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Abstract 
Field-programmable gate arrays (FPGAs) play an increasingly important role in 
military and aerospace applications, where the need for a high-capacity logic—
tens of million of gates per integrated circuit, and fast and complex routing—
elevates long-term reliability issues. Although Xilinx Virtex-II 3000 static 
random-access memory (SRAM)-based FPGAs are extensively used in 
commercial applications, they have been used less frequently in space-flight 
applications. They are susceptible to single-event upsets (SEUs), and conventional 
test methods do not adequately test their reliability for these applications. 
Conventional methods test only a few of the discrete alternating current (AC) 
parameters (primarily switching) of a given integrated circuit.   

This project presents the design and implementation of a dynamic burn-
in/radiation-test platform that allows complete, comprehensive AC testing of the 
Xilinx Virtex-II 3000 FPGA. The platform also allows developers to collect 
information on the elevation of the junction temperature as a function of gate 
utilization, operating frequency, and functionality.  

Supporting at-speed and SEU tests, the platform may be used to test any possible 
configuration of the FPGA and any associated performance parameters. A 
graphical user interface allows designers to fully control the programming of the 
FPGA and the configurations/functions to be stressed. The platform also offers 
error logging, user-selectable master clocks, readback, and expandability. 
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1 Introduction 
This report documents a project to design and implement a dynamic burn-
in/radiation-test platform that allows complete, comprehensive dynamic testing of 
the Xilinx Virtex-II 3000 field-programmable gate array (FPGA). Appendix A lists 
acronyms and other abbreviations used in the report. 

1.1 PROJECT OBJECTIVES 
The latest trend in the satellite and deep space application markets is to expand on 
designs with static random-access memory (SRAM)-based FPGAs. FPGAs store 
millions of configuration bits in internal latches. A common concern with these 
chips is their sensitivity to single-event upsets (SEU). Xilinx has measured and 
documented SEU sensitivity for several years, primarily for aerospace and military 
applications. 

The mean time between (functional) failures (MTBF) for a logic error caused by 
SEU in a Virtex-II 3000 FPGA (XC2V1000) was measured and was reported to be 
1,000 years (which is equivalent to 114 failure in time (FITs), where one FIT 
stands for one error per billion device hours). These are soft errors—that is, 
reloading the configuration can repair them.  

The ability to optimize the functionality of onboard electronics or to change them 
to accommodate new objectives and to correct design errors remotely, any time 
after the launch of spacecraft (though very risky), is made possible by utilizing 
reconfigurable logic. A SRAM-based FPGA will reduce the cost of optimization 
or change by allowing common hardware to be used for many applications, as a 
mission progresses. Programmable logic is known for its portability, low cost, 
availability, and quicker time to market for new products. However, reconfigurable 
platforms for spacecraft applications must satisfy stringent reliability requirements.  

The objective of this project is to design a fully programmable hardware/software 
platform that will allow the comprehensive, dynamic, burn-in/life test of SRAM-
based FPGAs. This platform can also be used for SEU radiation testing. 

1.2 PROJECT MOTIVATION 
FPGAs have played increasingly important roles in military and aerospace 
applications. Xilinx SRAM-based FPGAs are extensively used in commercial 
applications. They have been used less frequently in space flight applications 
because of their susceptibility to SEUs. The reliability of these devices in space 
applications is a concern that has not been addressed thoroughly. Conventional 
methods test very few discrete AC parameters (primarily switching) of given 
integrated circuits.  
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The objective of this project is to design a fully programmable hardware/software 
platform that allows the comprehensive static/dynamic burn-in test for SRAM-
based FPGAs, for at-speed tests and SEU tests. This flexible approach will test any 
possible configuration of the FPGA and any associated performance parameters. It 
allows complete or partial reprogramming of the FPGA and verification of the 
program by using read-back followed by dynamic testing. Designers have full 
control over which functional elements of the FPGA to stress. They can 
completely simulate all possible types of configurations and functions.  

Another benefit of this platform is that it allows collecting information on 
elevation of the junction temperature as a function of gate utilization, operating 
frequency, and functionality.  

A software tool demonstrates the various features of the system. The software 
consists of three major parts: the parallel interface driver, the main system 
procedure, and a graphical user interface (GUI).
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2 High-Level Description 
This section describes the components of the prototype and the algorithms it uses 
for the three design examples provided. 

2.1 COMPONENTS 
The prototype is composed of five major components, as shown in Figure 1: 
 Driver board 
 Unit-under-test (UUT) board 
 Board connection cables 
 Host personal computer (PC) software 
 Power supply 

 

Figure 1: System block diagram.  

2.1.1 Driver Board 

The driver board configures the UUT FPGA on the UUT board, manages the 
traffic of the test vectors, collects test results, and passes them to the host PC. This 
board is connected to both the host PC via parallel ports and the UUT board via 
the board connection cables. Because it is not radiation-hardened (RH), this board 
is not placed inside the radiation/temperature oven. 

The “brain” of the driver board is the driver FPGA, which is a commercial Xilinx 
Virtext-II 3000 FPGA (XC2V3000) on ball-grid array (BGA)728 package that is 
33 x 3 3 mm2 with 1.27-mm pitch. This FPGA is responsible for communications 
with the PC, programming the UUT FPGA, applying the test vectors to the UUT 
FPGA, collecting the results from the UUT FPGA, and detecting errors. The 
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driver-board FPGA can be programmed through Joint Test Action Group (JTAG) 
interface or the programmable read-only memory (PROM) on the board.  

2.1.2 UUT Board 

The UUT (“burn-in”) board contains the UUT FPGA—the FPGA image to be 
tested. The driver FPGA programs and applies the test vectors to the UUT FPGA. 
This board is connected only to the driver board. For prototyping, the same FPGA 
is used for testing as is used for the driver FPGA—the commercial version of the 
Virtex-II 3000 FPGA (P/N XC2V3000)—since radiation-hardened (RH) versions 
are not yet available. The industrial-grade version (P/N XC2V3000-4BG728I) is 
being used until the RH versions are released: the XQR2V3000-4CG717M and the 
XQR2V3000-4CG717V. The latter (ceramic) version is considered more suited for 
space applications.  

A less expensive commercial version of this FPGA (XC2V2000) is packaged in 
BGA575 and is 100% pin compatible with the “Mil-Temp” version 
(XQR2V3000). It can be used for preparation/set-up trials. 

2.1.3 Board Connection Cables 

Specially designed cable assembly connect the two boards together. Because part 
of the cable will go in the oven with the UUT board, the cables are rated to operate 
at temperature range from -55 °C to 200C°.  The operating range for the cable is  
2 GHz with 103 dB per 100 ft loss. Cable complies with MIL-C-17. 

2.1.4 PC Software 

To control the whole system, a PC running special software communicates with 
the driver FPGA. The GUI was built using Microsoft’s .NET technology and a 
third-party library to gain access to the hardware. The PC must use a Windows 
2000 or Windows XP operating system and have an enhanced parallel port (EPP). 
The user running the software must use an administrator account.  

2.1.5 Power Supply 

A custom power supply was built to power both boards. 
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2.2 DESIGN EXAMPLES 
The prototype includes three sample test algorithms (“design examples”), each of 
which configures the UUT FPGA differently: 
 Shifter example: turns the slice flip-flops on the UUT FPGA into shift 

registers 
 FIFO example: The Xilinx CoreGenerator is used to produce three large 

first-in-first-out (FIFO) buffers that consist of all the block RAM and one 
basic element of distributed RAM FIFO.  

 Cyclic-redundancy-check (CRC) example: The look-up tables (LUTs) of 
the UUT FPGA are configured into four input-function generators  
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3 Detailed Description of the Driver Board 
The bill of materials of the driver board is given in Appendix B. Complete 
schematics are given in Appendix C.  

3.1 COMPONENTS 
Essential components of the driver board are those essential to test operations. All 
of the following are essential components except the FPGA pin-setting switch, 
configuration light emitting diode (LED), and temperature sensor. 

The driver board is constructed of eight layers of polyimide with an uninterrupted 
ground plane, one plane for core-supply VCCINT (1.5 V), plus one plane for VCCAUX 
(3.3 V). VCCO (3.3 V) is distributed on wide signal traces with sufficient bypass 
capacitors.  

3.1.1 Xilinx Virtex-II 3000 FPGA 

The Virtex-II 3000 FGPA (XC2V1000) on the driver board is the brain of the 
entire system. It is responsible for communications with the user through the PC’s 
parallel port. It also stores the user-defined test vectors and sends them to the UUT 
FPGA, upon the user’s command. It provides the download/readback protocol 
signals and data stream necessary to configure and debug the UUT FPGA. It also 
provides the built-in-self-test logic to decide whether the incoming results from the 
UUT FPGA contain any errors.  

Several projects at JPL/NASA are planning to use the Virtex-II 3000 FPGA, such 
as Ocean Surface Topography from Space Missions (OSTM), Electra, and Mars 
Telecommunications Orbiter (MTO). This FPGA was selected because of its 
advanced resources. Its architecture is designed for rapid deployment on advanced-
process technologies below 100 nanometers (nm). The eight-layer aluminum 
process used by this FPGA offers the best performance and lowest power 
consumption available.  

Figure 2 is an overall block diagram of the FPGA. The main characteristics of this 
device are shown in Table 1. Because, unlike the UUT FPGA, there is no need to 
replace the driver FPGA, the driver FPGA is soldered to the board, using a reflow 
method recommended by Xilinx.  

The FPGA is built on a 0.15-micron, eight-layer aluminum process with high-
speed, 0.12-micron transistors.  
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Figure 2: Virtex-II 3000 FPGA basic block diagram.  

Table 1: Virtex-II 3000 FPGA (XC2V3000) characteristics. 

Characteristic Value 

Maximum system gates 3 M 

Logic cells 32,256 

Number of slices 14,336 

Number of configurable logic blocks (CLBs) 3,584 

Embedded block RAM 1728 kbit 

Maximum distributed RAM 448 kbit 

Digital clock managers 12 

18 x 18 multipliers 96 

Maximum user inputs/outputs (I/Os) 516 

Digital control management (DCM) buffers  12 

Global-clock multiplexer buffers 16 

Supported I/O standards 27 

Maximum I/O pads 720 

 

The FPGA require a 1.5-V direct-current (DC) internal (core) supply voltage. In 
addition, the device requires an auxiliary supply voltage, VCCAUX, and an output 
driver supply voltage, VCCO. The values for the last two depend on the given 
(bank) I/O standard. VCCO and VCCAUX were chosen to provide 3.3 V DC and to be 
driven by a common power supply.  

The FPGA offers unique pinout/package migration paths, which maintains 
compatibility with printed-circuit-board (PCB) footprints across different device 
densities and packages. All the pin types are similar regardless of the device/ 
package combination. The number of control pins is always 16, including VBATT. 
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The number of power/ground pins and user I/O pins, however, depends on each 
device/package combination.  

The FPGA is divided into eight I/O banks. One of the main benefits of banking is 
the simplification of compliance to requirements for simultaneously switching 
(input/)output (SSO) blocks by correctly distributing active input/output buffers 
(IOBs) between the banks. Banking was taken into consideration when the 
configuration- and test-vector software was designed. The package organization is 
shown in Figure 3. 

 

Figure 3: BGA I/O bank organization 

A useful feature of the Virtex-II FPGA is its digital control impedance (DCI). It 
adds on-chip termination capability to the IOB, eliminating the need for external 
resistor and thus conserving valuable board space. As shown in Figure 4, a useful 
feature of the IOB is the built-in double-data-rate (DDR) support. Because the IOB 
contains two independent I/O flip-flops and a dedicated multiplexer (MUX), it 
clocks-in and clocks-out twice as fast as an IOB with a single-data-rate I/O flip- 

 

Figure 4: Virtex-II IOB block diagram    
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flop. Each bank, which can be independently configured, supports one of the 
output standards listed in Table 2. 

Table 2:  Single-ended I/O standards supported by the Virtex-II FPGA. 

I/O standard Output VCCO Input VCCO Input Vref Board termination voltage (VTT) 

LVTTL 3.3 3.3 N/A N/A 

LVCMOS33 3.3 3.3 N/A N/A 

LVCMOS25 2.5 2.5 N/A N/A 

LVCMOS18 1.8 1.8 N/A N/A 

LVCMOS15 1.5 1.5 N/A N/A 

PCI33_3 3.3 3.3 N/A N/A 

PCI66_3 3.3 3.3 N/A N/A 

PCI-X 3.3 3.3 N/A N/A 

GTL Note 1 Note 1 0.8 1.2 

GTLP Note 1 Note 1 1.0 1.5 

HSTL_I 1.5 N/A 0.75 0.75 

HSTL_II 1.5 N/A 0.75 0.75 

HSTL_III 1.5 N/A 0.9 1.5 

HSTL_IV 1.5 N/A 0.9 1.5 

SSTL2_1 2.5 N/A 1.25 1.25 

SSTL2_11 2.5 N/A 1.25 1.25 

SSTL3_I 3.3 N/A 1.5 1.5 

SSTL3_II 3.3 N/A 1.5 1.5 

AGP-2X/AGP 3.3 N/A 1.32 N/A 
1. Vcco of GTL or GTLP should not be lower than the termination voltage or the voltage seen at the I/O pad. 

 

Each CLB contains four slices. Each slice consists of two 4-input LUTs and two 
edge-triggered flip-flops. Each LUT can be implemented as regular Boolean 
functions or as one 16 x 1 distributed RAM, or as one 16-bit shift register. Figure 5 
is a block diagram of a Virtex-II FPGA slice. 

Each block-select RAM is 18 kbit and can be configured into the following 
formats: 
 16k x 1 bit 
 8k x 2 bits 
 4k x 4 bits 
 2k x 9 bits (one parity bit) 
 1k x 18 bits (two parity bits)  
 512k x 36 bits (four parity bits) 
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Figure 5: A block diagram of a Virtex-II FPGA slice 

These true dual-port, synchronous RAMs can be cascaded or combined to form 
larger storage blocks or FIFO buffers. Figure 6 shows a typical usage of the block 
RAM as a dual-port RAM. 

The 12 DCMs and 16 buffer general (BUFG) MUXs provide a complete solution 
for high-speed clocking schemes. The DCMs can phase-shift and synthesize 
(multiply or divide) frequencies. They can also deskew the internal clock with 
respect to a common external-clock source, to get rid of clock distribution delays. 
The BUFG MUX offers glitch-free clock-switching; up to four of them can be 
used for each DCM. 
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Figure 6: Block RAM used as dual-port RAM 

3.1.2 FPGA Mode Switch, Configuration LED, and Temperature Sensor 

Although not needed for the operation of the board, the FPGA pin-setting switch 
adds valuable options that can be used during testing. The SW1 switch allows the 
user to select a configuration shown in Table 3. The Master SelectMAP 
configuration is the default mode for the prototype.  

An LED displays “PROGRAMMED” upon the successful completion of the 
configuration of the driver-board FPGA. 

A temperature-sense connector indicates temperature overstress of the driver-
board FPGA. However, because the driver board is outside of the temperature 
chamber, the sensing circuitry can by mounted directly next to DXN and DXP 
outputs of the FPGA.  

Note: The preceding considerations depend on using the original system-
maximum clock speed of 25 MHz. This value is used in the thermal 
consideration and analysis (see Section 4.2). Significantly increasing 
the clock speed for any reason (such as for speeding up the test or 
communication) will require the thermal load on the UUT to be 
reevaluated. 
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Table 3: Virtex-II configuration mode pin settings. Master SelectMAP is the default mode for 
our configuration. 

Configuration mode1 M0 M1 M2 
CCLK 

direction Data width Serial DOUT2 

Master Serial 0 0 0 OUT 1 YES 

Slave Serial 1 1 1 IN 1 YES 

Master SelectMAP 0 1 1 OUT 8 NO 
Slave SelectMAP3 1 1 0 IN 8 NO 

Boundary Scan (IEEE 
1532) 1 0 1 N/A 1 NO 

1. The HSWAP_EN pin controls the pull-ups. Setting M2, M1, and M0 selects the configuration mode, whereas the 
HSWAP_EN pin controls whether the pull-ups are used. 

2. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device 
does not support daisy chaining of downstream devices. 

3. An external oscillator is required for this mode. 

 

3.1.3 XC18V04 EEPROM 

Before a test is conducted, the configuration string for the driver board FPGA is 
downloaded from the PC, via the JTAG interface, into an XC18V04 electrically 
erasable PROM (EEPROM) (Xilinx P/N XC18VQ44C). This 4,194,304-bit 
EEPROM is designed for reprogramming and storing various sizes of Xilinx 
FPGA-configuration bit streams. The EEPROM supports both in-system 
programming and IEEE 1149.1 boundary-scan (JTAG) testing, via a single four-
wire test-access port (TAP). Xilinx guarantees the endurance level of 20,000 
program/erase cycles and data retention of at least 20 years.  

The block diagram of the XC1804 EEPROM is shown in Figure 7. Users may 
configure the XC18V04 to either a serial or parallel mode, through a user control 
register in the XC18V04. This control register is accessed through the JTAG 
interface and is set using the “parallel mode” setting on the Xilinx iMPACT 
software. Serial output is the default configuration mode. An on-chip pull-up 
resistor automatically holds the mode at a defined level during normal operation.  

The UUT FPGA requires 10,494,368-bit configuration string. If an FPGA is tested 
using the SelectMAP configuration mode, which requires a larger configuration 
memory, the EEPROMs on the driver board are cascaded to provide additional 
memory (Figure 8). There are three XC18V04 EEPROMs on the driver board. 
These EEPROMs can be concatenated by using the chip-enabled output (CEO) to 
drive the CE input of the downstream device.  

When these EEPROMs are concatenated, the clock inputs and the data outputs of 
all EEPROMs in the chain are interconnected. After the last datum from the first 
PROM is read, the next clock signal to the PROM asserts its CEO output at a low-
impedence state and drives its DATA line to a high-impedance state (“high”). The 
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second PROM recognizes the low level on its CE input and enables its DATA line 
output. After the configuration is complete, address counters of all cascaded 
PROMs are reset if the PROM OE/RESET pin goes low or if the CE goes high.1 

 

Figure 7: XC18V04-series PROM block diagram     

 

Figure 8: Cascading multiple EEPROMs (with the FPGA in SelectMAP Mode). 

3.1.4 Parallel Port Interface 

The driver board has two parallel ports. Only one is required for operation; the 
second one is for expansion/enhancement. The ports are used for bidirectional 
asynchronous communication with the host PC, using a parallel IV cable (Xilinx 
P/N HW-PC4-ND). 

Upon the successful configuration of the driver board FPGA, the enhanced parallel 
port (EPP) interface between the driver board and the PC becomes operational. 
This interface uses the standard EPP protocol. Data transferred to the driver board 
consists of any number of configurations/bit streams for the UUT FPGA, test 

                                                 
1 The CS and WRITE, must be either driven low, or pulled down externally. 
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vectors, and test control signals. Data flow from the driver board carries test results 
and test status signals.  

Each Virtex-II FPGA I/O has a pair of clamp diodes that connects to VCCO and 
ground (GND), as shown in Figure 9.  

 

Figure 9: LVT, LVCMOS or PCI select I/O-ultra standards 

In spite of all the advantages of using the EPP interface, there is a problem with 
hardware interface compatibility: Virtex I/Os configures as low-voltage transistor–
transistor logic (LVT) using 3.3 V, whereas the PC uses 5.0-V transistor–transitor 
logic (TTL). Virtex-II FGPA I/Os are not 5-V tolerant without adding an external 
current-limiting resistor.  

A workaround is to use a resistor in series to limit the current into the clamp diode. 
This workaround is reliable when the higher voltage is driving the FPGA input. It 
is not reliable when the higher voltage is driving FPGA output or a bidirectional 
signal, because the resulting VOH may be lower than that specified for the other 
device. 

To solve the problem for bidirectional communication, a 74ALVC164245 3-V–5-
V, 16-bit-level shifter manufactured by Philips Semiconductor is used. Its block 
diagram is shown in Figure 10. 

When either LVT or low-voltage CMOS (LVC) with 5-V tolerant outputs are 
used, a direct communication can be established between the FPGA and any 5-V 
TTL-level transceiver. When other low-voltage families are used as the UUT 
FPGA, the dual-VCC-level shifters provide the transceiver function, with built-in 
level shifting and the prevention of current flows between power supplies. Dual 
VCC level shifters are superior to alternatives such as the input pull-up resistors, 
blocking diodes, and other circuits that normally degrade speed and/or noise 
margins. 
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GND 

Figure 10: Slice of 74ALVC164245 level shifter 

A general diagram for bidirectional data communication between 5-V and 3-V 
systems is shown in Figure 11. 

 

 

Figure 11: 5-V transceivers on common bus with 3-V transceivers 

3.1.5 Clocks 

The oscillators on the driver board operate at ambient temperatures and therefore 
can be of commercial grade. The driver board has three independent, tristate 
oscillators (Epson P/N SG-8002DC). Detailed specifications are given in 
Appendix D. 

During testing, the operator can utilize from one to all three oscillators. 
Alternatively, the operator may also choose to use the oscillators on the UUT 



Detailed Description of the Driver Board 

Design of a Hardware/Software Platform for a Comprehensive Dynamic Burn-In Test of 
SRAM-Based Field Programmable Gate Arrays  

17

board. There are 120 clock combinations available to the operator, demonstrating 
the versatility and various resources offered in our design. 

3.2 INTERFACES 
The driver FPGA is equipped with five types of interfaces: 
 Host-PC EPP interface 
 UUT FPGA download/readback interface 
 Test-vectors sending/retrieving interface 
 Internal/external test-vector storage interface 
 Internal/external fault-detection interfaces 

Some of these interfaces act alone and are not aware of the others. Some of these 
interfaces work closely with other interfaces to function as a flow, to complete a 
complex task. Most of the interfaces are synchronous—i.e., they are triggered on 
the same clock edge that flows into the chip. The test-vector sending/receiving 
interfaces may contain some asynchronous FIFO buffers, to handle data 
communications between different clock sources. All coding is done in the Very-
High-Speed Integrated-Circuit Hardware-Description Language (VHDL). (IEEE 
standard 1164–93). 

3.2.1 Host-PC EPP interface 

The host-PC EPP interface is crucial to keeping the entire system “alive” from the 
user’s point of view. It provides the only way of knowing that the system is 
responding to human interactions. An EPP interface is used because it is only  
Enhanced Parallel Port  interface that supports LVTTL  configuration of  FPGA 
I/O’s  eliminating  the need for 5 V to 3.3 V level shifters. EPP offers  data 
bandwidth is 500kByte–2MByte per second. Table 4 shows the definition of the 
EPP signals, per IEEE 1284. 

Table 4: EPP signals as defined by IEEE 1284 

SPP signal 
EPP signal 

name 
EPP signal 
description Comments 

nSTROBE nWRITE Out Active low. Indicates a write operation is high for a read 
cycle. 

nAUTOFEED nDATASTB Out Active low. Indicates a Data_Read or Data_Write 
operation is in process. 

nSELECTIN nADDRSTB Out Active low. Indicates an Address_Read or 
Address_Write operation is in process. 

nINIT nRESET Out Active low. Peripheral reset. 

NACK nINTR In Peripheral interrupt. Used to generate an interrupt to the 
host. 
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Table 4: EPP signals as defined by IEEE 1284 

SPP signal 
EPP signal 

name 
EPP signal 
description Comments 

BUSY nWAIT In 
Handshake signal. When low, indicates that it is OK to 
start a cycle (assert a strobe); when high, indicates that 
it is OK to end the cycle (de-assert a strobe). 

D[8:1] AD[8:1] Bi-Di Bidirectional address/data lines. 

PE user defined In Can be used differently by each peripheral 

SELECT user defined In Can be used differently by each peripheral. 

nERROR user defined In Can be used differently by each peripheral. 

 

3.2.2 UUT FPGA download/readback interface 

The UUT FPGA download/readback interface is a SelectMAP eight-bit parallel 
interface that includes the bits shown in Table 5. It is used to download and 
readback bit-streams to/from the UUT FPGA. The host PC provides the 
configuration for the UTT FPGA. To utilize this interface, the user must set the 
driver FPGA to the slave SelectMAP mode. The FPGA’s done pin requires some 
pull-up resistors to function properly. The same scenario applies to the readback 
function. Figure 12 shows download/readback timing diagrams. 

Table 5: Bits in the SelectMAP interface. 

Name  Functionality Pin assignment 

PROG_N Master-device issue program attention  

INIT_N Slave device acknowledge  

DONE Configuration complete  

CCLK Download bit stream synchronizing clock  

RDWR_N Data bidirection control  

BUSY   

CS_N Device chip select  

DATA (7:0) 8-bit bidirectional data shared with test-
vector data bus 
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Figure 12: Download/readback timing diagrams. 

3.2.3 Test-vectors sending/retrieving interface 

The test-vector sending/retrieving interface sends test vectors between the driver 
FPGA and the UTT FPGA. As shown in Table 6, data-transaction protocols are 
defined in order to send and receive test vectors/test results back and forth between 
the driver FPGA and the UUT FPGA.  
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The test vectors are sent from the driver FPGA to UUT FPGA. After the UUT 
FPGA programming is downloaded and verified, the driver FPGA reads out test 
vectors from the synchronized SRAM (SSRAM), sets the necessary control bits, 
and then asserts the TX_EN while clocking out data to the UUT FPGA. In the 
meantime, if the UUT FPGA has valid data, it will also clock-out test results back 
to the driver FPGA via the RX_EN and RX_DATA bus.  

Table 6: Data transaction protocols for sending results from the driver FPGA to the UUT 
FPGA. 

Name  Definition 

TX_CONTROL [2:0] Specify modes of operation from the driver FPGA 

TX_EN TX data valid 

TX_DATA [7:0] 8-bit data one directional, driving from the driver FPGA 

RX_EN  UUT FPGA data valid 

RX_DATA [7:0]  8-bit data one directional, driving from the UUT FPGA  

 

3.2.4 Internal/external test-vector storage interface 

The internal/external test-vector storage interface is used to move test vectors 
between the driver FPGA and the UUT FPGA. The software or the user may 
provide any random data as desired. It can be the same value—AA or 55—or 
entirely random, and with any kind of distribution. It will be stored initially in a 
text/data file on the host PC’s hard disk. (In the prototype, to simplify matters, the 
test vectors are not generated by the hardware but are provided by software.) 

The user can change the test vectors at any time. Even with their relatively small 
total size, they can still result in a variety of data patterns to stress the test FPGA. 
For the prototype, eight of the internal block RAM chips are used. The block RAM 
chips are 16 kbit each, resulting in a total test-vector size of 128 kbit (16 kByte). 
Although not huge, the test vectors are large enough to demonstrate the hardware 
functionalities.  

The eight-block RAM chips are combined into one 8-bit-wide, 14-bit-deep true 
dual-port RAM, which means one can independently read/write on both ports. Port 
A of the RAM chips is used as both a read and write port. Initially, it is used as the 
write port to set up the test vectors. Once all the addresses are walked through and 
the user gives the start command to start sending test vectors to the test FPGA, 
port A’s address will be driven by another counter/state machine, to act as a read 
port for pumping data out of it. The software moves the test vectors files from the 
host PC’s hard disk to the internal/external RAM onto the driver board.  
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3.2.5 Internal/external fault-detection interfaces 

The internal and external fault-detection interfaces are used for fault detection. 
They move error statistics between the driver FPGA and the UUT FPGA. The 
fault detection approach used depends on the design example employed. 

The fault detection method is the same for the shifter and FIFO design examples. 
In the prototype, Port A is used for sending out the test vectors to the test FPGA. 
Port B is then used for comparing the data coming back from the test FPGA. Once 
the RXEN signal goes from zero to one, data are read out, starting from address 
zero of Port B, and those data are compared to the received data. This approach 
works for the shifter and FIFO design samples because the data should remain 
unchanged.  

If there is a discrepancy, an error bit is set for that clock, and the error counter 
increments by one, to keep track of the discrepancy. Two sets of eight-bit counters 
show the error statistics. Two sets are used based on the assumption that the error 
rate will not be big enough to overflow the eight-bit counter in any EPP software-
polling interval; otherwise, the counter will roll over. One counter is used to count 
and another one is used to latch the counting one, in case the software wants to 
update the error-total counts. They ping-pong between each other; for example, if 
counter A is being read, it latches counter B’s value, counter B’s value is cleared 
to zero, and counter B starts counting from scratch. If there is a failure 
simultaneous with a read event, count B’s initial value is set to one—not zero, like 
it is done normally. This way, it is impossible to miss any error count while the 
total error count is accumulated and maintained by the software.  

The hardware merely keeps track of the incremental values—it is up to the user to 
start or stop the comparison. Once the RXEN goes from one to zero, the error 
counting and data comparison stop. The software continues to display the total 
error count from the last test.  

In the calculator design example, fault detection is a bit complicated. It has 
multiple CRC chains, and results for each chain are not known until all the data 
bits are shifted. However, the driver FPGA knows the total number of CRC chains 
and knows when the data has been sent. After the data have been sent, the driver 
FPGA pulls the results back from the UUT FPGA. It compares the CRCs of each 
chain with its prerecorded value.  

If there is a discrepancy, the driver FPGA report error counts by using the same 
counter mechanism as in the shifter and FIFO design samples.  
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3.3 FPGA TIMING 
Timing diagrams for EPP interface are provided for these cycles: 
 Data Write Cycle 
 Address Write Cycle 
 Data Read Cycle 
 Address Read Cycle 

3.3.1 Data Write Cycle 

Figure 13 shows the data write cycle, in which: 
1 The program writes to the EPP data register. (Base + 4) 
2 nWrite is placed to low. (Low indicates the write operation.) 
3 Data are placed on data lines 0–7. 
4 The nData Strobe is asserted if Wait is low (i.e., it is O.K. to start the cycle). 
5 The host PC waits for acknowledgment by nWait going to high (i.e., it is O.K. 

to end the cycle). 
6 The nData Strobe is de-asserted.  

 

Figure 13: EPP data write cycle. 

3.3.2 Address Write Cycle 

Figure 14 shows the address write cycle, in which: 
1 The program writes address to the EPP's address register (Base + 3) 
2 Write is placed to low. (Low indicates the write operation.) 
3 The address is placed on data lines 0–7. 
4 The Address Strobe is asserted if Wait is low (i.e., it is O.K. to start the cycle). 
5 The host PC waits for acknowledgment by Wait going to high (i.e. it is O.K. 

to end the cycle). 
6 The nAddress Strobe is de-asserted, signaling the end of the cycle. 
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Figure 14: EPP address write cycle. 

3.3.3 Data Read Cycle 

Figure 15 shows the data read cycle, in which: 
1 The program reads the EPP data register. (Base + 4) 
2 The nData strobe is asserted if Wait is lowl (i.e., it is O.K. to the start cycle) 
3 The host PC waits for acknowledgment by nWait going to high. 
4 Data are read from the parallel-port pins. 
5 The nData Strobe is de-asserted, signaling the end of the cycle. 

 

Figure 15: EPP data read cycle. 

3.3.4 Address Read Cycle 

Figure 16 shows the address read cycle, in which: 
1 The program reads the EPP address register. (Base + 3) 
2 The nAddr Strobe is asserted if Wait is low (i.e., it is O.K. to start the cycle). 
3 The host PC waits for acknowledgment by nWait going to high. 
4 Data is read from the parallel-port pins. 
5 nAddr Strobe is de-asserted, signaling the end of the cycle. 

Table 7 is a table of registers and their definition: 
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Figure 16: EPP address read cycle. 

Table 7: Parallel IO register definitions. 

Name Bit definition Notes 

Control register 
 

Bit7–6: chip select encoding: 
 00: Driver FPGA 
 01: UUT FPGA 
Bit5–4: reserved 
Bit3–0:  
 0001: read UUT FPGA version 
 0010: download 
 0011: readback 
 0100:  writes synchronous static RAM 
(SSRAM) 
 0101: read test results 
 0110: reset board 
 0111: start test 
 1000: read driver FPGA version  

Sized 0 x 01 
Write only 
≤ 15 commands 

Status register Bit7: Tx done (W) 
Bit6:  download done (W) 
Bit5:  Rx ready(R) 
BIt4:  readback done(R) 
Bit3:  test result ready(R) 
Bit2:  UUT FPGA download complete 
Bit1:  UUT FPGA ready to accept download data (R) 
Bit0:  Driver FPGA RAM 

Sized 0 x 02 
Read/write 

Data register 
 

8-bit data Sized 0 x 03 
Read/write 

Address register  Index to the three registers  
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The software routines for accessing this register and to issue commands are 
described in Table 8: 

 

Table 8: Software routines for the I/O register. 

Routine Description 

Reset board Any time the system has any problem or to abort the current operation 
and start over, 0 x 06 is written into the control register, to reset the 
board. 

Read-revision 
sequence 

Writes 0 x 01 to the control register, reads the status register, and if bit 6 
is set, reads the data register. 

Download sequence Writes 0 x 12 to the control register, reads the status register if bit 6 is 
set, writes the UUT FPGA’s configuration data to the data register, and, 
when done writing the data, writes 0 x 20 to the status register, to indicate 
the end of the configuration data. 

Readback sequence Writes 0 x 13 to the control register and reads status register. If bit 6 is 
set and bit 4 is not set, reads the data register; if the bit 4 is set, the 
current FPGA configuration bit is done reading. 

Write SSRAM/internal 
RAM sequence 

Writes 0 x 14 to the control register, reads status register if bit 6 is set, 
writes to the data register the first byte of the FPGA’s test vector. When 
done writing the test vector, writes 0 x 80 to the status register to indicate 
the last byte of the test vectors. 

Read-result sequence After finishing sending the test patterns, reads the status register. If bit 3 
is set, reads test result from the data register.  
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4 Detailed Description of the UUT Board 
One of the major objectives in the design of the burn-in (UUT) board is to 
maximize reliability and signal integrity. The design achieves this by minimizing 
the number of components on the board while preserving the desired versatility of 
the board. The bill of materials for the UUT board is given in Appendix B. 
Complete schematics are given in Appendix E. The PDF conversion of the layout 
files (Gerber files) is given in Appendix F. 

4.1 COMPONENTS 
Essential components are those used during test operations. All essential 
components of the UUT board are military grade. Nonessential features of the 
UUT board are a mode switch and a temperature sensor. 

The UUT board consists of 14 layers of polyimide assembly with an uninterrupted 
ground plane, one plane for core supply VCCINT (1.5 V) and one plane for VCCAUX 
(3.3 V). VCCO (3.3 V) is distributed on wide signal traces with sufficient bypass 
capacitors. 

4.1.1 UUT FPGA 

The UUT FPGA used in the prototype is the same as the driver FPGA and is 
discussed in detail in Section 3.1.1. 

The components of the FPGAs that are most utilized are also the most susceptible 
to failures. Such components include the LUTs, and block RAMs, and other 
arithmetic logics. For most designs, these are the three major components most in 
demand, both in terms of quantity and quality. The degree to which these 
components are utilized, how they are interconnected, and the timing that can be 
achieved directly dictate how well the FPGA performs. Thus, the focus of the 
platform is to test these specific components. 

4.1.2 Capacitors 

Because the power consumption is dynamic, it is nontrivial to ensure stable supply 
voltages at the device pins and to minimize ground differentials. Fast-changing Icc 
transitions are supplied by 104 local-decoupling capacitors, placed proximal to the 
VCC device pins. These capacitors must have enough capacitance to supply Icc for 
a few ns, and they must have low intrinsic resistance and inductance. The 0.1-µF 
negative-and-positive-to-zero (NPO) ceramic, surface-mounted capacitors can 
each supply 1A for 2 ns, with a 20-mV voltage drop.  

To compensate for trace inductance—a 10-mm trace represents an inductance of 
several nanohenries, defeating the purpose of the decoupling capacitor—twenty-
four 4.7-µF and 2.2-µF tantalum capacitors were positioned in various locations.  
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Finally, four 100-µF power-supply-decoupling electrolytic capacitors are used to 
supply even more current for a portion of the supply-switching period. (As a 
general rule, multiple smaller capacitors in parallel always offer lower resistance 
and inductance than any single large capacitor.) 

4.1.3 Sockets and Connectors 

The following sections describe the sockets used in the prototype. The details of 
the configuration connectors may be found in Appendix G. 

4.1.3.1 UUT Socket 
There is an obvious need to test more than one FPGA. Because using multiple 
soldering processes to replace the UUT FPGA will rapidly destroy the UUT board 
or/and the UUT FPGA itself, the UUT FPGA is placed on an Enplas728-pin BGA 
socket in the center of the board (Figure 17). This socket allows for easy, 
solderless replacement of the UUT and is rated at an operating temperature range 
of –60°C ~ +150°C. A detailed drawing and specification of the socket is in 
Appendix H. 
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Figure 17: Socket for the UUT FPGA 

The socket is fanned-out into six 76-pin, 50-ohm Mictor (or equivalent) 
connectors. These connectors are used for the general I/O interface, maximizing 
the number of I/Os possible for a given FPGA. One more 38-pin Mictor connector 
is dedicated to the configuration/readback function.  

This socket was selected because it meets the following requirements:  
 It is rated to work in harsh environments, to allow for high-temperature burn-

in and reliability testing of the FPGA. 
 It satisfies design frequency and power requirements. 
 It allows easy access and solderless replacement of the UUT FPGA. 
 Its minimal complexity ensures the maximum MTBF.  
 It satisfies Xilinx’s mechanical specifications for mounting the FPGA: a 

sustained, direct, compressive force applied normally to the lid, using a tool 
head that does not exceed 4.0 grams per external ball.  
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To restate the last requirement, the UUT FPGA must not be crushed. The FPGA 
has a BGA flip-chip 35 x 35-mm2 packaging with 1.27-mm spacing. Flip-chip 
packaging places the die in the package face down. The die is connected to I/Os by 
small “bumps” of solder. This configuration eliminates wire bonding and allows 
for shorter interconnections between circuits and the I/O pins, providing more 
robust, smaller and faster interconnects. A flip-chip package offers more available 
I/Os than a wire-bond package. Flip-chip package also improves heat dissipation 
(i.e., has lower thermal resistance). The package construction is shown in 
Figure 18. 

 
 
 
 
 

        
 
 
 
 

Figure 18: BGA package construction. 

4.1.3.2 Clock Sockets 
Adding versatility to the UUT board are two sockets for dedicated oscillators. 
These sockets allow the easy replacement of oscillators, should different frequency 
sources be desired. The reason for having two sockets is to provide multiple, 
simultaneous sources of clocks and to enhance resources during the testing and 
exercising of the DCM feature of the FPGA. The disadvantage of sockets is that 
they require via-holes, which in turn may have some negative effect on signal 
integrity at very high frequencies.  

4.1.4 Clocks (Oscillators) 

The optional, onboard oscillators on the UUT are high-reliability versions by the 
Sematec Company. Their operating temperature range is –55°C ~ +150°C. 
Detailed specifications of the oscillators are given in the Appendix D. 

If onboard oscillators are not installed on the UUT board, one of the three 
oscillators on the driver board can be used. This approach make a few more clock 
combinations available to the user. All the oscillators feature tristate outputs, 
which allow software control over the clocks. An oscillator is selected by a jumper 
close to one of the clock inputs of the FPGA.  

Copper heat spreader 
Flip-chip solder humps 

Organic buildup substrate 

Thermal-die attach 

Underfill epoxy 

Solder ball 
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4.1.5 Interfaces and Clocking Scheme Options 

The interface between driver FPGA and  the UUT  FPGA’s consist of  two 8-bit 
data buses. Due to signal integrity consideration each bus is unidirectional: one 
passes data from driver to UUT and another one delivers response from UUT back 
to the driver.  Each bas consists of  12 lines: three control, one clock and eight data 
bits:  
 TXEN as the data valid 
 TXDATA [8:0] as the eight-bit data flowing into the UUT FPGA 
 TXCLK, together in phase with the TXDATA 
 Two bits of TXCONTROL, for four possible conditions 

At higher (over 100 MHz) frequencies there aree several options to compensate for  
transmission line (cable) delay and  synchronize the exchange of data between the 
two boards. As a first option, one clock is used on both boards. The driver board 
sends the TXCLK together with its data and the UUT FPGA either clocks all its 
internal logic with this TXCLK or with the falling edge of the TXCLK. Either 
way, when the UUT FPGA sends the data back to the driver FPGA, it does not 
send back the clock.  

To compensate for the cable delay, the driver FPGA must phase-shift its clock, to 
be able to correctly clock-in the data. If the UUT FPGA uses the falling edge of 
the TXCLK, the driver FPGA still uses its original clock. Therefore, two clock 
domains may exist inside the driver FPGA but only one in the UUT FPGA. This 
option works fine if the operating frequency is relatively slow, since it is a lot 
easier and safer for one fixed-phase shift value to work for any board, under any 
temperature variation. 

 For a higher-speed clock rate, the phase-shift window is a lot smaller and the first 
choice is a gamble. As a second option, a special cable is provided that enables 
only one clock domain to be used for the entire system, to compensate the delay 
introduced by the long cable. The Virtex-II FPGA has DCM, which can deskew 
clocks, given the proper feedbacks. If an external trace is made on the cable so that 
the total length of the trace equals the total length of the cable, then the same clock 
source can be used for both boards.  

The driver board can be made to clock out data “early” enough to compensate for 
the cable delay, so that when the UUT FPGA gets the data, the set-up and hold 
times are satisfied. However, this approach requires one clock source to equally 
distribute the clock to both boards, using the exactly the same-length feedback 
path. This is hard to do. It is also difficult to make a feedback path exactly the 
same length as the cable.  

A third option is to make the two FPGAs operate under totally independent 
clocks—i.e., the two clocks have no phase relationship whatsoever, even if they 
are relatively equal in terms of frequencies. This option leads to the simplest PCB 
solution but at the cost of a more-complex interface. The driver FPGA send its 
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TXCLK along with its data to the UUT FPGA, and the UUT FPGA uses only the 
TXCLK to clock in data at its IOB. The UUT FPGA then uses an asynchronous 
FIFO buffer to convert the data into its own clock domain. When the UUT FPGA 
clocks out test results back to the driver FPGA, the driver FPGA does the same, so 
that the driver FPGA will also have another asynchronous FIFO buffer to reverse-
convert the data into its own clock domain.  

Although this third option works at any clock frequency, flow control becomes an 
issue over time: the differences between the two different clocks will build up, 
causing one side to starve and the other side to overflow. The interface logic 
design must be robust enough to tolerate such conditions. 

The prototype uses the first option, since that is the simplest option under low 
frequencies. To drive good clock signals out of the IOB, not just any IOB may be 
used—its delay cannot be guaranteed and the signal may be distorted. The Xilinx 
double-data-rate I/O solves this issue by “regenerating” the clock, using two flip-
flops clocked by two clocks that are 180 degrees out of phase. One flip-flop 
outputs a logic one (“1”) and the other outputs a logic zero (“0”). This way, the 
IOB operates with exactly the same delay timing as the data that is clocked by the 
output flip-flop on (other) regular IOBs. This method is widely used for high-
speed off-chip interconnection systems.  

4.1.6 FPGA Mode Switch and Temperature Sensor 

As with the driver board, a SW1 switch on the UUT board to allow the selection of 
the configuration modes described in Table 3. The UTT board modes should 
match the driver board modes. The truth table for mode selection is given in Table 
3. 

A temperature-sense connector on the UUT indicates temperature overstress of the 
UUT FPGA junctions. This optional feature takes advantage of DXN and DXP 
signals from the UUT FGPA. To activate this feature, these signals are routed 
outside the chamber, as differential outputs, to the Maxell temperature-sensing 
device (MAX11617AMEE).  The MAX11617AMEE offers autonomous alarming 
without requiring interaction by a host controller, generating an interrupt when a 
user-programmable upper or lower threshold is exceeded, resulting in stand-alone 
temperature monitoring. 

4.2 THERMAL CONSIDERATIONS AND ANALYSIS 
The UUT board has features that affect the UUT FPGA’s thermal parameters.  

The challenge in predicting power requirements is that they are directly related to 
the degree of chip utilization and the frequency of operation. Extensive utilization  
increases power consumption and may result in the integrated circuit generating 
excessive heat. The FPGA chip could easily exceed the maximum allowable 
junction temperature, which in turn may degrade performance. Maintaining the 
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balance between chip utilization and power requirements ensures the proper 
operating conditions for the chip. 

Four factors determine the temperature of an FPGA die:  
 Total power dissipation 
 Package thermal resistance 
 Ambient temperature 
 Airflow 

These factors must be managed so that they stay below the maximum junction 
temperature of the die (125°C). Given the temperature inside the case or rack (Tamb  
= 125°C), the total power dissipation of the FPGA (P), and the thermal resistance 
of the package (ΘJA), the junction temperature (TJ) may be calculated as: 

TJ=Tamb + P(ΘJA) 

Where the junction–to–ambient; ΘJA ranges from 12 to 20°C/watt,2 and the value 
of P depends on the percent chip utilization.  

For the worst case (e.g., 85%) chip utilization, power calculations tell us that P = 2 
watts, and that the junction temperature (TJ) maximizes at: 

TJ = 125 + (2 * 20) = 165°C 

The chip utilization is the function of the test vector used during the given stage of 
the test. Because any number of test vectors can be used, the junction temperature 
may vary. Xilinx recommends using passive heat sinks for this type of power 
dissipation. An aluminum BGA socket is used to house the XC2V3000, as 
described in Section 4.1.3.1. The socket serves as a passive heat sink, which in 
turn allows us to reduce the junction temperature. Moderate airflow present in the 
temperature chamber will further help reduce the temperature of the device 
junctions. For intensive testing, the surface temperature of the device can be 
monitored with an inexpensive digital thermometer. 

For the prototype, the junction-to-case thermal resistance (JC) is considered to be 
1.5°C/watt. Simple calculations show that the surface temperature is 3°C below 
the junction temperature. This value is then taken into account and is used as offset 
in measuring the surface temperature.  

Note: If passive burn-in testing is desired, the temperature of the junctions 
can be approximated to the ambient temperature of 125°C and will 
not adversely affect the UUT FPGA. 

 

Calculations, assumptions, and the preceding analysis show that testing the Virtex- 
II FPGA at 125°C, using a 20-MHz main clock frequency with variable test 

                                                 
2 From the Xilinx user guide for the BG728 package with a 1.27-mm pitch. 
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vectors at 80% chip utilization, requires careful temperature monitoring. 
Depending on the objectives of the given test, aggressive heat-sinking measures 
may also be required. 
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5 Detailed Description of the Board Connection Cables 
The electromechanical part of the prototype design—the cable connecting the 
driver board and the UUT board—presented a big challenge. The original plan was 
to use a miniature, shielded ribbon cable manufactured by Precision Interconnect 
(“Blue Ribbon”). However, testing revealed that the operational temperature for 
the cable is only 60°C, which resulted in the manufacturer downgrading the cable 
specification. Currently there is no technology known to us that will allow the 
manufacturing of a miniature (30 AWG or less), high-temperature ribbon cable.  

Thus the prototype uses bulkier individual coaxial cables. Even with this cable 
choice, over a month of searching resulted in only one supplier: Astrolab, which 
manufactures a 50-ohm Teflon coax cable.  

The driver board is connected to the UUT board with three sets of coaxial cables:  
 One set of 76 input lines 
 One set of 76 output lines 
 One set of 38 lines dedicated to the UUT programming, readback, and control.  

There are two cable assemblies. Only the data cable is required. The data cable 
assembly consists of a 1.0”x 1.5” four-layer interface board; two high-density 76-
pin, 50-ohm connectors; and 76 individual coaxial cables, each 3 feet long. 
Currently two of these cables are manufactured—one for source, and another one 
for inputs—with a total of 152 lines.  

The purpose of the second cable assembly is to program the UUT FPGA and to 
support the readback test. The number of lines in this cable is 20. It uses 38-pin, 
50-ohm connectors with a design similar to those for the data cable: two interface 
boards, two 38-pin connectors, and a cable. 

Electrical and environmental information on the cable assemblies and photograph 
of the components used in cable assembly is given in Appendix I. 

With the heavy traffic of high-speed logic signals, signal integrity becomes an 
important design requirement. The prototype design must create an environment in 
which undistorted signals can perform designated tasks. Decoupling, matching 
impedance, controlling ground bounce, and limiting cross-talk, ringing, and noise 
margins are essential design elements. Both the board connection cables and the 
PCB contribute to these elements. 

5.1 CONTROLLING GROUND BOUNCE 
In certain cases, a number of outputs may be driven in the same direction within 
the same time frame (e.g., SSO such as data output from the FPGA). If these 
outputs share the same ground pin, the elevated current may result in a significant 
IR drop, which will noticeably rise or drop the potential of this ground pin along 
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with its self-inductance. This problem may cause a malfunction or even damage to 
the circuit. 

To avoid this problem, the prototype follows the Xilinx recommendations for 
SSO, and it has its bypass capacitors placed close to the ground pins. The SSO 
guidelines limit the number of simultaneously switching IOBs at a specific current 
level to a fixed number per power- and ground-pin pair. Per Xilinx, the pairing 
number for the VC2V3000 is 8 and for the BGA 20. Therefore, 

SSO/bank = 20 x 8 = 160. 

The prototype design satisfies Xilinx’s recommendations. However, the footprint 
of the BG728 used in the UUT FPGA (see Appendix J), reveals that the “window” 
in the center of the footprint, which is used in lower-density FPGAs, is not present. 
Instead, a solid pattern of BGA balls is revealed. Because distinct physical 
separation between the banks is no longer possible, some of the Xilinx 
recommendations may not be as effective as for lower-density FPGAs. Xilinx 
recommendations regarding placement of power supply bypass capacitors cannot 
be followed for the same reason.  

The user may enhance SSO criteria and overall performance by employing the 
suggestions in Section 11. 

The design gives the user a choice of multiple clocks. Working in conjunction with 
the DCM feature of Virtex-II FPGA, the software can move some of the IOB’s 
switching by –2, –1, +1 and +2 ns, divide or multiply the clock, or alternate 
oscillators in a way that spreads out the switching currents and thus does not add to 
ground bounce. 

As a result, the combined transient currents from the switching will keep the 
ground bounce to less than ±100 mV (200 mV peak to peak), allowing the FPGA 
to provide the best performance and the lowest jitter. To further reduce ground 
bounce, 0603-type, 0.1-µF surface-mount bypass capacitors were placed for each 
power- and ground-pin pair. 

5.2 LIMITING RINGING AND OVERSHOOTING OF THE SIGNAL 
When the length of the conductive media approaches the magnitude of the 
wavelength of the highest frequency of interest, the echo from the receiver end 
may arrive at the transmitter after the end of the transition, resulting in ringing. 
Then the trace must be analyzed as a transmission line. 

In this case, the driver sees the trace not as a lumped capacitance, but rather as a 
pure resistance of Z0. The signal transition then travels along the trace. At any 
trace-impedance discontinuity, all or part of the signal is reflected back to the 
origin. If the far end is resistively terminated with R = Z0, then there is no 
reflection. If, however, the end is open, or loaded with only a LVTTL input, then 
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the transition doubles its amplitude, and this new wave travels back to the driver, 
where it may be reflected again, resulting in the familiar ringing. Such ringing has 
a serious effect on signal integrity, reduces noise margins, and can lead to a 
malfunction, especially if an asynchronous signal or a clock signal crosses the 
input threshold voltage unpredictably.  

Two alternate ways to avoid reflections and ensure signal integrity are parallel 
termination and series termination. Although parallel termination eliminates 
reflections, series termination relies on the reflection from the far end to achieve a 
full-amplitude signal. For series termination, the driver impedance is adjusted to 
equal Z0, thus driving a half-amplitude signal onto the transmission line. At the 
unterminated far end, the reflection creates a full-amplitude signal, which then 
travels back to the driver where it gets absorbed, since the output impedance 
equals Z0. An example of series termination is given in Figure 19 

For an outer-layer trace (air on one side), the propagation delay is 140 ps/inch, or 
55 ps/cm. For an inner-layer trace (FR4 with E = 4.5 on both sides), the 
propagation delay is 180 ps/inch, or 70 ps/cm.  

Series termination dissipates no direct-current (DC) power, but the half-amplitude 
round-trip delay signal means that there must be no additional loads along the line. 
Series termination is ideal for single-source–single-destination interconnects such 
as the one used in our design. 

 

Figure 19: Series termination. 

The Virtex-II FPGAs offer digitally controlled output impedance drivers and 
digitally controlled input (DCI) termination, thus eliminating the need for any 
external termination resistors. This feature is extremely valuable with high pin-
count, high-density packages. 

DCI operates independently on each I/O bank. In the prototype design, all I/Os of 
the UUT FPGA are divided into two halves. One half is configured as output 
(source) and terminated with 1% 50-ohm resistors (Figure 20). The other half is 
configured as inputs. When a DCI I/O standard is used in a particular I/O bank, 
external reference resistors must be connected to two dual-function pins on the 
bank. To reduce prototyping costs, the driver board utilizes only one bank of 
FPGAs as source and another one as receiver. However, the usage of I/Os on this 
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board can be expanded if needed. All I/Os are connected to 50-ohm high-density 
connectors. 

 

Figure 20: DCI in a Virtex-II bank 

5.3 LOCATING CLOCKS TO MINIMIZE NOISE 
Clock signals require special attention for two reasons. First, it is critical that their 
timing not be marginalized by noise. This can lead to false clocking of data. 
Second, because clock signals often run at a higher frequency than data, they can 
be more troublesome as noise sources. 

From this consideration, all oscillators used in the design are placed within ½” 
from the input line. Optional clock lines routed from one board to another are 
shielded and placed as far from the lines as possible. 

5.4 OTHER GOOD DESIGN PRACTICES 
Unused I/O pins may be employed as virtual ground or supply pins. They should 
be programmed to drive a “1” or a “0” at the highest current drive strength and 
whenever possible should be tied to the PCB power or ground. These pins will 
function as additional power and ground pins, keeping the ground and power 
bounce under control.  

Another technique used in FPGAs is to control the output slew rates. If delay is not 
an issue, the operator may use slow-output attributes to reduce cross talk and 
bounce.
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6 Printed Circuit Boards 
The PCB performs a critical function by providing stable power to the components 
and by maintaining signal integrity between devices. Three PCBs were designed 
for the prototype:  
 Driver board 
 UUT board 
 Two types of interface boards for high-density impedance matching 

connectors and for the 50-ohm coaxial cable 

See Section 7 for a discussion of the power supply board. The issue of VCC 
decoupling is discussed in Section 3.  

The input structure of the FPGA primarily represents an open circuit. As such, at 
high frequencies, the model is the PCB trace impedance, with a small capacitance 
at the end. The output structure of the FPGA represents low impedance, close to 
25 ohms at high frequencies. With such low output impedance, large capacitive 
loads or long PCB traces may be driven. If the PCB trace is not controlled, the lack 
of control may lead to serious performance problems.  

The same philosophy is used in the design the driver board and the UUT board: 
0.1-µF NPO capacitors located close to VCC can supply ~1A for 2 nsec with 
20 mV voltage drop: 

1A x 2 nsec = 2 nanocoulomb= 0.1 µF x 20 mV 

The PCB’s traces were analyzed as a transmission lines. The highest frequency of 
interest was not the clock frequency, but the highest frequency required by the 
pulses to define the rising and falling edges. This frequency was usually nine times 
the fundamental frequency.  

For example, if the clock frequency is 33 MHz, the edges rise and fall in less than 
3.3 nS. The frequencies of interest may approach 300 MHz. The wavelength of 
that frequency on the PCB is approximately half of what it is in the air, or about 50 
cm. The length of the trace on the PCB trace becomes an important factor when it 
is around 1/8 of the wavelength of the highest frequency of interest. One-eighth of 
that frequency is about 6.25 cm. Traces less than 6.25 cm are unlikely to create the 
problems associated with transmission lines at 33 MHz. The longest trace on any 
of two boards is about 3.0 cm. Therefore, signals up to 66 MHz should travel 
freely. 

What controls the impedance of a PCB trace? The major elements are the width 
and the distance to the VCC or ground plane. To enable proper operation at higher 
frequencies, the ratio of trace width to the distance to the ground or VCC plane is 
kept at 2 (e.g., width = 4 mil, depth = 2 mil); thus making the voltage-to-current 
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ratio or characteristic impedance 50 ohms. To match this impedance, traces were 
routed into 50-ohm high-density connectors. 

Secondary to the geometry is the material the board is made of. All PCBs are made 
out of epoxy fiberglass. Its permeability is the same as air (fiberglass does not 
affect magnetic fields), and the permitivity is about 4.5 that of air (fiberglass does 
affect the electric field).  

The corresponding stack-up and spacing between the layers for the printed circuit 
boards is given in Appendix K.
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7 Detailed Description of the Power Supply 
Power consumption in Xilinx FPGAs depends upon the number of internal logic 
transitions and is proportional to the operating clock frequency. As device size 
increases, so does power consumption. It is common for a large, high-speed design 
to require several amperes of current. Power supply requirements, including initial 
conditions, transient behavior, turn-on, and turn-off are also important. Bypassing 
or decoupling the power supplies at the device, in the context of the device’s 
application, requires careful attention. All these aspects of the power supply must 
be considered in order to achieve successful designs. 

The power consumed in a Xilinx device is highly dependent on the design. 
Accurate power estimation methods must be used to ensure that a system power 
supply meets the FPGA’s requirements. 

7.1 POWER REQUIREMENTS 
LVTTL is selected as the single-ended I/O standard. From this, in addition to 
internal supply voltage VCCINT = 1.5 V (to power up the core), VCCO = 3.3 V is 
required to support I/Os. The same voltage is used for the auxiliary power supply  
(VCCAUX = 3.3 V). 

For the correct operation of the power-on-reset (POR) and configuration controls, 
VCCO_4 and VCCO_5 (IOB input voltage for banks 4 and 5) must be connected 
to 3.3V regardless whether these banks are used. 

To calculate power consumption for XC18V04 PROMS used to configure the 
UUT FPGA, the Virtex-II FPGA power-estimator worksheet and other applicable 
specifications were used. As shown in Table 9, the total estimated power needed 
from the power supply to operate the UUT board is under 2 W. The spreadsheet 
takes a conservative approach by overestimating the required power. It assumes 
that when a slice is selected, all of the LUTs and flip-flops within this slice will be 
used.  

Software estimates the power consumption based on the FPGA configuration file. 
By analyzing the bit stream, the software algorithm estimates the design’s resource 
usage, toggle rates, I/O power, and many other factors. The formulas used for the 
calculations in the program are based on test-design measurements. Because more 
than one configuration file may be used to address specific test goals, the worst-
case scenario was considered in the calculations. The user may have to reevaluate 
the data’s precise value corresponding to a given bit stream and/or clock 
frequency. 
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Table 9: Power estimates for the Xilinx Virtex-II FPGA (XC2V3000) used in the UUT board. 
Calculations assume 25-MHz clock and approximately 85% device utilization. 

Item Description/Value 

Target Package BGA728 

Total Estimated Design Power 1957 mW 

Estimated Design VCCINT with 1.5-V Power  1880 mW 

Estimated Design VCCAUX with 3.3-V Power 66 mW 

Estimated Design VCCO with 3.3-V Power  11 mW 

Estimated Design VCCO with 2.5-V Power  0 mW 

Estimated Design VCCO with 1.8-V Power  0 mW 

Estimated Design VCCO with 1.5-V Power 0 mW 

Estimated Design VCCO with 1.2-V Power  0 mW 

 

Note: The power required to operate the driver board is under 3 W. Besides 
using the same type of FPGA as the UUT board, this board has many 
other logic elements and discrete components. The power 
calculation for the driver board is more complex and is not presented 
here. 

Note: Another constraint was imposed by thermal planning aimed at 
keeping the UUT die temperature below maximum rated value during 
the first stage of the burn–in test. Xilinx specifies a maximum of 80°C 
for commercial-, 100°C for industrial-, and 125°C for military-grade 
FPGAs. (The temperature may easily be raised over 100°C—up to 
175°C—if needed.) The issues of thermal planning are discussed in 
greater detail in Section 4.2. 

7.2 POWER-UP TIMING AND POWER SEQUENCING REQUIREMENTS 
The actual current consumed depends on the power-on ramp rate of the power 
supply, and the duration of the VCCINT ramp will depend on the amount of current 
available from the power supply. (Ramp on is defined as 0.1 VDC in addition to 
the minimum-specified supply voltage). If a large amount of current is available, 
the VCCINT ramp will be very fast. Because our power supply can provide 10A of 
sustained and 12A of surge currents, no limiting factors are expected from the 
power supply, thus allowing FPGA its “natural” behavior. 

When the final voltage has been reached, this high current is no longer required. 
Likewise, if the available current is limited, the rise time will be lengthened. A 
current trip or current fold back should not inhibit the rise. 

The VCCINT, VCCAUX, and VCCO power supplies must ramp on no faster than 200 µs 
and no slower than 50 ms. If this ramping requirement is not met, the FPGA will 
not perform POR properly. To avoid POR problems, timing measurements were 



Detailed Description of the Power Supply 

Design of a Hardware/Software Platform for a Comprehensive Dynamic Burn-In Test of 
SRAM-Based Field Programmable Gate Arrays  

43

conducted during the power-up cycle, using a simulated load. The ramps were 
captured using a simulated load, as shown in Figure 21 and Figure 22. As shown 
in these figures, the voltage rise is monotonic. 

 

Figure 21: 1.5-core-voltage ramp 

 

Figure 22: 3.3-auxiliary-supply-voltage VCCAUX and output-driver-supply voltage VCCO ramp. 

Power supplies can be turned on in any sequence. If any VCCO bank powers up 
before the VCCAUX, then each bank draws up to 300 mA, worst case, until the 
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VCCAUX powers on. This does not harm the device. If the current is limited to the 
minimum required value, the device powers on properly after all three supplies 
have passed through their POR threshold voltages.  

The POR circuit of the Virtex-II FPGA is triggered when the following conditions 
are met: 

 VCCINT > 1.2 V 

 VCCAUX > 2.5 V 

 VCCO (Bank 4) >1.5V 

Once initialized and configured, the FPGA draws the power close to the one 
estimated by the calculator. 

Note: The 300 mA is transient current (peak) and eventually disappears, 
even if VCCAUX does not power up. 

7.3 POWER SUPPLY SUMMARY AND SPECIFICATIONS 
A standard off-the-shelf, linear-regulated power supply manufactured by Lambda 
is used in the prototype. To suit the project’s needs, the power supply was 
modified to provide 3.3 and 1.5 voltages, using 5A National Semiconductor 
voltage regulators LM338 and few passive components. The power supply has its 
over-voltage protector set to 5.6 VDC. (Sensing voltage regulators would be more 
desirable but cannot be used because of the limited number of pins on the 
connector of the burn-in oven.)  

The power supply offers 0.1% regulation at 50-W continuous output. Built by JPL, 
a digital readout allows the operator to check the output level for any of three 
outputs. The front panel has two separate sets of color-coded connectors. One set 
for the regular cable, another for the high temperature power cable.  

In case of failure, the power supply has enough margin to make unusual current 
surges sustainable and therefore detectable. 

A schematic of the power supply is provided in the Appendix L.  

Note: If the voltage goes over the minimum operating voltage and then 
drops below it, incorrect power-on behavior may result. When the 
power-supply voltage falls below the absolute minimum-operating 
voltage when turned off, it should not rise immediately back to the 
nominal operating voltage without first discharging back down below 
0.1 VDC. To ensure this condition is met, a resistor may be required 
to bleed off the charge on the filter and bypass capacitors.
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8 FPGA Design Examples 
The prototype includes three sample test designs (“design examples”). The VHDL 
code for these design samples, as well as for the test benches, can be found in the 
following appendixes: 
 Appendix M: Driver FPGA VHDL Source Code 
 Appendix N: Shifter-Test FPGA VHDL Source Code 
 Appendix O: FIFO Test FPGA VHDL Source Code 
 Appendix P: Calculator Test FPGA VHDL Source Code 
 Appendix Q: Behavioral Test Bench and Results 
 Appendix R: C/C++ Software Source Code 

8.1 SHIFTER EXAMPLE 
In the shifter example, the algorithm turns all the slice flip-flops of the UUT FPGA 
into shift registers. A small generic module contains eight “one-bit”-wide–by–16-
bit shift registers consisting of LUTs. Another small generic module contains 
“eight-bit”-wide shift registers consisting of real slice flip-flops. Then, using the 
generics of the VHDL, the small eight-bit LUT shift registers are cascaded with 
the eight-bit flip-flop shift registers to form a long chain of shift registers 
occupying the entire chip.  

These numbers can easily be changed since everything is coded in generic styles. 
All that is needed to produce a different design is to specify the total number of 
each shift register type. The incoming eight-bit data and the TXEN signal will be 
delayed together, to indicate the RXEN for the driver FPGA, to qualify the 
resulting data stream. Table 10 shows examples of how the FPGA resources are 
utilized, using this shifter configuration: 

Table 10: Utilization of FPGA resources with the shifter configuration. 

Characteristic Value 

Number of errors 0 

Number of warnings 0 

Number of slices 14,334 out of 14,336 (99%) 

Number of slices containing unrelated logic 5,237 out of 14,334 (36%) 

Number of slice flip-flops 18,241 out of 28,672 (63%) 

Total number of input LUTs 9,000 out of 28,672 (31%) 

Number used as shift registers 9,000 

Number of bonded IOBs 28 out of 516 (5%) 

IOB flip-flops 17 

Number of GCLKs 1 out of 16 (6%) 
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Table 10: Utilization of FPGA resources with the shifter configuration. 

Characteristic Value 

Total equivalent gate count for design 722,067 

Additional JTAG gate count for IOBs 1,344 

8.2 FIFO (TEST) EXAMPLE 
The FIFO example demonstrates the test algorithm. In this example, the Xilinx 
CoreGenerator is used to produce three big FIFO buffers, each consisting of all the 
96 block RAMs and one, 2-kbit basic element of distributed-RAM FIFO buffer. 
Each block-RAM FIFO buffer is 8 bits wide by 64k deep, with 512k total bits. The 
algorithm allows the user to set a threshold of how many data lines to buffer before 
the data are read out. This will dictate how many locations of each RAM are to be 
tested.  

During testing, the data streams first flow in parallel though a configurable number 
of smaller FIFOs consisting only of the distributed RAM. The outputs of these 
FIFO buffers are multiplexed one at a time, to enter the bigger block-RAM FIFO 
buffers. The three block-RAMs receive the same data start rolling them in 
simultaneously. They then should start “spitting out” the same data.  

Out of the three results, one is chosen at a time to be sent back to the driver FPGA. 
Two counters select results from all the parallel FIFO buffers. One large counter is 
used for the many distributed FIFO buffers. Starting from zero, it is incremented 
every time a value is read out of a distributed FIFO buffer. The counter ensures 
that, over the course of the test, each FIFO has a fair chance of being testing. A 
similar idea applies to the output selection of one of the three block-RAM FIFO 
buffers. A two-bit counter is incremented every time data is read. Table 11 shows 
one of the resource utilization summaries for this test configuration. 

Table 11: Utilization of FPGA resources with the test configuration. 

Characteristic Summary 

Number of errors 0 

Number of warnings 0 

Logic utilization: Number of slice flip-flops 1,885 out of 28,672 (6%) 

Logic utilization: Number of 4 input LUTs 7,320 out of 28,672 (25%) 

Logic distribution: Number of occupied slices 8,035 out of 14,336 (56%) 

Logic distribution: Number of slices containing only 
related logic 

8,035 out of 8,035 (100%) 

Number of slices containing unrelated logic 0 out of 8,035 (0%) 

Total number of four-input LUTs 15,694 out of 28,672 (54%) 

Number used as logic 7,320 
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Table 11: Utilization of FPGA resources with the test configuration. 

Characteristic Summary 

Number of errors 0 

Number used as a route-through 182 

Number used as shift registers 8,192 

Number of bonded IOBs 31 out of 516 (6%) 

IOB flip-flops 21 

Number of block RAMs 96 out of 96 (100%) 

Number of GCLKs 1 out of 16 (6%) 

Total equivalent gate count for design 6,894,037 

Additional JTAG gate count for IOBs 1,488 

8.3 CRC (CALCULATOR) EXAMPLE 
In the CRC (calculator) example, the LUTs of the Virtex-II FPGA are configured 
into four-input function generators. Each slice has built-in arithmetic units such as 
XOR gates and carry chains. This example supports two configurations: 
 CRC engine, which mainly consists of shifting and modulo-2 additions 
 Checksum engine, which mainly consists of adders with carry chains 

A small generic block is written for eight-bit CRC or checksums. Then the entire 
chip is occupied with many of them working in parallel. As the data stream flows 
in from the driver FPGA, all the individual engines keep calculating results and 
storing them in their own eight-bit result registers. At the end of the test, an end of 
frame pulse coming from the TXCTRL will signal the end of tests for each engine 
and the results stop changing. Then a large MUX sends out the results one by one 
to the driver FPGA, to check them against its software-calculated results. If an 
error is detected, the error counter increases, to keep track of the results. Table 12 
summarizes FPGA resource utilization in this calculator configuration.  

Table 12: Utilization of FPGA resources with the calculator configuration. 

Characteristic Summary 

Number of errors 0 

Number of warnings 0 

Logic utilization: Number of slice flip-flops 8,447 out of 28,672 (29%) 

Logic utilization: Number of 4 input LUTs 19,681 out of 28,672 (68%) 

Logic distribution: Number of occupied slices 10,733 out of 14,336 (74%) 

Logic distribution: Number of slices containing only 
related logic 

10,733 out of 10,733 (100%) 

Logic Distribution: Number of slices containing unrelated 
logic1 

0 out of 10,733 (0%) 
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Table 12: Utilization of FPGA resources with the calculator configuration. 

Characteristic Summary 

Total Number 4 input LUTs 19,686 out of 28,672 (68%) 

Number used as logic 19,681 

Number used as a route-throug: 5 

Number of bonded IOB: 31 out of 516 (6%) 

IOB flip-flops 21 

Number of GCLKs 1 out of 16 (6%) 

Total equivalent gate count for design 195,211 

Additional JTAG gate count for IOBs 1,488 
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9 PC Software 
The prototype includes a PC to control the platform and for long-term storage of 
data. The PC must use the Windows 2000 or XP operating system and have a 
parallel port through which it communicates with the driver FPGA. 

The PC software was originally written with a command line interface. The 
prototype development was done using this interface. As the project progressed, 
the command-line interface was replaced with an easier-to-use GUI (Figure 23). 

 

Figure 23: Graphical user interface (GUI) for the PC software. 

The software was developed in Microsoft Visual Studio .Net V7.1. The 
development required V7.1 because this version introduced the concept of forms. 
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(V7.0 does not have this feature.) Although forms are not new technology (they 
have been used in Visual Basic for years), V7.1 provides a C++ interface to them, 
simplifying GUI development.  

The software was designed to be modular. Each layer does a single task and relies 
on the other layers to handle other details, as shown in Figure 24. Each layer of the 
software is kept in a separate file. With the exception of the driver layer and the 
log layer, all other parts can be removed or replaced. 

WinIO:
Third party library used to

communicate with hardware through
Win 2000 or XP

Parallel:
in parallel.cpp are wrapper functions
used to hide the details of talking to

the hardware.

Driver:
in driver.cpp, this is the most important layer, it holds

all the specific details for communicating with the
hardware, this is where things like Downloading to the

FPGA goes.

Command Line:
in cli.cpp, this is the old basic interface

that requires the user to know what they
are doing

GUI:
in several files.  This is the new graphical

interface that walks users through the
steps of use.

Future Interface:
unknown, but can be anything requested

(i.e. web based or scripting)

Log:
in log.cpp, this is the layer that

handles actually writting to the log
file

Change the bodies of the
ReadByte and WriteByte

functionality to change the
type of hardware for

communication

Replace with
library to

another type
of hardware

 

Figure 24: Software-design block diagram 

The following sections describe the software modules in more detail. 

9.1 WINIO 
WinIO is a third-party library that can access the hardware on the PC. Since 
Windows NT, direct hardware access has not been allowed—the Microsoft 
Hardware Abstraction Layer handles it. To gain access to the actual hardware, 
both a kernel space and a user-space driver need to be installed. For the prototype, 
it was more efficient use a third-party tool than to write one from scratch. 
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9.2 PARALLEL LAYER 
The parallel layer handles the details of reading/writing to the parallel port. It is 
basically a wrapper around the WinIO function calls. The PAR_ReadByte and 
PAR_WriteByte functions handle the details of reading and writing to the parallel 
port. By rewriting these two functions to target different hardware, it should be 
possible to change from the parallel port to another communication mechanism, 
without  rewriting any other parts of the software. 

9.3 DRIVER 
The driver layer has all the major details. This layer knows about specific registers 
on the driver FPGA. This is the one part of the software that is indispensable. This 
layer does not handle any display or memory but only handles the details of 
controlling the driver FPGA. 

9.4 LOG 
The log layer handles the details of logging the information to the local hard drive. 
Since it needs to write a file, this layer also deals with the Windows OS. It writes a 
standard form to the file, consisting of the full date and time stamp and the specific 
message to be logged. 

9.5 COMMAND LINE INTERFACE 
The original interface to the software was through the command line interface 
layer. This layer handled the display and memory handling details of the software. 
It was a simple loop continuously displaying a list of choices until the “quit” 
option was chosen. Each of the choices of action went to a new display along with 
the details for performing that action. 

9.6 GRAPHICAL USER INTERFACE 
The GUI is the new interface to the software. Compared to the command line 
interface, the GUI makes available a limited number of functions and enforces a 
strict flow of instructions. For example, it is no longer possible to start testing 
without downloading test vectors. To get into the debug features, a command line 
switch must be passed to the executable at start up. This adds an extra button on 
the main window, which opens a smaller window that can peek inside parts of the 
driver FPGA. 
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10 Test Results 
YYYY/MM/DD hh:mm:ss Action 
2004/08/04 21:29:21 Opened Log File 
2004/08/04 21:29:21 Command Line =  
2004/08/04 21:29:21 Parallel Port has been opened 
2004/08/04 21:29:21 GUI: Win Io Init = 1 
2004/08/04 21:29:27 GUI: Opening File = C:\src\radhard\hex 
files\Fifo.hex of size = 2623594 bytes 
2004/08/04 21:29:30 Done pin went high and FPGA done downloading 
2004/08/04 21:29:33 GUI: Opening File = C:\src\radhard\hex files\vector 
of size = 95 bytes 
2004/08/04 21:29:33 Downloaded Test Vectors  
2004/08/04 21:29:37 GUI: Start Test 
2004/08/04 21:29:37 DBG: Start Test Running = 0 --> 1 
2004/08/04 21:30:27 GUI: Error Count = 1.000000 
2004/08/04 21:30:27 GUI: Error Count = 2.000000 
2004/08/04 21:30:27 GUI: Error Count = 3.000000 
2004/08/04 21:30:27 GUI: Error Count = 4.000000 
2004/08/04 21:30:27 GUI: Error Count = 5.000000 
2004/08/04 21:30:27 GUI: Error Count = 6.000000 
2004/08/04 21:30:27 GUI: Error Count = 7.000000 
2004/08/04 21:30:27 GUI: Error Count = 8.000000 
2004/08/04 21:30:27 GUI: Error Count = 9.000000 
2004/08/04 21:30:27 GUI: Error Count = 10.000000 
2004/08/04 21:30:27 GUI: Error Count = 11.000000 
2004/08/04 21:30:27 GUI: Error Count = 12.000000 
2004/08/04 21:30:27 GUI: Error Count = 13.000000 
2004/08/04 21:30:27 GUI: Error Count = 14.000000 
2004/08/04 21:30:27 GUI: Error Count = 15.000000 
2004/08/04 21:30:27 GUI: Error Count = 16.000000 
2004/08/04 21:30:27 GUI: Error Count = 17.000000 
2004/08/04 21:30:27 GUI: Error Count = 18.000000 
2004/08/04 21:30:27 GUI: Error Count = 19.000000 
2004/08/04 21:30:27 GUI: Error Count = 20.000000 
2004/08/04 21:30:27 GUI: Error Count = 21.000000 
2004/08/04 21:30:27 GUI: Error Count = 22.000000 
2004/08/04 21:30:27 GUI: Error Count = 23.000000 
2004/08/04 21:30:27 GUI: Error Count = 24.000000 
2004/08/04 21:30:27 GUI: Error Count = 25.000000 
2004/08/04 21:30:27 GUI: Error Count = 26.000000 
2004/08/04 21:30:27 GUI: Error Count = 27.000000 
2004/08/04 21:30:27 GUI: Error Count = 28.000000 
2004/08/04 21:30:27 GUI: Error Count = 29.000000 
2004/08/04 21:30:27 GUI: Error Count = 30.000000 
2004/08/04 21:30:27 GUI: Error Count = 31.000000 
2004/08/04 21:30:27 GUI: Error Count = 32.000000 
2004/08/04 21:30:27 GUI: Error Count = 33.000000 
2004/08/04 21:30:27 GUI: Error Count = 34.000000 
2004/08/04 21:30:27 GUI: Error Count = 35.000000 
2004/08/04 21:30:27 GUI: Error Count = 36.000000 
2004/08/04 21:30:27 GUI: Error Count = 37.000000 
2004/08/04 21:30:27 GUI: Error Count = 38.000000 
2004/08/04 21:30:27 GUI: Error Count = 39.000000 
2004/08/04 21:30:27 GUI: Error Count = 40.000000 
2004/08/04 21:30:27 GUI: Error Count = 41.000000 
2004/08/04 21:30:27 GUI: Error Count = 42.000000 
2004/08/04 21:30:27 GUI: Error Count = 43.000000 
2004/08/04 21:30:27 GUI: Error Count = 44.000000 
2004/08/04 21:30:27 GUI: Error Count = 45.000000 
2004/08/04 21:30:27 GUI: Error Count = 46.000000 
2004/08/04 21:30:28 GUI: Error Count = 47.000000 
2004/08/04 21:30:28 GUI: Error Count = 48.000000 
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2004/08/04 21:30:28 GUI: Error Count = 49.000000 
2004/08/04 21:30:28 GUI: Error Count = 50.000000 
2004/08/04 21:30:28 GUI: Error Count = 51.000000 
2004/08/04 21:30:28 GUI: Error Count = 52.000000 
2004/08/04 21:30:28 GUI: Error Count = 53.000000 
2004/08/04 21:30:28 GUI: Error Count = 54.000000 
2004/08/04 21:30:28 GUI: Error Count = 55.000000 
2004/08/04 21:30:28 GUI: Error Count = 56.000000 
2004/08/04 21:30:28 GUI: Error Count = 57.000000 
2004/08/04 21:30:28 GUI: Error Count = 58.000000 
2004/08/04 21:30:28 GUI: Error Count = 59.000000 
2004/08/04 21:30:28 GUI: Error Count = 60.000000 
2004/08/04 21:30:28 GUI: Error Count = 61.000000 
2004/08/04 21:30:28 GUI: Error Count = 62.000000 
2004/08/04 21:30:28 GUI: Error Count = 63.000000 
2004/08/04 21:30:28 GUI: Error Count = 64.000000 
2004/08/04 21:30:28 GUI: Error Count = 65.000000 
2004/08/04 21:30:28 GUI: Error Count = 66.000000 
2004/08/04 21:30:28 GUI: Error Count = 67.000000 
2004/08/04 21:30:28 GUI: Error Count = 68.000000 
2004/08/04 21:30:28 GUI: Error Count = 69.000000 
2004/08/04 21:30:28 GUI: Error Count = 70.000000 
2004/08/04 21:30:28 GUI: Error Count = 71.000000 
2004/08/04 21:30:28 GUI: Error Count = 72.000000 
2004/08/04 21:30:28 GUI: Error Count = 73.000000 
2004/08/04 21:30:28 GUI: Error Count = 74.000000 
2004/08/04 21:30:28 GUI: Error Count = 75.000000 
2004/08/04 21:30:28 GUI: Error Count = 76.000000 
2004/08/04 21:30:28 GUI: Error Count = 77.000000 
2004/08/04 21:30:28 GUI: Error Count = 78.000000 
2004/08/04 21:30:28 GUI: Error Count = 79.000000 
2004/08/04 21:30:28 GUI: Error Count = 80.000000 
2004/08/04 21:30:28 GUI: Error Count = 81.000000 
2004/08/04 21:30:28 GUI: Error Count = 82.000000 
2004/08/04 21:30:28 GUI: Error Count = 83.000000 
2004/08/04 21:30:28 GUI: Error Count = 84.000000 
2004/08/04 21:30:28 GUI: Error Count = 85.000000 
2004/08/04 21:30:28 GUI: Error Count = 86.000000 
2004/08/04 21:30:28 GUI: Error Count = 87.000000 
2004/08/04 21:30:28 GUI: Error Count = 88.000000 
2004/08/04 21:30:28 GUI: Error Count = 89.000000 
2004/08/04 21:30:28 GUI: Error Count = 90.000000 
2004/08/04 21:30:28 GUI: Error Count = 91.000000 
2004/08/04 21:30:28 GUI: Error Count = 92.000000 
2004/08/04 21:30:28 GUI: Error Count = 93.000000 
2004/08/04 21:30:28 GUI: Error Count = 94.000000 
2004/08/04 21:30:28 GUI: Error Count = 95.000000 
2004/08/04 21:30:29 GUI: Error Count = 96.000000 
2004/08/04 21:30:29 GUI: Error Count = 97.000000 
2004/08/04 21:30:29 GUI: Error Count = 98.000000 
2004/08/04 21:30:29 GUI: Error Count = 99.000000 
2004/08/04 21:30:29 GUI: Error Count = 100.000000 
2004/08/04 21:30:29 GUI: Error Count = 101.000000 
2004/08/04 21:30:29 GUI: Error Count = 102.000000 
2004/08/04 21:30:29 GUI: Error Count = 103.000000 
2004/08/04 21:30:29 GUI: Error Count = 104.000000 
2004/08/04 21:30:29 GUI: Error Count = 105.000000 
2004/08/04 21:30:29 GUI: Error Count = 106.000000 
2004/08/04 21:30:29 GUI: Error Count = 107.000000 
2004/08/04 21:30:29 GUI: Error Count = 108.000000 
2004/08/04 21:30:29 GUI: Error Count = 109.000000 
2004/08/04 21:30:29 GUI: Error Count = 110.000000 
2004/08/04 21:30:29 GUI: Error Count = 111.000000 
2004/08/04 21:30:29 GUI: Error Count = 112.000000 
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2004/08/04 21:30:29 GUI: Error Count = 113.000000 
2004/08/04 21:30:29 GUI: Error Count = 114.000000 
2004/08/04 21:30:29 GUI: Error Count = 115.000000 
2004/08/04 21:30:29 GUI: Error Count = 116.000000 
2004/08/04 21:30:29 GUI: Error Count = 117.000000 
2004/08/04 21:30:29 GUI: Error Count = 118.000000 
2004/08/04 21:30:29 GUI: Error Count = 119.000000 
2004/08/04 21:30:29 GUI: Error Count = 120.000000 
2004/08/04 21:30:29 GUI: Error Count = 121.000000 
2004/08/04 21:30:29 GUI: Error Count = 122.000000 
2004/08/04 21:30:29 GUI: Error Count = 123.000000 
2004/08/04 21:30:29 GUI: Error Count = 124.000000 
2004/08/04 21:30:29 GUI: Error Count = 125.000000 
2004/08/04 21:30:29 GUI: Error Count = 126.000000 
2004/08/04 21:30:29 GUI: Error Count = 127.000000 
2004/08/04 21:30:29 GUI: Error Count = 128.000000 
2004/08/04 21:30:29 GUI: Error Count = 129.000000 
2004/08/04 21:30:29 GUI: Error Count = 130.000000 
2004/08/04 21:30:29 GUI: Error Count = 131.000000 
2004/08/04 21:30:29 GUI: Error Count = 132.000000 
2004/08/04 21:30:29 GUI: Error Count = 133.000000 
2004/08/04 21:30:29 GUI: Error Count = 134.000000 
2004/08/04 21:30:29 GUI: Error Count = 135.000000 
2004/08/04 21:30:29 GUI: Error Count = 136.000000 
2004/08/04 21:30:29 GUI: Error Count = 137.000000 
2004/08/04 21:30:29 GUI: Error Count = 138.000000 
2004/08/04 21:30:29 GUI: Error Count = 139.000000 
2004/08/04 21:30:29 GUI: Error Count = 140.000000 
2004/08/04 21:30:29 GUI: Error Count = 141.000000 
2004/08/04 21:30:29 GUI: Error Count = 142.000000 
2004/08/04 21:30:29 GUI: Error Count = 143.000000 
2004/08/04 21:30:29 GUI: Error Count = 144.000000 
2004/08/04 21:30:30 GUI: Error Count = 145.000000 
2004/08/04 21:30:30 GUI: Error Count = 146.000000 
2004/08/04 21:30:30 GUI: Error Count = 147.000000 
2004/08/04 21:30:30 GUI: Error Count = 148.000000 
2004/08/04 21:30:30 GUI: Error Count = 149.000000 
2004/08/04 21:30:30 GUI: Error Count = 150.000000 
2004/08/04 21:30:30 GUI: Stop Test 
2004/08/04 21:30:30 DBG: Stop Test Running = 1 --> 0 
2004/08/04 21:30:30 GUI: Final Test Error Count = 150.000000 
2004/08/04 21:30:32 Closing Log File and Exiting Program 
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11 Future Enhancements 
For a first attempt at a new technology, this project has done well. The prototype 
has demonstrated all of its intended purposes and its ability to meet demands. This 
does not mean that everything is accomplished. There are many ways to expand 
and improve this design: 
 Move off of the parallel port to a faster bus 
 Add to the driver FPGA external memory to support much-larger test vectors 
 Add to the driver FPGA the ability to store results and compare them with 

expected results 
 Add to the software the writing of data to the hard drive as it writes to the file, 

to prevent possible data loss 
 More UUT FPGA design samples that target different resource utilizations 
 Reliability enhancements to the cables and connections 
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