menu 2-61
Wafer plan builder help menu 2-62
Wafer plan builder main window 2-60
Wafer plan builder options menu 2-62
Wafer plan file description field 2-64
Wafer Setup window .. 2-6
Wafer test plan field .. 2-67
Wafer test plan file format C-16
Warranty information .. 1-3
WDU main window ... 2-3
WfrIdDlg — Single Wafer Information DialogB-12
WfrIdsDlg — Multiple Wafer Information Dialog .B-11
Workstation applications 5-2

Y
YesNoAbortMsgDlg — Yes No Abort Message Dialog

B-13
YesNoCancelMsgDlg — Yes No Cancel Message

Dialog ...B-14

Z
Zone based testing .. 2-71

Modes .. 2-71

S530 KTE Software Index-4

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc.
Corporate Headquarters 28775 Aurora Road Cleveland, Ohio 44139 440-248-0400 Fax: 440-248-6168 1-888-KEITHLEY www.keithley.com

7/13

A Tektronix Company A Greater Measure of Conf idence

	S530 Parametric Test System KTE Software Manual
	Safety Precautions
	Table of Contents
	1 Introduction
	Overview of the manual
	Manual contents
	Other documentation
	Manual addenda
	System software

	2 Creating Test Plans
	Introduction
	Wafer Description Utility (WDU)
	WDU main window
	Wafer Setup window
	Target Setup window
	Probe Pattern Editor window
	Site Editor window
	Site Optimization window
	Wafer Graph Editor window
	User Defined Values window

	Test Structure File Editor (TSE)
	TSE main window
	Creating a test structure file

	Keithley Interactive Test Tool (KITT)
	KITT main window
	KITT results window

	KITT Math, Array and Logic Expression Support
	Math
	Array Support
	Using Generated Identifiers in a Test Macro
	KTE data usage
	Use of ibupu in KITT

	Parameter Set Editor (PSE)
	PSE main window

	Keithley User Library Tool (KULT)
	KULT main window
	Parameter window
	Description window
	Command line interface
	Copying user libraries with kult_copy_lib
	Migrating user libraries with migrate_usrlib
	Locking a module
	Changing library attributes

	KTE library locking
	Run-time library locking
	Edit-time library locking
	Troubleshooting

	Limits File Editor (LFE)
	LFE main window
	Limits data entry area
	Limits editor dialog window

	Keithley Test Plan Manager (KTPM)
	Wafer plan builder
	Wafer plan builder main window
	Title bar
	Wafer plan builder file menu
	Wafer plan builder options menu
	Wafer plan builder help menu
	Wafer description file selection field
	Limits file selection field
	Probe card file selection field
	Plan type selection button
	Sort subsites button
	Probe patterns/site plans list
	Test macros/site plans list
	Site plan/wafer plan builder field
	Insert buttons
	New site plan button
	Wafer plan file description field
	Wafer description file description field

	Cassette plan builder
	Title bar
	Cassette plan builder file menu
	Cassette plan builder options menu
	Cassette plan builder help menu
	File description field
	Execution engine selection field
	Probe card file selection field
	Wafer description file selection field
	Lot ID data field
	Global data file selection field
	Slot ID type selection buttons
	Wafer test plan field
	Standard UAP file field
	UAP module/KTM area

	Test documentation tool
	Main window
	Using the test documentation tool
	Generating documentation during testing

	Adaptive testing
	Overview
	Zone based testing
	Result based testing

	KTE Support Utilities
	Random Pattern Generation (rand_pat)
	File filtering

	3 Test Execution
	Introduction
	Keithley Operator Interface Editor (KOPED)
	KOPED main window
	KOPED file menu
	KOPED edit menu
	KOPED options menu
	KOPED help menu
	Pop-up menus

	Keithley Test Execution Engine (KTXE)
	KTXE main window
	The execution process
	User Library files required for KTXE execution
	The KTXEErrorHandler function
	Error and event logging
	Lot suspend/resume
	Multi-cassette Multi-lot Testing Utility (multi_cassette)
	Wafer id usage in KTXE
	Abort flags
	KTXE results and their structures

	4 Data Analysis
	Introduction
	Data output formats
	Preview
	Keithley Summary Utility (KSU)
	Summary reports
	Standard report
	Raw report
	KSU description
	Starting KSU
	KSU main window
	Other KSU main window controls
	Command-line options for KSU

	Keithley Curve Analysis Tool (KCAT)
	KCAT main window
	Scaling window
	Data window
	Pop-up tools menu

	KDFtoKCS File Conversion Utility

	5 System Administration
	Introduction
	Workstation applications
	Keithley tool palette
	System configuration
	ktpm.ini file
	Environment variables
	Log file environment variables
	File management
	KCM utility description
	Project environments
	Select tester
	System customization

	System integration
	Linear Parametric Test Library (LPTLIB)
	Keithley Data Files (KDF) library
	Keithley User Interface (KUI) library

	Appendix A KDF
	Test data logging
	Keithley Data Files (KDF) library
	Using limits files
	Programming examples

	Data logging routines
	PutLot
	PutWafer
	PutSite
	PutParam
	PutParamList
	EndLot
	EndWafer
	EndSite
	GetLot
	GetWafer
	GetSite
	GetParam
	GetParamList
	GetLotData
	MatchParam2Limit
	FileExist
	LotExist
	GetStartTime
	DeleteLot
	DeleteWafer
	DeleteSite
	DeleteParam
	DeleteLimitCode
	DeleteLimit

	Update comment routines
	GetComment
	PutComment

	Update limits routines
	GetLimitCode
	GetLimit
	PutLimit

	Structure handling routines
	AddNewLimitCode AddNewLot AddNewWafer AddNewSite AddNewParam
	CreateNewLmtCode CreateNewLot CreateNewWafer CreateNewSite CreateNewParam
	FindFirstLmtCode FindFirstLot FindFirstWafer FindFirstSite FindFirstParam
	FindLastLimitCode FindLastLot FindLastWafer FindLastSite FindLastParam
	FindNextLimitCode FindNextLot FindNextWafer FindNextSite FindNextParam
	FindPrevLimitCode FindPrevLot FindPrevWafer FindPrevSite FindPrevParam
	InsertNewLmtCode InsertNewLot InsertNewWafer InsertNewSite InsertNewParam
	RemoveLimitCode RemoveLot RemoveWafer RemoveSite RemoveParam
	LimitExist

	KDF user tag data
	Example of use within a Cassette Plan
	UAP points

	Structure definitions
	Sample programs
	Logging one PARAM at a time, Data Retrieval through Get routines
	Logging a Linked List of PARAMs, Data Retrieval using GetLotData

	Appendix B Keithley User Interface
	Introduction
	User interface constants
	User interface library variables
	User interface library functions
	GetProgramArgs - Get Program Command Line Arguments
	InitUINew - Initialize User Interface Library
	InputMsgDlg - Input Message Dialog
	LotDlg - Lot Information Dialog
	OkCancelAbortMsgDlg - Ok Cancel Abort Message Dialog
	OkCancelMsgDlg - Ok Cancel Message Dialog
	OkMsgDlg - Ok Message Dialog
	QuitUI - Quit User Interface
	ScrollMsgDlg - Scrollable Message Dialog
	ScrollMsgDlgClr - Scrollable Message Dialog Clear
	ScrollMsgDlgMsg - Scrollable Message Dialog Message
	StatusDlg - Status Dialog
	UpdateModelessDlgs - Update Modeless Dialogs
	UpdateStatusDlg - Update Status Dialog
	VarMsgDlg - Variable Message Dialog
	WfrIdsDlg - Multiple Wafer Information Dialog
	WfrIdDlg - Single Wafer Information Dialog
	YesNoAbortMsgDlg - Yes No Abort Message Dialog
	YesNoCancelMsgDlg - Yes No Cancel Message Dialog
	ContSkipAbortDlg - Continue Skip Abort Message Dialog
	LBoxDlg - List Box Message Dialog
	KTE KUI localization

	Appendix C KTE File Formats
	Wafer description file format
	Test structure file format
	Keithley test macro (.ktm)
	Probe card file format
	Global data file format
	Parameter set file format
	Parameter limits file format
	Wafer test plan file format
	Cassette test plan file format
	Keithley data file format
	User access point file format
	Keithley plot file format
	KULT module file format

	Appendix D Data Pool
	Data pool
	Advanced data pool use
	Description of the data pool functions
	Recommendations, hints, and examples

	Appendix E User Access Points (UAPs)
	User Access Points (UAPs)
	User access point usage
	Types of UAPs
	UAP locations
	Usage of LPTLIB functions at UAPs
	Distributed user libraries
	Test macro debugging

	Index

