
 Page 1 of 28

For professionals

FlashcatUSB

SCRIPT ENGINE DOCUMENTATION

Website: www.embeddedcomputers.net

Support email: contact@embeddedcomputers.net

Last updated: November, 2021

http://www.embeddedcomputers.net/products/FlashcatUSB/
mailto:contact@embeddedcomputers.net

 Page 2 of 28

QUICK LOOKUP

 Language Structure Commands

 Basic Syntax

Data Types

Arithmetic Operators

Logical Operators

Variables

Events (Functions)

Conditionals

Loops (Iterations)

Error Handling

STRING commands

INT / UINT commands

DATA commands

I/O commands

MEMORY commands

TAB commands

SPI commands

JTAG commands

BSDL commands

BOUNDARY SCAN commands

PARALLEL PORT commands

Miscellaneous

GETTING STARTED

Before you begin, please make sure you are using the newest software/firmware for your device. You

can download the newest software from EmbeddedComputer's website.

The software includes many scripts. Advice for beginners, just look at some of those to get an idea of

how to write/use them.

A script file is just a plain text document. You can open and edit one using Notepad. The contents of a

script file are made up of commands, labels, and sub procedures (called events). When a script file is

executed, any line that is not in an event block will be executed. The purpose of a script is to

accomplish more complex operations that may not otherwise be performed using the standard GUI.

Script files are also ideal for production environments.

 Page 3 of 28

Basic Syntax

FlashcatUSB scripts use a very familiar console/script syntax. Each line contains a statement that can

be a command to execute, a condition (IF etc.), a flow control statement, or the start of an Event (a

function or sub procedure). To put comments into your script file (statements which have no affect), use

the # symbol. Any characters proceeding will not be evaluated by the script engine.

The basic flow-control statements are: LABEL, GOTO, EXIT, RETURN.

The GOTO statement can be used to control which line to execute. Generally, the software starts

executing at the top of the file and proceeds down. To change the location, you can use the GOTO

statement followed by a location that is indicated by using a label. A LABEL is a user-specified word

that ends with a colon. For example:

var1 = 10

GOTO SKIP_MINVAL

var1 = var1 - 5

SKIP_MINVAL:

Print(var1) #var1 = 10

So as the script executes, when it reaches the GOTO keyword, the engine will then search the

document (forwards and backwards), for a label that contains the name “SKIP_MINVAL”. Once found,

execution will begin there. Because the script engine will search both ways, you can also use GOTO

keywords to create loops.

The EXIT keyword can be used to leave an event or function, or to exit out of a condition segment (IF

or FOR block for example). The syntax usage is EXIT WHILE, EXIT FOR, EXIT IF or EXIT SCRIPT.

If you run exit script, no matter what event you are in, the entire script will stop executing. For

example:

If (VarInt = 10) #This does a compare to see if VarInt is 10

 SomeFunction()

 Var2 = 0x40

 EXIT SCRIPT

 Var3 = 0x40 #This will not be executed

Endif

When the script reaches the exit command, it will then exit out of this IF statement and proceed to

execute the next line after the EndIf statement.

 Page 4 of 28

Data Types

1. Boolean

A value that is either true or false.

var_bool = true #create a variable and assigns it the data type of bool with a value of true.

verify(false) #passes the value of false to a function.

2. String

A value that consists of readable ASCII characters. To create this type, put quotes around the

value.

your_name = “Taki Tachibana” #creates a variable with a string data type

3. Integer

A value that represents a 32-bit signed value. By default, all numbers are parsed into an Integer

data type. This data type can also contain negative numbers.

4. UInteger

A value that represents a 32-bit unsigned value. There are two methods to create this data type,

first, you can append a number with a capital U, or you can use a base-16 hexadecimal string

that is 32-bits or less.

counter_var = 128U #creates a variable with 128 value that is unsigned.

counter_var = 0x80 #does the same as above.

5. Data Array

This data type represents an array of bytes. Usually, this data type is created or used by an

internal function, but it is also possible to create and define it by using hexadecimal pairs

separated by semicolons.

d_var = 0x80;0x81;0x82;0x83 #creates a binary data variable with 4 bytes.

d_var = memory.read(0x5000,256) #reads 256 bytes from memory offset 0x5000.

Data arrays can also be partially accessed or spliced; syntax: data_array(index, count)

two_bytes = d_var(0,2) #returns 0x80;0x81;

single_byte = d_var(3) #returns 0x82;

Arithmetic Operators

The following operators are supported:

 + Addition. Adds two integers, combines two strings, or combines two data arrays.

 - Subtract. Only compatible with Integer data types.

 Page 5 of 28

 / Divide. Only compatible with Integer data types.

 * Multiple. Only compatible with Integer data types.

 << Shift left. Shits an integer to the left by a number of bits.

 >> Shift right. Shifts an integer to the right by a number of bits.

Logical Operators

 == compares two operands and returns BOOL TRUE if they are exact.

 & logical AND

 | logical OR

Variables

A variable is a name that you assign an object. You can assign a string, data, integers, or boolean

values. For example:

ThisVar = "Hello World"

Will now create a variable named ThisVar whose string value is "Hello World". To create a data array

use ";" after each byte:

MyData = 0x01;0x02;0x03;0x04;0x05;0x06;

If you assign a variable 4 or less bytes, the variable will auto convert to a Integer type instead of a Data

type. To create a boolean variable:

DoVar = true

And to create an integer:

VarInt = 470

Integer variables are able to be added or subtracted. String and Data variables can be combined.

VarInt = 5

VarInt += 10

msgbox(VarInt) #this will produce the result of 15

For strings and data, use the operand "&", for example:

VarStr = "Hello "

VarStr = VarStr + "World!"

msgbox(VarStr) #Will produce "Hello World!"

 Page 6 of 28

MyData = 0x01;0x02;0x03;0x04;0x05;

MyData = MyData + 0x06;0x07;

msgbox(hex(MyData)) #Will produce "0x01020304050607"

The hex command converts the data array into a hex string that can be printed.

DATA arrays can also have index arguments specified to read data from the array and use it like an

Integer that contains a byte.

VAR1 = 0x01;0x02;0x03;

VAR2 = VAR1(1)

Print(VAR2) #Will print “2”

To write a byte to a DATA array, you can also do this:

VAR1 = 0x01;0x02;0x03;

VAR1(0) = 0xFF

Print (String.Hex(VAR1(0))) #Outputs “0xFF”

Events (Functions)

An Event is similar to a function that you may be familiar with. You can treat it like a “function”, you

can create events and then call them like functions, and even return a value. Events can also be

assigned to GUI elements, such as buttons. So, when you click a button you created, the engine will run

the commands that are in the Event that you assigned to that button.

Events are very useful. You can pass variables to events and retrieve values from events. When you

pass a variable or value to an event, the event will create a new variable for each argument passed.

These new variables will be named $1, $2, $3, and so on for each variable passed.

Within an Event block, you can exit the block and create a new variable using the RETURN keyword.

To create an event or function, use the CreateEvent keyword followed by a parameter specifying the

name of the event/function. And to specify the end of the Event, use the EndEvent keyword.

EchoToMsgBox("Hello World")

CreateEvent(EchoToMsgBox)

 msgbox($1)

EndEvent

 Page 7 of 28

This code sample popup a message box saying "Hello World" when executed. You can also use events

like functions to parse information an use the event like you would a command function. For example:

msgbox(CombineString("Hello"," World"))

CreateEvent(CombineString)

 StrVar = $1 + $2

 Return StrVar

EndEvent

The output from this will produce a message box that says “Hello World”.

Conditionals

To execute code based on a condition, you can use the IF keyword followed by a statement that can be

evaluated to be either true or false. The syntax is IF (STATEMENT). Optionally, you can prefix the

statement with the NOT keyword to indicate that the statement should evaluate to the opposite. This is

similar to the “IF, ELSE, ENDIF” of other programming languages.

If (5 > 2)

 msgbox("This will be executed")

Else

 msgbox("This will not")

EndIf

The condition statement (5 > 2) is evaluate and found to be true. You can also use Events that return

TRUE or FALSE. If you precede the condition statement with the "not" keyword, what ever the

statement is evaluated at, the opposite will happen. You can also use the "!" character for the same

effect.

If not (GetValue() > 10)

 print ("This will be executed")

EndIf

CreateEvent(GetValue)

 retVar = 5

 return retVar

EndEvent

In the above example, you can create a function named GetValue, by specifying it using the

CreateEvent keyword. Inside the event block, you can then run commands or other syntax and then use

 Page 8 of 28

the Return keyword to return a value to the calling line, in this case, the IF statement that compares the

return value to be greater than 10.

You can also use an IF CONDITION with the keyword NOTHING to check to see if a variable exists.

For example

If not (ObjectVar==Nothing)

 print("variable exists! ")

Else

 print("Variable does not exist! ")

EndIf

Loops (Iterations)

To do repetitive tasks, you can use a FOR loop. This is specified by using the FOR keyword followed

by parameters specifying a variable name, starting value, and ending value. Optionally, you can specify

a step value (an integer to increase the counter by).

For (i = 0 to 9)

 print ("We are on loop number: " + Integer.ToStr(i))

EndFor

This will iterate 50 times (0, 2, 4, 6, ...)

For (i = 0 to 98) Step 2

 print ("We are on loop number: " + Integer.ToStr(i))

EndFor

A WHILE loop will execute statements in the body while the condition is TRUE. You can also use the

NOT modifier to evaluate a statement that is True, until it becomes False.

count_down = 10

While (count_down>0)

 print ("Current value: " + Integer.ToStr(count_down))

 count_down = count_down - 1

EndWhile

 Page 9 of 28

Error Handling

The console application will set the %ERRORLEVEL% environment to -1 if there was an error or to 0

if there was no error. You can then check this variable at the command shell or from a batch file.

At the script level, you might do your own error checking and then use the EXIT SCRIPT, but since

this is recognized as a success, you might also want to indicate an error. In this circumstance, you can

set a reserved variable named ERROR to True. For example:

IF NOT memory.name=="Winbond W25Q128JV"

 Print("ERROR: W25Q128JV DEVICE NOT CONNECTED")

 ERROR = True

 EXIT SCRIPT

END IF

This small piece of code checks to see if the current memory detected matches a specific device and if

not, it will print an error message to the console, set the ERROR variable to true, and then the EXIT

SCRIPT command to stop executing. And then when the program quits, the %ERRORLEVEL% will

automatically be set to -1.

 Page 10 of 28

LIST OF CONSOLE OR SCRIPT COMMANDS

The following is a complete list of commands that are built into the FlashcatUSB script engine. You

can execute these either in a script file or from the software's console window. Some commands will

output information to the console, others will not. Also note that for the memory commands, if you

have initiated more than one memory device, you can access each device by using parameters with an

index, for example, memory(0).read will perform the read operation from the first memory device;

memory(1).read will do the same from the second device, and so on.

STRING Commands

Command: string.upper

Parameters: String

Returns: String

Description: Inputs a string and converts it all uppercase.

Examples: string.upper(“hello”) #ouputs "HELLO”

Command: string.lower

Parameters: String

Returns: String

Description: Inputs a string and converts it to all lower case.

Examples: string.lower(“ANIME”) #ouputs "anime"

Command: string.hex

Parameters: Integer

Returns: String

Description: Converts an Integer value into a hex string

Examples: string.hex(255) #ouputs "0xFF"

Command: string.length

Parameters: String

Returns: Integer

Description: Returns the number of bytes the string requires in memory.

Examples: string.length(“zenzenzense”) #returns 11

Command: string.toint

Parameters: String

Returns: Integer

Description: Converts a string that contains a numeric value to an integer.

 Page 11 of 28

Examples: var_int = string.toint(“1024”)

Command: string.fromint

Parameters: Integer

Returns: String

Description: Converts an integer value or variable to a string.

Examples: var_str = string.fromint(1024)

Command: string.todata

Parameters: String

Returns: Data

Description: Converts a string into a char array and returns data variable.

INT / UINT Commands

Note: use UINT instead when dealing with UINTEGER data types.

Command: INT.ToStr

Parameters: Integer or UInteger

Returns: String

Description: Converts an integer to a string

Examples:
value = 3

Print(“value is “ + Integer.ToStr(value)) #prints “value is 3” to the console

Command: INT.ToData32

Parameters: Integer or UInteger

Returns: Data

Description: Converts an integer to a 4-byte data array

Examples:
value = 3

d_arr = INT.ToData32(value) #d_arr = 0x00;0x00;0x00;0x03;

Command: INT.ToData16

Parameters: Integer or UInteger

Returns: Data

Description: Converts an integer to a 2-byte data array

Examples:
value = 3

d_arr = INT.ToData32(value) #d_arr = 0x00;0x03;

Command: INT.ToData

 Page 12 of 28

Parameters: Integer or UInteger

Returns: Data

Description: Converts an integer to a data array (1 to 4 bytes)

Examples:
value = 3

d_arr = INT.ToData32(value) #d_arr = 0x03;

Command: INT.Min

Parameters: Integer or UInteger

Returns: Integer or UInteger

Description: Inputs two values and returns the smallest value of the two.

Examples: min_value = int.min(5,10) #returns 5

DATA Commands

Command: Data.New

Parameters: Integer, Data (optional)

Returns: Data

Description:

Creates a new data array with a specific number of bytes. The first parameter

specifies the size of the array. The second parameter will set the initial data to

create.

Examples: DVAR = Data.new(128,0xFF;) #Creates an array with 128 bytes

DVAR = Data.new(512,0xAA;55) #Alternating bytes

Command: Data.FromHex

Parameters: String

Returns: Data

Description: Converts a hex string to a data array. Data can be with or without “0x” prefix.

Examples: Result = Data.FromHex(“FFFFFFFF”)

Command: Data.compare

Parameters: Data, Data

Returns: Bool

Description: Compares two data arrays and returns true if they both exist and are the same.

Examples: result = Data.Compare(VAR1,VAR2)

Command: Data.length

Parameters: Data

Returns: Integer

Description: Returns the size of the data array.

 Page 13 of 28

Examples: size = Data.length(VAR1)

Command: Data.resize

Parameters: Data, Integer, Integer (optional)

Description:

Resizes a data array. First parameter is the data array to resize, the second is

the offset within the array, and the last (optional) argument is the number of

bytes to copy.

Examples: Data.resize(var1,0,128)

Command: Data.word

Parameters: Data, Integer

Returns: Integer

Description:

Copies a word (4 bytes) of data from a Binary Data at a specific offset and

saves it as an Integer.

Examples: var1 = data.word(data_array, 0)

Command: Data.hword

Parameters: Data, Integer

Returns: Integer

Description:

Copies a half-word (2 bytes) of data from a Data array at a specific offset and

saves it as an Integer.

Examples: Var1 = data.hword(data_array, 0)

Command: Data.ToStr

Parameters: Data

Returns: String

Description: Converts the data array to hex string.

Examples: Var1 = Data.ToStr(data_array)

Command: Data.copy

Parameters: Data, Integer, Integer (optional)

Returns: Data

Description:

Copies a section of a Data array and creates a new array. The first parameter

is the Data variable, the second is the offset within the array, and the third is

the length of data to copy, otherwise it will copy until the end.

Examples: Var1 = Data.Copy(data_array,0,128) #Copies 128 bytes to a new array

I/O commands

 Page 14 of 28

Command: IO.open

Parameters: String (optional), String (optional), String (optional)

Returns: Data

Description: Prompts the user for a file and then reads the file from disk and returns a data

variable. First optional parameter is the title of the window and the optional

second is the standard file filter to use. The third optional argument can

specify a sub-directory to start in.

Examples: MyData = IO.Open("Choose file", "Firmware files (*.bin)|*.bin")

Command: IO.save

Parameters: Data, String (optional), String (optional)

Syntax: Data variable to write, title prompt, default save name

Description: Prompts the user to save a data variable to the hard drive.

Examples: IO.Save(MyData,"Where to save?","file_read.bin")

Command: IO.read

Parameters: String

Returns: Data

Description:

Reads a file from the hard drive. The first parameter is the name of the file

(in relation to where FlashcatUSB.exe is located).

Examples: MyData = IO.Read(“Scripts\EEPROM.bin”)

Command: IO.write

Parameters: Data, String

Description:

Writes data to the hard drive. The first parameter is a data array variable, the

second is the location where you want to save the file. This command does

not prompt the user.

Examples: IO.Write(MyData,“Scripts\EEPROM.bin”)

Command: IO.delete

Parameters: String

Returns: Bool

Description: Attempts to delete a file. Returns True if the file existed and was deleted.

Examples: result = IO.Delete(“output.txt”)

Memory commands

Command: memory(index).name

Parameters: None

 Page 15 of 28

Returns: String

Description: Returns the name of the memory device.

Examples: flash_name = Memory(0).Name

Command: memory(index).size

Parameters: None

Returns: Integer

Description:

Returns the number of bytes in the given memory device. Note: due to the

size limitation of the Integer data type. This function can only be called on

memory devices that are 2GB (2,147,483,647) or smaller.

Examples: flash_size = memory(0).size

Command: memory(index).write

Parameters: Data, Integer, Optional Integer

Syntax: Data object to write, flash address offset, optional length

Description:
Writes a data variable to the flash device. Works for both CFI and SPI flash

devices, but please note you must have already initiated the flash.

Examples: memory.write(data1,0,256) #Writes Binary Data to memory

Command: memory(index).read

Parameters: UInteger, Integer, Optional Bool

Returns: Data

Description:
Reads data from the flash device. First parameter is the flash offset, the

second is number of bytes to read. The third option disables status updates.

Examples: dataVar = memory.read(0,512) #Reads 512 bytes

Command: memory(index).wait

Parameters: None

Description:

Performs a wait operation (delay while busy) on the memory device. If the

memory device has specific function to check a busy status, that operation is

used. For example, a SPI device will check the status register-1 for the busy

bit. A CFI parallel device will check the RDBY pin or preconfigured register.

Examples: memory.wait

Command: memory(index).readstring

Parameters: UInteger

Returns: String

Description:
Reads a string from the offset specified on the flash device. Returns nothing

if error or string not found.

 Page 16 of 28

Examples: dataStr = memory.readstring(0x5000)

Command: memory(index).readverify

Parameters: UInteger, Integer

Returns: Data

Description:

Similar to read(), this function actually does it twice and compares the result,

and if needed verifies all data to ensure that the data read is 100% accurate.

Returns nothing if verification failed. This function is preferred over read()

where the integrity of the data is vital.

Examples: dataVar = memory.readverify(0,512) #Reads 512 bytes

Command: memory.sectorcount

Returns: Integer

Description:
Returns the number of sectors (sometimes called blocks) of a memory

device.

Examples: sectors = memory.sectorcount()

Command: memory (index).sectorsize

Returns: Integer

Description:
Returns the number of bytes of a given sector. Some devices have different

sector sizes, while others have uniform sizes.

Examples: sector_size = memory.sectorsize(0)

Command: memory (index).erasesector

Parameters: Integer

Returns: None

Description: Erases the specified flash sector.

Examples: Memory(index).EraseSector(0) #Erases the first sector

Command: memory (index).erasebulk

Parameters: None

Returns: Nothing

Description: Erases the entire flash memory

Examples: Memory(index).erasebulk()

Command: memory(index).exist

Parameters: None

Returns: Bool

Description: Returns true if a memory device at a given index has been created.

Examples: Memory(2).exist()

 Page 17 of 28

TAB commands

Command: tab.create

Parameters: String

Returns: Integer

Description: Creates a application specific tab. Returns the index of the tab.

Examples: tab.create("My Device")

Command: tab.addgroup

Parameters: String, Integer, Integer, Integer, Integer

Syntax: Name of group, (X-axis), (Y-axis), Length, Height

Description: Creates a group box on the tab.

Examples: tab.addgroup("Feature",10,10,420,140)

Command: tab.addbox

Parameters: String, String, Integer, Integer

Description: Creates a input box on your tab.

Examples: tab.addbox("BXNAME","default text",30,110)

Command: tab.addtext

Parameters: String, String, Integer, Integer

Description: Creates a text label on your tab.

Examples: tab.addtext("txtName","What to say",30,110)

Command: tab.addImage

Parameters: String, String, Integer, Integer

Description: Adds a image to your tab from the specified file (in your scripts folder)

Examples: tab.addimage("ImgName","logo.gif",20,20)

Command: tab.addButton

Parameters: Event, String, Integer, Integer

Description:

Adds a button to your tab. The specified event is called when the user clicks

on the button.

Examples: Tab.addbutton(HelloWorld,"Click Me!",20,20)

Command: tab.addprogress

Parameters: Integer, Integer, Integer

Description: Adds a progress bar to your form. This bar will then be automatically

 Page 18 of 28

updated via internal functions that you call (selected ones that might take

time to process). The parameters are x-axis, y-axis, and bar width.

Examples: Tab.addprogress(20,92,404)

Command: tab.remove

Parameters: String

Description: Removes any previously added object from your tab.

Examples: Tab.remove("ImgName")

Command: tab.settext

Parameters: String, String

Description: Changes the text of any previously created object

Examples: tab.settext("txtName","hello world")

Command: tab.gettext

Parameters: String

Description: Gets the text property of a previously created object.

Examples: res_str = Tab.GetText("txtName") #Returns "hello world"

Command: tab.buttondisable

Parameters: String (Optional)

Description:

Disables a button so the user can not click it and run the event. The input is

the name of the button, but if omitted, then all user created buttons will be

affected.

Examples: Tab.buttondisable("btName")

Command: tab.buttonenable

Parameters: String (Optional)

Description:

Enables the button (if you had it disabled). The input is the name of the

button, but if omitted, then all user created buttons will be affected.

Examples: Tab.ButtonEnable("btName")

SPI commands

Command: SPI.Clock

Parameters: Integer

Description:

Used to set the hardware SPI clock (in MHZ). For Classic, compatible speeds

are 8, 4, 2, and 1. For Professional they are 5, 8, 10, 12, 15, 20, 24, and 30.

Examples: SPI.Clock(8)

 Page 19 of 28

Command: SPI.Mode

Parameters: Integer

Description: Used to set the SPI device mode. Supported modes 0, 1, 2, 3.

Examples: SPI.Mode(0)

Command: SPI.Database

Parameters: Boolean

Description: Prints the entire list of supported SPI devices and size in bits. Optional

parameter to also display the JEDEC ID.

Examples: SPI.Database(true)

Command: SPI.GetSR

Parameters: Integer (optional)

Returns: Data

Description:

Prints and returns the value of the status register. Optional parameter can set

the number of bytes to read (default is 1).

Examples: SPI.GetSR(1)

Command: SPI.SetSR

Parameters: Data

Description:

Writes data to the status register. You can write a single byte, or multiple

bytes.

Examples: SPI.SetSR(0xF0)

Command: SPI.WriteRead

Parameters: Data, Integer (optional)

Returns: Data

Description:

Writes a series of bytes to the SPI bus and returns the exact number of bytes

read back. Using this command, you can execute any specific SPI op code.

Writes data to the SPI bus and then optionally allows you to read data back.

The first parameter is the data to write, it can be a hex string or data variable.

The second parameter (which is optional) is the number of bytes to read

back. Using this command you can execute any specific SPI op code. The

example shows you how to read the SPI Flash's Device ID.

Examples:

chip_id = SPI.WriteRead(0x9F;,3)

print(chip_id)

JTAG commands

 Page 20 of 28

Command: JTAG.idcode

Returns UInteger

Description:

Returns the current IDCODE from the current selected JTAG device. Returns

0 if no JTAG device has been detected.

Examples: dev_id = JTAG.idcode()

Command: JTAG.config

Parameters: String

Description: Configures the JTAG library to use processor specific instructions for the

memory access.

Settings: “MIPS” – Will load EJTAG extensions

“ARM” – Will load ARM extensions

Examples: JTAG.mode(“MIPS”) #For EJTAG devices

Command: JTAG.select

Parameters: integer

Description: In a multi-device JTAG chain, you can select a specific device on the chain in

which to communicate with. Or you can select the last index for all devices.

Examples: JTAG.select(0) #Select the first device in a multi device chain

Command: JTAG.print

Description: Will display information about the current JTAG chain, including number of

devices, chain size in bits and each device with its ID CODE.

Examples: JTAG.print #Will print all devices on the JTAG chain

Command: JTAG.clear

Description: This command will clear all devices from the JTAG chain. The purpose is to

all you to other commands to rebuild the JTAG chain with custom

parameters.

Examples: JTAG.clear

Command: JTAG.set

Parameters: Integer, String

Description: This command allows you to modify a device in a multi-device chain and

specify its BSDL library name. This is useful for devices that do not support

IDCODE command for autoconfiguration. Note: the BSDL file needs to be

compiled within the software, see source code for examples. The first

argument is the index of the chain to modify and the second is the part name

of the BSDL library.

Examples: JTAG.set(2,”XC9572XL”) #Will set index:2 to use the Xilinx XC9572XL

library.

 Page 21 of 28

Command: JTAG.add

Parameters: String

Description: This command allows you to add a BSDL file definition to the JTAG chain.

The parameter is the name of the BSDL device. You can either use a pre-

designed BSDL in the software or to a newly created one using the BSDL

commands.

Examples: JTAG.add("BSDL_NAME")

Command: JTAG.validate

Description: This command will validate the JTAG chain and devices. For example, if you

use the JTAG.clear and JTAG.set or JTAG.add commands, you will need to

run this after to properly validate the chain and entire the entire IR bit size is

correct.

Examples: JTAG.validate

Command: JTAG.Writeword

Parameters: UInteger, Integer

Description:
Writes a word of data (32-bit) to the JTAG device. First parameter is the 32-

bit address and the second parameter is the word to write.

Examples: JTAG.Writeword(0xFFFF1000,0xFF10)

Command: JTAG.Readword

Parameters: UInteger

Returns: UInteger

Description: Reads a word (32-bits) from the JTAG device and returns the value.

Examples: RES = JTAG.Readword(0x1FC00000)

Command: JTAG.control

Parameters: UInteger

Returns: UInteger

Description: Sends a JTAG control message to the target device. These types of

commands are very dependent on the target device. This can be used to stop

(0x10000) or start (0x0) the target processor. The result of the command is

returned.

Examples: JTAG.control(0x10000) #Stops the target processor

Command: JTAG.MemoryInit

Parameters: String, Integer, Integer (optional)

 Page 22 of 28

Description:

Initializes the JTAG memory controller and connects the host to a memory

device connected to the target processor. First parameter is the memory type:

“CFI”, or “SPI”. The second parameter is the DMA address (for DMA/CFI)

or the SPI controller index: 1=Broadcom, 2=Atheros.

Examples:
MemIndex = JTAG.MemoryInit(“CFI”,0x1FC00000)

MemIndex = JTAG.MemoryInit(“SPI”,1) #BCM SPI

Command: JTAG.Debug

Parameters: Bool (true or flase)

Description:

Writes the JTAG data register with the standard flag to put the target device

into debug mode: (PRACC|PROBEN|SETDEV|JTAGBRK)

Examples: JTAG.Debug(true) #Will send the JTAG debug command

Command: JTAG.CpuReset

Description:

Writes the JTAG data register with the standard flag to issue a processor

reset. This command can have different results depending on the particular

processor part: (PRRST|PERRST)

Examples: JTAG.CpuReset #Will send a CPU reset command

Command: JTAG.RunSVF

Parameters: Data

Description:

This command will run a “Serial Vactor Format” file and process and write

all of the commands to a connected JTAG device. This can be use to program

Xilinx or Lattice CPLDs for example.

Examples: JTAG.RunSVF(DataVar) #Runs a *.SVF file

Command: JTAG.RunXSVF

Parameters: Data

Description:

This command will run a compact (binary) “Serial Vactor Format” file and

process and write all of the commands to a connected JTAG device. This can

be use to program Xilinx CPLDs for example.

Examples: JTAG.RunXSVF(DataVar) #Runs a *.XSVF file

Command: JTAG.ExitState

Parameters: Bool

Description:

This command will will enable or disable the go to test-logic-reset after a

SVF file has been executed. Default behavior is enabled.

Examples: JTAG.ExitState(False)

Command: JTAG.ShiftDR

 Page 23 of 28

Parameters: Data, Integer, Bool (optional)

Returns: Data

Description:

Selects the DR register and then shifts data into it. First parameter is the data

array, second parameter is the number of bits to shift in. The last optional

parameter specifies to leave the DR-resister, the default is yes. The TDO data

is shifted in and is returned.

Examples: JTAG.ShiftDR(DATA,32)

Command: JTAG.ShiftIR

Parameters: Data

Returns: Data

Description:

Selects the IR register and then shifts data into it. First parameter is the data

array.

Examples: JTAG.ShiftIR(DATA)

Command: JTAG.ShiftOut

Parameters: Data, Integer, Bool (optional)

Returns: Data

Description:

Shifts data out at the current state. The first parameter is the data to shift, the

second is the number of bits, the last parameter (optional) is to set the last

TMS bit to exit the state (default is no)

Examples: JTAG.ShiftOut(DATA,32,False)

Command: JTAG.TapReset

Parameters: None

Description: Resets the test-access-port state machine to test-logic-reset.

Examples: JTAG.TapReset()

Command: JTAG.State

Parameters: String

Description: Changes the current state of the TAP. The parameter is a string. Valid inputs

are:

“RunTestIdle”, ”Select_DR”, ”Capture_DR”, ”Shift_DR”, ”Exit1_DR”, ”Pau

se_DR”, ”Exit2_DR”, ”Update_DR”, ”Select_IR”, ”Capture_IR”, ”Shift_IR”

, “Exit1_IR”, “Pause_IR”, “Exit2_IR”, “Update_IR”.

Examples: JTAG.State(“RunTestIdle”)

Command: JTAG.GrayCode

Parameters: Integer, Bool (optional)

Returns: UInteger

 Page 24 of 28

Description:

Returns the gray code (8-bit table) for a specific index. Optional parameter is

used to specify if the table reverse should be used.

Examples: JTAG.GrayCode(2, true) #Returns 0xC0

BSDL Library

Command: BSDL.new

Parameters: String

Returns: Integer

Description: This command allows you to create a new BSDL definition entry. This

command should then be followed by the BSDL. Parameter to specify the

library parameters. This command returns an Integer that indicates the index

within the library that this entry exists.

Examples: lib_index = BSDL.new(“Xilinx X95XXX”)

Command: BSDL.find

Parameters: String

Returns: Integer

Description:

If you need to find the index of a BSDL definition, this command can be

used. The parameter is the name of the library to look up. If no library is

found, this command will return -1.

Examples: lib_index = BSDL.find(“Xilinx X95XXX”)

Command: BSDL.paramater

Parameters: String, UInteger (or positive Integer)

Returns: Integer

Description: This command will specify (or override) a parameter of a BSDL definition.

The library is accessed using its index, which is derived from either creating

a new definition or using the BSDL.Find command. The two main

parameters are the name of the parameter to modify, and its value.

Valid Parameter Names:
ID_JEDEC ID_MASK IR_LEN
BS_LEN IDCODE BYPASS
INTEST EXTEST SAMPLE
CLAMP HIGHZ PRELOAD

USERCODE DISVAL

Examples: index = BSDL.New("X95100LA") #create the definition or find one

BSDL(index).parameter("IR_LEN", 10)

BSDL(index).parameter("BS_LEN", 521)

BSDL(index).parameter("EXTEST", 0x00)

BSDL(index).parameter("SAMPLE", 0x01)

Boundary Scan Programmer commands

 Page 25 of 28

Command: BoundaryScan.Setup

Parameters: None

Description: First command needed, sets up initial values.

Examples: BoundaryScan.Setup()

Command: BoundaryScan.Init

Parameters: Integer (Optional)

Description:

After all ADx and DQx and control pins have been specified (from the

AddPin command), this command initializes the engine. Optional parameter

can be used to specify: AUTO (0), X8 over X16 bus (1).

Examples: BoundaryScan.Init()

Command: BoundaryScan.AddPin

Parameters: String, Integer, Integer, Integer (optional)

Description:

Adds a pin to BSR association. This is how you define and map which pins

from a Flash device should go to which pin on the target device.

Parameter list: pin name, output/bidir index, control index, input index (opt)

Valid pin names: DQx, ADx, WE#, OE#, CE#, WP#, RESET#, BYTE#

Note: AD, DQ, WE and OE pins are mandatory, and the others are optional if

the board does not route them to thse host controller. If the IO cell is bidir

and the control cell is next index, then you can omit the other 2 parameters.

Examples: BoundaryScan.AddPin(”DQ1”, 331)

Command: BoundaryScan.SetBSR

Parameters: Integer, Integer, Bool

Description: Sets a bit in the boundary scan register to OUTPUT and to logic high or low.

The first paramer is the index of the output cell bit, the second is the control

bit and the third parameter is true for logic high or false for logic low. The

purpose of this command is to set specific bits on a board that would be

required to enable flash memory access.

Examples: BoundaryScan.SetBSR(369,370,True) #Sets IO at 369 to output and HIGH

Command: BoundaryScan.WriteBSR

Parameters: None

Description:
Used is combination to SetBSR, calling this command will write out the BSR

using the JTAG EXTEST command.

Examples: BoundaryScan.WriteBSR()

 Page 26 of 28

Command: BoundaryScan.Detect

Parameters: None

Description:

Initializes and attempts to detect a CFI compatible NOR memory as specified

using the Setup and AddPin commands.

Examples: BoundaryScan.Detect()

Parallel port commands
 The follow commands are used to manually manipulate the parallel port (DQ0-DQ15 and

ADDR) when using the Parallel NOR mode.

Command: Parallel.Command

Parameters: UInteger, UInteger

Description: Performs a data command to the parallel port. First argument is the address,

the second argument is the 8 or 16-bit data to write. A pulse on the WE#

occurs with this command.

Examples: #Perform READ IDENT command:

Parallel.Command(0x5555, 0xAA)

Parallel.Command(0x2AAA, 0x55)

Parallel.Command(0x5555, 0x90)

ID1 = Parallel.Read(0x0)

ID2 = Parallel.Read(0x2)

print("Flash ID is: " + string.hex(ID1) + " " + string.hex(ID2))

Command: Parallel.Write

Parameters: UInteger, UInteger

Description: Similar to the Parallel.Command, this does a data write command, but the

address is parameter is logical to the Flash device. So this is useful for

writing commands that will need to have their address pins set according to

the hardware address.

Examples: #Perform UNLOCK BLOCK on address 0x10000

Parallel.Write(0x10000, 0x50)

Parallel.Write(0x10000, 0x60)

Parallel.Write(0x10000, 0xD0)

Command: Parallel.Read

Parameters: UInteger

Description: This performs a read operation. The only parameter is the address to read

from.

Examples: Parallel.Read(0x10)

Miscellaneous commands

Command: Writeline (or print)

 Page 27 of 28

Parameters: Any data type

Description: Displays a message to the console. You can input an Integer, String, or Data.

Examples: writeline("this is only a test")

Command: Msgbox

Parameters: String

Description: Displays a message to the user using a pop-up box.

Examples: msgbox("Hello World!")

Command: Status

Parameters: String

Description: This sets the status text (the bottom bar of the software).

Examples: status("script is complete")

Command: Refresh

Parameters: None

Description:

Updates any of the connected memory device's hex editors. Useful if you

have modified any of the screen contents in a script file.

Examples: status()

Command: Sleep

Parameters: Integer

Description: Waits the specified amount of time (in milliseconds), useful only in scripts.

Examples: Sleep(1000) #Waits 1 second

Command: Verify

Parameters: Bool

Description: Used to enable or disable the flash programming verification process.

Examples: Verify(true)

Command: Mode

Parameters: None

Returns: String

Description: Returns the current operation mode: SPI, JTAG, EXTIO, I2C, etc.

Examples: mode() #Returns "JTAG"

Command: ask

Parameters: String

Returns: Bool

 Page 28 of 28

Description:

Asks the user a yes or no question and returns that value. You can use this in

an if statement to make conditional sections.

Examples: ask("Continue script?")

Command: endian

Parameters: String

Description:

Allows the endian mode to be changed. The input can be a string to set the

mode: “MSB” or “LSB”. Some JTAG devices will need to have this setting

specified. “MSB” “LSB16” “LSB8” are valid options.

Examples: endian(“LSB”)

Command: abort

Description:

Aborts any script that is running. Use this in the console to quit a script that

may not be working as intended.

Examples: abort

Command: crc32

Parameters: Data

Returns: Integer

Description: Computes a standard CRC-32 checksum for a given data variable. The

command crc16 is also supported for legacy uses.

Examples:

data_var = memory.read(0,memory.size) #Reads all data from a device

c32_value = crc32(data_var) #Generates checksum

print(string.hex(c32_value)) #Prints the hex value

Command: cint

Parameters: UInteger

Returns: Integer

Description: Converts an Integer Data Type to an Unsigned Data Type

Examples: var1 = 40U #creates a variable with an UInteger Data Type

var2 = cint(var1) #converts that variable to Integer Data Type

Command: cuint

Parameters: Integer

Returns: UInteger

Description: Converts an Unsigned Data Type to an Integer Data Type

Examples: var1 = 40 #creates a variable an Integer Data Type

var2 = cuint(var1) #converts that variable to an UInteger Data Type

