Revision 1.0102 Draft

May 19, 2014

Revision History

Revision	Issue Date	Comment		
1.0	05/03/2012	Version 1.0 release of the supplement.		
1.01	02/11/2013	Clarification in Section 2.5.2 about contiguous nature of RRAP and Response Packet behavior.		
		Update in Table 2-5 for optional disabling of LUP/LDN and a change in the MPHY.TEST register address space.		
		• Update in Table 3-2 for value of PM_ENTRY_TIMER and a new entry for tPortConfiguration.		
		Clarification in the implementation note of Section 3.2 regarding TX_ProtDORDY behavior.		
		Clarification in Section 3.8.2.6 for requirements to exit to the MPHY.TEST state.		
		Clarifications in Section 5.1.2 for the operational model of a DSP disconnect.		
		 Updates in Section 6 for scope for multi-lane support, addition of Analog Loopback and Tx Compliance modes, clarification of requirements for Receive Burst Testing and a change in the MPHY.TEST register address space. 		
		Update to Section 7.3 for a missing label in the figure.		
<u>1.02</u>	<u>05/19/2014</u>	Sec 1.3: Updated reference to M-PHY Spec		
		Table 2-2 & 2-3: Added attributes that are newly defined in [M- PHY] . Modified required value of RX PWM Burst Closure Length Capability		
		Sec 2.5.2: Clarified requirements for DSP in MPHY.TEST. Clarified when Write Responses are to be provided and when registers may be reset.		
		Sec 3.2: Clarified normative behavior in implementation note		
		Sec 3.3: Added note on handling of decode errors		
		• Sec 3.4: Various modifications to clarity clock compensation rules		
		Sec 3.6.2.2: Clarified the requirement to use PAIR0 for Warm Reset		
		Sec 3.8: Clarified Rx.Detect.Reset requirements for local RESET assertion. Implementation note added regarding handling of LAU corruption during U2/U3 entry and support for RX_Advanced_Granularity_Capability. Various other minor text		
		 <u>modifications</u> <u>Sec 4: Relaxed the accuracy of timestamps reported in ITP</u> 		
		packets.		
		 Sec 5: Clarified requirements for local reset assertion during USP disconnect and the RRAP operational model for DSP disconnect. Added a new section that defines Disconnect timing parameters. 		
		Sec 6: Various clarifications made on the operational behavior of <u>MPHY.TEST. Specified effect of LINE-RESET on MPHY.TEST</u> registers		
		Sec 7: Figures edited for clarity.		

For USB 3.0 Contributor Review Only

ii

Universal Serial Bus Specification Supplement Copyright © 20132014, Texas Instruments, Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, Renesas Corporation, ST-Ericsson.

All rights reserved

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

1

Contributors

Choate, James Chong, Min Jie Fleischer-Reumann, Michael Herz, Michael Marik, Thomas Schmitt, Alexander Kang, Dae Woon Kasichainula, Kishore Ma, Kenneth Maiti, Shoumik Turner, Tony Wang, Jing Hackett, Tom Nilsson, Daniel Olesen, Patrik Berkema, Alan Sun, Gilbert Chellappan, Satheesh Chen, Huimin Drottar, Ken Dunstan, Robert Froelich, Dan Harriman, David Icking, Henrik Ismail, Rahman Knuutila, Kai Leucht-Roth, Ulrich Mukker, Anoop Ramakrishnan, Sivakumar Ranganathan, Sridharan Saunders, Brad Vadivelu, Karthi R Galbo, Neal Geldman, John Hubert, Jonathan Tsai, Victor Chis, Flaviu Knapen, Geert Yokum, Chris

Agilent Technologies, Inc. Agilent Technologies, Inc. Agilent Technologies, Inc. Agilent Technologies, Inc. BitifEye Digital Test Solutions GmbH BitifEye Digital Test Solutions GmbH Broadcom Corp. Broadcom Corp. Broadcom Corp. Broadcom Corp. Broadcom Corp. Broadcom Corp. Cadence Ericsson AB Ericsson AB Hewlett Packard Industrial Technology Research Institute **Intel Corporation** Intel Corporation Intel Corporation **Intel Corporation** Intel Corporation Intel Corporation Intel Corporation Intel Corporation Intel Corporation Intel Corporation **Intel Corporation** Intel Corporation Intel Corporation Intel Corporation **Intel Corporation** Lexar Media, Inc. Lexar Media, Inc. Lexar Media, Inc. Lexar Media, Inc. MCCI Corporation

MCCI Corporation

MCCI Corporation

Aull Bandy	Microsoft Corporation
Malavala Srinivasan	Microsoft Corporation
You Yang	Microsoft Corporation
Gillet Michel	Nokia Corporation
Petrie Richard	Nokia Corporation
Atukula Radha	
	NVIDIA
Eitam Obad	Qualcomm Inc
Cruber Coorgo	
Pomple Torn	
Rimoni Voram	
Wietfeldt Bick	
	Qualcomm, Inc
Muto, Kiichi	Renesas Electronics Corp.
Roux, Steve	Renesas Electronics Corp.
leng, Peter	Renesas Electronics Corp.
Bohm, Mark	SMSC
Monks, Morgan	SMSC
Tagami, Shigenori	Sony Corporation
Bertholom, Cedric	ST-Ericsson
Christiansen, Morten	ST-Ericsson
Gatto, Jean-Francois	ST-Ericsson
Radulescu, Andrei	ST-Ericsson
Nagpal, Rajkumar	STMicroelectronics
B U, Chandrashekar	Synopsys, Inc.
Burns, Adam	Synopsys, Inc.
Carvalho, Mara	Synopsys, Inc.
Gomes, Joaquim	Synopsys, Inc.
Heilman, Kevin	Synopsys, Inc.
Kumbhani, Shaileshkumar	Synopsys, Inc.
Minwalla, Behram	Synopsys, Inc.
Mohammad, Saleem	Synopsys, Inc.
Saar, Hezi	Synopsys, Inc.
Silva, Sergio	Synopsys, Inc.
Wen, Zongyao	Synopsys, Inc.
Carlson, Brian	Texas Instruments
Harris, Will	Texas Instruments
Ley, Grant	Texas Instruments
Mone, Patrick	Texas Instruments
Spetla, Hattie	Texas Instruments

For USB 3.0 Contributor Review Only

		////	Field Code Changed
	Table of Contents	/////	Field Code Changed
1	Introduction <u>10</u> //	/////	Field Code Changed
	1.1 SSIC Significant Features	////	Field Code Changed
	1.2 SSIC and Standard SuperSpeed Comparison	////	Field Code Changed
	1.3 Related Documents	(
	1.4 Terminology	'////	
	1.5 Actionyms and remiss	////	Field Code Changed
2	Adaptation of M-PHY for the Physical Layer	////	Field Code Changed
	2.1 M-PHY for SSIC Overview	////	Field Code Changed
	2.2 M-PTTT MODULE Capabilities	////	Field Code Changed
	2.4 M-PHY State Machine 22	////	Field Code Changed
	2.5 LS-MODE Support	////	Field Code Changed
3	Link Laver	111.	Field Code Changed
-	3.1 Bit and Byte Ordering	////	Field Code Changed
	3.2 Logical Idle and FLR non-insertion	////	
	3.3 Line Coding	////	Field Code Changed
	3.4 Clock Compensation	////	Field Code Changed
	3.5 Data Scrambling	///	Field Code Changed
	3.6 PowerOn Reset and Inband Reset <u>38</u> /	///	Field Code Changed
	3.7 Link Layer Timing Requirements		Field Code Changed
	3.8 SSIC Link Training and Status State Machine (LTSSM)		Field Code Changed
4	Protocol Layer	///	Field Code Changed
	4.1 Port Capability Link Management Packet (LMP)		Field Code Changed
5	4.2 Timing Farameters		Field Code Changed
5	5.1 Dynamic Attachment and Removal	//	
6	MDUV TEST	//	Field Code Changed
0	6.1 Overview 57	///	Field Code Changed
	6.2 Entering MPHY TEST 58		Field Code Changed
	6.3 Loophack Testing	/ /	Field Code Changed
	6.4 Receive Burst Testing	/ /	Field Code Changed
	6.5 Tx Compliance Mode		Field Code Changed
	6.6 Analog Loopback Mode		Field Code Changed
	6.7 MPHY.TEST Block Registers		Field Code Changed
7	Timing Diagrams Appendix (Informative) <u>65</u>	\sim	Field Code Changed
	7.1 SS.DISABLED TO RX.DETECT		Field Code Changed
	7.2 RX.DETECT TO POLLING		
	7.3 POLLING TO UU		Field Code Changed
	7.4 UUTUUT		Field Code Changed
	7.6 U0 TO U2/U3 70		Field Code Changed
	10 00 10 02/00		Field Code Changed

Field Code Changed Field Code Changed Field Code Changed Field Code Changed

For USB 3.0 Contributor Review Only

vi

7.7	U2/U3 TO U0	 Field Code Changed
7.8	USP Disconnect	 Field Code Changed
7.9	DSP Disconnect	

I

Figures

Figure 1-1 SSIC Layers with modifications from [USB3.0] highlighted	 10
Figure 1-2 Example of an implementation with a PHY Adapter Layer to a Standard SS MAC	 11
Figure 2-1 RRAP Packet Types	
Figure 3-1 Bit Ordering	
Figure 3-2 Byte Ordering	32
Figure 3-3 Byte Ordering in a 2 LANE Configuration	
Figure 3-4 Byte Ordering in a 4 LANE Configuration	
Figure 3-5 Two examples of Logical Idle insertion in a 4x LANE configuration	
Figure 3-6 Example of SKP Insertion in a 4x LANE Configuration	36
Figure 3-7 SSIC LTSSM state diagram	 41
Figure 3-8 SS.Disabled state	42
Figure 3-9 Rx.Detect Sub-state Machine	43
Figure 3-10 Polling Sub-state Machine	45
Figure 3-11 U0 Sub-state Machine	
Figure 6-1 MPHY.TEST Overview	
Figure 6-2 Example of an MPHY.TEST Block	
Figure 6-3 Receive BURST Test Sequence	58
Figure 1-1 SSIC Layers with modifications from [USB3.0] highlighted	<u></u> 10
Figure 1-2 Example of an implementation with a PHY Adapter Layer to a Standard SS MAC	<u></u> 11
Figure 2-1 RRAP Packet Types	<u></u> 23
Figure 3-1 Bit Ordering	<u></u> 32
Figure 3-2 Byte Ordering	<u></u> 32
Figure 3-3 Byte Ordering in a 2 LANE Configuration	<u></u> 33
Figure 3-4 Byte Ordering in a 4 LANE Configuration	<u></u> 33
Figure 3-5 Two examples of Logical Idle insertion in a 4x LANE configuration	<u></u> 34
Figure 3-6 Example of SKP Insertion in a 4x LANE Configuration	<u></u> 36
Figure 3-7 SSIC LTSSM state diagram	<u></u> 41
Figure 3-8 SS.Disabled state	42
Figure 3-9 Rx.Detect Sub-state Machine	<u></u> 43
Figure 3-10 Polling Sub-state Machine	<u></u> 45
Figure 3-11 U0 Sub-state Machine	<u></u> 48
Figure 6-1 MPHY.TEST Overview	
Figure 6-2 Example of an MPHY.TEST Block	<u></u> 58
Figure 6-3 Receive BURST Test Sequence	<u></u> 58

Tables

Table 2-1 Multi-LANE Parameters	Field Code Changed
Table 2-2 M-TX Capability Attributes	Field Code Changed
Table 2-3 M-RX Capability Attributes	Field Code Changed
Table 2-4 TX Configuration Attributes	Field Code Changed
Table 2-5 RRAP Address Map24	Field Code Changed
Table 2-6 RRAP Timing Parameters	Field Code Changed
Table 3-1 Mapping of SS Control Symbols	Field Code Changed
Table 3-2 Link Layer Timing Parameter	Field Code Changed
Table 4-1 Protocol Timing Parameters	Field Code Changed
Table 5-1 Disconnect Timing Parameters	
Table 6-1 MPHY.TEST Block Registers	

1 Introduction

1

USB is the ubiquitous peripheral-interconnect of choice for a large number of computing and consumer
 applications. Many systems provide a comprehensive set of software drivers to support commonly
 available USB peripherals. In addition there is an existing USB ecosystem that includes USB silicon
 suppliers, design IP houses and verification and testing vendors that lowers the cost for product
 manufacturers of USB hosts and peripherals.

These advantages have made USB attractive as a chip-to-chip interconnect within a product (without use of cables or connectors). This usage has been validated by the adoption of the High Speed InterChip Supplement [HSIC] in mobile platforms. HSIC leveraged the benefits of High Speed USB while
optimizing the link for power, cost and complexity. However the 480 Mbps bandwidth limitation of HSIC
poses a limitation for the next generation of applications that require higher bandwidth.

12 The USB 3.0 specification adds support for transfer speeds of 5 Gbps to address the need for higher 13 bandwidth. However the USB3.0 specification as-is does not meet the requirements of embedded inter-

- 14 chip interfaces with respect to power and EMI robustness. To address this need, this supplement
- 15 describes Super Speed Inter-Chip (SSIC) as an optimized inter-chip version of USB3.0.

17

10

Figure 1-1 SSIC Layers with modifications from [USB3.0] highlighted

As shown in Figure 1-1, SSIC uses the MIPI M-PHY specification as the physical layer of the interconnect to meet the requirements of embedded inter-chip interfaces. The MIPI M-PHY [M-PHY]

specification describes a serial physical layer technology with high bandwidth capabilities, which is 20 21 specifically developed for mobile applications to obtain low pin count combined with very good power 22 efficiency. 1.1 SSIC Significant Features 23 The following summarizes the key features of SSIC: 24 25 Support for the SuperSpeed protocol only as defined in [USB 3.0] • 26 Optimized for power, area, cost and EMI robustness for embedded inter-chip interfaces Compliant with the Type-I M-PORTs from the MIPI M-PHY specification [M-PHY] 27

Support for x1, x2 and x4 LANE configurations.

This supplement only focuses on peripherals that are directly attached to hosts. Support for hubs is not defined and may be achieved in an implementation-specific manner.

31 **1.2 SSIC and Standard SuperSpeed Comparison**

SSIC has been designed to replace a standard SuperSpeed Controller and PHY with an implementation
 that maps the SuperSpeed controller on the MIPI M-PHY. *This supplement does not specify details* of any particular implementation and it is intended that SSIC be implementable in multiple ways,

35 depending on what is appropriate for a particular product.

36 37

28

Figure 1-2 Example of an implementation with a PHY Adapter Layer to a Standard SS MAC

Figure 1-2 shows an example of an SSIC implementation that leverages a standard SuperSpeed
 controller with minimal modifications in the link layer and above. All specifics related to SSIC including
 bridging logic between the PIPE3 interface of the controller and the Reference M-PHY MODULE

41 42 43 44 45		Interface (RMMI) of the M-PHY are contained in the PHY Adapter (PA). In such an implementation, in necessary for the PHY Adapter to implement whatever mechanisms are needed to allow the controlled operate as if it were connected to a SuperSpeed link, for example by tracking the Link Training Status State Machine (LTSSM) and providing the expected responses on the link. Other alternatives to this example may also be designed that are compliant to this supplement.						
46								
47		1.3 Related	Documents					
48 49		This is not a stan specifically chang	d-alone document. It is a supplement to [USB 3.0]. Any aspects of USB which are not ged by this supplement are governed by [USB 3.0].					
50		The following refe	erenced documents can be found on the USB-IF website www.usb.org:					
		[USB 3.0]	Universal Serial Bus Revision 3.0 Specification including ECNs					
		[HSIC]	High Speed Inter-Chip USB Electrical Specification including ECNs					
51								
52		The following refe	erenced documents are published by the MIPI Alliance:					
		[M-PHY]	MIPI® Alliance Specification for M-PHY SM Version 23.0					
		[CTS]	MIPI M-PHY Conformance Test Suite					
53								
54		1.4 Termino	logy					
55 56		"Shall" is normati order to conform	ve and used to indicate mandatory requirements which are to be followed strictly in to this standard.					
57		"Should" is norma	ative and used to indicate a recommended option or possibility.					
58		"May" is normativ	e and used to indicate permitted behavior.					
59		"Can" is informati	ve and used to indicate behavior which is possible or may be seen					
60		The use of "must	and "will" is deprecated for requirements and shall only be used for statements of fact.					
61								
62		1.5 Acronyn	ns and Terms					
63		This section lists	and defines terms and abbreviations used throughout this specification.					
64 65 66		Acronyms and Te noted, when ther 3.0] definition is u	erms defined in [USB 3.0] and [M-PHY] are not reproduced here. Except where explicitly e is a terminology conflict between the [USB 3.0] and [M-PHY] specifications, the [USB used in this document.					
	Ac	ronym/Term	Description					
DSP		P	DownStream Port (DSP) refers to the port of a host to which a peripheral is connected.					

12

Link	Refers to the Link Layer as defined in [USB 3.0]. To be distinguished from "M-PHY LINK".
M-PHY LINK	Refers to LINK as defined in [M-PHY] .
ΡΑ	PHY Adapter (PA). Term that refers to logic that interfaces the link layer with the M-PHY.
PAIR	A PAIR consists of a LANE in the downstream SUB-LINK and a counterpart LANE in the upstream SUB-LINK.
RRAP	Remote Register Access Protocol (RRAP) is used while in the PWM-BURST LS-MODE of operation.
SSIC	SuperSpeed Inter-Chip.
USP	UpStream Port (USP) refers to the port that a peripheral uses to connect to a host.

67

Adaptation of M-PHY for the Physical Layer 68 2

69 70

This document references the MIPI M-PHY [M-PHY] specification for the definition of the physical layer. This section includes an overview of the relevant M-PHY features, defines required M-PHY capabilities and describes functionality while in the [M-PHY] LS-MODE of operation.

72 2.1 M-PHY for SSIC Overview

- 73 The following summarizes relevant M-PHY features:
 - Requirement to implement Type-I M-PHY
 - Support for PWM-G1 and HS-G1/G2/G3 BURST mode operation
 - SSIC profile definitions to aid in inter-operability of M-PHYs in SSIC implementations
 - M-PHY SAVE states mapped appropriately to SuperSpeed link states
 - Compliant to M-PHY Symbol coding (8b10b) engine for spectral conditioning and clock recovery
 - Ability to operate with shared and non-shared reference clocks. •

80

71

74

75 76

77

78 79

83

84

M-PHY Architecture and the Definition of PAIRs 2.1.1

The architecture of the M-PHY is defined in terms of LANEs, SUB-LINKs and LINKs. The M-PHY LINK 81 82 shall comply with the following:

- The two SUB-LINKs of an SSIC implementation shall support the same number of LANEs. •
- All LANEs in the M-PHY LINK shall enter and exit HIBERN8 simultaneously.
- 85 In addition this supplement defines the concept of a PAIR.
- A LANE in the downstream SUB-LINK and a counterpart LANE in the upstream SUB-LINK are together 86 referred to as a PAIR. A multi-LANE implementation consists of multiple PAIRs and shall have a specific 87 PAIR be statically pre-determined as PAIR0. A single-LANE implementation shall consist of only one 88 PAIR which shall be PAIR0. 89

2.2 M-PHY MODULE Capabilities 90

- The M-PHY specification defines capability, configuration and status attributes for an M-TX and for an M-91 RX MODULE. Capability attributes describe the capability of M-PHY MODULEs and may vary 92 93 depending on the implementation.
- 94 To aid in the inter-operability of devices, this document defines profiles within which specific M-PHY 95 Capabilities are mandated.

96 2.2.1 Profile Definitions

- Profiles are indicated by jointly specifying the speed, the multi-LANE capabilities and the rate series such 97 98 as:
- 99 SSIC-Gar-Lt where
- 100 g = 1, 2 or 3 and indicates the specific HS-GEAR that the M-PHY LINK operates in
 - r = A or B and indicates the Rate Series that the M-PHY LINK operates in
 - l = 1, 2 or 4 and indicates the number of LANEs active in each SUB-LINK (See Section 2.2.2)
- 103 All lanes in an implementation shall only operate at the HS-GEAR that corresponds to the profile that is supported. An implementation is permitted to support one or more profiles, however the combination of 104 105 different profiles supported by a specific implementation are out of scope of this specification. For 106
- example: an SSIC-G2A-L1 may or may not choose to support SSIC-G1B-L1.

101 102

- 107 An implementation of a profile shall support the corresponding speed, multi-LANE and mandated 108 capabilities of the M-TX and M-RX MODULEs as specified in Section 2.2.3.
- Certain M-PHY MODULE configurations attributes are chosen not based on the choice of profile or the
 mandate of this document but instead are based on implementation-specific constraints. A complete list
 of such parameters is specified in Section 2.3.

112 2.2.2 Multi-LANE Capabilities

- 113 An implementation may choose to feature one (x1), two (x2) or four (x4) LANEs in each SUB-LINK.
- 114 The HS-TX LANE-to-LANE skew shall be established by the receipt of a MK0 symbol at the start of a 115 HS-Burst. Receivers shall accept LANE-to-LANE skew up to the allowed limit.
- 116 For multi-LANE M-PHY LINKs, Table 2-1 specifies the required timing parameters.
- 117

Table 2-1 Multi-LANE Parameters

Symbol	Parameter	Value	Comments			
T _{L2L_SKEW_HS_TX}	Permitted skew between any two LANEs measured at the M-TX's pins	1300ps	To be measured by the receipt of MK0 at the start of a HS- BURST and as defined in Section 5.1.2.4 of [M-PHY]			
T _{L2L_SKEW_HS_RX}	Permitted skew between any two LANEs measured at the receiver's pins	4000ps				

118

119 2.2.3 M-TX and M-RX Capabilities

- 120 An implementation shall ensure that the local and remote M-PORTs are configured to the selected 121 profile. M-PORTs are required to support the M-TX and M-RX capabilities required in this section.
- Table 2-2 and Table 2-3 define the set of capabilities that are mandated for M-TX and M-RX MODULEs
 respectively. The tables list attributes for which this supplement imposes specific requirements.
 Attributes defined by [M-PHY] which are not specified by this supplement may be set to implementation specific values.
- 125

- 126
- 127
- 128

Table 2-2 M-TX Capability Attributes

Attribute	AttrID	Description	M-PHY range	Required Value
TX_HSMODE_Capability	0x01	Specifies support for HS-MODE.	0=no 1=yes	1
TX_HSGEAR_Capability	0x02	Specifies supported HS-GEARs.	1=HS-G1 2=HS-G1/G2 3=HS-G1/G2/G3	≥1 for SSIC-G1 ≥2 for SSIC-G2 =3 for SSIC-G3
TX_PWMGEAR_Capability	0x04	Specifies support for PWM-GEARs other than PWM-G0.	PWM_G1_ONLY = 1, PWM_G1_TO_G2 = 2, PWM_G1_TO_G3 = 3, PWM_G1_TO_G4 = 4, PWM_G1_TO_G5 = 5, PWM_G1_TO_G6 = 6, PWM_G1_TO_G7 = 7	≥ 1
TX_Amplitude_Capability	0x05	Specifies supported signal amplitude levels.	1=SA 2=LA 3=SA and LA	3 = SA and LA. Both options supported.
TX_ExternalSYNC_Capability	0x06	Specifies support for external SYNC pattern.	0=no 1=yes	≥ 0
TX_HS_Unterminated_LINE_Drive_Capability	0x07	Specifies whether or not M-TX supports driving an unterminated LINE in HS-MODE.	0=no 1=yes	≥0
TX_LS_Terminated_LINE_Drive_Capability	0x08	Specifies whether or not M-TX supports driving a terminated LINE in LS-MODE.	0=no 1=yes	≥ 0
TX_Min_SLEEP_NoConfig_Time_Capability	0x09	Specifies minimum time (in SI) in SLEEP state needed when inline configuration was not performed.	1 to 15	≤ 15

Attribute	AttrID	Description	M-PHY range	Required Value		
TX_Min_STALL_NoConfig_Time_Capability	0x0A	Specifies minimum time (in SI) in STALL state needed when inline configuration was not performed.	1 to 255	≤8		
TX_Min_SAVE_Config_Time_Capability	0x0B	Specifies minimum reconfiguration time (in 40 ns steps). This applies only to SLEEP and STALL states.	1 to 250 (10000 ns)	≤ 125 (5000 ns)]	Formatted Table
TX_REF_CLOCK_SHARED_Capability	0x0C	Specifies support for a shared reference Clock.	0 = no 1 = yes	≥ 0		
TX_PHY_MajorMinor_Release_Capability	0x0D	Specifies the major and minor numbers of the M-PHY version supported by the M-TX.	Major version 0 to 9 Minor version 0 to 9	Based on M-PHY Spec Rev in Section 1.3		
TX_PHY_Editorial_Release_Capability	0x0E	Specifies the sequence number of the M-PHY version supported by the M-TX.	1 to 99	Based on M-PHY Spec Rev in Section 1.3		
TX_Hibern8Time_Capability	0x0F	Specifies minimum time (in 100 µs steps) in HIBERN8 state.	1 to 128 (100 µs to 12.8 ms)	1 (100 µs)		
TX_Advanced_Granularity_Capability	<u>0x10</u>	Support and degree of fine granularity steps for a reduced time in HIBERN8 state. If a finer granularity is specified, all coarser granularities shall be supported.	$\frac{\text{Step size}}{\text{b00} = 4 \ \mu\text{s},}$ $\frac{\text{b01} = 8 \ \mu\text{s},}{\text{b10} = 16 \ \mu\text{s},}$ $\frac{\text{b11} = 32 \ \mu\text{s}}{\text{Supports fine}}$ $\frac{\text{granularity}}{\text{steps:}}$ $\frac{\text{No} = 0 \ (100 \ \mu\text{s step}),}{\text{Yes} = 1}$	Step Size No Requirement defined. Supports fine granularity steps: ≥ 0	_	
TX_Advanced_Hibern8Time_Capability	<u>0x11</u>	Specifies minimum time in HIBERN8 state when advanced granularity is supported in steps defined by TX Advanced Granularity Capability. Existence depends on: TX Advanced Granularity Capability	<u>1 to 128</u>	No Requirement defined.		

Attribute	AttrID	Description	M-PHY range	Required Value
TX_HS_Equalizer_Setting_Capability	<u>0x12</u>	Support for transmit path de-	<u>B[0] = 0:</u>	<u>B[0] ≥ 0</u>
		emphasis for HS-MODE	De-emphasis of	<u>B[1] ≥ 0</u>
		Existence depends on:	3.5dB not supported,	
		TX_HSMODE_Capability	B[0] = 1;	
			De-emphasis of	
			3.5dB supported,	
			B[1] = 0;	
			De-emphasis of	
			6dB not supported,	
			B[1] = 1;	
			De-emphasis of	
			6dB supported	

130

		Table 2-3 M-RX Capability Attribut	es	
Attribute	AttrID	Description	M-PHY Range	Required Value
RX_HSMODE_Capability	0x81	Specifies support for HS-MODE.	0=no 1=yes	1=yes
RX_HSGEAR_Capability	0x82	Specifies supported HS-GEARs.	1=HS-G1 2=HS-G1/G2 3=HS-G1/G2/G3	≥1 for SSIC-G1 ≥2 for SSIC-G2 =3 for SSIC-G3
RX_PWMGEAR_Capability	0x84	Specifies support for PWM-GEARs other than PWM-G0.	PWM_G1_ONLY = 1, PWM_G1_TO_G2 = 2, PWM_G1_TO_G3 = 3, PWM_G1_TO_G4 = 4, PWM_G1_TO_G5 = 5, PWM_G1_TO_G6 = 6, PWM_G1_TO_G7 = 7	≥1
RX_HS_Unterminated_Capability	0x85	Specifies support for disconnection of resistive termination in HS- MODE.	0=no 1=yes	0 = no for all profiles
RX_LS_Terminated_LINE_Drive_Cap ability	0x86	Specifies support for enabling resistive termination in LS-MODE.	0=no 1=yes	≥ 0
RX_Min_SLEEP_NoConfig_Time_Capability	0x87	Specifies minimum time (in SI) in SLEEP state needed when inline configuration was not performed.	1 to 15	≤ 15

Formatted: Indent: First line: 0.25"

For USB 3.0 Contributor Review Only

18

Attribute	AttrID	Description	M-PHY Range	Required Value
RX_Min_STALL_NoConfig_Time_Capability	0x88	Specifies minimum time (in SI) in STALL state needed when inline configuration was not performed.	1 to 255	≤ 8 Please see Note 1.
RX_Min_SAVE_Config_Time_Capability	0x89	Specifies minimum reconfiguration time (in 40 ns steps). This applies only to SLEEP and STALL states.	1 to 250 (10000 ns)	≤ 125 (5000 ns)
RX_REF_CLOCK_SHARED_Capability	0x8A	Specifies support for a shared reference Clock.	0=no 1=yes	≥ 0
RX_HS_G1_SYNC_LENGTH_Capability	0x8B	HS-G1 Synchronization pattern length in SI.	{Sync range, Sync Length}	≤ {1,4}
RX_HS_G1_PREPARE_LENGTH_Capability	0x8C	HS-G1 prepare length multiplier for M-RX	0 to 15	≤ 4
RX_LS_PREPARE_LENGTH_Capability	0x8D	PWM-BURST or SYS-BURST PREPARE length multiplier for M- RX.	0 to 15	≤ 8
RX_PWM_Burst_Closure_Length_Capability	0x8E	Specifies minimum burst closure time (in SI) necessary to guarantee complete data processing inside M-RX.	0 to 31	≤ 7 <u>16</u>
RX_Min_ActivateTime_Capability	0x8F	Specifies minimum activate time needed in 100us steps	1 to 9	1
RX_PHY_MajorMinor_Release_Capability	0x90	Specifies the major and minor numbers of the M-PHY version supported by the M-RX.	Major version 0 to 9 Minor version 0 to 9	Based on M-PHY Spec Rev in Section 1.3
RX_PHY_Editorial_Release_Capability	0x91	Specifies the sequence number of the M-PHY version supported by the M-RX.	1 to 99	Based on M-PHY Spec Rev in Section 1.3
RX_Hibern8Time_Capability	0x92	Specifies minimum time (in 100 µs steps) in HIBERN8 state.	1 to 128 (100 µs to 12.8 ms)	1 (100 µs)
RX_HS_G2_SYNC_LENGTH_Capability	0x94	HS-G2 Synchronization pattern length in SI.	{Sync range, Sync Length}	≤ {1,5}

Attribute	AttrID	Description	M-PHY Range	Required Value
RX_HS_G3_SYNC_LENGTH_Capability	0x95	HS-G3 Synchronization pattern length in SI.	{Sync range, Sync Length}	≤ {1,6}
RX_HS_G2_PREPARE_LENGTH_Capability	0x96	HS-G2 prepare length multiplier for M-RX	0 to 15	≤ 4
RX_HS_G3_PREPARE_LENGTH_Capability	0x97	HS-G3 prepare length multiplier for M-RX	0 to 15	≤ 4
RX Advanced Granularity Capability	<u>0x98</u>	Support and degree of fine granularity steps for THIBERN8 and TACTIVATE.	$\frac{\text{Step size}}{\text{b00} = 4 \ \mu\text{s},}$ $\frac{\text{b01} = 8 \ \mu\text{s},}{\text{b10} = 16 \ \mu\text{s},}$ $\frac{\text{b10} = 16 \ \mu\text{s},}{\text{b11} = 32 \ \mu\text{s}}$ $\frac{\text{Supports fine}}{\text{granularity steps}}$ $\frac{\text{No} = 0 \ (100 \ \mu\text{s})}{\text{step},}$ $\frac{\text{step}}{\text{Yes} = 1}$	Step Size No Requirement defined. Supports fine granularity steps: ≥ 0
RX Advanced Hibern8Time Capability	<u>0x99</u>	Specifies minimum time in HIBERN8 state when advanced granularity is supported in steps defined by RX advanced Granularity Capabi lity. Existence depends on: RX Advanced Granularity Capabi lity	<u>1 to 128</u>	<u>No Requirement</u> <u>defined.</u>
RX Advanced Min ActivateTime Capabili	<u>0x9A</u>	Specifies minimum activate time when advanced granularity is supported in steps defined by RX_Advanced_Granularity_Capabi lity. Existence depends on: RX_Advanced_Granularity_Capabi lity	<u>1 to 14</u>	<u>No Requirement</u> <u>defined.</u>

131 132

Note 1: [M-PHY] requires an RMMI based M-RX to output at least two cycles of RX_SymbolClk after the end of a HS-BURST. An M-RX cannot exit STALL to start a new HS-BURST until after it has output two cycles of RX_SymbolClk from the previous HS-BURST. Depending

on the width of RX_Symbol (ie 10/20/40 bits), two cycles of RX_SymbolCk may be either 2, 4 or 8 SIs. For an RX_Symbol width of 40 bits,
 the M-RX needs to remain in stall for at least 8 SIs before the start of the next burst.

20

135

136 **2.3 M-PHY Configuration Attributes**

As noted in Annex D.2 in [M-PHY], M-TX Configuration attributes shall be set appropriately to match the corresponding M-RX capability
 attribute values. Depending on the profile supported by the implementation, default values for the configuration attributes for the M-TX and
 M-RX MODULE shall be suitably chosen and configured by implementations. Optimizations to the default values for the configuration
 attributes may be applied in an implementation-specific manner. For more details on the configuration attributes please refer to [M-PHY]

141 However there are some M-PHY configuration attributes listed in Table 2-4 that are not based on the profile but are instead configured

depending on implementation considerations. This section makes note of these implementation-specific configuration parameters. This

supplement does not specify recommended values for these parameters and does not mandate a mechanism for configuring and coordinating

the values of these parameters across the M-PHY LINK.

145

Table 2-4 TX Configuration Attributes

Attribute	AttrID	Description	M-PHY range	Required Value
TX_HS_SlewRate	0x26	Slew Rate control of M-TX output driver.	0 to 255	Depending on implementation.
TX_DRIVER_POLARITY	0x2F	M-TX output driver polarity.	NORMAL = 0, INVERTED = 1	Depending on implementation.

146 **2.4 M-PHY State Machine**

- 147 This supplement is in compliance with the State Machine for Type-I MODULEs as described in Figure 7 148 for M-TX and Figure 8 for M-RX in [M-PHY].
- 149 However the following is to be noted:
- The LINE-CFG states are not required for SSIC implementations.
- Optical Media Converters are not supported.
- 152 Details regarding the mapping of the SSIC Link Training and Status State Machine (LTSSM) on the M-153 PHY Type-I state machines are provided in Section 3.8.

154 **2.5 LS-MODE Support**

- 155 The M-TX and M-RX MODULEs enter the LS-MODE of operation following events such as a power-onreset, a warm reset, a USP disconnect or a DSP disconnect. Section 3.8 includes further details on the link layer conditions for entering LS-MODE.
- 158 The only PWM-GEAR that is used in a PWM-BURST is PWM-G1. The Remote Register Access Protocol 159 (RRAP) defined in Section 2.5.2 shall be implemented for data transmission in this mode.
- 160 Data transmission in a PWM-BURST shall take place in one of the following scenarios:
 - In the Rx.Detect LTSSM state between a USP and a DSP or
 - in the MPHY.TEST LTSSM state when the USP or DSP operates as a DUT under the control of external Test Equipment.
- 164 The following section details the entry conditions for PWM-BURST in the Rx.Detect state. For details on 165 the entry requirements in the MPHY.TEST state please refer to Section 6.2.

166 2.5.1 PWM-BURST Entry in Rx.Detect

- Upon entering the Rx.Detect LTSSM state and the LS-MODE sub-state as described in Section 3.8.2, a
 DSP and an USP shall:
- Disable Support for LCCs in the M-TX for all PAIRs.
 - Initiate a PWM-BURST as defined in this section.

Implementation Note:

As per [M-PHY] disabling support for LCC requires configuring a value of "NO = 0" to the LCC_ENABLE Configuration Attribute in the Effective Bank and subsequently asserting the TX_CfgUpdt signal of the M-TX for all PAIRs.

171

170

161

162

163

- 172 The DSP shall initiate a PWM-BURST as per [M-PHY] on the M-TX MODULE of PAIR0. The DSP shall 173 then monitor the M-RX of PAIR0 for the USP to initiate a PWM-BURST.
- 174The USP shall initiate a PWM-BURST as per [M-PHY] on the M-TX MODULE of PAIR0 after it detects a175PWM-BURST on the M-RX of PAIR0.
- 176 In a multi-LANE M-PHY LINK the remaining M-TX MODULEs shall remain in the SLEEP state.

177 2.5.2 Remote Register Access Protocol (RRAP)

178 While in the PWM-BURST mode, communication is achieved using the RRAP which consists of the 179 following packet types:

- Write Command
- 181 Write Response
- 182 Read Command
- 183 Read Response
- 184 An RRAP Master shall be capable of issuing Command packets while a RRAP Target shall issue185 response packets.

186

Write Command

	Ρ			I	Rsvo	ł						Da	ata						L	owe	rAdo	dr			U	ppe	rAd	dr	Rs	vd	0	0
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Byte					3							:	2								1							()			

Write Response

	Ρ														I	Rsvo	ł														0	1
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
yte				3	3							2	2								1							()			

Read Command

	Ρ								Rsvo	ł									L	owe	rAdo	dr			U	рре	rAdo	dr	Rs	vd	1	0
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Byte				3	3								1								1							(D			

Read Response

	Ρ			1	Rsvo	ł						Da	ita										Rs	svd							1	1
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Byte			3									4	2								1							()			

187 188

192

193

195

196 197

198

199

Figure 2-1 RRAP Packet Types

- 189 The RRAP packets are described in Figure 2-1 along with the following additional requirements:
- "LowerAddr" and "UpperAddr" values are set based on the address map defined in Table 2-5.
- The "Rsvd" fields shall not be used and shall be set to 0.
 - The "P" field functions as an odd-parity bit for the entire packet.
 - The entire packet is transmitted continuously without intervening symbols.

194 The following requirements apply to the RRAP:

- When in PWM-BURST mode and not transmitting a RRAP packet, the M-TX MODULEs in SUB-LINKs shall transmit the FLR symbol as per [M-PHY].
- The RRAP follows the bit and byte ordering rules defined in Section 3.1.
- A DSP shall support RRAP Master functionality. A DSP that supports the optional MPHY.TEST state shall support RRAP Target functionality.

For USB 3.0	Contributor Review Only
1 01 0 0 0 0.0	

200 201 202 203	•	When in PWM-BURST, a DSP that supports the optional MPHY.TEST state shall always-support the receipt of a Write Command to enable a transition to that state. <u>All RRAP commands received by a DSP in the MPHY.TEST state shall be processed per RRAP Target functionality.</u> A USP shall only support RRAP Target functionality.
204 205	•	Test Equipment shall function as a RRAP Master with either the DSP or the USP as the Device Under Test (DUT).
206 207 208	•	A DSP serving as a RRAP Master shall only send commands and receive responses on PAIR0. A DSP or an USP serving as a RRAP Target shall support receiving commands over any PAIRx and shall return a response on the same PAIRx
209 210	•	Test Equipment serving as a RRAP Master may send commands and receive responses on any PAIR.
211 212 213 214	•	Upon receiving a Write Command packet, a Target shall transmit the corresponding response packet within tRRAPTargetResponse. This requirement shall apply for any Write Command received including Writes to Reserved Registers and Registers that are identified in Table 2-5 as having no effect.
215 216	•	Upon receiving a Read Command packet, a Target shall transmit the corresponding response packet within tRRAPTargetResponse.
217 218 219	•	If a Master has issued a Command, then the Master shall not retry the Command or issue another Command until either the Target has provided a Response, or after tRRAPInitiatorResponse has elapsed.
220 221	•	A Target shall map the attributes of all implemented PAIRs to RRAP addresses as defined in Table 2-5.
222	٠	A Target shall not send a response until the RRAP Command is fully received with a valid parity.

Implementation Note:

Additional steps to improve the reliability offered by a single parity bit may be taken at the RRAP level using implementation specific means such as redundant write commands or performing reads after writes to ensure the correctness of operations.

223

22	24

Table	2-5	RRAP	Address	Мар
-------	-----	------	---------	-----

UpperAddr	LowerAddr	Register Name	Description
0x0	0x00-0xFF	As defined in [M-PHY]	Capability, configuration and status attributes for PAIR0. Writes to these registers shall only affect the shadow bank until an RCT is executed. The Target shall provide a Write Response only after the <u>corresponding Register</u> Write <u>specified in the</u> <u>RRAP</u> Command is <u>completed</u> to the <u>shadow bank</u> .
0x1	0x00-0xFF	As defined in [M-PHY]	Capability, configuration and status attributes for PAIR1. Writes to these registers shall only affect the shadow bank until an RCT is executed. The Target shall provide a Write Response only after the <u>corresponding Register</u> Write <u>specified in the</u> <u>RRAP</u> Command is <u>completed</u> <u>committed to the</u> <u>shadow bank</u> .

UpperAddr	LowerAddr	Register Name	Description	
0x2	0x00-0xFF	As defined in [M-PHY]	Capability, configuration and status attributes fo PAIR2. Writes to these registers shall only affec the shadow bank until an RCT is executed. The Target shall provide a Write Response only afte the <u>corresponding Register</u> Write <u>specified in the</u> <u>RRAP</u> Command is <u>completed</u> committed to the <u>shadow bank</u> .	
0x3	0x00-0xFF	As defined in [M-PHY]	Capability, configuration and status attributes for PAIR3. Writes to these registers shall only affect the shadow bank until an RCT is executed. The Target shall provide a Write Response only affect the <u>corresponding Register</u> Write <u>specified in the</u> <u>RRAP</u> Command is <u>completed</u> committed to the <u>shadow bank</u> .	
0x4	0x00	DSP_DISCONNECT	 This Register is used by a DSP following a LINE-RESET to signal a DSP Disconnect. This bit is required only for an USP only. A DSP or a USP in the MPHY.TEST state shall ignore writes to this register. Read/Write Attributes: R/W Reset Default: Value on the assertion of M-PHY local RESET: 0x00 0x00 Bit [0]: Writing 1'b1 signals a DSP disconnect as detailed in Section 5.1.2. Writing 1'b0 shall have no effect. Once the bit is set, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment. Bit [7:1] Reserved. Writes shall be ignored and Reads shall return zero values. 	
0x4	0x01	CONFIGURE_FOR_HS	This Register is used to direct the Target to update its shadow bank for HS-BURST with the settings that correspond to the SSIC profile supported. As noted in Section 2.2.1 this profile is statically determined and this supplement provides no means for selecting between different profiles if so supported. The Target shall provide a Write Response to this Command-only after the	

Fo

For USB 3.0 Contributor Review Only

	UpperAddr	LowerAddr	Register Name	Description
				corresponding Register Write specified in the RRAP Command is committed to the shadow bank-registers are updated.
				A Master may alternatively choose to not use this register in which case it shall rely on a set of implementation-specific RRAP commands to update the shadow bank of the Target for HS-BURST operation.
				Read/Write Attributes:
				• R/W
				Reset Default:
				 Value on the assertion of M-PHY local RESET: 0x00
				• 0000 Bit [0]:
				 Writing 1'b1 directs the Target to update its shadow bank with the settings that correspond to its SSIC profile. Writing 1'b0 shall have no effect.
				Once the bit is set <u>the action cannot be undone</u> and can, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment.
				Bit[7:1] Reserved.
				 Writes shall be ignored and Reads shall return zero values.
	0x4	0x02	BURST_CLOSURE	This Register is used to direct the Target to terminate the PWM-BURST.
				Read/Write Attributes:
				• R/W
				Reset Default:
				 Value on the assertion of M-PHY local RESET: 0x00 0x00
•				Bit [0]:
				 Writing 1'b1 terminates the PWM-BURST and initiates an RCT to exit LS-MODE as defined in Section 2.5.3. Writing 1'b0 shall have no effect.
				Once the bit is set the action cannot be undone and can, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or

26

UpperAddr	LowerAddr	Register Name	Description	
			by Test Equipment.	
			Bit[7:1] Reserved.	
			 Writes shall be ignored and Reads shall return zero values. 	
0x4	0x03	DISABLE_SCRAMBLING	This Register is used by a DSP to indicate to an USP that data transmission in HS-MODE shall have scrambling disabled. A DSP or a USP in the MPHY.TEST state shall ignore writes to this register.	
			Read/Write Attributes:	
			• R/W	
			Reset Default:	
			 Value on the assertion of M-PHY local RESET: 0x00 0x00 	
			Bit [0]:	
			 Writing 1'b1 configures the USP to disable HS-MODE scrambling. Writing 1'b0 shall have no effect. 	
			Once the bit is set <u>the action cannot be undone</u> and can <u>, it shall</u> only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment.	
			Bit [7:1] Reserved.	
			 Writes shall be ignored and Reads shall return zero values. 	

UpperAddr	LowerAddr	Register Name	Description	
0x4	0x04	DISABLE_STALL_IN_U0	This Register is used by a DSP to disable STALL entry in U0 in an USP. A DSP or a USP in the MPHY.TEST state shall ignore writes to this register.	
			Read/Write Attributes:	
			• R/W	
			Reset Default:	
			 Value on the assertion of M-PHY local RESET: 0x00 0x00 	
			Bit [0]:	
			 Writing 1'b1 configures the USP to disable STALL entry while in U0. Writing 1'b0 shall have no effect. 	
			Once the bit is set the action cannot be undone and can, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment.	
			Bit [7:1] Reserved.	
			 Writes shall be ignored and Reads shall return zero values. 	
0x4	0x05	DISABLE_LUP_LDN	This optional Register is used by a DSP to disable the use of the LDN and LUP Link Commands defined in [USB 3.0] to allow additional power optimizations in the MTX	
			Read/Write Attributes:	
			• R/W	
			Reset Default:	
			 Value on the assertion of M-PHY local RESET: 0x00 0x00 	
			Bit [0]:	
			 Writing 1'b1 configures the USP to disable LUP/LDN commands. In addition, the USP shall not flag a tU0LTimeout Error or transition to Recovery upon detecting a missing LUP or LDN. A DSP that generates a RRAP command to set this bit shall not transmit any LUP and LDN link commands. In addition, the DSP shall not flag a tU0LTimeout Error or transition to Recovery upon detecting a missing tUP performed. 	

UpperAddr	LowerAddr	Register Name	Description	
			Writing 1'b0 shall have no effect.	
			Once the bit is set <u>the action cannot be undone</u> and can, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment.	
			Bit [7:1] Reserved.	
			 Writes shall be ignored and Reads shall return zero values. 	
0x4	0x06<u>0</u>x05 - 0xFE	RESERVED	Reserved. Writes shall be ignored and Reads shall return zero values.	
0x4	0xFF	TEST_MODE	This Register is used by Test Equipment to configure a Target in the MPHY.TEST state. The Target shall complete its configuration to the MPHY.TEST state prior to issuing a Write Response to the command.	
			Read/Write Attributes:	
			• R/W	
			Reset Default:	
			 Value on the assertion of M-PHY local RESET: 0x00 0x00 	
			Bit [0]:	
			 Writing 1'b1 configures the RRAP Target in the MPHY.TEST state. Writing 1'b0 shall have no effect. 	
			Once the bit is set-the action cannot be undone and can, it shall only be reset via a LINE-RESET issued either by a DSP (as part of Warm Reset) or by Test Equipment.	
			Bit [7:1] Reserved.	
			Writes shall be ignored and Reads shall return zero values.	

For USB 3.0 Contributor Review Only

UpperAddr	LowerAddr	Register Name	Description	
0x5	0x00	PAIR_CAPABILITY	This Register is used by a Master to determine the number PAIRs supported by a Target.	
			Read/Write Attributes:	
			 ROWrites to this register shall be ignored.	
			Reset Default:	
			Implementation-specific.	
			Bit [0]:	
			 A read of this field shall always return a value of 1'b1 	
			Bit [1]:	
			 A read of this field shall return a value of 1'b1 if PAIR0 and PAIR1 are supported. 	
			Bit [2]:	
			 A read of this field shall return a value of 1'b1 if PAIR0, PAIR1, PAIR2 and PAIR3 are supported. 	
			Bit [7:3] Reserved.	
			Reads shall return zero values.	
0x5	0x01- 0xFF	RESERVED	Reserved. Writes shall be ignored and Reads shall return zero values.	
0x6-0xD	0x00-0xFF	RESERVED	Reserved. Writes shall be ignored and Reads shall return zero values.	
0xE	0x00-0xFF	MPHY.TEST Registers	Refer to Section 6.	
0xF	0x00-0xFF	VENDOR-SPECIFIC REGISTERS	Registers in this address space are not defined in this specification and are reserved to implement vendor-specific functionality.	

225

228

229

230

231

232

226 2.5.3 PWM-BURST Closure

227 PWM-BURST closure shall be implemented in the following manner:

• The Master shall set BURST_CLOSURE[0] register in the Target.

- Upon the receipt of a Write Response with a valid parity from the Target, the Master shall end the PWM-BURST on its M-TX.
- On detecting the closure of the PWM-BURST on its M-RX, the RRAP Target shall end the PWM-BURST on its M-TX.

30

233 234 After the closure of the PWM-BURST, the conditions for a Re-Configuration Trigger (RCT) as defined in [M-PHY] shall be met upon which the Effective bank of the Configuration Attributes are updated.

235 2.5.4 RRAP Timing Parameters

236 This section defines the timing parameters relevant to the RRAP.

237

Table 2-6 RRAP Timing Parameters

Name	Description	Min	Мах	Units
tRRAPTargetResponse	Time between the receipt of a RRAP command and the transmission of the response by a Target		50	ms
tRRAPInitiatorResponse	Time between the transmission of a RRAP command and the reception of the response by an Initiator		60	ms

238

239

240

241

Link Layer 242 3

243 This chapter specifies the Link layer including:

- 244 Reset signaling
 - Bit and byte ordering •
 - Packet framing
 - Logical idle
 - SSIC LTSSM and operations
- 249 Scrambling • 250
 - Clock Compensation •

3.1 Bit and Byte Ordering 251

252 Bit ordering shall be big-endian as defined by [M-PHY] and as shown in Figure 3-1.

245

246

247

248

Figure 3-1 Bit Ordering

255 In a Single-LANE (x1) implementations, all bytes are transmitted in-order as shown in Figure 3-2.

Figure 3-2 Byte Ordering

258 In multi-LANE implementations, all bytes are transmitted by mapping them to the multiple lanes as 259 shown in Figure 3-3 and Figure 3-4. These rules apply for all packets (including Link Commands, TPs 260 and DPs) as well as special symbols such as Training Sets.

32

256 257

Figure 3-3 Byte Ordering in a 2 LANE Configuration

Lane 3	Lane 2	Lane 1	Lane 0
byte 3	byte 2	byte 1	byte 0
byte 7	byte 6	byte 5	byte 4

263

264 265

1

Figure 3-4 Byte Ordering in a 4 LANE Configuration

266 **3.2 Logical Idle and FLR non-insertion**

267The Logical Idle Symbol D0.0 - scrambled as defined in Section 3.5 - shall be transmitted when the M-268TX is in the HS-BURST state and no SS packets (Link Commands, TPs or DPs) are being transferred on269the link. Once started, the transmission of a SS packet shall continue without the insertion of any logical270idle symbols as per [USB 3.0].

271 In a multi-LANE implementation, the first byte of a SS packet may be placed on any LANE. When

ending an HS-BURST, if the packet transmission finishes misaligned, logical idle symbols shall be

transmitted on all remaining LANEs. Figure 3-5 presents two examples of D0.0 logical idle transmission between packets.

Lane 3	Lane 2	Lane 1	Lane 0
END	END	END	Dx
SHP	SHP	D0.0	EPF

Lane 3	Lane 2	Lane 1	Lane 0
MK0	<u>MK0</u>	<u>MK0</u>	<u>MK0</u>
SHP	(D0.0	D0.0	D0.0
Dx	EPF	SHP	SHP

275 276

Figure 3-5 Two examples of Logical Idle insertion in a 4x LANE configuration

277 The M-TX shall not insert any FLRs in the transmit stream.

Implementation Note: To prevent the M-TX from inserting FLR symbols in the transmit stream, the PA layer needs to always provide symbols for transmission (by always asserting TX_ProtDORDY during a HS-BURST) and also <u>should</u> ensure the M-TX never throttles transmission by deasserting TX_PhyDIRDY on the M-PHY RMMI. This may place specific requirements on the clocking implementation of the M-TX such as ensuring that the TX_BitClk and TX_SymbolClk are derived from the same reference.

278

279 3.3 Line Coding

All information communicated in the PWM-BURST and HS-BURST states shall be 8b10b encoded as
 per the data and control symbols assignments prescribed in [M-PHY] and the symbol mapping
 assignment described in this section.

283 Data symbols shall be directly mapped as per the assignment described in [M-PHY].

284

Table 3-1 Mapping of SS Control Symbols

Control Symbols	SS Encoding	SSIC Encoding	M-PHY Usage	Notes
COM	K28.5	K28.5	MARKER0	MK0 sent at start of HS-BURST. Also re-used for COM.
EDB	K28.3	K28.3	MARKER1	MK1 used only for EDB.
SDP	K28.2	K28.6	MARKER2	MK2 used only for SDP - encoding differs from [USB3.0]
EPF	K23.7	K23.7	MARKER3	MARKER3 used only for EPF
SHP	K27.7	K27.7	MARKER4	MARKER4 used for SHP
END	K29.7	K29.7	MARKER5	MARKER5 used for END

	SLC	K30.7	K30.7	MARKER6	MARKER6 used for SLC	7
	SKP	K28.1	K28.1	FILLER	FLR used only for SKP.	-
	SUB	K28.4	n/a	n/a	SUB not used in SSIC	-
285 286 287 288 289	Table 3-1 c control sym the one exe The FLR sy	describes the hbols (COM, I ception (SDP ymbol is only	mapping of th EPF, SHP, EN) that has a dir used to indica	e SS control sy ID, SLC, SKP, I fferent K-encod	mbols. As noted most of the the SuperSpeed EDB) are K-encoded as defined in [USB 3.0] with ing. ed SKP Symbol and implementations shall ensure	-
290	that an M-T	FX shall not ir	ndependently i	insert FLRs as i	noted in Section 3.2.	
291 292	<mark>8b/10b dec</mark> [USB 3.0] f	ode errors ar or when a de	re handled as code error is c	specified in [M- detected does n	PHY] and the <u>The</u> SUB symbol which is defined in ot require a M-PHY mapping.	
293 294	<u>8b/10b dec</u> specific me	ode errors de chanisms.	etected by the	M-RX shall be	signaled to the link layer using implementation-	
295	<u> -</u>					
296	3.4 Clo	ck Compe	nsation			
297	The followi	ng rules repla	ace those defir	ned in Section 6	6.4.3. of [USB 3.0]:	
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	 A S LA Fo LA the SK Fo Se an wit Fo Se an tra (with transport transport	SKP Ordered NE. r x2 and x4 M NEs such that s SKP Ordered SR Ordered S r a x1 M-PHY t, LMP, TP, E y set of 1416 hin a sliding v r a x2 M-PHY t, LMP, TP, E y set of 708 snsmitted over hich results in nsmitted over	Set shall cons A-PHY LINKs, at the same nu d Set transmis ets shall not b ' LINK, while in DP, or Logical successively the LINK, while in DP, or Logical successively the LANE within a a total of 4 S r the full M-PH	sist of two SKP when transmitted imber of SKP O ssion is permitte e transmitted w n HS.BURST m Idle, transmitter transmitted sym Idle, transmitter ransmitted sym Isliding window KP Ordered Se IV LINK).	symbols transmitted one after the other on a single ed, SKP Ordered Sets shall be transmitted on all indered Sets are transmitted on all LANEs, however ed to start on any LANE ithin any packet or Ordered Set. wode, transmitting TS1 Ordered Sets TS2 Ordered is shall transmit SKP Ordered Sets such that within <u>abols</u> at least 4 SKP Ordered Sets are transmitted <u>abols transmitting</u> TS1 Ordered Set, TS2 Ordered is shall transmit SKP Ordered Sets such that within <u>bols per LANE</u> at least 2 SKP Ordered Sets are up 708 non-SKP symbols transmitted per LANE ts being transmitted per 1416 non-SKP symbols	Formatted: Space After: 1.25 pt
314 315 316 317 318 319	• Fo Se an tra (wi	r a x4 M-PHY t, LMP, TP, C <u>y set of 354 s</u> nsmitted- per- hich results ir	⁷ LINK, while in DP, or Logical <u>successively to LANE within a</u> a total of 4 S r the full M-PH	n HS.BURST m Idle, transmitter ransmitted syml sliding window KP Ordered Se	ode, transmitting TS1 Ordered Set, TS2 Ordered s shall transmit SKP Ordered Sets such that within bols per LANE at least 1 SKP Ordered SetsSet is of 354 non-SKP symbols transmitted per LANE ts being transmitted per 1416 non-SKP symbols	Formatted: Keep with next, Keep line together
319 320 321 322 323 324 325 326 327 328	• It is rec • Fo syr slic	s permitted 600 quirement. r x1 M-PHY L mbols betwee <u>symbols</u> <u>o no SKP</u> <u>symbols</u> <u>o as few a</u> <u>non-SK</u>	LINKs, receive on received St of 1416 non S ordered set(s s, and as 4 SKP Orde P symbols.	r to transmit SK rs shall be toler (P receptions, c (P symbols<u>:</u>) within a set of ered Sets within	P Ordered Sets more frequently than this minimum ant to receive between 0 and 1416 non-SKP and as few as 4 SKP Ordered Sets received within a as many as 1416 successively received non-SKP any set of 1424 successively received SKP and/or	e de la companya de l

35

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 343	 For x2 M-PHY LINKs, receivers shall be tolerant to receive between 0 and 708 non-SKP symbols per LANE between: no SKP ordered set(s) within a set of as many as 708 successively received non-SKP receptionssymbols, and as few as 2 SKP Ordered Sets received within a sliding window of 708 non-SKP symbols per LANE (which results in a total of 4 SKP Ordered Sets being received per 1416 non-SKP symbols. For x4 M-PHY LINKs, receivers shall be tolerant to receive between 0 and per LANE : no SKP ordered set(s) within a set of as many as 354 non-SKP symbols per LANE betweensuccessively received non-SKP symbols, and as few as 1 SKP Ordered Sets within any set of 356 successively received within a sliding window of 354 non-SKP symbols, and as few as 1 SKP Ordered Sets within any set of 356 successively received within a sliding window of 354 non-SKP symbols per LANE (which results in a total of 4 SKP Ordered Sets being received per 1416<u>SKP and/or</u> non-SKP symbols-received over the full M-PHY LINK) 	
346	Figure 3-6 shows an example of SKPs between two packet transmissions on a x4 M-PHY LINK.	
347	Lane 3 Lane 2 Lane 1 Lane 0	
	END END END Dx	
	SKP SKP SKP EPF	
	SKP SKP SKP SKP	
	SHP SHP SHP SHP SHP	
348 349 350	It is permitted that SKPs not align across all lanes, but each lane shall contain same number of SKPs Figure 3-6 Example of SKP Insertion in a 4x LANE Configuration	

_
Implementation Note:

When reusing existing SuperSpeed controllers with x2 or x4 M-PHY LINKs, it may be desirable to avoid increasing the number of SKPs transmitted for a given amount of data transferred. However, the requirement that SKP transmissions include the same number of SKPs on all LANEs means that, if, when the controller indicates a SKP transmission, that the transmission is simply replicated across all LANEs, the average number of SKPs transmitted would be increased relative to the amount of data transferred. It is possible to satisfy the above rules and at the same time avoid needlessly increasing the relative number of SKPs transmitted by implementing an algorithm that accumulates SKPs for transmission, such that, for example, on a x2 M-PHY LINK, the transmitter would transmit two SKPs on each LANE, but only at alternate intervals. If the transmit controller already buffered up multiple SKPs, then it is not necessary to implement interval skipping, as this has in effect already been done by the controller.

The recommended algorithm is the following:

- A transmitter should keep a running count of the number of transmitted symbols across all LANEs since the last SKP symbol transmission, referred to as Z.
- Z should be reset to 0 whenever the transmitter enters HS.Burst
- The non-integer remainder of the following Z calculations should not be discarded and shall be used in the calculation to schedule the next SKP symbols
- While transmitting TS1 Ordered Set, TS2 Ordered Set, LMP, TP, DP, or Logical Idle, when the integer result of

Ζ 354*NumberOfLanes

reaches one, the transmitter should buffer one (additional) SKP Ordered Set to be transmitted on each LANE at the end of the current packet or Ordered Set transmission

351

354

355

356

357

358

360

361

362

363 364

365 366

367

352 3.5 Data Scrambling

353 Data shall be scrambled according to the following rules on a per-LANE basis:

- Scrambling shall be done using an LFSR applied The LFSR implements the polynomial: G(X)=X16+X5+X4+X3+1 The LFSR value shall be advanced eight serial shifts for each Data Symbol and K Code except for SKP All 8b/10b D-codes, including those within the Training Sequence Ordered Sets shall be 359 scrambled.
 - K codes shall not be scrambled.
 - During a HS-BURST the LFSR on the transmit side shall be initialized to FFFFh after the transmission of any MK0 symbol.
 - During a HS-BURST the LFSR on the receive side shall be initialized to FFFFh after the receipt of any MK0 symbol.
 - Scrambling shall only be applied while in HS-BURST and shall not be used in PWM-BURST.
 - Scrambling can be optionally disabled via the DISABLE_SCRAMBLING RRAP command as described in Section 2.5.2.

Implementation Note:

In the implementation example described in Figure 1-2, this implies that the standard SuperSpeed scrambler is disabled and a scrambler compliant with this section is implemented in the PHY Adapter layer on a per-LANE basis.

368

386

387

388

389

394

395 396

369 3.6 PowerOn Reset and Inband Reset

370 3.6.1 PowerOn Reset

- PowerOn Reset refers to a condition that shall be defined as the power supply of the port achieving a
 steady state, the details of which are implementation specific and not defined by this document.
- When an implementation is powered and the PowerOn Reset is asserted the SSIC LTSSM shall enter
 the SS.Disabled state. On the deassertion of PowerOn Reset, the SSIC LTSSM shall enter the
 RX.Detect state.
- Upon assertion and de-assertion of PowerOn Reset, M-PHY MODULEs shall enter and exit the
 DISABLED state as defined in Section 4.7.1.4 of [M-PHY].

378 3.6.2 Inband Reset (Hot Reset and Warm Reset)

- Both mechanisms of Inband reset defined in [USB 3.0] are supported: Hot Reset and Warm Reset.
 However the reset signaling mechanisms are modified to be implemented on top of the M-PHY as
 defined in this section.
- 382 3.6.2.1 Hot Reset

Hot Reset is signaled by a DSP by sending TS2 ordered sets with the Reset bit asserted. A Hot Reset
 shall cause the SSIC LTSSM to transition to the Hot Reset state as described in 3.8.9. Upon completion
 of Hot Reset, the following shall occur:

- A DSP shall reset its Link Error Count.
- The port configuration information of a USP shall remain unchanged.
- The M-PHY configuration settings shall remain unchanged.
- The LTSSM of a port shall transition to U0.
- 390 If a Hot Reset fails, the DSP shall signal a Warm Reset as per [USB 3.0].
- 391 3.6.2.2 Warm Reset
- 392 Warm Reset is signaled by a DSP using the LINE-RESET mechanism defined in [M-PHY].
- 393 The operational model of a Warm Reset is as follows:
 - The DSP shall drive DIF-N on the M-TX of PAIR0 for a period of tResetDIFN.
 - The DSP shall issue a LINE-RESET on the M-TX of PAIR0.
 - When a LINE-RESET is signaled, the LTSSM shall transition to the Rx.Detect.Reset state.

Signaling a <u>Warm Reset using the LINE-RESET mechanism</u> on any M-TX other than that of PAIR0 has
 undefined results. Only a DSP shall issue Warm Reset via the LINE-RESET mechanism. A USP shall
 use the LINE-RESET mechanism to signal a USP disconnect as defined in Section 5.

38

400 3.7 Link Layer Timing Requirements

401 402

Link layer timing requirements shall remain the same as specified in [USB 3.0] except for the parameters defined below.

403

Table 3	-2 Link	Layer	Timing	Parameter
---------	---------	-------	--------	-----------

Name	Description	Min	Max	Units
PENDING_HP_TIMER	As described in [USB 3.0]		100	μs
PM_LC_TIMER	As described in [USB 3.0]		100	μs
PM_ENTRY_TIMER	As described in [USB 3.0]		120	μs
tRetrain	Timer to detect improper training of the local and remote M-RX as part of HS- BURST entry. Timer is implemented in the Polling and Recovery LTSSM states as described in Section 3.8.3 and Section 3.8.8.	40	50	μs
tResetDIFN	Period of time a DSP is required to drive a DIF-N prior to a LINE-RESET. Defined to ensure USP is ready to receive the LINE-RESET and to not break Warm Reset timing as defined in [USB 3.0].	60	80	ms
tPollingSTALLResidency	Period of time spent in the Polling.STALL sub-state. Timing values are specified to allow for designs using an existing [USB 3.0] LTSSM as shown in Figure 1 2. Such implementations may require up to two legacy Receiver detection cycles to be performed in this sub-state that may take up to 12 ms each along with some operating margin.		40	ms
tPollingActiveTimeout	As described in [USB 3.0]. Increased from the 12ms value prescribed in [USB 3.0] to account for maximum of 40ms in the Polling.STALL state along with some operating margin.		58	ms
tPortConfiguration	As described in [USB 3.0]. Increased from the 20µs value prescribed in [USB 3.0] to be in sync with the increase to the PENDING_HP_TIMER		110	μs

404

405 3.8 SSIC Link Training and Status State Machine (LTSSM)

The SSIC Link Training and Status State Machine (LTSSM) of the link layer is shown in Figure 3-7. The
 figure and following section documents relevant state details, associated transitions and details of the
 mapping of the LTSSM state to the M-PHY state machines.

409 Unless otherwise noted, requirements for LTSSM states and sub-states defined in [USB 3.0] also apply

- 410 to this supplement and are not reproduced here. However [USB 3.0] LTSSM requirements
- 411 corresponding to the physical layer do not apply and instead M-PHY M-TX and M-RX requirements 412 detailed in this section shall be followed. Specifically Low Frequency Periodic Signaling (LFPS) and
- detailed in this section shall be followed. Specifically Low Frequency Periodic Signaling (LFPS) and
 Receiver Termination Detection and the various signaling mechanisms thereof do not apply to this
 supplement.

Implementation Note: This section has been specified to allow compliant implementations to be designed using an existing [USB 3.0] compliant LTSSM and a suitable PA layer as shown in Figure 1-2. This does not imply preference for any particular style of implementation, and other implementations are supported, provided they comply to the requirements of this section.

416

417 418

Figure 3-7 SSIC LTSSM state diagram

419 3.8.1 SS.Disabled

- 420 SS.Disabled is a logical power-off state when a port is unpowered or when the SSIC port's functionality 421 is disabled.
- 422 A DSP when directed to do so shall signal a DSP disconnect and transition to this state.
- 3.8.1.1 SS.Disabled Requirements 423
- The SS.Disabled state does not contain any sub-states as shown in Figure 3-8: 424

425 426

٠

The M-PHY local RESET to the M-RX and M-TX of all PAIRs shall be asserted which maintains the modules in the DISABLED state

427 428

430

431

432

433

434

438

439

440

441

442

Figure 3-8 SS.Disabled state

429 3.8.1.2 Exit from SS.Disabled

- Exit shall take place for a USP via the deassertion of Power-On Reset and for a DSP when directed to exit:
 - The M-PHY local RESET to the M-RX and M-TX of all PAIRs shall be de-asserted which transitions the modules from the DISABLED to the HIBERN8 state.
 - the LTSSM shall transition to Rx.Detect.Active LTSSM state.

435 3.8.2 RX.Detect

- 436 The Rx.Detect state of the LTSSM is entered in the following scenarios:
- 437 Signaling of a Warm Reset by a DSP
 - Detection of a Warm Reset by a USP
 - Detection of a USP disconnect by a DSP
 - Completion of Power on Reset by both a DSP and USP
 - When Polling or Recovery is unsuccessful for a DSP as defined in [USB 3.0]
 - Signaling of a LINE-RESET by Test Equipment
- The concept of far-end terminations as defined in [USB 3.0] does not apply to this supplement and
 instead M-PHY based mechanisms shall be used to detect the presence of a link partner and to
 synchronize operation as defined in this section.
- 446 Rx.Detect contains a sub-state machine as shown in Figure 3-9 with the following sub-states:
- 447 Rx.Detect.Reset
- Rx.Detect.Active
- Rx.Detect.LS-MODE
- 450

42

470 471		periods for power saving reasons before finally completing the steps to enable a USP to subsequently re-connect.
472	I	3.8.2.2 Exit from RX.Detect.Reset
473		A port shall transition to Rx.Detect.Active after completing the required steps as defined in
474		Section 3.8.2.1.
475		A DSP shall transition to SS.Disabled when directed.
476		3.8.2.3 RX.Detect.Active Requirements
477		Rx.Detect.Active is a sub-state to detect the presence of a link partner.
478 479 480 481 482 483 484 485		 For a DSP: The M-TX shall be configured to exit HIBERN8 into the SLEEP state which results in a DIF-N value being driven on all PAIRs. The M-RX shall remain in HIBERN8 on all PAIRs until the link partner initiates a HIBERN8 exit For a USP: The M-TX and M-RX shall remain in HIBERN8 until the link partner initiates a HIBERN8 exit
486		3.8.2.4 Exit from RX.Detect.Active
487 488 489 490 491		 Upon detection of a HIBERN8 exit on its M-RX on <u>all PAIRsany PAIR</u> the USP shall initiate an exit from HIBERN8 on its M-TX of all PAIRs and shall transition to Rx.Detect.LS-MODE. Upon detection of a HIBERN8 exit on its M-RX on all PAIRs the DSP shall wait a minimum Tactivate time before transitioning to Rx.Detect.LS-MODE. A DSP shall transition to SS.Disabled when directed.
492		3.8.2.5 RX.Detect.LS-MODE Requirements
493 494		Rx.Detect.LS-MODE is a sub-state in which communication takes place in the LS-MODE using the RRAP.
495		The requirements for this sub-state for a USP, DSP are defined in Section 2.5.
496		3.8.2.6 Exit from RX.Detect.LS-MODE
497 498 499 500 501 502 503 504 505 506 507		 A DSP shall transition to SS.Disabled when directed. An USP and a DSP shall exit to the MPHY.TEST state when an RRAP write command to the TEST_MODE register is received as defined in Table 2-5. An USP and a DSP shall execute a RCT to exit this sub-state and enter Polling when configured to do so using the RRAP as defined in Section 2.5.3. After executing an RCT, the M-TX shall wait for a period equal to the RX_Min_ActivateTime_Capability defined in Section 2.2.3 prior to exiting this sub-state into the Polling state. Note: A delay equivalent to the RX_Min_ActivateTime_Capability timing parameter is prescribed in this sub-state to allow flexibility for implementations to prepare for STALL and HS-BURST.
508		3.8.3 Polling
509 510		In the Polling state the M-PHY is configured prior to entering HS-BURST. While in HS-BURST, the training ordered sets of TS1, and TS2 as defined in [USB 3.0] are transmitted.
511		Polling contains a sub-state machine shown in Figure 3-10 with the following sub-states:
	44	For USB 3.0 Contributor Review Only

For USB 3.0 Contributor Review Only

532 533 534 535 536 537 538 539 540 541 542 543	 The M-TX and M-RX shall remain in the HS-BURST state for the remaining Polling sub-states except as required based on tRetrain timer expiration. An equivalent of Polling.RxEQ as defined in [USB 3.0] for receiver equalizer training is not required and shall be bypassed. The Disabling Scrambling bit and the Loopback bit in the link configuration field of the TS2 Ordered Set shall be ignored. Upon successful completion of the Polling sub-states the LTSSM shall transition to U0. The requirements in these sub-states including the handshake sequences and transitions due to the expiry of relevant timer expiration. Note: M-RX receiver bit synchronization and training is completed using mechanisms specified in [M-PHY1.
544 545 546	specific training mechanism to be re-performed. As a result, none of the Polling.Active/Configuration/Idle Timeouts defined in [USB 3.0] are expected to expire in SSIC implementations with correctly operating M-TX and M-RX modules.
547	3.8.4 U0
548 549	U0 is the normal operational state in which the M-TX and M-RX are in the HS-Burst state and are actively transmitting and receiving traffic. U0 contains no sub-states.
550 551	While in U0 the M-TX and the M-RX of a PORT may independently transition between the HS-BURST and STALL states as shown in Figure 3-11.
552 553 554 555 556	The M-TX may optionally transition to the STALL state instead of transmitting logical idle symbols. The conditions under which this transition is made such as number of logical idle symbols that are transmitted prior to entering the STALL state are not specified in this supplement. For example, implementations may choose to transition to STALL immediately without transmitting any logical idle symbols or may continue to transmit logical idle symbols without entering the STALL state.
557 558	Independently the M-RX shall transition to the STALL state when the link partner's M-TX implementation chooses to enter the STALL state.
	Implementation Note: In the implementation example described in Figure 1-2, when the PA detects a STALL entry on its M-RX while in U0, the PA may have to manufacture logical idle symbols to be sent to the link layer to maintain the U0 state in the legacy LTSSM.
559	
560	3.8.4.1 Exit from U0
561 562 563 564 565 566 567 568 569	 A successful LGO_U1 entry sequence shall transition the link state to U1 and the M-TX/M-RX to STALL as follows: The DSP shall initiate LGO_U1 and shall disable STALL entry on all PAIRs until a LXU is received (indicating abort of U1 entry) or it successfully enters U1. The USP, upon receipt of the LGO_U1 and if accepting U1 entry, shall in the following order: disable STALL entry on all PAIRs until a LXU respond with a LAU After sending an LPMA, the DSP shall transition to U1 and transition its M-TX to the
570	STALL state on all PAIRs.

- 0
- After sending an LPMA, the DSP shall transition to U1 and transition its M-TX to the STALL state on all PAIRs. After receiving an LPMA, the USP shall transition to U1 and transition its M-TX to the STALL state on all PAIRs. 0

46

571 572

I

573 574 575 576 577 578 580 581 582 583 584 585 584 585 586 587 588 589 590 591 592 593	 U1 can also be initiated by a USP in which case the above sequence takes place with the roles of DSP and USP reversed. A successful LGO_U2/LGO_U3 entry sequence shall transition the link state to U2/U3 and the M-TX/M-RX to HIBERN8 as follows: The DSP shall in the following order: disable STALL_STALL entry on all PAIRs and then initiate U2/U3 entry via transmission of LGO_U2/LGO_U3 The DSP shall re-enable STALL entry only if either LXU is received (indicating abort of U2 entry) or U2/U3 entry is successful The USP, upon receipt of the LGO_U2/LGO_U3 and if accepting U2/U3 entry, shall in the following order: disable STALL entry on all PAIRs until it successfully enters U2/U3 configure M-TX and M-RX modules on all PAIRs for HIBERN8 entry respond with a LAU The DSP, upon receipt of the LAU shall in the following order: configure M-TX and M-RX modules on all PAIRs for HIBERN8 entry respond with a LPMA After sending an LPMA, the DSP shall transition to U2/U3 and shall terminate the HS-BURST on the M-TX of all PAIRs. After receiving an LPMA, the USP shall transition to U2/U3 and shall terminate the HS-BURST on the M-TX of all PAIRs.
	Implementation Note:
	As per [M-PHY] configuring M-TX and M-RX modules for HIBERN8 entry requires an INLINE-CR registry change and the assertion of the RX_CfgUpdt/TX_CfgUpdt signal of the M-RX/M-TX for all PAIRs. As a result of this configuration change, the termination of HS-BURST results in a RCT and causes local M-TX and remote M-RX to enter HIBERN8.
594 595 596 597 598 599 600 601 602 603	 As per [M-PHY], the following is guaranteed on HIBERN8 entry: the remote M-RX enters HIBERN8 and shall hold the line in DIF-Z before the local M-TX enters HIBERN8 During HIBERN8 entry the M-RX ignores any transitions on the line until it drives and senses a DIF-Z on the line. U2 can also be initiated by a USP in which case the above sequence takes place with the roles of DSP and USP reversed. The remaining exit conditions and timeouts for U0 listed in [USB 3.0] also apply.
	Implementation Note: In the event of a LAU corruption event during U2/U3 entry, the link may eventually enter SS.Inactive and may be recovered by the DSP via a Warm Reset.
604 605 606	

627	3.8.6 U2	
628 629 630	U2 is a link state where more power saving opportunities are allowed compared to U1, but with an increased exit latency. U2 does not contain any sub-states. Either a DSP or a USP may initiate entry to this state.	
631	3.8.6.1 U2 Requirements	
632 633 634	 The M-TX and the M-RX state machines shall stay in the HIBERN8 state for all PAIRs. The concept of far end receiver termination detection as defined in [USB 3.0] does not apply and does not have to be completed while in this state. 	
635	3.8.6.2 Exit from U2	
636 637 638 639 640 641 642	 The port shall transition to Recovery when a successful U2 exit handshake completes in the following manner: The M-RX receives an HIBERN8 exit indication on all PAIRs or M-TX initiates a HIBERN8 exit on all PAIRs when port is directed to exit U2 by the link layer and Both M-TX and M-RX successfully exit HIBERN8 on all PAIRs and transition to STALL. The port shall transition to SS.Inactive if the tNoLFPSResponseTimeout timer (as defined in [USB 3.0]) expires and if a successful U2 exit handshake as described above is not achieved. 	
643 644	The following [M-PHY] capability attributes described in Section 2.2.3 imply a minimum residency of 200us200µs in U2:	
645 646	 Rx/Tx_Hibern8Time_Capability = 100us: Minimum residency time in HIBERN8 state RX_Min_ActivateTime_Capability = 100us: Minimum time to exit HIBERN8 	
647	The SSIC LTSSM shall ensure that these residency requirements in [M-PHY] are met prior to initiating a	
648	U2 exit.	
648 649	U2 exit.	Formatted: List Paragraph, Indent: Left: 0.75"
649	U2 exit. ← <u>Implementation Note:</u>	Formatted: List Paragraph, Indent: Left: 0.75"
648	U2 exit. 	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650	U2 exit. <u>Implementation Note:</u> [M-PHY] defines the RX_Advanced_Granularity_Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2.	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650 651	U2 exit. <u>Implementation Note:</u> [M-PHY] defines the RX_Advanced_Granularity_Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2. 3.8.7 U3	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650 651 652 653 654 655	U2 exit. Implementation Note: [M-PHY] defines the RX_Advanced_Granularity_Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2. 3.8.7 U3 U3 is a link state where a device is put into a suspend state. Though both U2 and U3 map to HIBERN8, U3 may provide additional power savings opportunities at a system level due to the requirement to complete a handshake upon an exit. Details of such system-level power savings opportunities and the means for enabling them are out of scope of this supplement.	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650 651 652 653 654 655 656	U2 exit. Implementation Note: [M-PHY] defines the RX_Advanced_Granularity_Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2. 3.8.7 U3 U3 is a link state where a device is put into a suspend state. Though both U2 and U3 map to HIBERN8, U3 may provide additional power savings opportunities at a system level due to the requirement to complete a handshake upon an exit. Details of such system-level power savings opportunities and the means for enabling them are out of scope of this supplement. U3 does not contain any sub-states.	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650 651 652 653 654 655 656 657	U2 exit. Implementation Note: [M-PHY] defines the RX Advanced_Granularity_Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2. 3.8.7 U3 U3 is a link state where a device is put into a suspend state. Though both U2 and U3 map to HIBERN8, U3 may provide additional power savings opportunities at a system level due to the requirement to complete a handshake upon an exit. Details of such system-level power savings opportunities and the means for enabling them are out of scope of this supplement. U3 does not contain any sub-states. 3.8.7.1 U3 Requirements	Formatted: List Paragraph, Indent: Left: 0.75"
648 649 650 651 652 653 654 655 656 657 658	U2 exit. Implementation Note: M-PHY1 defines the RX Advanced Granularity Capability attribute that enables implementations to advertise support for a minimum HIBERN8 residency time and an activate time in granularities smaller than 100us. DSP implementations may discover support for this capability via RRAP and if supported may use it to reduce the default minimum residency of 200 µs in U2. 3.8.7 U3 U3 is a link state where a device is put into a suspend state. Though both U2 and U3 map to HIBERN8, U3 may provide additional power savings opportunities at a system level due to the requirement to complete a handshake upon an exit. Details of such system-level power savings opportunities and the means for enabling them are out of scope of this supplement. U3 does not contain any sub-states. 3.8.7.1 U3 Requirements • In this state the M-TX and M-RX state machines are in the HIBERN8 State for all PAIRs.	Formatted: List Paragraph, Indent: Left: 0.75"

659 • 660 661 • 662	A port not able to respond to U3 exit handshake within tNoLFPSResponseTimeout (as defined in [USB 3.0]) may respond when it is ready. The concept of far end receiver termination detection as defined in [USB 3.0] does not apply and does not have to be completed while in this state.
663 3.8.7.2	Exit from U3
664 • 665 666 667 668 669 670 670 671 672 673 673 674 675 676 677 678 679 680	 The port shall transition to Recovery when a successful U3 exit handshake completes in the following manner: One of the following initial conditions is true: The M-TX drives a HIBERN8 exit on all PAIRs when the port is directed to exit U3 by the link layer or the M-RX receives a HIBERN8 exit indication on all PAIRs and the M-TX successfully exit HIBERN8 on all PAIRs and transitions to STALL for a minimum of Tactivate and a minimum Tactivate time has elapsed after M-RX receives a HIBERN8 exit on all PAIRs. The port shall remain in U3 when a successful U3 exit handshake as described above is not achieved. In this case the M-TX which initiated the HIBERN8 exit shall continue to drive DIF-N until the U3 exit handshake successfully completes.
681 3.8.8	Recovery
682Recover683training684link cor	ery is a LTSSM state that is entered to retrain the M-PORT. During this state TS1, and TS2 ordered sets are transmitted as defined in [USB 3.0] to synchronize the link and to exchange the figuration information.
685 Recove	ery contains the following sub-states:
686 • 687 • 688 •	Recovery.Active Recovery.Configuration Recovery.Idle
689 3.8.8.1	Recovery.Active Requirements
691 692 693 694 695 696 697 698 699 700 • 701 3.8.8.2 702 703 704 • 705	 upon entry to this sub-state. Initial conditions for this sub-state are dependent on the entry condition: When entered from U0, the M-TX shall be brought to a STALL state in order to re-train the M-TX for a new HS-BURST. The M-RX state is dependent on the link partner M-TX. When entered from U1, the M-RX or M-TX shall initially be in the STALL state as per U1 requirements defined in 3.8.5.2. When entered from U2 or U3, the M-RX and M-TX are initially in the STALL state. The M-TX is then brought to the HS-BURST state and the port shall transmit the TS1 ordered sets upon entry to this sub-state. Upon M-TX entry into HS-BURST, the LTSSM shall start a tRetrain timer. Recovery.Active/Configuration/Idle Requirements If the tRetrain timer expires, M-TX shall be cycled from HS-BURST to STALL and then back to HS-BURST, and the tRetrain timer shall then be restarted. The M-TX and M-RX shall remain in the HS-BURST state for the remaining Recovery substates, except as required based on tRetrain timer expiration.
50	For USB 3.0 Contributor Review Only

706 707 708 709 710 711	•	The requirements for the traffic, handshake sequences and exit conditions for these sub-states are as defined in [USB 3.0], without regard to transitions through STALL due to tRetrain timer expiration. The Disabling Scrambling bit and the Loopback bit in the link configuration field of the TS2 Ordered Set shall be ignored. Upon successful completion of the Recovery sub-states the LTSSM shall transition to U0.	
712	3.8.9	Hot Reset	
713	The Ho	t Reset state shall be implemented as specified in [USB 3.0].	
714	3.8.9.1	Hot Reset Requirements	
715 716 717	•	In this state the M-TX and M-RX are in the HS-BURST state. The port shall implement the Hot Reset sub-states, associated timers and exit conditions as defined in [USB 3.0].	
718	3.8.10	SS.Inactive	
719	SS.Inad	ctive is an error state where the link becomes non-operational.	
720 721 722 723	A DSP not able to issue state ar	in this state, shall transition its M-TX and M-RX to the DISABLED state. In this state, the DSP is to receive any communication from the USP. A DSP shall only exit from this state when directed a Warm Reset. In order to signal a warm reset, the DSP shall transition out of the DISABLED and drive a LINE-RESET as defined in [M-PHY] on PAIR0.	
724 725 726 727	An USF M-TX a Reset. receive	P in this state, shall assert and then de-assert the local M-PHY Reset for all LANEs bringing the nd M-RX to the HIBERN8 state on all PAIRs. A USP shall only exit upon the receipt of a Warm While in SS.Inactive an USP shall ignore any data received on the M-RX until a LINE-RESET is d.	
728 729	The cor not hav	ncept of far end receiver termination detection as defined in [USB 3.0] does not apply and does e to be completed while in this state.	
730	3.8.11	MPHY.TEST	
731	MPHY.	TEST is an LTSSM state used for testing the M-PHY Physical layer.	
732	The init	ial state of the M-TX and M-RX state machines in this state is PWM-BURST.	
733	For det	ails of the operational behavior in this state please refer to Section 6.	

734

I

735 **4 Protocol Layer**

736 Implementations incorporate the protocol layer defined in [USB 3.0] except as defined in this section.

737 4.1 Port Capability Link Management Packet (LMP)

- 738 The Port Capability LMP describes each port's link capabilities and is sent by both link partners after the 739 successful completion of training and link initialization.
- 740 Implementations shall ignore the Link Speed field of the Port capability LMP. The operational speed of741 the link shall be defined by the profile as defined in Section 2.2.1.
- 742Implementations shall ignore the USB 3.0 OTG Capable (OTG) field of the Port Capability LMP. The743Direction (D) field shall be used to identify the DSP and the USP as defined in [USB 3.0].

744 **4.2 Timing Parameters**

- 745The protocol-layer timing parameters described in Section 8.13 of [USB 3.0] also apply to this746supplement.
- 747 However certain timing parameters are modified as shown in Table 4-1 to account for a slower bit-rate 748 (for HS-G1/G2) and latencies introduced due to STALL entry and exit while in U0.
- This supplement also relaxes the accuracy of timestamps reported by Isochronous Timestamp Packets
 in the following manner: The Delta value of the ITS field shall be required to have an accuracy of ±5
 tlsochTimestampGranularity units.
- 752

Table 4-1 Protocol Timing Parameters

Name	Description	Min	Max	Units 🔸	Formatted Table
tPingResponse	Time between device reception of the last framing symbol of a ping and the first framing symbol of the ping_response		5000	ns	
tNRDYorSTALLResponse	Time between device reception of the last framing symbol for an ACK TP or a DPP or a STATUS TP and the first framing symbol of an NRDY or STALL response		5000	ns	
tDPResponse	Time between device reception of the last framing symbol for an ACK TP and the first framing symbol of a DP response		5000	ns	
tACKResponse	Time between device reception of the last framing symbol for a DPP or a STATUS TP and the first framing symbol of an ACK response		5000	ns	
tMaxBurstInterval	Time between DPs when the device or host is bursting. If the device cannot meet this maximum time, then it shall set the EOB flag in the last DP it sends.		1000	ns	

52

tHostACKResponse	Time between host reception of the last framing symbol for a DPP and the first framing symbol of an ACK response	5000	ns

For USB 3.0 Contributor Review Only

I

753 **5 Device Framework**

754 Implementations incorporate the device framework defined in [USB 3.0] except as defined in this section.

755 **5.1 Dynamic Attachment and Removal**

Though this interconnect is intended for embedded inter-chip links, there is a usage requirement to
 support dynamic removal and subsequent attachment to support power management goals or to present
 an alternative device configuration. This supplement supports mechanisms to have either the USP or the
 DSP initiate a disconnect as described in the following sections.

760 5.1.1 USP Disconnect

- The use case for signaling an USP Disconnect is to enable a peripheral to re-enumerate with a different
 device configuration. A USP achieves this by indicating a disconnect and a subsequent re-connect as
 defined in this section.
- 764 The operational model for a USP to signal a Disconnect is as follows:

765	 The USP shall signal a Disconnect by signaling a LINE-RESET on its M-TX on PAIR0.
766	• The USP shall maintain a DIF-N prior to driving a DIF-P on its M-TX as per the LINE-RESET
767	timing specified in [M-PHY]
768	 Signaling a LINE-DESET on any M-TY other than that of DAIRO has undefined results
760	Signaling a Linker to Linker and the Linker and the linker has an ended results.
709	• Open completion of the Line-KESET, the OSF shall assert local MFFTT Reservoir all LANES-
774	Within Thine to Jocal Tsi
770	The USP shall keep local m-rnr Keset assetted tot hocal ist. The USP Mit X and M DX of all the LANES abolt subassitution to the DISABLED state
772	 The USP M-TX and M-RX of all the LANES shall subsequently transition to the DISABLED state
773	The USP LISSM shall transition to the SS.Disabled state.
774	 The Peripheral Upstream Device port shall transition to USDPORT.Powered-Off (as defined in the peripheral upstream Device port shall transition to USDPORT.Powered-Off (as defined in
775	Fig 10-25 of [USB 3.0]).
776	 If a USP is in U3, a U3 exit handshake shall be completed prior to signaling a disconnect.
777	Signaling of a USP disconnect while in U3 is not supported and has undefined results.
778	The operational model for a DSP upon detecting a USP Disconnect is as follows:
1	
779	 The DSP shall togglowait until the completion of LINE-RESET signaling
780	 Upon completion of the LINE-RESET, the DSP shall assert local M-PHY Reset for all LANEs.
781	within Tline_to_local_rst
782	 The DSP shall keep local M-PHY Reset asserted for Tlocal_rst
783	• The DSP shall then transition to Rx.Detect.Active as described in Section 3.8.2 in order to detect
784	a subsequent re-connect from the USP.
785	The operational model for a USP to signal a subsequent re-connect is as follows:
786	 When ready to re-connect, the USP shall de-assert local M-PHY Reset on all LANEs.
787	 The USP M-TX and M-RX shall transition to the HIBERN8 state for all LANEs.
788	 The USP LTSSM shall transition to the Rx.Detect.Active state.
789	The Peripheral Upstream Device port shall transition to USDPORT.Powered On (as defined in
790	Fig 10-25 of [USB 3.0]).
791	5.1.2 DSP Disconnect
702	The DSP disconnect is a bost-initiated mechanism to enable a peripheral to re-onumerate with a
702	different device coefficients
193	

54

794 795 796	An additional use case for signaling a DSP disconnect is to disable the associated port. In this case, a USP can re-connect only after the DSP is subsequently re-enabled. A mechanism for the USP to request DSP to be re-enabled is out of scope of this supplement.
797	The operational model for a DSP to signal a Disconnect is as follows:
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813	 The DSP shall signal a Warm Reset on the M-TX of PAIR0 as defined in Section 3.6.2.2. Upon completion of the Warm Reset, the LTSSM shall transition to Rx.Detect.Active and then to Rx.Detect.LS-MODE In the Rx.Detect.LS-MODE sub-state, while in PWM-BURST mode, the DSP shall signal a disconnect by signaling a RRAP write command and shall ensure a valid RRAP write response is received as defined in Section 2.5.2-before terminating the PWM-BURST by transitioning the M-TX to SLEEP. Upon the receipt of a Write Response with a valid parity from the Target, the Master shall end the PWM-BURST on its M-TX. On detecting the closure of the PWM-BURST on its M-RX, the RRAP Target shall end the PWM-BURST on its M-TX. A BURST_CLOSURE RRAP command shall not be transmitted by the DSP prior to terminating the PWM-BURST. A DSP shall then assert the local M-PHY reset for all LANES: The DSP M-TX and M-RX of all the LANES are in the DISABLED state The DSP LTSSM is in the SS.Disabled state.
814	The operational model for a USP upon detecting a DSP Disconnect is as follows:
815 816 817 818 820 821 822 823 824 825 826 827	 The USP shall wait for the PWM-BURST to be terminated on its M-RX and then terminate the PWM-BURST on its M-TX. The USP shall assert and then de-assert the local M-PHY Reset for all LANEs bringing the M-TX and M-RX to the HIBERN8 state on all PAIRs The USP LTSSM shall transition to the RxDetect.Active state. The Peripheral Upstream Device port shall transition to USDPORT.Powered-On (as defined in Fig 10-25 of [USB 3.0]). This behavior enables a USP to detect a re-connect when the DSP is subsequently re-enabled. The USP may optionally be powered down, the Peripheral Upstream Device port transitioned to the USDPORT.Powered-Off state and the M-PHY transitioned to the SS.Disabled state. In this case the USP will not be able to detect a re-connect from the DSP. In such a scenario, a mechanism for powering up the USP to detect a subsequent re-connect is out of scope of this supplement.
828 829	5.1.3 Disconnect Timing Parameters

6 MPHY.TEST

830 831 832

Table 5-1 Disconnect Timing Parameters

This section isdefines timing parameters used in the process of USP and DSP disconnect.

	Name	Description	<u>Min</u>	<u>Max</u>	<u>Units</u>
	<u>Tline_to_local_rst</u>	Time between the detection of local/remote LINE-RESET completion and the subsequent assertion of local reset		<u>5</u>	<u>ms</u>
Ī	<u>Tlocal_rst</u>	Duration of USP/DSP local M-PHY Reset assertion	<u>10</u>	<u>1000</u>	<u>ms</u>

833

7 <u>MPHY.TEST</u>

The test mechanisms defined in this section are *optional normative* and defines the behavior of a USP
 or a DSP in the optional MPHY.TEST state. If the MPHY.TEST state is supported, the following
 requirements defined in this section shall apply.

838 **7.1 Overview**

The purpose of the MPHY.TEST state is to allow standardized electrical testing of SSIC M-PHYs. For
 example, [CTS] defines a set of M-PHY electrical tests which are independent of the protocol layer. The
 M-PHY based protocols that use these tests are listed in Appendix D of [CTS].

- Figure 6-1 shows an SSIC Device Under Test attached to Test Equipment and illustrates the various components involved in the support of the MPHY.TEST state. In the figure below, "n" indicates the
- 844 number of supported PAIRs.

834

847 848 849

846

851 852 853

854

850

•	Test Equipment transitions the DUT The DUT shall transition through the Rx.Detect.Reset, Rx Detect Active and the Rx Detect LS-MODE states as described in Section 3.8.2 on the PAIR.
	under Test.
•	In the Rx.Detect.LS-MODE state, the DUT shall support the receipt of a PWM-BURST from the Tes
•	In the PWM-BURST mode, the DUT shall support the receipt of a RRAP Write Command to enable the transition to the MPHY.TEST state and shall issue a valid Write Response as defined in Table
	2-5.
-	The DUT shall transition to the MPHY.TEST state.
7	7.3 Loopback Testing
۲ c	he operational model for enabling Loopback Testing and the associated DUT requirements are lescribed below:
-	Test equipment transitions the DUT to the MPHY.TEST mode prior to configuring it for Loopback
•	Test Equipment issues a RRAP Write Command to set the LOOPBACK_EN[0] register bit as defined in Table 6-1.
•	Upon receipt of the Write command, the DUT shall enable Loopback Testing for the PAIR under Test and shall issue a valid Write Response.
•	Test Equipment appropriately configures the PAIR under Test for HS-MODE.
•	Test Equipment closes the PWM-BURST and ensures conditions are met for a RCT to transition the
	DUT to the HS-MODE. A BURST_CLOSURE RRAP command is not required prior to terminating
	the PWM-BURST.
•	Upon detecting the start of HS-BURST on M-RX, the DUT stall initiate a HS-BURST on the M-TX
•	Upon detecting the end of HS-BURST on M-RX, the DUT shall terminate the HS-BURST on the M- TX.
•	Upon initiating a HS-BURST on the M-TX of the PAIR under Test, the DUT shall loop back received HS-BURST payloads until a LINE-RESET is received.
-	The DUT shall transmit the payload exactly as received with the exception of inserted or removed SKP ordered sets, regardless of whether scrambling is enabled or disabled by the Tester Equipment
	using the corresponding RRAP command.
•	Upon initiating a HS-BURST on the M-TX of the PAIR under Test, the DUT may insert one or more
	NRU OFFLR Symbols until the loop back begins.
	Dote Scrampling shall be enabled by default in this mode unless specifically disabled using the
	corresponding RRAP command by the Tester Equipment
٦	he following additional requirements for the PAIR under Test shall apply during Loopback Testing:
•	The M-TX shall maintain running disparity of transmitted symbols.
•	The PAIR is allowed to discard received SKP ordered sets in order to avoid receiver overflow
•	The MAIK is allowed to inject SKP ordered sets in the transmitted data to avoid transmit underflow
•	THE IN- IN SHAIL CLOSE THE ID-DUKOT WHEN A ID-BUKOT CLOSURE IS DETECTED ON THE M-KX.
ι	Jpon detecting the start of an HS-BURST at the M-RX, the M-TX shall start output a HS-BURST. If the
F	PREPARE and SYNC period received on the M-RX is longer than the corresponding values in the M-T.
t	he M-IX may inject SKP ordered sets after the initial MK0 of the transmit payload. If the PREPARE an
	by the period received on the M-RX is shorter than the corresponding values in the M-IX, the M-IX ma
5	Iron symbols offer the initial MKO of the received payload. Test Equipment can ensure that the
	Irop symbols after the initial MK0 of the received payload. Test Equipment can ensure that the PREPARE and SYNC period received on the M-RX is equal or greater than the corresponding values in

For USB 3.0 Contributor Review Only

I

930 The size of the Elasticity Buffer shown in Figure 6-2 shall be sufficient to handle the maximum clock skew allowed by [M-PHY] between two M-PORTs, given that the Test Equipment is required to inject at 931 least one SKP every 354 symbols. 932 933 7.4 Receive Burst Testing 934 The following requirements shall apply during Receive Burst Testing: 935 The DUT shall implement the RX_BURST_COUNT, RX_ERR_COUNT and the 936 937 RX COUNT RESET registers as defined in Table 6-1. 938 The RX_BURST_COUNT registers shall increment each time the M-RX of the PAIR under Test 939 transitions from HS-BURST to STALL. The four RX_BURST_COUNT registers implement a 4 Byte counter for the PAIR under Test 940 with RX_BURST_COUNT_0 indicating the LSB and RX_BURST_COUNT_3 the MSB of the 941 942 count. 943 The RX_ERR_COUNT registers shall increment each time the M-RX of the PAIR under Test 944 transitions from HS-BURST to STALL without detecting an MK0 during the burst. The four RX_ERR_COUNT registers implement a 4 Byte counter for the PAIR under Test with 945 946 RX_ERR_COUNT_0 indicating the LSB and RX_ERR_COUNT_3 the MSB of the count. 947 The RX_BURST_COUNT and RX_ERR_COUNT registers shall be reset when the DUT receives a RRAP Write Command that sets the RX_COUNT_RESET[0] register. These registers 948 949 shall not be reset upon the receipt of a LINE-RESET. The RX_BURST_COUNT and RX_ERR_COUNT registers shall remain unchanged and not 950 951 rollover when they have reached their maximum values. The RX_BURST_COUNT and RX_ERR_COUNT registers shall always be updated as 952 • 953 described above when in the MPHY.TEST state. 954 7.5 Tx Compliance Mode 955 The operational model for enabling Tx Compliance mode and the associated DUT requirements are 956 described below: 957 Test equipment transitions the DUT to the MPHY.TEST mode prior to configuring it in Tx 958 Compliance Mode. 959 Test Equipment issues a RRAP Write Command to set the TX_COMP_MODE_EN[0] register bit as defined in Table 6-1. 960 961 Upon receipt of the Write command, the DUT shall enable Tx Compliance mode for the PAIR under Test and shall issue a valid Write Response. 962 963 Test Equipment appropriately configures the PAIR under Test for HS-MODE. 964 Test Equipment closes the PWM-BURST on the M-RX of the PAIR under Test. A BURST_CLOSURE RRAP command is not required prior to terminating the PWM-BURST. 965 Upon detecting the end of PWM-BURST on its M-RX, the DUT shall terminate the PWM-BURST 966 967 on the M-TX. 968 The M-TX of the PAIR under Test shall then continuously transmit the CRPAT compliance 969 pattern in HS-MODE as defined in [M-PHY] Annex B.1.2. 970 The DUT shall remain in the Tx Compliance Mode until a LINE-RESET is received from the Test • 971 Equipment. 972 7.6 Analog Loopback Mode 973 The operational model for enabling Analog Loopback mode and the associated DUT requirements are 974 described below:

Formatted: Bulleted + Level: 1 + Aligned at: 0.5" + Indent at: 0.75"

60

975 976	Test equipment transitions the DUT to the MPHY.TEST mode prior to configuring it in Analog Loopback Mode
977 978	 Test Equipment issues a RRAP Write Command to set the ANALOG_LOOPBACK _EN[0] register bit as defined in Table 6-1.
979 980	 Upon receipt of the Write command, the DUT shall enable Analog Loopback mode for the PAIR under Test and shall issue a valid Write Response.
981	Test Equipment appropriately configures the PAIR under Test for HS-MODE.
982	Test Equipment closes the PWM-BURST on the M-RX of the PAIR under Test. A
983	BURST_CLOSURE RRAP command is not required prior to terminating the PWM-BURST.
984 985	 Upon detecting the end of PWM-BURST on its M-RX, the DUT shall terminate the PWM-BURST on the M-TX.
986 987	 Subsequently all the data received on the M-RX of the Pair under Test in <u>HS-BURST</u> shall be transmitted back on the M-TX of the PAIR under Test.
988	This functionality is analogous to the mode defined in [M-PHY] Annex B.2.2 as "Analog
989	Loopback" mode. Specifically a "Synchronous Loopback" mechanism is employed as described
990	in Annex B.2.2.1 in which the recovered clock from M-RX is used to retransmit the data on the
991	M-TX.
992	The DUT shall remain in Analog Loopback Mode until a LINE-RESET is received from the Test
993	Equipment.
994	The following additional requirements for the PAIR under Test shall apply during Analog Loopback
995	mode:
996	Upon detecting the start of an HS-BURST at the M-RX, the M-TX shall start output a HS-BURST. If
997	the PREPARE and SYNC period received on the M-RX is longer than the corresponding values in
998	the M-TX, the M-TX shall transmit all bits on M-TX with bits received in M-RX. If the PREPARE and
999	SYNC period received on the M-RX is shorter than the corresponding values in the M-TX, the M-TX
1000	may drop bits. Test Equipment can ensure that the PREPARE and SYNC period received on the M-
1001	RX is equal or greater than the corresponding values in the M-TX, to prevent the dropping of bits by
1002	the PAIR under Test.
1003	
1004 7 .	.7 MPHY.TEST Block Registers

1005

1006

Table 6-1 MPHY.TEST Block Registers

U	pperAddr	LowerAddr	Register Name	Description
0×	κE	0x00	LOOPBACK_EN	This Register is used to enable Loopback Testing for the PAIR under Test.
				Read/Write Attributes:
				• R/W
				Reset Default:
				Value after LINE-RESET: 0x00
				Bit [0]:
				Writing 1'b1 enables the loopback mode for the PAIR under Test.Writing 1'b0 shall have no effect.

For USB 3.0 Contributor Review Only

Formatted: Bulleted + Level: 1 + Aligned at: 0.5" + Indent at: 0.75"

UpperAddr	LowerAddr	Register Name	Description	
			Once the bit is set, it shall only be reset via a LINE-RESET issued by Test Equipment.	
			 Writes shall be ignored and Reads shall return zero values. 	
0xE	0x01-0x04	RX_BURST_COUNT_0 RX_BURST_COUNT_1 RX_BURST_COUNT_2 RX_BURST_COUNT_3	These Registers count the number of bursts by incrementing on each HS-BURST to STALL transition. RX_BURST_COUNT_0 is the LSB.	
			R/W attributes:	
			Read Only	
			Reset Default:	
			 Value after LINE-RESET: Unchanged <u>Cleared0x00</u> 	
			 <u>This register shall be reset only</u> when RX_COUNT_RESET[0] is set. 	
			<u>This register is not affected by a LINE-RESET</u> issued by Test Equipment.	
0xE	0x05-0x08	RX_ERR_COUNT_0 RX_ERR_COUNT_1 RX_ERR_COUNT_2 RX_ERR_COUNT_3	These Registers count the number of errors by incrementing on each HS-BURST to STALL transition for which an MK0 was not detected. RX_ERR_COUNT_0 is the LSB.	
			R/W attributes:	
			Read Only	
			Reset Default:	
			 Value after LINE-RESET: Unchanged <u>Cleared0x00</u> 	
			• <u>This register shall be reset only</u> when• RX_COUNT_RESET[0] is set. <u>This register is not</u> <u>affected by a LINE-RESET issued by Test</u> <u>Equipment.</u>	Formatted: Normal, No bullets or numbering
0xE	0x09	RX_COUNT_RESET	This register is used to reset the RX_BURST_COUNT and the RX_ERR_COUNT registers	
			R/W attributes:	
			Write Only, Self Clearing	
			Reset Default:	
			Value after LINE-RESET: 0x00	

62

UpperAddr	LowerAddr	Register Name	Description			
			Bit [0]:			
			Writing 1'b1 resets the RX_BURST_COUNT and the RX_ERR_COUNT registers			
			Bits [7:1]: Reserved.			
0xE	0x0A	TX_COMP_MODE_EN	This register is used to enable M-TX of the PAIR under Test in TX Compliance mode.			
			Writes to this register are undefined unless the DUT is in the MPHY.TEST state.			
			R/W Attributes:			
			Write Only			
			Reset Default:			
			Value after LINE-RESET: 0x00			
			Bit [0]:			
			 Writing 1'b1 enables Tx Compliance Mode for the PAIR under Test. In this mode the DUT transmits the Continuous mode CRPAT defined in [CTS]. Writing 1'b0 shall be ignored and Reads shall return zero values. 			
			Once the bit is set, it shall only be reset via a LINE-RESET issued by Test Equipment.			
			Bits[7:1] Reserved:			
			 Writes shall be ignored and Reads shall return zero values. 			
0xE	0x0B	ANALOG_LOOPBACK_EN	This register is used to place the M-RX of the PAIR under Test in Analog Loopback mode.			
			Writes to this register are undefined unless the DUT is in the MPHY.TEST state.			
			R/W Attributes:			
			Write Only			
			Reset Default:			
			Value after LINE-RESET: 0x00			
			Bit [0]:			
			 Writing 1'b1 enables Analog Loopback Mode for the PAIR under Test Writing 1'b0 shall be ignored and Reads shall return zero values. 			
			Once the bit is set, it shall only be reset via a LINE-RESET issued by Test Equipment.			

For USB 3.0 Contributor Review Only

I

UpperAddr	LowerAddr	Register Name	Description
			Bits[7:1] Reserved:
			Writes shall be ignored and Reads shall return zero values.
0xE	0x0C- 0xFF	RESERVED	Reserved. Writes shall be ignored and Reads shall return zero values.

1007

8 Timing Diagrams Appendix (Informative)

1009 8.1 SS.DISABLED TO RX.DETECT

For USB 3.0 Contributor Review Only

1011 8.2 RX.DETECT TO POLLING

	<i>TO</i>	<i>T</i> 1	T2	<i>T3</i>
link_state	Rx.Detect	Polling	· 	· ·
link_sub_state	LS-MODE	STALL	Active	Configuration X Idle
RxTermination		: ◀━ < tPollingSTALLTimeout→	1	:
mtx_state	SLEEP X	; STALL	HS_BURST	· · •
mtx_lstate	DIF-N	:	DIF-P SYNC	HSDATA
TX_Burst		• • •		· · ·
mrx_state	SLEEP	STALL HS_BURST	<u>† </u>	l
mrx_lstate		DIF-N DIF-P SYNC	: X HSDATA	· · · · · · · · · · · · · · · · · · ·
RX_Burst	ļ	! /	<u>+</u>	<u> </u>

Rx.Detect to Polling

T0: RRAP has completed successfully and PA is ready for connect, Indicates termination present to link layer. T1: Link detects termination and moves to Polling state

T2: Link enters into Polling.Active state and starts sending TS1 sets, PA puts M-TX into HS_BURST state T3: Both link partners are in Polling with it's M-TX and M-RX in HS_BURST and exchanging Training sets

Note: RxTermination is conceptual signal indicating remote receiver is present

1012

1013 8.3 POLLING TO U0

1018

		T1	T2			T3	T4	Τ5
link_state	U1	Recovery						UO
link_sub_state		Active				Configuration	Idle	
mtx_state	STALL	HS_BURST						
mtx_lstate	DIF-N	DIF-P	SYNC	HSDATA				
TX_Burst								
mrx_state	STALL				HS_BURST			
mrx_lstate	DIF-N		DIF-P	SYNC SYNC	HSDATA		 	
RX_Burst								<u> </u>

U1 to U0

T1: Link partner 1 intiates U1 exit by making sure that it's M-RX and M-TX is in STALL
T2: Link partner 2 detects U1 exit on it's M-RX and starts HS_BURST on it's M-TX.
T3: Both Link partners are in HS_BURST. Link enters Recovery.Configuration after successful TS1 handshake.
T4: Link enters Recovery.Idle after successful TS2 handshake.
T5 Link enters U0 after successful LIDLE handshake.

1022 **8.7 U2/U3 TO U0**

	1		. T2	, <i>T3</i>	T4	T5	T6
link_state	U2 or U3	<u> </u> 	1 · 1	Recovery	 		UO
link_sub_state		·	:	Active	Configuration	Idle	
mtx_state	HIBERN8	<u> </u>	. STALL	HS_BURST	·	 !	· ·
mtx_lstate	DIF-Z	DIF-N	ļ	X DIF-PX SYNC X HSDATA		ļ	
TX_Burst		$\blacksquare T_{Activate}$				I	!
			TActivate	∕. ↓	: 	: 	:
mrx_lstate	DIF-Z	 	I DIF-N	L DIF-P X SYNC X HSDATA	 !	l I	
mrx_state	HIBERN8	· ·	STALL	HS_BURST	<u> </u>	: 	
RX_Hibern8Exit_Type_I		İ	i /	· · · · · · · · · · · · · · · · · · ·		İ	
RX_Burst		1	Ī				
	U2/U3 to U T1: Link partner 1 T2: Link partner 2 T3: Link partner 2 T4: Both Link part T5: Link enters Re T6 Link enters U0	0 intiates U2/U3 exit by mo detects HIBERN8 exit on detects STALL exit on it's theres are in HS_BURST. Lin covery.Idle after successfu after successful LIDLE han	iking sure that it's M-RX and N it's M-RX and starts HIBERN8 M-RX and starts STALL exit on ik enters Recovery.Configurati I TS2 handshake. ndshake.	1-TX is in HIBERN8 for atleast Thibern8 time exit on it's M-TX. n it's M-TX. on after successful TS1 handshake.			

For USB 3.0 Contributor Review Only
Inter-Chip Supplement to the USB Revision 3.0 Specification

	1	. T1	. T2	T3	T4	. <i>T5</i>	T6
link_state	U2 or U3	<u> </u> 		Recovery	· · · · · · · · · · · · · · · · · · ·		UO
link_sub_state				Active	Configuration	Idle	
mtx_state	HIBERN8	<u> </u>	STALL	HS_BURST		İ	
mtx_lstate	DIF-Z	DIF-N	 · 	DIF-PX SYNC HSDATA			
TX_Burst		$\blacktriangleleft T_{Activate}$! I ,	! (<u> </u>	<u>:</u> 	<u> </u>
	Í :	i i		J		 :	 -
mrx_lstate	DIF-Z)	DIF-N	DIF-P X SYNC X HSDATA		 	
mrx_state	HIBERN8	$ \rangle$	STALL	HS_BURST			
RX_Hibern8Exit_Type_I		1	i				
RX_Burst	1			!			
I	U2/U3 to U T1: Link partner 1 T2: Link partner 2 T3: Link partner 2 T4: Both Link part T5: Link enters Re T6 Link enters U0	0 initiates U2/U3 exit by mo detects HIBERN8 exit on i detects STALL exit on it's mers are in HS_BURST. Lin covery.Idle after successful after successful LIDLE han 100us, as per SSIC profile of	iking sure that it's M-RX and N t's M-RX and starts HIBERN8 (M-RX and starts STALL exit on k enters Recovery.Configuration TS2 handshake. dshake. lefinition	A-TX is in HIBERN8 for at least Thibern8 time exit on it's M-TX. it's M-TX. on after successful TS1 handshake.			

For USB 3.0 Contributor Review Only

1026 8.8 USP Disconnect

1028

1027

For USB 3.0 Contributor Review Only

74

1029 8.9 DSP Disconnect

1030

1031

For USB 3.0 Contributor Review Only

75

Inter-Chip Supplement to the USB Revision 3.0 Specification

Inter-Chip Supplement to the USB Revision 3.0 Specification

1034

1035 1036

THIS PAGE IS INTENTIONALLY BLANK TO INDICATE THE END OF THE SUPPLEMENT.

For USB 3.0 Contributor Review Only