Programmer Manual

Tektronix
/

DG2020A
Data Gener ator

071-0054-50

www.tektronix.com

Copyright © Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes
that in all previously published material. Specifications and price change privileges reserved.

Tektronix, Inc., PO. Box 500, Beaverton, OR 97077

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Table of Contents
Preface \%
Getting Started
Getting Started 1-1
OVEIVIBIW . ottt e e e 1-1
Choosingan Interface 1-2
Installing for GPIB Communicationouuiiiiiineennnan. 1-3
Installing for RS-232-C CommuniCationcouiiiiuineennnan. 1-6

Command Syntax

Command SYNtaXt e 2-1
Command NOaLIONo 2-1
Program and Response Messagesot 2-1
Command and QUery SErUCIUret 2-2
Character ENCOAING . ..« v ittt 2-2
Syntactic Delimiters 2-3
WhIte SPaceo 2-3
Special CharaClerso 2-3
ATQUMENES . e e e 2-4
Header ... 2-6
Concatenating Commandsot it e 2-8
QUENY RESPONSES . .o .ttt 2-9
Other General Command ConNVentionsiviinnennnnennn .. 2-10
Command GroUPSottt e e 2-11
Command SUMMENTESttt e e 2-11
Command DeSCriptionS i it 2-19
Retrieving ResponseMeSsageso oo v 2-113

Status and Event Reporting

Statusand Event Reportingi i 31
RO SIS . . ottt e 31
QUEBUIES . .ttt 35
Processing SEQUENCEo ittt e 3-6
M ESSA0ES . . . ittt 39

Programming Examples

DG2020A Programmer Manual

ProgrammingExamples 4-1
Overview of the Sample Programs 4-1
Required Execution Environment i 4-2
Floppy Disk Files . .. oo 4-2
Installing and Compilingthe Programs, 4-4
Sample Program FunctionsandUsage ..., 4-6

i

Table of Contents

Appendices

Glossary & Index

Appendix A: Character Charts ..., A-1
Appendix B: Reserved Words ... B-1
Appendix C: Interface Specification Cc-1
Appendix D: Factory Initialization Settings D-1
GlOSSANY ..ot Glossary—-1
INOEX ..o Index-1

DG2020A Programmer Manual

Table of Contents

List of Figures

DG2020A Programmer Manual

Figure 1-1: Functional layersingpibsystem 1-1
Figure1-2: GPIB connector, 1-3
Figure 1-3: GPIB system configurations 1-4
Figure 1-4: GPIB parameter settingscoovon... 1-5
Figure 1-5: RS-232-C point-to-point connection 1-6
Figure1-6: RS232-C port 1-7
Figure 1-7: Pin assignments of 9-pin and

25-pin D-typeshell connector 1-8
Figure 1-8: Typical RS-232-C cablewiring requirements 1-8
Figure 1-9: RS-232-C parameter settings 1-9
Figure 2-1: Command and query structureflowchart 2-2
Figure 2-2: ABSTouch arguments and associated controls 2-20
Figure 2-3: GPIB: Retrievingresponsemessages. 2-113
Figure 2-4: RS-232-C: Retrieving responsemessages 2-113
Figure 3-1: Standard event status(SESR) 32
Figure 3-2: Statusbyteregister (SBR) 3-3
Figure 3-3: Device event statusenableregister (DESER) 34
Figure 3-4: event statusenableregister (ESER) 34
Figure 3-5: Servicerequest enableregister (SRER) 35
Figure 3-6: Status and event handling processoverview 37

Table of Contents

List of Tables

Table 1-1: GPIB and RS-232-C comparison 1-2
Table 2-1: BNF symbolsand meanings 2-1
Table 2-2: Decimal numericnotation 2-4
Table2-3: Header in QUEry reSponsesovvivvnvnennnen.. 2-9
Table2-4: DATA commandscouiiieinininnnnnnnn.. 2-11
Table2-5: DIAGNOSTICcommandsccoviiiienn... 2-12
Table2-6: DISPLAY commandscouiiiiiinnnnnn.. 2-13
Table2-7: HARDCOPY commandscooiiunenn... 2-13
Table2-8 MEMORY commandsciiiienn... 2-14
Table2-9: MODE commandscciiiiiiiinnen... 2-14
Table2-10: OUTPUT commandsciviiiinnnnn... 2-15
Table2-11: SOURCE commandscoivuin.... 2-16
Table 2-12: STATUS & EVENT commands 2-16
Table 2-13: SYNCHRONIZATIONcommands 2-17
Table2-14: SYSTEM commandscciiiunnn... 2-17
Table 3-1: SESR bit functions 32
Table3-2: SBR bit functions 33
Table 3-3: Definition of eventcodes 39
Table3-4: Normal condition, 3-10
Table 3-5: Command errors(CMEbit:5) 3-10
Table 3-6: Execution errors (EXE bit:4) 312
Table 3-7: Internal deviceerrors(DDE bit:3) 314
Table 3-8: System event and query errorscovvien.... 314
Table3-9: Warnings(EXE bit:4) 3-15
Table 3-10: Device-dependent command execution errors 3-15
Table 3-11: Extended device specificerrors 3-17
Table A—1: DG2020A character setccvivinnn... A-1
Table A—2: ASCIl & GPIBcodechart A-2
Table C-1: GPIB interface function implementation C-1
TableC—2: GPIB interfacemessagescvvviiunnn... C-=2
Table D-1: Factory initialized settings D-1

iv DG2020A Programmer Manual

Preface

Related Manuals

DG2020A Programmer Manual

Thisisthe Programmer Manual for the DG2020A Data Generator and Pods.
This manual provides information on operating these instruments using General
Purpose Interface Bus (GPIB) interface and RS-232-C interface.

This manual provides the following information:

Getting Started describes how to connect and set up for remote operation.

Syntax and Commands defines the command syntax and processing
conventions and describes each command in the data generator command
Set.

Satus and Events explains the status information and event messages
reported by the data generator.

Appendices contains various topics of use to the programmer.

Glossary and Index contains a glossary of common terms and an index to
this manual.

Other documentation for the data generator includes:

The User Manual that describes the operation of the Data Generator that was
supplied as a standard accessory with the instrument.

The Service Manual (optional accessory) provides information for maintain-
ing and servicing the Data Generator.

Preface

vi

DG2020A Programmer Manual

./
Getting Started

Overview

The Data Generator has two interfaces for remote operation — the GPIB interface
and the RS-232-C interface. All menu controlled and front-panel controlled
functions, except the ON/STBY function, the edit function, and the GPIB and
RS-232-C parameter setup functions, can be controlled through the GPIB or the
RS-232-C interface using the programming command set (see Section 2).

The GPIB interface conforms to ANSI/IEEE Std 488.1-1987, which specifies the
hardware interface, its basic functional protocol, and a set of interface messages
(codes) that control the interface functions. This instrument also conformsto
ANSI/IEEE Std 488.2-1987 which specifies Codes, Formats, Protocols, and
Common Commands to support the system application. The functional layers of
the GPIB system are shown in Figure 1-1.

e BUS -
i' I T I ‘: ;' 1 T 71 ‘i
| Device-specific Messages >|
LN T T N I 2
| | I I | | I I | |
| | Common Commands and Queries | |
I I I I I I I I I I
I I I ' ' ' ' I I |
| | | Syntax and Data Structures | | |
1 1 NT — T
L LNCL
| | | | Remote INTFC Messages > | | | |
RN o
ol ¢!l Bl oAl Al B!l ¢! o
[e I B (I e O
<— System Component x — —— System Component y —
Specified | |EEE 4882 | IEEE 488.1 | |EEE 4882 | Specified
by | “Standard | Standard | “Standard | by
Device | | | | Device

A: Interface Function Layer

B: Message Communication Function Layer
C: Common System Function Layer

D: Device Function Layer

Figure 1-1: Functional layers in gpib system

DG2020A Programmer Manual 11

Getting Started

The RS-232-C interface, which was established by the Electronic Industries
Association (EIA), provides acommon basis of communication between devices
that exchange data. This interface has long been used on terminals, modems,
printers, and other devices. The RS-232-C interface that the data generator
provides also uses most of the same Codes, Formats, Protocols, and Common
Commands as are used with the GPIB interface (ANSI/IEEE Std 488.2-1987).

Choosing an Interface

Your system hardware may let you choose which interface to use with your
system; if so, you should consider the comparative advantages and disadvantages
of each interface. For example, the GPIB interface is an eight-bit parallel bus and
therefore it offers high-speed data transfers and multiple instrument control. In
contrast, the RS-232-C interface is a slower serial data bus for single instrument
control, but it is easy to connect to and can be used with alow-cost controller.

Table 1-1 compares the GPIB and RS-232-C interface.

Table 1-1: GPIB and RS-232-C comparison

Operating attribute GPIB RS-232-C

Cable ANSI/IEEE Std 488 9-wire (DCE)

Data flow control Hardware, 3-wire handshake | Flagging: soft (XON/XOFF),
hard (DTR/CTS)

Data format 8-bit parallel 8-bit serial

Interface control Operator low-level control None

message

Interface messages

Most ANSI/IEEE Std 488

Device clear via ASCII break
signal

Interrupts reported

Service requests
status and event code

Status and event code
(no service requests)

Message termination

Hardware EOI, software LF, or

Software CR, LF, or CR and

(Receive) both LF
Message termination Hardware EOI, and software | Software LF
(Transmit) LF
Timing Asynchronous Asynchronous
Transmission path length <2 meters between devices; | <15 meters
<20 meters total cabling for
GPIB system
Speed 200 Kbytes/sec 19,200 bits/sec
System environment Multiple devices (<15) Single terminal (point to point

connection)

DG2020A Programmer Manual

Getting Started

Installing for GPIB Communication

With the power off, connect a GPIB cable from the GPIB controller to the
ANSI/IEEE Std 488 port (GPIB) connector on the rear panel of the data
generator (see Figure 1-2). For example, when using an MS-DOS compatible
controller, connect the GPIB cable between the National Instrument PC2A GPIB
board and the data generator GPIB connector.

i -

: 3
: i@ 3
1@ D
GPIB Connector s
Keiwwi: B

CALIBRATION

©
EL L]

Figure 1-2: GPIB connector

Instruments can be connected to the GPIB in linear or star configurationsor in a
combination of both configurations. A linear hookup is one where a GPIB cable
is used to string one device to a second, and then another GPIB cable is used to
string from a second to athird, and so on until all devicesin the system are
connected. A star setup is one where one end of all the GPIB cablesin the
system are attached to one device. Refer to Figure 1-3 for these GPIB system
configurations.

DG2020A Programmer Manual 1-3

Getting Started

c Star Configuration

B &TTQ D

aY

E

Linear Configuration

I IrIrIr

E Combination of Star and
Linear Configurations

ih e
D&A
P S

B

Figure 1-3: GPIB system configurations

Restrictions Consider the following rules when distributing instruments on the GPIB:

1. No morethan 15 total devices (including the controller) can be included on a
signal bus.

2. Inorder to maintain the electrical characteristics of the bus, one device load
must be connected for every two meters of cable (most often, each device
represents one device load to the bus).

3. Thetota cable length (cumulative) must not exceed 20 meters.

4. At least two-thirds of the device loads must be powered on.

1-4 DG2020A Programmer Manual

Getting Started

Setting the GPIB To set the GPIB parameters, proceed as follows:

Parameters : .
Pressthe UTILITY button in the MENU column to the right of the screen.
The UTILITY menu appears above the bottom menu buttons.

2. Pressthe System bottom menu button to display the System menu (See
figure 1-4).

3. Select the Configure item from the GPIB menu using the up and down arrow
buttons. Set the GPIB operating mode using the left and right arrow buttons.

m Talk/Listen. Setsthe communications mode to talk/listen.

® Talk Only. Sets the communications mode to talk only, which is used for
hardcopy output.

m Off Bus. Logically disconnect the data generator from GPIB system.

NOTE. The data generator accepts as a terminator either the software LF (Line
Feed), sent as the last data byte, or the hardware EOI, with the EOI line asserted
concurrently with the last data byte sent.

4. Select the Addressitem from the GPIB menu using the up and down arrow
buttons. Then use the rotary knob to set the primary addressto avalue in the
range O to 30.

5. Select the Remote Port item using the up and down arrow buttons, and
additionally, highlight " GPIB” using the left and right arrow buttons. This
selects the GPIB as the remote interface.

System

GPIB M { GPIR Configure
- Address Reset to

Serial Raudrate Factory
Data Bits
Parity
Stop Bits

Handshake T
Power up Pause
= Date/Titme
]

Figure 1-4: GPIB parameter settings

Security
Immediate

DG2020A Programmer Manual 1-5

Getting Started

Installing for RS-232-C Communication

Connect an RS-232-C cable from the computer terminal to the RS-232-C
connector on the rear panel of the data generator. Use a configuration based on
the settings for the data flow control (flagging).

The RS-232-C provides a point-to-point connected communication interface
between devices (see Figure 1-5). The data generator can transmit and receive the
same message serially over the RS-232-C interface asit can in parallel over the
GPIB interface.

Controller DG2020A

Figure 1-5: RS-232-C point-to-point connection

Several connectors are used with the RS-232-C interface: a DTE device uses a
standard 25-pin male D-type shell connector; a DCE device uses a standard
25-pin female D-type shell connector. Some recent computers implement the
RS-232-C interface using 9-pin D-type connector.

This data generator uses a standard 9-pin D-type shell connector, provided on the
rear panel (see Figure 1-6), along with a 9-pin male to 25-pin male conversion
cable. Figure 1-7 on page 1-8 shows both 9-pin and 25 pin connectors with

their pin number assignments.

1-6 DG2020A Programmer Manual

Getting Started

DG2020A Programmer Manual

i e

E o)

@ i -

© o)

i

E B

] o POD A

i © ©

RS-232-C &L /6

Connector 4 a2 T

AAAAAAAAAAA

©
EL]

Figure 1-6: RS-232-C port

This data generator is designed as DCE device. You may connect it up to

15 meters (50 feet) from a DTE device using a straight-through male-to-female
cable. However, if the other device isinstead configured as a DCE device, you
will need a special adapter or null-modem cable for local DCE-to-DCE
communications. Refer to the wiring examples in the Figure 1-8 for the proper
signal connections between devices.

NOTE. In this data generator, only TxD, RxD, DTR, CTSpins and Sgnal Ground are
available.

1-7

Getting Started

© O B~ W N

Pin

o o1 B~ W N

9-PIN D-SHELL

6l o o |1

O |2

71 O o |3

81 © O |4
O

9 o |5

2 Receive Data (RxD) 3
3 Transmit Data (TxD) 2
4 Data Terminal Ready (DTR) 20
5 Signal Ground 7
8 Clearto Send (CTS) 5

25-PIN D-SHELL

)

© o N o o~ WD =

OO0OO0O00O0O0OO0O0O0O0Oo
OO0 O0OO0O0O0OO0O0OO0OO0OO0OO0

(

NOTE: TxD, RxD, DTR, CTS and Ground lines are only available

in the data generator.

Figure 1-7: Pin assignments of 9-pin and 25-pin D-type shell connector

Pin
2
3
4
5
8
9-pin DCE to 9-pin DTE
Pin
20
9-pin DCE to 25-pin DTE

Pin Pin
2 2
3 3
4 4
5 5
8 8

9-pin DCE to 9-pin DCE

Pin Pin

2
3

9-pin DCE to 25-pin DCE

NOTE: When using software flow control, the CTS-DTR lines do not need to be connected.

Figure 1-8: Typical RS-232-C cable wiring requirements

1-8

DG2020A Programmer Manual

Getting Started

Setting the RS-232 To set the RS-232-C parameters, perform the following steps:

Parameters : .
1. Pressthe UTILITY button in the MENU column to the right of the screen.

The UTILITY menu appears above the bottom menu buttons.

2. Pressthe System bottom menu button to display the System menu (See
figure 1-9).

3. Select the Baudrate item from the Serial menu using the up and down arrow
buttons. Here select the data transfer rate using the left and right arrow
buttons. The rate can be set to 300, 600, 1200, 2400, 4800, 9600, or 19200
baud.

4. Select the Data Bits item from the Serial menu using the up and down arrow
buttons. Then use the left and right arrow buttons to select the data bit length
for each character. The bit length can be set to either 7 or 8 bits.

5. Select the Parity item from the Serial menu using the up and down arrow
buttons. Then use the left and right arrow buttons to set the error check bit
for each character. The error bit can be set to None, Even, or Odd parity.

6. Select the Stop Bitsitem from the Serial menu using the up and down arrow
buttons. Then use the left and right arrow buttons to select the number of
stop bits sent after each character. The number of stop bits can be set to
either 1 or 2.

7. Select the Handshake item from the Serial menu using the up and down
arrow buttons. Then use the left and right arrow buttons to select the method
of controlling the flow of data between devices. The data flow method can
be set to Hard (DTR/CTS), Soft (XON/XOFF), and Off (no flow contral).

8. Select the Remote Port item using the up and down arrow buttons, and
additionally, highlight "RS232C” using the left and right arrow buttons. This
selects the RS-232-C interface as the remote interface.

System

Reset to

Configur
address 0| Ector
Baudrate ¥
Data Bits 8 | e

Serial Menu EL LT Itfli::;glli:ic’e
Stop Rits 1

Handshake | OTT |

Power up Pause

_0n |
= Date/Time | 6 15|

Figure 1-9: RS-232-C parameter settings

DG2020A Programmer Manual 19

Getting Started

1-10 DG2020A Programmer Manual

./
Command Syntax

Command Notation

A large set of commands can be used to control the operations and functions of
the data generator from an external controller. This section describes the syntax
and communication rules for using these commands to operate the data
generator.

The command syntax isin extended BNF (Backus-Naur Form) notation. The
extended BNF symbols used in the command set are shown in the following
table.

Table 2-1: BNF symbols and meanings

Symbol Meaning

< > Indicates a defined element

Delimits Exclusive OR elements

Delimits a group of elements one of which the programmer must select

|

{}

[] Delimits an optional element that the programmer may omit
[]

Delimits an optional element that the programmer may omit or may repeat one
or more times

1= Indicates that the left member is defined as shown by the the right member

Program and Response Messages

DG2020A Programmer Manual

Programs created or placed in an external controller are transferred to the data
generator as a program message. A program message is a sequence of zero or
more program message units delimited by the program message unit delimiter,
the semicolon (;).

A program message unit is a set command or query command. The data
generator performs a function or changes a setting or mode when it receives a set
command; when it receives a query command, it returns measurement data,
settings, status codes and/or status messages. The data generator transfers these
response messages to the external controller.

2-1

Command Syntax

Command and Query Structure

Character Encoding

Commands are either set commands or query commands (usually just called
commands and queries in this manual). Most commands have both a set form
and query form. The query form of a command is the same as the set form,
except that the query form ends with a question mark.

Figure 2-1 shows a flowchart of the structure of the commands and queries. The
structure of the header is described in detail in Header on page 2-6.

Command
M\
0
L Argument Command
Header @
Mnemonic
@) Y Argument Query
®
@ Hoad Query
Y eaaer N\
Mnemonic ®_ 2/
L Argument Query
Command
N
o
Y Argument Command

Figure 2-1: Command and query structure flowchart

The program can be described using the American Standard Code for Informa-
tion Interchange (ASCII) character encoding.

This seven-bit ASCII codeis used for the mgjority of syntactic elements and
semantic definitions. In special cases, an eight-bit ASCII Codeisalowed in the
arbitrary block arguments described on page 2-5. The ASCII code character set
tableisfound in Appendix A.

DG2020A Programmer Manual

Command Syntax

Syntactic Delimiters

White Space

Special Characters

DG2020A Programmer Manual

Syntactic elementsin a program message unit are delimited (differentiated) with
colons, white space, commas, or semicolons.

Colon (:). Typically delimits the compound command header.
MMEMORY : DELETE:ALL, SOURCE:OSCILLATOR:SOURCE

White Space. Typically delimits command/query headers from the argument.

DIAGNOSTIC:SELECT ALL
SYSTEM:DATE 1995,3,4

DIAGNOSTIC:SELECT and SYSTEM:DATE are the command headers, and ALL and
1995, 3,4 are the arguments.

Comma (;). Typically delimits between multiple arguments. In the above
example, acomma delimits the multiple arguments 1995, 3 and 4.

Semicolon (;). Typically delimits between multiple commands (or multiple
program message units). For more information about using the semicolon, refer
to Concatenating Commands on page 2-8.

White space, which is used to delimit certain syntactic elementsin a command,
is defined in the data generator as a single ASCIl-encoded byte in the range
ASCII 0-32 (decimal). This range consists of the standard ASCII characters
exclusively except for ASCII 10, which isthe Line Feed (LF) or New Line (NL)
character.

The Line Feed (LF) character or the New Line (NL) character (ASCII 10) and all
charactersin the range of ASCII 127-255 are defined as specia characters. These
characters are used in arbitrary block arguments only; using these charactersin
other parts of any command yields unpredictable results.

2-3

Command Syntax

Arguments

Decimal Numeric

Unit and Sl Prefix

In acommand or query, one or more arguments follow the command header. The
argument, sometimes called program data, is a quantity, quality, restriction, or
limit associated with the command or query header. Depending on the command
or query header given, the argument is one of the following types:

m Decimal Numeric
® String
m Arbitrary Block

The data generator defines a decimal numeric argument as one expressed in one
of three numeric representations — NR1, NR2, or NR3. This definition complies
with that found in ANSI/IEEE Std 488.2-1987. Any commands that use
argumentsin any of the the first three notations can use a fourth notation NRf
(for Numerical Representation flexible). The four formats are shown in Table
2-2.

Table 2-2: Decimal numeric notation

Type Format Examples
NR1 implicit-point (integer) 1, +3,-2, 410, -20
NR2 explicit-point unscaled 1,2,+23.5,-0.15
(fixed point)
NR3 explicit-point scaled (floating point) 1E+2, +3.36E-2, -1.02E+3
NRf numeric representation-flexible; any of | 1, +23.5, -1.02E+3
NR1, NR2, and NR3 may be used

Asjust implied, you can use NRf notation for arguments in your programs for
any commands that this manual lists as using any of NR1, NR2, or NR3 notation
in its arguments. Be aware, however, that query response will still be in the
format specified in the command. For example, if the command description is
:DESE <NR1>, you can substitute NR2 or NR3 when using the command in a
program. However, if you use the query :DESE?, the data generator will respond
in the format <NR1> to match the command description in this manual.

If the decimal numeric argument refersto a voltage or frequency, you can
expressit using Sl unitsinstead of in the scaled explicit point input value format
<NR3>. (S| units are units that conform to the Systeme International d’ Unites
standard.) For example, you can use the input format 200mV or 1.0MHz instead
of 200.0E-3 or 1.0E+6, respectively, to specify voltage or frequency.

DG2020A Programmer Manual

Command Syntax

String

Arbitrary Block

DG2020A Programmer Manual

You can omit the unit, but you must include the S| unit prefix. You can use either
upper or lowercase units.

V or v for voltage
Hz, HZ, or hz for frequency

The Sl prefixes, which must be included, are shown below. Note that either
lower or upper case prefixes can be used.

Sl prefix! m/M kIK m/M
Corresponding Power 1073 108 108

1 Note that the prefix m/M indicates 10-3 when the decimal numeric argument denotes
voltage, but 106 when it denotes frequency.

String, sometimes referred to as a string literal, aliteral, or just astring, is
defined as a series of characters enclosed by double quotation marks (*) asin:

"This is a string constant" or "0 .. 127"

To include a double quoted character in the string, insert an additional double
quote character ahead of the double quote character in the string. For example,
the string:

serial number "B010000"
would be defined as:
"serial number ""B010000"""

Single quotation marks (*) can also be used instead of double quotation marks.
For instance:

'serial number ''B010000'"''

String constants may be of any length up to the memory limits of the instrument
in which the message is parsed.

An arbitrary block argument is defined as:

#<byte count digit><byte count>[<contiguous eight-bit data
byte>]...

or:

#<contiguous eight-bit data byte]... <terminator>

2-5

Command Syntax

where:

<byte count digit>::=anonzero digitintherange ASCII 1-9 that defines the
number of digits (bytes) inthe <byte count> field.

<byte count>::= any number of digitsin the range ASCII 0-9 that define how
many bytes areinthe <contiguous 8-bit data byte> field.

<contiguous 8-bit data byte>:=a<byte count>number of 8-bit bytesin
the range ASCII 0—255 that define the message. Each byte defines one character.

<terminator>::= asoftware LF followed by a hardware EOI. For example,

#16ABAZLT<LF><&EQI>

Header

Header Mnemonic The header mnemonic represents a header node or a header subfunction. The
command or query header comprises one or more header mnemonics that are
delimited with the colon ().

Pod and Channel The pod and channel can be specified by using the OUTPut:POD<s>:CH<n>
Representation header mnemonic in commands and query commands. The term <s> is either A,
B, or C, and expresses the connected pattern data output connector for the pod
being specified. The term <n> isanumber between 0 and 11 that expresses the
specified channel.

Header Structure = Commands and queries can be structured into six basic forms.
® Simple command header
® Simple query header
® Compound command header
m Compound query header
® Common command header
® Common query header

Figure 2-1 on page 2-2 shows the syntax for all possible structures, and each of
the six basic forms are explained below.

2-6 DG2020A Programmer Manual

Command Syntax

Simple Command Header. A command that contains only one header mnemonic.
It may also contain one or more arguments. I1ts message format is:

[:]<Header Mnemonic> [<Argument>[,<Argument>]...]
such as:

START
or
STOP

Simple Query Header. A command that contains only one header mnemonic
followed by a question mark (?). Its message format is:

[:]<Header Mnemonic>? [<Argument>[,<Argument>]...]
such as:

HCOPY?
or
TRIGGER?

Compound Command Header. A command that contains multiple header
mnemonics plus argument(s). Its message format is:

[:]<Header Mnemonic>[:<Header Mnemonic>]...
[<Argument>[,<Argument>]...]

such as;

MMEMORY : INITIALIZE HD1
or
SYSTEM:SECURITY:STATE ON

Compound Query Header. A command that contains multiple header mnemonics
followed by a question mark (?). Its message format is:

[:]<Header Mnemonic>[:<Header Mnemonic>]...?
[<Argument>[,<Argument>]...]

such as:

DIAGNOSTIC:RESULT?
or
DATA:BLOCK:SIZE? "BLOCK1"

DG2020A Programmer Manual 2-7

Command Syntax

Common Command Header. A command that precedes its header mnemonic with
an asterisk (*). Its message format is:

<Header Mnemonic> [<Argument>[,<Argument>]...]
such as:
*RST

The common commands are defined by |EEE Std 488.2 and are common to all
devices which support |EEE Std 488.2 on the GPIB bus.

Common Query Header. A command that precedes its header mnemonic with an
asterisk (*) and follows it with a question mark (?). Its message format is:

<Header Mnemonic>? [<Argument>[,<Argument>]...]
such as:
*IDN?

The common commands are defined by |EEE Std 488.2 and are common to all
devices which support the |EEE Std 488.2 on the GPIB bus.

Concatenating Commands

Most of the compound command headers are in atree structure. The tree
structure of an example command is diagrammed below. Note that the top of the
structure always begins with a colon (:).

:D|ATA:
| | | | | |
BLOCK GROUP MSIZE PATTERN SEQ|UENCE UPDATE
| | | | | |
ADD DEFINE DELETE ... ADD BIT DEFINE ... BIT WORD ADD DEFINE DELETE...

The following example of a compound command combines three headers
delimited by semicolons:

:DATA:BLOCK:ADD 512,"BLOCK3"; :DATA:BLOCK:DELETE "BLOCK2";
:DATA:BLOCK:SIZE "BLOCK1",512

You must include the complete path in each header when there is no common
complete path to the start of the tree structure (the colon). However, note that
part of each header in the above example has a common path :DATA:BLOCK. You

2-8 DG2020A Programmer Manual

Command Syntax

Query Responses

DG2020A Programmer Manual

may shorten compound command structures with such headers. For example, the
command above may be rewritten as follows.

:DATA:BLOCK:ADD 512,"BLOCK3"; DELETE "BLOCK2"; SIZE
"BLOCK1",512

Note that the mnemonics :DATA and :BLOCK are assumed from the first header
by the headers that follow. The following command descriptions are valid
examples of commands shortened using the principle just described. (Note that
the insertion of common command (*SRE) between headers does not prevent the
headers that follow from assuming the earlier header mnemonics.)

:DATA:BLOCK:ADD 512,"BLOCK3"; DELETE "BLOCK2";
:DATA:GROUP:DELETE "GROUP4"

:DATA:MSIZE 16384; BLOCK:ADD 512,"BLOCK3"; DELETE "BLOCK2"

:DATA:BLOCK:ADD 512,"BLOCK3"; *SRE?; DELETE "BLOCK2"; SIZE
"BLOCK1",512

The following examples have been shortened incorrectly and cause errors.
:DATA:BLOCK:DELETE "BLOCK2"; DATA:GROUP:DELETE "GROUP4"
:DATA:BLOCK:ADD 512,"BLOCK3"; GROUP:DELETE "GROUP4"
:DATA:BLOCK:DELETE "BLOCK2"; MSIZE 16384

The query causes the data generator to return information about its status or
settings. A few queries also initiate an operation action before returning
information; for instance, the * TST? query performs the self test.

If the programmer has enabled headers to be returned with query responses, the
data generator formats a query response like the equivalent set-command header
followed by its argument(s). When headers are turned off for query responses,
only the values are returned. Table 2-3 shows the difference in query responses.

Table 2-3: Header in query responses

Query Header on Header off
DATA:MSIZE? :DATA:MSIZE 16384 16384
DIAGNOSTIC:SELECT? :DIAGNOSTIC:SELECT PMEMORY PMEMORY

29

Command Syntax

Use the command HEADER ON when you want the header returned along with the
information. You can save such aresponse and send it back as a set-command
later. Use HEADER OFF when you want only the information back.

Other General Command Conventions

Upper and Lower Case The instrument accepts upper, lower, or mixed case a phabetic messages. The
following three commands are recognized as identical.

HEADER ON
or

header on
or

header On

Abbreviation Any header, argument, or reserved word that is sent to the data generator can be
abbreviated. The minimum required spelling is shown in upper case throughout
the subsection Command Groups beginning on page 2-11. The command
TRIGger:SLOPe POSitive can berewritten in either of the following forms.

TRIGGER:SLOPE POSITIVE
or
TRIG:SLOP POS

2-10 DG2020A Programmer Manual

./ |
Command Groups

This subsection describes the organization of the DG2020A Data Generator
command as a number of functional groups. (See subsection Command
Descriptions on page 2-19 for a complete description of each command in
alphabetical order.)

Throughout this section, the parenthesized question symbol (?) follows the
command header to indicate that both a command and query form of the

Command Summaries

DATA Commands

DG2020A Programmer Manual

command can be used.

Tables 2-4 through 2-14 describe each command in each of the 11 functional

groups.

The DATA commands are used to define blocks, groups, and sequences, to set up

pattern data, and to set which sequence controls become valid when the run

mode is set to Enhanced.

Table 2-4: DATA commands

Header Description

DATA? Query the settings related to pattern data
DATA:BLOCk:ADD Add a block definition
DATA:BLOCk:DEFine(?) Set the block definitions
DATA:BLOCk:DELete Delete a block definition
DATA:BLOCk:DELete:ALL Delete all block definitions
DATA:BLOCk : REName Change a block name
DATA:BLOCk:SIZe(?) Change the size of a block
DATA:GROUp:ADD Add a group definition
DATA:GROUp:BIT(?) Change a groups bit structure
DATA:GROUp:DEFine(?) Sets the group definitions
DATA:GROUp:DELete Delete a group definition
DATA:GROUp:DELete:ALL Delete all group definitions
DATA:GROUp : NAME? Query the name of a group
DATA:GROUp:REName Change a group name
DATA:MS1Ze(?) Set the pattern data memory size

2-11

Command Groups

DIAGNOSTIC Commands

2-12

Table 2-4: DATA commands (Cont.)

Header

Description

DATA:PATTern:BIT(?)

Set individual pattern data bits

DATA:PATTern[:WORD] (?)

Set pattern data in word units

DATA:SEQuence:ADD

Add a sequence step

DATA:SEQuence:DEFine(?)

Set the sequence definitions

DATA:SEQuence:DELete

Delete a sequence step

DATA:SEQuence:DELete:ALL

Delete all sequence definitions

DATA:SEQuence:EVJ(?)

Set the event jump on/off state

DATA:SEQuence:EVJTO(?)

Set the event jump destination

DATA:SEQuence:LOOP(?)

Set the infinite loop on/off state

DATA:SEQuence:REPeat(?)

Set the repeat count

DATA:SEQuence:TWAIT(?)

Set the trigger wait on/off state

DATA:SUBSequence:ADD

Add a sub sequence step

DATA:SEBSequence:CLEAr

Delete all sub sequence definitions

DATA:SUBSequence:DEFine(?)

Set or query the sub sequence definitions

DATA:SUBSequence:DELete

Delete a sub sequence step

DATA:SUBSequence:DELete:ALL

Delete a sub sequence definition

DATA:SUBSequence:REPeat(?)

Set or query the repeat count of a sub se-
quence step

DATA:UPDate

Forcibly update the pattern and other data

The DIAGNOSTIC commands select and execute the self—test routines, which

are classified by function.

Table 2-5: DIAGNOSTIC commands

Header Description

DIAGnostic? Query all current settings related to self test
DIAGnostic:RESUTt? Query self-test result
DIAGnostic:SELect(?) Select self-test routine
DIAGnostic:STATe Perform self test

*TST?

Perform self test

DG2020A Programmer Manual

Command Groups

DISPLAY Commands The DISPLAY commands execute functions associated with front panel keys,
buttons, and knobs, adjust the screen brightness, and perform other display
related functions.

Table 2-6: DISPLAY commands

Header Description
ABSTouch Perform the function corresponding to the
front-panel control selected
DISPTay? Query settings made with display group commands
DISPlay:BRIGhtness(?) Set brightness of screen
DISPTay:CLOCk(?) Set the date and time display state
DISPTay:DIMmer(?) Set the state of the display dimmer function
DISPTay:ENABle(?) Set the display on/off state
DISPTay:MENU? Query all menu display related information
DISPlay:MENU[:NAME] Set the menu selection state
DISPTay:MENU:NAME? Query the menu selection state
DISPTay:MENU:STATe(?) Set the menu display on/off state
DISPlay[:WINDow] : TEXT:CLEar Erase the message display area
DISPTay[:WINDow] : Set the contents of the message display area
TEXT[:DATA] (?)

HARDCOPY Commands The HARDCOPY commands start and stop for hardcopy operation, and select
port and its outputting format.

Table 2-7: HARDCOPY commands

Header Description

HCOPy? Query all hardcopy related information
HCOPy : ABORt Stop the current hardcopy operation
HCOPy :DATA? Create and send hardcopy data
HCOPy: FORMat (?) Select output format of hardcopy
HCOPy : PORT (?) Select output port of hardcopy
HCOPy: STARt Start a hardcopy operation

DG2020A Programmer Manual 2-13

Command Groups

2-14

MEMORY Commands

MODE Commands

The MEMORY commands control all floppy disk and file operations.

Table 2-8: MEMORY commands

Header Description

MMEMory:CATalog[:ALL]? Query disk file and directory information

MMEMory:CATalog:0RDer(?) Set the display order for disk file and directory
information

MMEMory:CDIRectory(?) Set the current working directory

MMEMory : COPY Copy a disk file

MMEMory:DELete:ALL Delete all files and directories on a disk

MMEMory:DELete [:NAME] Delete the specified file or directory on a disk

MMEMory : FREE? Query disk memory usage

MMEMory:INITialize Format a disk

MMEMory : LOAD Read data from a disk file

MMEMory: LOCK(?) Set the disk file lock state

MMEMory :MDIRectory Create a new directory on the disk

MMEMory:RDIRectory Remove a directory on the disk

MMEMory : REName Change the name of a disk file or directory

MMEMory : SAVE Write data to a disk file

The MODE commands are used to set the run and update modes, to start or stop
pattern data or sequence output, and to set the trigger conditions for the external
trigger source.

Table 2-9: MODE commands
Header Description
MODE? Query the states related to pattern generation

MODE:STATe(?)

Set the run mode for pattern generation

MODE:UPDate(?)

Set the data update mode

RUNNing? Query whether the instrument is currently outputting
a pattern or sequence

STARt Start pattern or sequence output

STOP Stop pattern or sequence output

*TRG Generate the triggering event

TRIGger? Query all current trigger-related settings

DG2020A Programmer Manual

Command Groups

Table 2-9: MODE commands (Cont.)

Header

Description

TRIGger:IMPedance(?)

Select the impedance presented to the the external
trigger signal

TRIGger:LEVel(?)

Set the level of the external trigger signal that
generates the triggering event

TRIGger:SLOPe(?)

Select the slope of the external signal that
generates a triggering event

OUTPUT Commands The OUTPUT commands set all the pod—related settings. The <s> and <n> terms
in the header mnemonic are used to specify the pod and channel in these

commands.

Table 2-10: OUTPUT commands

Header

Description

OUTPut?

Query the settings related to the output channels
and clock

OUTPut:ELEVel(?)

Set the event input level

OUTPut:ILEVel(?)

Set the inhibit input level

OUTPut :POD<s>:CH<n>:ASSIGn(?)

Set the pod data bit assignments

OUTPut :POD<s>:CH<n>:DELAy(?)

Set the pod delay times

OUTPut:POD<s>:CH<n>:HIGH(?)

Set the pod high-level output voltage

OUTPut : POD<s>:CH<n>: INHibit (?)

Set the pod high-impedance control method

OUTPut:POD<s>:CH<n>:LOW(?)

Set the pod low-level output voltage

OUTPut :POD<s>:CH<n>:RELEase

Clear the pod data bit assignments

OUTPut :POD<s>:DEFine(?)

Set pod data bit assignments

OUTPut:POD<s>:TYPE?

Query the pod type

DG2020A Programmer Manual

2-15

Command Groups

2-16

SOURCE Commands

STATUS & EVENT
Commands

The SOURCE commands are used to select the clock signal source, set the clock
frequency, and enable or disable the event input of the pod.

Table 2-11: SOURCE commands

Header

Description

SOURce[:0SCiTlator]?

Query all clock signal settings

SOURce:0SCillator:EXTernal:
FREQuency (?)

Input the external clock frequency

SOURce:0SCillator[:INTernal]:
FREQuency(?)

Set the internal clock frequency

SOURce:0SCillator[:INTernal]:
PLLTock(?)

Set the internal clock oscillator circuit PLL operating
state

SOURce:0SCillator:SOURce(?)

Set the clock signal internal/external selection

SOURce:POD<s>:EVENT:ENABTe(?)

Enable or disable the event input of the pod

The STATUS & EVENT commands are used to set and query the registers and
gueues used by the status and event reporting system, to investigate the state of
the instrument, and to control event generation. See section 3 for details on the

status and event reporting system.

Table 2-12: STATUS & EVENT commands

Header Description

ALLEv? Dequeue all events from Event Queue
*CLS Clear SESR, SBR and Event Queue
DESE(?) Set and query DESER

*ESE(?) Set and query ESER

*ESR? Query SESR

EVENT? Dequeue event from Event Queue
EVMsg? Dequeue event from Event Queue
EVQty? Query number of event on Event Queue
*PSC(?) Set power-on status clear flag
*SRE(?) Set and query SRER

*STB? Query SBR

DG2020A Programmer Manual

Command Groups

SYNCHRONIZATION
Commands

SYSTEM Commands

DG2020A Programmer Manual

The SYNCHRONIZATION commands monitor for the completion of all

pending operations.

Table 2-13: SYNCHRONIZATION commands

Header Description
*QPC(?) Generate or return the operation complete message
*WAI Hold off all commands until all pending operations

complete

The SY STEM commands are used (for example) to set the date and time, to lock
out front panel control, to control the handling of headersin responses, and to
query for ID and setting information. This group is a collection of commands
that cannot be classified in any other group.

Table 2-14: SYSTEM commands

Header

Description

DEBug?

Query all settings for debugging

DEBug:SNOop?

Query all settings for debugging

DEBug:SNOop:DELAy?

Query delay time for debugging

DEBug:SNOop:DELAy: TIME(?)

Set delay time for debugging

DEBug: SNOop: STATe (?)

Turn on or off for debugging

FACTory Reset all settings to defaults

HEADer (?) Allow or suppress the return of the control header in
response messages

ID? Query ID information about the data generator

*IDN? Query ID information about the data generator

LOCk(?) Lock or unlock local control using the front-panel
controls

*QPT? Query which options are implemented for this data
generator

*RST Reset this data generator

SYSTem:DATE(?)

Set the clock date

SYSTem:PPAUse(?)

Set the setting for system operation when a
self-diagnostics detects an error

SYSTem:SECurity:IMMediate

Delete all settings and data

SYSTem:SECurity:STATe(?)

Set the security on/off state

SYSTem:TIME(?)

Set the clock time

2-17

Command Groups

Table 2-14: SYSTEM commands (Cont.)

Header Description

UNLock Unlock (allow) local control using the front-panel
controls

UPTime? Query the elapsed time since power on

VERBose(?) Select short or long response headers

2-18 DG2020A Programmer Manual

./ |
Command Descriptions

ABSTouch

Group
Related Commands

Syntax

Arguments

DG2020A Programmer Manual

This subsection lists each command and query in the command set al phabetical-
ly. Each command entry includes its command description and command group,
its related commands (if any), its syntax, and its arguments. Each entry also
includes one or more usage examples.

This subsection fully spells out headers, mnemonics, and arguments with the
minimal spelling shown in upper case. For example, to use the abbreviated
version of the DISPTay:BRIGhtness command, just type DISP:BRIG.

The symbol *(?)’ follows the command header of those commands that can be
used as either acommand or a query. The symbol ’? follows those commands
that can only be a query. If neither symbol follows the command, it can only be
used as a command.

The ABSTouch command performs the same action that actuating the correspond-
ing front-panel key, button, or knob would do.

DISPLAY

ABSTouch {BOTTOM1 | BOTTOM2 | BOTTOM3 | BOTTOM4 | BOTTOM5 |
BOTTOM6 | BOTTOM7 | SIDE1 | SIDE2 | SIDE3 | SIDE4 | SIDE5 |
CLEARMenu | SETUp | EDIT | APPLication | UTILity | CURSor |
EXECute | UParrow | DOWNarrow | LEFTarrow | RIGHtarrow | KNOBLeft
| KNOBRight | RUN | STEp | ZERo | ONE | TWO | THREe | FOUR | FIVe
| SIX | SEVen | EIGHt | NINe | POINt | A | MINUs | B | HZ | S | V
| C | KHZ | MS | MV | D | MHZ | US | E | NS | F | DELete | ENTer
| HARDcopy | MANual}

Sending any of the arguments that are shown in Figure 2-2 is the equivalent of
operating afront panel control. Which argument corresponds to which control is
shown by in Figure 2-2. Sending an argument corresponding to a front-panel
button is the same as pressing that button once; if the argument sent corresponds
to aknab, it is the same as rotating the knob clockwise or counterclockwise by
14 of aturn.

2-19

Command Descriptions

CURSor DOWNarrow EXECute KNOBLeft
LEFTarrow UParrow RIGHtarrow KNOBRight
Tektronix DG2020A paa GeneraToR]
RUN —>b\\ HARDcopy
O~ sIDE 1 oTE? Q AN
T0k— sipe SETUp-—ng>) e
0 EDIT —7 clolo]o
i SIDE3 " APPLication —O @@@@
SIDE 4
A uTy —o | Dlaldlo
| |U=— SIDE5
ES) | | /><—— CLEARM
STy OTO|IOOOO]|O _ enu
§) f ® WHzUs
N v J
BOTTOM 1 ~ BOTTOM 7 SEVen EIGHt NINe—=(C||CD||CD
KHZ/MS/MV

FOUR FlVe sm—»}@H@H@\ E

ONE TWO THREe—=()| ||| Hi“_ DELete

ZER0—» || || J|I¢ Cf>g<— ENTer

/)

POINt MINUs HZ/S)V

Figure 2-2: ABSTouch arguments and associated controls

Examples ABSTOUCH SETUP

displays the same setup menu that is displayed by pressing the front-panel button
SETUP in the MENU column on the front panel.

ALLEv?

The ALLEv? query dequeues all event codes and their corresponding event
messages. Use the *ESR? query to make events available for dequeuing using
ALLEvV? query.

Group STATUS & EVENT
Related Commands *CLS, DESE, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

Syntax ALLEv?

2-20 DG2020A Programmer Manual

Command Descriptions

Arguments

Responses

Examples

*CLS

Group
Related Commands
Syntax

Examples

DATA?

Group
Related Commands

Syntax

DG2020A Programmer Manual

None

[:ALLEV]<event code>,"<event message;second message>" [;<event
code>, "<event message:second message>"]...

ALLEV?

might return the string

:ALLEV 113,"Undefined header; unrecognized command - OUT:ELEV";
420, "Query UNTERMINATED".

The *CLS common command clears SESR (Standard Event Status Register), the
SBR (Status Byte Register) and the Event Queue, which are used in the data
generator status and event reporting system. For more details, refer to Section 3
Satus and Events.

STATUS & EVENT

DESE, *ESE, *ESR?, *EVENT?, EVMsg?, EVQty?, *SRE, *STB?

*CLS

*CLS
clears the SESR, the SBR, and the Event Queue.

The DATA? query returns the setting states related to the pattern data.

DATA

OUTPut?

DATA?

2-21

Command Descriptions

Examples

DATA:BLOCk:ADD

Group

Related Commands

Syntax

Arguments

Examples

2-22

DATA?

might return

:DATA:MSIZE378;BLOCK:DEFINE #2440,BLOCK 1<LF>99,BLOCK 2<LF>189,
BLOCK 3<LF>288,BLOCK 4;:DATA: SUBSEQUENCE : DEFINE #217UNNAMED, 1;
:DATA: SEQUENCE : DEFINE #271BLOCK 1,1,0,1,0,0<LF>BLOCK 2,1,0,0,1,0
<LF>BLOCK 3,1,0,0,0,0<LF>BLOCK 4,1,0,0,0;:DATA:GROUP: DEFINE #279
DATA7,7,7<LF>DATA6,6,6<LF>DATA5,5,5<LF>DATA4,4,4<LF>DATA3,3,3<LF>
DATA2,2,2<LF>DATA1,1,1<LF>DATA0,0,0

The DATA:BLOCk : ADD command adds a block. This results in one new block
being defined in the block definition section.

DATA

DATA:BLOCk:DEFine, DATA:BLOCk:DELete, DATA:BLOCk:DELete:ALL,
DATA:BLOCk:REName, DATA:BLOCk:SIZe

DATA:BLOCk:ADD <Position>,<Name>
<Position>::=<NR1>

where <NR1> is the start position of the added block.
<Name>::=<string>

where <string> isthe name of the added block.

:DATA:BLOCK:ADD 512,"BLOCK1"
adds a block starting at address 512 named BLOCK 1.

DG2020A Programmer Manual

Command Descriptions

DATA:BLOCk:DEFine (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The DATA:BLOCk:DEFine command sets up the information for the whole block
definition section in ASCII. The DATA:BLOCk :DEFine? query returns the whole
block definition section.

DATA

DATA:BLOCk:ADD, DATA:BLOCk:DELete, DATA:BLOCk:DELete:ALL,
DATA:BLOCk:REName, DATA:BLOCk:SIZe

DATA:BLOCk:DEFine <Blockinfo>
DATA:BLOCk:DEFine?

<Blockinfo>::=<blockheader><B1kdef>[<LF><Blkdef>] [<LF><Blkdef>]...
Arbitrary block data for the block definition

where,
<blockheader>::=<byte count digit><byte count>
<Blkdef>::=<APosition>,<AName>

<Aposition>isthe block starting position specified in ASCII (Note that the
starting position of the first block must be zero), and <AName> is the block
name specified in ASCII.

<LF>::=<ASCII line feed code (dec 10)>

[:DATA:BLOCk:DEFINE] <Blockinfo>
where <Blockinfo> isadatablock in the same format as the argument.

:DATA:BLOCk:DEFine #2320,BLOCKO<LF>512,BLOCK1<LF>1024,BLOCK2
defines three blocks: BLOCKO, BLOCK 1, and BLOCK2.

2-23

Command Descriptions

DATA:BLOCk:DELete

Group

Related Commands

Syntax

Arguments

Examples

The DATA:BLOCk:DELete command deletes the specified block. Note that the
first block cannot be deleted.

DATA

DATA:BLOCk:ADD, DATA:BLOCk:DEFine, DATA:BLOCk:DELete:ALL
DATA:BLOCk:REName, DATA:BLOCk:SIZe

DATA:BLOCk:DELete <Name>

<Name>: :=<string>
where <string> isthe name of the block to be deleted.

:DATA:BLOCK:DELETE "BLOCK2"
deletes the block with the name BLOCK 2.

DATA:BLOCk:DELete:ALL

Group

Related Commands

Syntax

Arguments

2-24

The DATA:BLOCk:DELete:ALL command deletes al blocks. After this command
is executed, the whole memory area consists of one block with the name”NO
NAME”.

DATA

DATA:BLOCk:ADD, DATA:BLOCk:DEFine, DATA:BLOCk:DELete,
DATA:BLOCk:REName, DATA:BLOCk:SIZe

DATA:BLOCk:DELete:ALL

None

DG2020A Programmer Manual

Command Descriptions

DATA:BLOCk:REName

The DATA:BLOCk:REName command changes the name of a data block.
Group DATA

Related Commands DATA:BLOCk:ADD, DATA:BLOCk:DEFine, DATA:BLOCk:DELete,
DATA:BLOCk:DELete:ALL, DATA:BLOCk:SIZe

Syntax DATA:BLOCk:REName <From-blockname>,<To-blockname>

Arguments <From-blockname>::=<string>
where <string> isthe name of the block beforeit is renamed.

<To-bTockname>::=<string>
where <string> isthe name of the block after it is renamed.

Examples :DATA:BLOCK:RENAME "BLOCK3","BLOCK4"
changes the name of BLOCK3 to BLOCK 4.

DATA:BLOCK:SIZe (?)

The DATA:BLOCk:SIZe command changes the size of adata block. The
DATA:BLOCk:SIZe? query returns the size of the specified block.

Group DATA

Related Commands DATA:BLOCk:ADD, DATA:BLOCk:DEFine, DATA:BLOCk:DELete,
DATA:BLOCk:DELete:ALL, DATA:BLOCk:REName

Syntax DATA:BLOCk:SIZe <Name>,<Size>
DATA:BLOCk:SIZe? <Name>

Arguments <Name>::=<string>
where <string> isablock name.
<Size>::=<NR1>

where <NR1> isanew block size.

Responses [:DATA:BLOCK:SIZE] <Name>,<Size>

DG2020A Programmer Manual 2-25

Command Descriptions

Examples :DATA:BLOCK:SIZE "BLOCK1",512
changes the block size of the block BLOCK 1 to 512.

DATA:GROUp:ADD

The DATA:GROUp : ADD command adds a group.
Group DATA

Related Commands DATA:GROUp:BIT, DATA:GROUp:DEFine, DATA:GROUp:DELete,
DATA:GROUp:DELete:ALL, DATA:GROUp:NAME?, DATA:GROUp : REName

Syntax DATA:GROUp:ADD <Name>,<MSB>,<LSB>

Arguments <Name>::=<string>
where <string> isthe name of the group to be added.

<MSB>::=<NR1>
where MSB is the Most Significant Bit
where <NR1>is the high order bit for the group.

<LSB>::=<NR1>
where LSB isthe Least Significant bit
where <NR1>isthe low order bit for the group.

Examples :DATA:GROUP:ADD "GROUP01",3,0
adds agroup that consists of 4 bits, DATA0O to DATAQ3, and has the name
GROUPOL1.

2-26 DG2020A Programmer Manual

Command Descriptions

DATA:GROUp:BIT (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The DATA:GROUp:BIT command changes the bit configuration of a group. The
DATA:GROUp:BIT? query returns the set bit configuration.

DATA

DATA:GROUp: ADD, DATA:GROUp:DEFine, DATA:GROUp:DELete,
DATA:GROUp:DELete:ALL, DATA:GROUp:NAME?, DATA:GROUp : REName

DATA:GROUp:BIT <Name>,<MSB>,<LSB>
DATA:GROUp:BIT? <Name>

<Name>: :=<string>
where the name of the group to be changed or queried.

<MSB>: :=<NR1>
where <NR1>is the high order bit for the group.

<LSB>::=<NR1>
where <NR1>isthe low order bit for the group.

[:DATA:GROUP:BIT] <Name>,<MSB>,<LSB>

:DATA:GROUP:BIT "GROUPO2",7,4
changes the bit configuration for the group named GROUPO2 to be DATA04 to
DATAOQ7.

2-27

Command Descriptions

DATA:GROUp:DEFine (?)

The DATA:GROUp : DEFine command sets up the information for the whole group
definition section in ASCII. The DATA:GROUp:DEFine? query returnsthe
information for the whole group definition section.

Group DATA

Related Commands DATA:GROUp:ADD, DATA:GROUp:BIT, DATA:GROUp:DELete,
DATA:GROUp:DELete:ALL, DATA:GROUp:NAME?, DATA:GROUp : REName

Syntax DATA:GROUp:DEFine <Groupblock>
DATA:GROUp:DEFine?

Arguments <Groupblock>::=<blockheader><Group>[<LF><Group>] [<LF><Group>] ...
Arbitrary block data for the group definition

where,
<blockheader>::=<byte count digit><byte count>
<Group>::=<AName>,<AMSB>,<ALSB>

The <AName>, <AMSB>, and <ALSB> fields are ASCI| character strings that
specify the following information.

<AName> group name
<AMSB> group’s high order bit
<ALSB> group’s low order bit

<LF>::=<ASCII line feed code (10)>

Responses [:DATA:GROUP:DEFINE] <Groupblock>
where <Groupblock> is adata block with the same format as the argument.

Examples :DATA:GROUp:DEFine
#238GROUPO1,7,0<LF>GROUP0O2,11,8<LF>GROUPO3, 15,12
defines the three groups GROUP01, GROUPQ2, and GROUPQ3.

2-28 DG2020A Programmer Manual

Command Descriptions

DATA:GROUp:DELete

Group

Related Commands

Syntax

Arguments

Examples

The DATA:GROUp: DELete command deletes the specified group.

DATA

DATA:GROUp: ADD, DATA:GROUp:BIT, DATA:GROUp:DEFine,
DATA:GROUp:DELete:ALL, DATA:GROUp:NAME?, DATA:GROUp : REName

DATA:GROUp:DELete <Name>

<Name>: :=<string>
where <string> isthe name of the group to delete.

:DATA:GROUP:DELETE "GROUP0O2"
deletes the group with the name GROUPO2.

DATA:GROUp:DELete:ALL

Group

Related Commands

Syntax

Arguments

DATA:GROUp:NAME?

Group

DG2020A Programmer Manual

The DATA:GROUp:DELete:ALL command deletes all group definitions.

DATA

DATA:GROUp:ADD, DATA:GROUp:BIT, DATA:GROUp:DEFine, DATA:GROUp:DE-
Lete, DATA:GROUp:NAME?, DATA:GROUp : REName

DATA:GROUp:DELete:ALL

None

The DATA:GROUp : NAME? query returns the name of the group that includes the
specified bit.

DATA

2-29

Command Descriptions

Related Commands

DATA:GROUp:ADD, DATA:GROUp:BIT, DATA:GROUp:DEFine, DATA:GROUp:DE-
Lete, DATA:GROUp:DELete:ALL, DATA:GROUp:REName

Syntax DATA:GROUp:NAME? <Bit>

Arguments <Bit>::=<NR1>
where <NR1> isthe number of the bit to be queried (0 to 35).

Responses [:DATA:GROUP:NAME] <Bit>,<Name>
where
<Bit>::=<NR1> abit number (0 to 35)
<Name>: :=<string> the group name

Examples DATA:GROUp:NAME? <6>
might return :DATA:GROUP:NAME 6, "GROUP02", which indicates that the name
of the group that includes the DATAO6 bit is GROUPO2.
DATA:GROUp:REName
The DATA:GROUp : REName command changes the name of a group.
Group DATA

Related Commands

Syntax

Arguments

Examples

2-30

DATA:GROUp:ADD, DATA:GROUp:BIT, DATA:GROUp:DEFine, DATA:GROUp:DE-
Lete, DATA:GROUp:DELete:ALL, DATA:GROUp : NAME?

DATA:GROUp:REName <From—groupname>,<To-groupname>
<From—-groupname>: :=<string>

where <string> isthe name of the group before it is renamed.
<To-groupname>: :=<string>

where <string> isthe name of the group after it is renamed.

:DATA:GROUP:RENAME "GROUP03","GROUPO4"
changes the name of the group GROUPQ3 to he GROUPO4.

DG2020A Programmer Manual

Command Descriptions

DATA:MSIZe (?)

Group
Related Commands

Syntax

Arguments

Responses

DATA:PATTern:BIT (2)

Group
Related Commands

Syntax

DG2020A Programmer Manual

The DATA:MSIZe command sets the bit pattern section memory area size. The
DATA:MSIZe? query returnsthe bit pattern section memory area setting.

DATA

DATA:MSIZe <Memory Size>
DATA:MS1Ze?

<Memory Size>::=<NR1>
where <NR1> is the number that expresses the memory size (in words).

[:DATA:MSIZE] <Memory Size>

The DATA: PATTern:BIT command sets the data memory bit pattern section. Data
isgivenin bit units. The DATA:PATTern:BIT? query returns the contents of the
data memory bit pattern section.

DATA

DATA:PATTern[:WORD]

DATA:PATTern:BIT <Bit Position>,<Address>,<Length>,<Data>
DATA:PATTern:BIT? <Bit Position>,<Address>,<Length>

2-31

Command Descriptions

Arguments <Bit Position>::=<NR1> bit position (0 to 35)

<Address>::=<NR1> start address (0 to 65535)
<Length>::=<NR1> data length (1 to 65536)
<Data>::=<block> arbitrary block data for the bit pattern section

Example where the data length is 128:

#3128 <hit 1> <hit 2> ... <bit 128>

Number of digits —‘
<bit N>:= {1]0}

Number of bits

The value of the data bit at the specified address is specified with the ASCI|
character for O or 1. Data bits for the specified data length are stored in
address order, with all bits expressed similarly in ASCII. The number of
bytesin the block header will be equal to the length of the specified data.

Responses [:DATA:PATTERN:BIT] <Bit Position>,<Address>,<Length>,<Data>

2-32 DG2020A Programmer Manual

Command Descriptions

DATA:PATTern[:WORD] (2)

Group
Related Commands

Syntax

Arguments

Responses

DG2020A Programmer Manual

The DATA: PATTern[:WORD] command sets the data memory bit pattern section.
The dataiis given in word units. The DATA: PATTern:WORD? query returns the
contents of the data memory bit pattern section.

DATA
DATA:PATTern:BIT

DATA:PATTern[:WORD] <Address>,<Length>,<Data>
DATA:PATTern: [WORD]? <Address>,<Length>

<Address>::=<NR1>
where <NR1> isastart address (0 to 65535)

<Length>::=<NR1> data length (1 to 65536)
<Data>::=<block> arbitrary block data for the bit pattern section

Example where the data length is 50:

#3250 <byte 1> <byte 2> ... <byte 250>

Number of digits J
<byte 1> <byte 2> <byte 3> <byte 4> <byte 5>
Number of bytes

bit 7-0

bit 23-16
bit 31-24 bit 15-8

bit 35-32

Each word (36 hits) of the bit pattern datais expressed as a group of 5 bytes
starting with the first byte. When each byte group is seen as consisting of the
bytes bytel to byte5 as shown in the figure, the bits correspond to the bitsin
the bit pattern data starting with the MSB in order starting with bytel.
Although all 8 bitsin byte2 to byte5 are used, the high—order 4 bitsin bytel
are unused. The data block isformed by iterating this packing method for
each word in order starting with the start address. Thus the number of bytes
in the data block (excluding the header) will be 5 times the number of words.

[:DATA:PATTERN:WORD] <Address>,<Length>,<Data>

2-33

Command Descriptions

DATA:SEQuence:ADD

2-34

Group

Related Commands

Syntax

Arguments

Examples

The DATA:SEQuence: ADD command adds a sequence step.

DATA

DATA:SEQuence:DEFine, DATA:SEQuence:DELete, DATA:SEQuence:DE-
Lete:ALL

DATA:SEQuence:ADD <LineN>,<Name>,<Re-
peat>,<To>,<WaitE>,<JumpE>,<LoopE>

<LineN>::=<NR1>
where <NR1> isa sequence step humber.

<Name>: :=<string>
where <string> isablock name (surrounded in double (") or single (') quotes).

<Repeat>::=<NR1>
where <NR1> isarepeat count (1 to 65536).

<To>::=<NR1>

where <NR1> isaevent jJump destination line number.

<WaitE>::={ON | OFF | 1 | 0} trigger wait on/off state
<JumpE>::={ON | OFF | 1 | 0} event jump on/off state
<LoopE>::={ON | OFF | 1 | 0} infinite loop on/off

:DATA:SEQUENCE:ADD 4,"BLOCK3",16,0,0,1,1
adds a sequence step that consists of the block named BLOCK 3 at the sequence
line number 4 position.

When this sequence is executed in enhanced mode, BLOCK 3 will be executed
repeatedly since the infinite loop setting is set on. However, since event jump is
also set on, the instrument will jump to sequence line number O if an external
event occurs. In run modes other than enhanced mode, BLOCK 3 will be
executed 16 times and then control will switch to the next line number.

DG2020A Programmer Manual

Command Descriptions

DATA:SEQuence:DEFine (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The DATA:SEQuence:DEFine command sets up all of the sequence definition
section information in ASCII. The DATA:SEQuence:DEFine? query returns all of
the sequence definition section information.

DATA

DATA:SEQuence:ADD, DATA:SEQuence:DELete, DATA:SEQuence:DELete:ALL

DATA:SEQuence:DEFine <Sequence Block>
DATA:SEQuence:DEFine?

<Sequence Block>::=<blockheader><Step>[<LF><Step>] [<LF><Step>]...
Arbitrary block data for the sequence definition

where,
<blockheader>::=<byte count digit><byte count>
<Step>::=<AName>,<ARepeat>,<ATo>,<AWaitE>,<AJumpE>,<ALoopE>

Theitemsin <Step> are ASCII character strings that express the following

information.

<AName> the block name (with no quotation marks)
<ARepeat> repeat count (1 to 65536)

<ATo> event jump destination line number

<AWaitE> trigger wait on/off state ({ON | 1}:ON, {OFF | 0}:OFF)
<AJumpE> event jump on/off state ({ON | 1}:ON, {OFF | 0}:OFF)
<ALoopE> infinite loop on/off ({ON | 1}:ON, {OFF | 0}:OFF)

<LF>::=<ASCII Tline feed code (10)>

[:DATA:SEQUENCE:DEFINE] <Sequence Block>

where <Sequence Block> isadatablock with the same format as the argument.
However, note that rather than the ON and OFF keywords, only 0 and 1 are used
for the <AWaitE>, <AJumpE>, and <ALoopE> items.

:DATA:SEQuence:DEFine #235BLOCK1,16,0,1,0,0<LF>BLOCK2,32,0,0,1,1
defines a two step sequence that consists of the two blocks BLOCK 1 and
BLOCK2.

2-35

Command Descriptions

DATA:SEQuence:DELete

The DATA:SEQuence:DELete command deletes the specified sequence step.
Group DATA
Related Commands DATA:SEQuence:ADD, DATA:SEQuence:DEFine, DATA:SEQuence:DELete:ALL
Syntax DATA:SEQuence:DELete <Line Number>

Arguments <Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be deleted.

Examples :DATA:SEQUENCE :DELETE 3
deletes the line 3 sequence step.

DATA:SEQuence:DELete:ALL

The DATA:SEQuence:DELete:ALL command deletes all sequence definitions.
Group DATA
Related Commands DATA:SEQuence:ADD, DATA:SEQuence:DEFine, DATA:SEQuence:DELete
Syntax DATA:SEQuence:DELete:ALL

Arguments None

2-36 DG2020A Programmer Manual

Command Descriptions

DATA:SEQuence:EVJ (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The DATA:SEQuence: EVJ command sets the sequence step event jump to on or
off. The DATA:SEQuence: EVJ? query returns the sequence step event jump
on/off state.

DATA

DATA:SEQuence:EVJTO, DATA:SEQuence:LOOP, DATA:SEQuence:REPeat
DATA:SEQuence:TWAIT

DATA:SEQuence:EVJ <Line Number>,{ON | OFF | 1 | 0}
DATA:SEQuence:EVJ? <Line Number>

<Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be set.

ON orl
sets the event jump to on.

OFF or 0
sets the event jump to off.

[:DATA:SEQUENCE:EVJ] <Line Number>,{1 | 0}

:DATA:SEQUENCE:EVJ 8,0N
sets the event jump state for the line 8 sequence step to on.

2-37

Command Descriptions

DATA:SEQuence:EVJTO (?)

The DATA:SEQuence: EVJTO command sets the sequence step event jump
destination. The DATA: SEQuence:EVJTO? query returns the event jump
destination set for the sequence step.

Group DATA

Related Commands DATA:SEQuence:EVJ, DATA:SEQuence:LOOP, DATA:SEQuence:REPeat,
DATA:SEQuence:TWAIT

Syntax DATA:SEQuence:EVJTO <Line Number>,<Target>
DATA:SEQuence:EVJT0? <Line Number>

Arguments <Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be set.
<Target>::=<NR1>
where <NR1> isthe line number of the jJump destination sequence step.

Responses [:DATA:SEQUENCE:EVJTO] <Line Number>,<Target>

Examples :DATA:SEQUENCE:EVJTO 5,0
setsthe line 5 sequence step event jump destination to line O.

2-38 DG2020A Programmer Manual

Command Descriptions

DATA:SEQuence:LOOP (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

The DATA:SEQuence: LOOP command sets the sequence step infinite loop state to
on or off. The DATA:SEQuence:LOOP? query returns the sequence step infinite
loop on/off state.

DATA

DATA:SEQuence:EVJ, DATA:SEQuence:EVJTO, DATA:SEQuence:REPeat
DATA:SEQuence:TWAIT

DATA:SEQuence:LOOP <Line Number>,{ON | OFF | 1 | 0}
DATA:SEQuence:LOOP? <Line Number>

<Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be set.

ON orl
setsthe infinite loop state to on.

OFF or 0
sets the infinite loop state to off.

[:DATA:SEQUENCE:LOOP] <Line Number>,{1 | 0}

:DATA:SEQUENCE: LOOP 9,0FF
sets the infinite loop state for the line 9 sequence step to off.

DATA:SEQuence:REPeat (?)

Group

Related Commands

DG2020A Programmer Manual

The DATA:SEQuence:REPeat command sets the sequence step repeat count. The
DATA:SEQuence:REPeat? query returns the repeat count set for the sequence

step.

DATA

DATA:SEQuence:EVJ, DATA:SEQuence:EVJTO, DATA:SEQuence: LOOP,
DATA:SEQuence:TWAIT

2-39

Command Descriptions

Syntax

Arguments

Responses

Examples

DATA:SEQuence:REPeat <Line Number>,<Times>
DATA:SEQuence:REPeat? <Line Number>

<Line Number>::=<NR1>
where <NR1> isthe line number of the sequence step to be set.

<Times>::=<NR1>
where <NR1> is arepeat count (1 to 65536).

[:DATA:SEQUENCE:REPEAT] <Line Number>,<Times>

:DATA:SEQUENCE : REPEAT 5,8
sets the line 5 sequence step repeat count to 8.

DATA:SEQuence:TWAIT (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

2-40

The DATA:SEQuence: TWAIT command sets the sequence step trigger walit state to
on or off. The DATA: SEQuence: TWAIT? query returns the sequence step trigger
wait on/off state.

DATA

DATA:SEQuence:EVJ, DATA:SEQuence:EVJTO, DATA:SEQuence: LOOP,
DATA:SEQuence:REPeat

DATA:SEQuence:TWAIT <Line Number>,{ON | OFF | 1 | 0}
DATA:SEQuence:TWAIT? <Line Number>

<Line Number>::=<NR1>
where <NR1> isthe line number of the sequence step to be set.

ON or1l
sets the trigger wait state to on.

OFF or O
sets the trigger wait state to off.

[:DATA:SEQUENCE:TWAIT] <Line Number>,{1 | 0}

:DATA:SEQUENCE: TWAIT 5,0N
sets the line 5 sequence step trigger wait state to on.

DG2020A Programmer Manual

Command Descriptions

DATA:SUBSequence:ADD

Group

Related Commands

Syntax

Arguments

Examples

The DATA:SUBSequence: ADD command adds a sub sequence step.

DATA

DATA:SUBSequence:DEFine, DATA:SUBSequence:DELete,
DATA:SUBSequence:DELete:ALL

DATA:SUBSequence:ADD <Sname>, <LineN>, <Name>, <Repeat>

<Sname>::=<String>
where <string> is a sub sequence name (surrounded in double (") or single (')
quotes).

<LineN>::=<NR1>
where <NR1> isasub sequence step number.

<Name>: :=<String>
where <string> isablock name (surrounded in double (") or single (') quotes).

<Repeat>::=<NR1>
where <NR1> isarepeat count (1 to 65536).

:DATA:SUBSEQUENCE:ADD "SUB1",2"BLOCK3",10
adds a sub sequence step that consists of the block named BLOCK 3 at the sub
sequence line number 2 position in the sub sequence named SUB1.

DATA:SUBSequence:CLEAr

Group

Related Commands

Syntax

Arguments

DG2020A Programmer Manual

The DATA:SUBSequence:CLEAr command clears all sub sequence definitions.

DATA

DATA:SUBSequence:ADD, DATA:SUBSequence:DEFine,
DATA:SUBSequence:DELete, DATA:SUBSequence:DELete:ALL

DATA:SUBSequence:DELete:CLEAr

None

2-41

Command Descriptions

DATA:SUBSequence:DEFine (?)

2-42

Group

Related Commands

Syntax

Arguments

Responses

Examples

The DATA:SUBSequence:DEFine command sets up all of the sub sequence
definition section information in ASCII. The DATA:SUBSquence:DEFine? query
returns all of the sub sequence definition section information.

DATA

DATA:SUBSequence:ADD, DATA:SUBSequence:CLEAr,
DATA:SUBSequence:DELete, DATA:SUBSequence:DELete:ALL

DATA:SUBSequence:DEFine <Subseq Block>
DATA:SUBSequence:DEFine?

<Subseq Block>::=<blockhead-
er><SName>,<Step>[,<Step>...] [<LF><SName>,<Step>] [,<Step>...]...]
Arbitrary block data for the sequence definition

where,
<Step>::=<AName>,<ARepeat>

Theitemsin <Step> are ASCII character strings that express the following

information.
<SName> the sub sequence name (with no quotation marks)
<AName> the block name (with no quotation marks)

<ARepeat> repeat count (1 to 65536)
<LF>::=<ASCII Tine feed code (10)>

[:DATA:SUBSEQUENCE:DEFINE] <Subseq Block>
where <Subseq Block> isadata block with the same format as the argument.

:DATA:SUBSEQUENCE : DEFINE #233SuUB1,B1,16,B2,32<LF>SUB2,B3,2,B4,3
defines atwo step sub sequence that consists of the two sub sequences SUB1 and
SUB2.

DG2020A Programmer Manual

Command Descriptions

DATA:SUBSequence:DELete

Group

Related Commands

Syntax

Arguments

Examples

The DATA:SUBSequence:DELete command deletes the specified sub sequence
step.

DATA

DATA:SUBSequence:ADD, DATA:SUBSequence:CLEAr
DATA:SUBSequence:DEFine, DATA:SUBSequence:DELete:ALL

DATA:SUBSequence:DELete <SName>,<Line Number>

<SName>: :=<String>
where <String> is a sub sequence name (surrounded in double (") or single (')
quotes).

<Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be deleted.

:DATA:SUBSEQUENCE :DELETE "SuB2",7
deletes the line 7 sub sequence step named SUB2.

DATA:SUBSequence:DELete:ALL

Group

Related Commands

Syntax

Arguments

DG2020A Programmer Manual

The DATA:SUBSequence:DELete:ALL command deletes the specified sub
sequence definitions.

DATA

DATA:SUBSequence:ADD, DATA:SUBSequence:CLEAr,
DATA:SUBSequence:DEFine, DATA:SUBSequence:DELete

DATA:SUBSequence:DELete:ALL <SName>

<SName>: :=<String>
where <String> is a sub sequence name (surrounded in double (") or single (')
quotes).

2-43

Command Descriptions

Examples :DATA:SUBSEQUENCE : DELETE:ALL "SUBL"
deletes the sub sequence definition named SUB1.

DATA:SUBSequence:REPeat (?)

The DATA:SUBSequence:REPeat command sets the sub sequence step repeat
count. The DATA: SUBSequence:REPeat? query returns the repeat count set for
the sub sequence step.

Group DATA
Related Commands None

Syntax DATA:SUBSequence:REPeat <SName>,<Line Number>,<Times>
DATA:SUBSequence:REPeat? <SName>,<Line Number>

Arguments <SName>::=<String>
where <String> is asub sequence name (surrounded in double (") or single (')
quotes).

<Line Number>::=<NR1>
where <NR1> is the line number of the sequence step to be set.

<Times>::=<NR1>
where <NR1> isarepeat count (1 to 65536).

Responses [:DATA:SUBSEQUENCE:REPEAT] <SName>,<Line Number>,<Times>

Examples :DATA:SUBSEQUENCE : REPEAT "SUB1",5,8
sets the line 5 sequence step repeat count in the sub sequence named SUB1 to 8.

2-44 DG2020A Programmer Manual

Command Descriptions

DATA:UPDate

Group
Related Commands
Syntax

Arguments

DEBug?

Group

Related Commands
Syntax

Arguments
Responses

Examples

DG2020A Programmer Manual

The DATA:UPDate command transfers the contents of data memory to pattern
generation memory so that the output reflects the most recent data. This
command is only valid when the mode is set to manual mode. The processing
performed by this command is executed automatically if any data changes when
the instrument is in automatic mode.

DATA

DATA:UPDate

None

The DEBug? query returns all current settings for the remote command debugging
function.

This query is equivalent to the DEBug: SNOop? query.

SYSTEM

DEBug:SNQOop?, DEBug:SNOop:DELAy: TIME, DEBug:SNOop:STATe

DEBug?

None

See Examples

DEBUG?
might return :DEBUG: SNOOP: STATE O; DELAY:TIME 0.2

2-45

Command Descriptions

DEBug:SNOop?

The DEBug:SNOop? query returns al current settings for the remote command
debugging function.
This query is equivalent to the DEBug? query.
Group SYSTEM
Related Commands DEBug?, DEBug:SNOop:DELAy: TIME, DEBug:SNOop:STATe
Syntax DEBug:SNOop?
Arguments None

Responses See Examples

Examples DEBUG:SNOOP?
might return :DEBUG: SNOOP:STATE 0; DELAY:TIME 0.2

2-46 DG2020A Programmer Manual

Command Descriptions

DEBug:SNOop:DELAy?

Group

Related Commands
Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The DEBug:SNOop:DELAY? query returns the display time for commandsin a
sequence of commands connected by semicolons.

This query is equivalent to the DEBug: SNOop:DELAy: TIME? query.
SYSTEM

DEBug?, DEBug: SNOop?, DEBug: SNOop : DELAy : TIME?, DEBug:SNOop:STATe
DEBug:SNOop:DELAy?

None

[:DEBUG:SNOOP:DELAY]<Delay Time>
where <Delay Time>::=<NR2>

DEBUG:SNOOP:DELAY?
might return :DEBUG: SNOOP:DELAY:TIME 0.2

2-47

Command Descriptions

DEBug:SNOop:DELAy:TIME (2)

2-48

Group
Related Commands

Syntax

Arguments

Examples

The DEBug: SNOop : DELAy : TIME command sets the display time for commands in
a seguence of commands that are connected by semicolons.

The DEBug: SNOop: DELAy: TIME? query returns the display time for commandsin
a sequence of commands connected by semicolons.

SYSTEM

DEBug?, DEBug:SNOop?, DEBug:SNOop:DELAy?, DEBug:SNOop:STATe

DEBug:SNOop:DELAy:TIME <Time>
DEBug:SNOop:DELAy:TIME?

<Time>::=<NR2>[<unit>]

where <NR2> combined with [<unit>] specifiesatimein the range 0.0 sto
10.0sinstepsof 0.1 s, and [<unit>]::={s|ms|us}, for seconds, milliseconds,
or microseconds.

:DEBUG:SNOOP:DELAY:TIME 0.5
sets the command display time to 0.5 seconds.

DG2020A Programmer Manual

Command Descriptions

DEBug:SNOop:STATe (?)

Group
Related Commands

Syntax

Arguments

DG2020A Programmer Manual

The DEBug: SNOop: STATe command sets and clears the remote command
debugging function.

The DEBug:SNOop:STATe? query returns the currently specified state of the
remote command debugging function.

The debugging function displays messages input from the remote interface in the
CRT screen message area. If commands are connected by semicolons, each
message is displayed for the time specified with the DEBug: SNOop : DELAy : TIME
command.

The display format is as follows.

Control codes — "<code decimal display>", eg. LFisdisplayed as
II<10>II.

Alphanumerics and symbols — "<code ASCII display>",eg., "A"is
displayed as"A".

Message termination — "<PMT>"

Interface messages — "<DCL>" and "<GET>". Others are displayed as
"<code decimal display>".

Block data — "#0"

Any data other than one of the above — "<code decimal display>",
e.g. acode value of 80 (hexadecimal) would be displayed as <128>.

SYSTEM

DEBug?, DEBug:SNOop?, DEBug:SNOop:DELAy?, DEBug:SNOop: TIME

DEBug:SNOop:STATe {ON | OFF | <NR1>}
DEBug:SNOop:STATe?

ON or nonzero value
enables the debugging function.

OFF or zero value
clears the debugging function.

2-49

Command Descriptions

Responses

Examples

DESE (?)

Group
Related Commands

Syntax

Arguments

Examples

2-50

1 the debugging function is currently set.
0 the debugging function is currently cleared.

:DEBUG: SNOOP: STATE ON
enables the debugging function.

The DESE command sets the bits of the DESER (Device Event Status Enable
Register) used in the status and event reporting system of the data generator. The
DESE? query returns the contents of the DESER. Refer to Section 3 Status and
Events for more information about DESE.

The power-on default for the DESER isto set al bitsto 1 if the power-on status
flag is TRUE. If thisflag is set to FALSE, the DESER maintains its current
value through a power cycle.

STATUS & EVENT

*CLS, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

DESE <Bit Value>
DESE?

<Bit Value>::=<NR1>
where <NR1> is a decimal integer, which must range from 0 to 255, that sets the
DESER hitsto its binary equivalent.

:DESE 177
sets the DESER to 177 (binary 10110001), which sets the PON, CME, EXE and
OPC hits.

:DESE?
might return :DESE 176, which indicates that the DESER contains the binary
number 10110000.

DG2020A Programmer Manual

Command Descriptions

DIAGnostic?

Group

Related Commands
Syntax

Arguments

Responses

DG2020A Programmer Manual

The DIAGnostic? query returns the selected self-test routing(s), runs the routine,
and returns the results.

DIAGNOSTIC

DIAGnostic:SELect, DIAGnostic:STATe, DIAGnostic:RESUTt?

DIAGnostic?

None

[:DIAGNOSTIC:SELECT] <Self-test Routine>; [RESULT],<Result>[,
<Result>]...

<Self-test Routine>::= <label>

where <Tabel> isone of following routines:

ALL all routines

CPU CPU unit check routine

DISPlay display unit check routine

FPANel front panel control unit check routine
CLOCk clock unit check routine

TRIGger trigger unit test routine

PMEMory pattern memory check routine
SMEMory sequence memory check routine

and where <Result>: :=<NR1> is one of following responses:

0 terminated without error
100 detected an error in the CPU unit
200 detected an error in the display unit
300 detected an error in the front panel unit
400 detected an error in the clock unit
500 detected an error in the trigger unit
600 detected an error in the sequence memory
700 detected an error in the pattern memory

NOTE. The does not respond to any commands or queriesissued during Self
Test.

2-51

Command Descriptions

Examples

DIAGnostic:RESUIt?

Group

Related Commands
Syntax

Arguments

Responses

Examples

2-52

DIAGNOSTIC?
might return :DIAGNOSTIC:SELECT ALL;RESULT 0.

The DIAGnostic:RESUTt? query returns the results of self-test execution.

DIAGNOSTIC

DIAGnostic:SELect, DIAGnostic:STATe

DIAGnostic:RESUTt?

None

:DIAGNOSTIC:RESULT<Result>[,<Result>]...
<Result>::=<NR1>
where <NR1> is one of following values:

0 terminated without error
100 detected an error in the CPU unit
200 detected an error in the display unit
300 detected an error in the front panel unit
400 detected an error in the clock unit
500 detected an error in the trigger unit
600 detected an error in the sequence memory
700 detected an error in the pattern memory

DIAGNOSTIC:RESULT?
might return :DIAGNOSTIC:RESULT 200

DG2020A Programmer Manual

Command Descriptions

DIAGnostic:SELect (?)

Group
Related Commands

Syntax

Arguments

Examples

DIAGnostic:STATe

Group
Related Commands

Syntax

DG2020A Programmer Manual

The DIAGnostic:SELect command selects the self test routine. The DIAGnos-
tic:SELect? query returnsthe currently selected routine. The DIAGnos-
tic:STATe command executes the routine.

DIAGNOSTIC

DIAGnostic:STATe, DIAGnostic:RESULt?

DIAGnostic:SELect { ALL | CPU | DISPlay | FPANel | CLOCk |
TRIGger | SMEMory | PMEMory }

DIAGnostic:SELect?

ALL checks all routines that follow
CPU checks the CPU unit

DISPTay checksthe display unit

FPANel checks the front panel control unit
CLOCk checks the clock unit

TRIGger checksthetrigger unit

SMEMory checks the sequence memory
PMEMory checks the pattern memory

:DIAGNOSTIC:SELECT CPU ; STATE EXECUTE
executes the CPU salf-test routine.

The DIAGnostic:STATe command executes the self-test routine(s) selected with
the DIAGnostic:SELect command. If an error is detected during execution, the
routine that detected the error terminates. If al of the self-test routines are
selected using the DIAGnostic:SELect command, self-testing continues with
execution of the next self-test routine.

DIAGNOSTIC

DIAGnostic:SELect, DIAGnostic:RESUTt?

DIAGnostic:STATe EXECute

2-53

Command Descriptions

Arguments

Examples

DISPlay?

Group

Related Commands
Syntax

Arguments

Responses

Examples

2-54

EXECute
Performs the self-test using the selected routine.

:DIAGNOSTIC:SELECT ALL ; STATE EXECUTE ; RESULT?
executes all of the self-test routines. After all self-test routines finish, the results
of the self tests are returned.

TheDISPTay? query returns all the settings set using the display commands.

DISPLAY

None

DISPlay?

None

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. See Examples.

DISPLAY?
might return :DISPLAY:BRIGHTNESS 0.7;CLOCK 0;DIMMER 1;ENABLE
1;MENU:NAME SETUP;STATE 1;:DISPLAY:WINDOW:TEXT:DATA " "

DG2020A Programmer Manual

Command Descriptions

DISPlay:BRIGhtness (?)

Group
Related Commands

Syntax

Arguments

Examples

DISPlay:CLOCK (2)

Group
Related Commands

Syntax

Arguments

DG2020A Programmer Manual

TheDISPTay:BRIGhtness command adjusts the brightness of the screen; the
DISPlay:BRIGhtness? query returns the current brightness setting.

DISPLAY

DISPlay?

DISPTay:BRIGhtness <Value>
DISPlay:BRIGhtness?

<Value>::=<NRf>
where <NRf>isarea number ranging from O to 1.

:DISPLAY:BRIGHTNESS 0.7
sets screen brightness to 70% of maximum intensity.

TheDISPTay:CLOCk command sets whether or not the data and time are
displayed.

TheDISPTay:CLOCk? query returns whether or not the data and time are
displayed.
DISPLAY

DISPlay?

DISPlay:CLOCk {ON | OFF | 1 | 0}
DISPlay:CLOCk?

ON or 1
sets the data generator to display the date and time.

OFF or 0
sets the data generator to not display the date and time.

2-55

Command Descriptions

Responses 1 Date and time s currently displayed.
0 Date and time is currently not displayed.

Examples :DISPLAY:CLOCK ON
sets the data generator to display the date and time.

DISPlay:DiMmer (?)

TheDISPTay:DIMmer command sets whether or not the screen dimmer function
operates. The DISP1ay:DIMmer? query returns the on/off state of the screen
dimmer function. When the dimmer function is on, if no front panel controls are
used for about 10 minutes, the screen brightnessis lowered automatically.

Group DISPLAY
Related Commands DISPlay?

Syntax DISPlay:DIMmer {ON | OFF | 1 | 0}
DISPlay:DIMmer?

Arguments ON or 1
enables the dimmer function.
OFF or 0
clears the dimmer function.

Responses [:DISPLAY:DIMMER] {1 | 0}

Examples :DISPLAY:DIMMER ON
turns the dimmer function on.

2-56 DG2020A Programmer Manual

Command Descriptions

DISPlay:ENABIe (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

DISPlay:MENU?

Group

Related Commands
Syntax

Arguments

Responses

DG2020A Programmer Manual

TheDISPTay:ENABTe command turns the display on or off. When security is
turned on, once the display is set to off, it cannot be turned on again. The
DISPlay:ENABTe? query returns the on/off state of the display.

DISPLAY

DISPTay?, DISPlay:MENU:STATe

DISPlay:ENABle {ON | OFF | 1 | 0}

DISPTay:ENABle?

ON or 1
turns the display on.

OFF or O
turns the display off.

[:DISPLAY:ENABLE] {1 | 0}

:DISPLAY:ENABLE OFF
turns the display off.

TheDISPTay:MENU? query returns the type and display state of the selected

menu.

DISPLAY

DISPlay?, DISPlay:MENU[:NAME], DISPTay:MENU:NAME?

DISPTay:MENU?

None

[:DISPLAY:MENU:NAME] {SETUP | EDIT | APPLICATION | UTIL-

ITY}; [STATE] {1 | 0}

2-57

Command Descriptions

Examples :DISPTay:MENU?
might return :DISPLAY :MENU:NAME SETUP;STATE 1

DISPlay:MENU[:NAME]

The DISPT1ay:MENU[:NAME] command selects the menu to be displayed on the
screen.

Group DISPLAY
Related Commands DISPlay?, DISPlay:MENU?, DISPTay:MENU:NAME?

Syntax DISPlay:MENU[:NAME] {SETUp | EDIT | APPLication | UTILity}

Arguments SETUp displays the setup menu
EDIT displaysthe edit menu
APPLication displaysthe application menu
UTILity displays the utility menu

Examples :DISPLAY:MENU:NAME UTILITY
selectsthe UTILITY menu.

2-58 DG2020A Programmer Manual

Command Descriptions

DISPlay:MENU:NAME?

Group

Related Commands
Syntax

Arguments
Responses

Examples

TheDISPTay:MENU:NAME? query returns the type of the selected menu.

DISPLAY

DISPlay?, DISPTay:MENU?, DISPTay:MENU: [:NAME]

DISPTay:MENU:NAME?

None

[:DISPLAY:MENU:NAME] {SETUP | EDIT | APPLICATION | UTILITY}

DISPTay:MENU:NAME?
might return :DISPLAY :MENU:NAME EDIT

DISPlay:MENU:STATe (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

TheDISPTay:MENU:STATe command sets whether or not menus are displayed on
the screen. The DISPTay:MENU:STATE? query returns whether or not menus are
displayed on the screen. This command is equivalent to the DISPlay:ENABIe
command.

DISPLAY

DISPlay?, DISPlay:ENABle, DISPTay:MENU?, DISPTay:MENU: [:NAME]

DISPlay:MENU:STATe {ON | OFF | 1 | 0}
DISPlay:MENU:STATe?

ON or 1
OFF or O

Menus are displayed.
Menus are not displayed.

[:DISPLAY:MENU:STATE] {1 | 0}

DISPLAY:MENU:STATE ON
sets the instrument to display menus on the screen.

2-59

Command Descriptions

DISPlay[:WINDow]: TEXT:CLEar

The DISPT1ay[:WINDow] : TEXT:CLEar command clears the message display area

Group

Related Commands
Syntax

Arguments

Examples

2-60

on the screen.

DISPLAY

DISPlay?, DISPTay[:WINDow] : TEXT[:DATA]

DISPlay[:WINDow] : TEXT:CLEar

None

:DISPLAY:WINDOW:TEXT:CLEAR
clears the message display area.

DG2020A Programmer Manual

Command Descriptions

DISPlay[:WINDow]: TEXT[:DATA] (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

*ESE (?)

Group

DG2020A Programmer Manual

TheDISPTlay[:WINDow] : TEXT[:DATA] command sends a message to be
displayed in the screen message display area. The sent message is displayed
immediately. The DISPT1ay[:WINDow] : TEXT[:DATA] ? query returns the contents
of the input screen message.

NOTE. The contents of the message display area scrolls automatically. To fully
update the display contents, first clear the message display area using the
DISPlay[:WINDow] : TEXT: CLEar command.

DISPLAY

DISPlay?, DISPTay[:WINDow] : TEXT:CLEar

DISPTay[:WINDow] : TEXT[:DATA] <Message>
DISPTay[:WINDow] : TEXT[:DATA]?

<Message>::=<string>
where <string> isamessage character string.

[:DISPLAY:WINDOW: TEXT:DATA] <Message>

:DISPLAY:WINDOW:TEXT:DATA "ABCD"
sends the text " ABCD” to be displayed in the message display area.

The *ESE common command sets the bits of the ESER (Event Status Enable
Register) used in the status and events reporting system of the data generator.
The *ESE? query returns the contents of the ESER. Refer to Section 3 Status and
Events for more information about the ESER.

If the power on status flag is TRUE, the power-on default for the ESER isto
reset all bitsto zero. If thisflag is set to FALSE, the ESER bits do not change
value during the power-on cycle.

STATUS & EVENT

2-61

Command Descriptions

Related Commands *CLS, DESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

Syntax *ESE <Bit Value>
*ESE?

Arguments <Bit Value>::=<NR1>
where <NR1> is a decimal integer that ranges from O to 255. The ESER bits will
be set to the binary equivalent of the decimal integer sent.

Examples *ESE 177
setsthe ESER to 177 (binary 10110001), which sets the PON, CME, EXE and
OPC hits.

*ESE?
might return 176, which indicates that the ESER contains the binary number
11010000.

*ESR?

The *ESR? common query returns the contents of SESR (Standard Event Status
Register) used in the status and events reporting system. Refer to Section 3
Satus and Events for more information about *ESR? or SESR.

Group STATUS & EVENT
Related Commands *CLS, DESE, *ESE?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?
Syntax *ESR?
Arguments None

Examples *ESR?
might return 181, which indicates that the SESR contains the binary number
10110101.

2-62 DG2020A Programmer Manual

Command Descriptions

EVENT?

Group

Related Commands
Syntax

Arguments

Examples

EVMsg?

Group

Related Commands
Syntax

Arguments

Examples

DG2020A Programmer Manual

The EVENT? query dequeues the event code of the event that has been in the
Event Queue the longest out of all available events. Use the *ESR? query to
make the events available for dequeuing using EVENT?. Refer to Section 3 Satus
and Events.

STATUS & EVENT

*CLS, DESE, *ESE, *ESR?, EVMsg?, EVQty?, *SRE, *STB?

EVENT?

None

EVENT?
might return :EVENT 113

The EVMsg? query dequeues the event code and event message of the event that
has been in the Event Queue the longest out of all available events. Use the
*ESR? query to make the events available for dequeuing using EVMsg? For more
details, refer to Section 3 Status and Events.

STATUS & EVENT

*CLS, DESE, *ESE, *ESR?, EVENT?, EVQty?, *SRE, *STB?

EVMsg?

None

:EVMSG?
might return :EVMSG 420, "Query UNTERMINATED".

2-63

Command Descriptions

EVQty?

Group

Related Commands
Syntax

Arguments

Examples

FACTory

Group

Related Commands
Syntax

Arguments

Examples

2-64

The EVQty? query returns the number of events currently in the Event Queue. If
no event is being queued, O is returned.

STATUS & EVENT

*CLS, DESE, *ESE, *ESR, EVMsg?, EVENT?, *SRE, *STB?

EVQty?

None

<EVQty?
might return :EVQTY 5.

The FACTory command resets the data generator to its factory default settings
and purges all stored settings. (See Appendix D, page D1, for alist of the
factory settings.)

SYSTEM

*RST, SECUre

FACTory

None

:FACTORY
resets the data generator to its factory default settings.

DG2020A Programmer Manual

Command Descriptions

HCOPy?

Group

Related Commands
Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The HCOPy? query returns the set image data format and output port for hardcopy
output.

HARDCOPY

HCOPy:FORMat, HCOPy:PORT

HCOPy?

None

[:HCOPY:FORMAT] {BMP | EPSON | EPSMONO | THINKJET | TIFF};[:PORT]
{DISK | GPIB | RS232C}
where

BMP
the Windows monochrome file format.

EPSOn
the format used by 9-pin and 24-pin dot matrix printersin ESC/P graphics mode.

EPSMono
the encapsulated Postscript format monochrome image file format.

THINkjet
the format used by HP inkjet printers.

TIFF
the TIFF format.

HCOPY?
might return :HCOPY: FORMAT TIFF ; PORT DISK

In this case the instrument outputs hardcopy data to file on the floppy disk in the
TIFF format.

2-65

Command Descriptions

HCOPy:ABORt

Group

Related Commands
Syntax

Arguments

Examples

HCOPy:DATA?

Group

Related Commands
Syntax

Arguments

Responses

Examples

2-66

The HCOPy : ABORt command aborts hardcopy output.

HARDCOPY

HCOPy: STARt

HCOPy : ABORt

None

:HCOPY : ABORT
aborts hardcopy output.

The HCOPy : DATA? query outputs the hard copy data to the output queue.
However, note that this command has no effect on (and is not affected by) the
hard copy output port setting.

HARDCOPY
HCOPy : PORT
HCOPy : DATA?

None

[:HCOPY:DATA] <Image>

where

<Image>::=<block> the hardcopy image data block

:HCOPY :DATA?
outputs hard copy datato the output queue.

DG2020A Programmer Manual

Command Descriptions

HCOPy:FORMat (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The HCOPy : FORMat command sets the hard copy output format.

The HCOPy : FORMat? query returns the currently specified hard copy output
format.

HARDCOPY

HCOPy?

HCOPy:FORMAT {BMP | EPSOn | EPSMono | THINkjet | TIFF}
HCOPy : FORMAT?

BMP
the Windows monochrome file format.

EPSOn
the format used by 9-pin and 24-pin dot matrix printersin ESC/P graphics mode.

EPSMono
the encapsulated Postscript format monochrome image file format.

THINkjet
the format used by HP inkjet printers.

TIFF
the TIFF format.

[:HCOPY:FORMAT] {BMP | EPSON | EPSMONO | THINKJET | TIFF}

:HCOPY:FORMAT TIFF
sets the data generator to output hard copy in the TIFF format.

2-67

Command Descriptions

HCOPy:PORT (?)
The HCOPy : PORT command sets the hard copy output port.

The HCOPy : PORT? query returns the currently specified hard copy output port.
Group HARDCOPY
Related Commands HCOPy?

Syntax HCOPy:PORT {DISK | GPIB | RS232c}
HCOPy : PORT?

Arguments DISK
outputs to afile on the floppy disk.

GPIB
outputs to the GPIB port.

RS232c
outputs to the RS-232C port.

Responses [HCOPy:PORT] {DISK | GPIB | RS232c}

Examples :HCOPY:PORT DISK
sets the hard copy output to be to afile on the floppy disk.

2-68 DG2020A Programmer Manual

Command Descriptions

HCOPy:STARt

Group

Related Commands
Syntax

Arguments

Examples

HEADer (?)

Group
Related Commands

Syntax

Arguments

Responses

DG2020A Programmer Manual

The HCOPy : STARt command starts hardcopy output.

HARDCOPY

HCOPy : ABORt

HCOPy: STARt

None

:HCOPY : START
starts hardcopy output.

The HEADer command enables or disables the command header responsesto all
queries except |EEE Std 488.2 common commands. The HEADer? query returns
the status indicating whether the command header responses are enabled or not.

SYSTEM

VERBose

HEADer {ON | OFF | <NR1>}
HEADer?

ON or nonzero value
enables the command header responses.

OFF or zero value
disables the command header responses.

1 command header responses are currently enabled.
0 command header responses are currently disabled.

2-69

Command Descriptions

Examples

Group

Related Commands
Syntax

Arguments

Responses

Examples

2-70

:HEADER OFF
disables the command header responses.

:HEADER?
might return 1 which indicates command headers are currently enabled for
return in query responses.

The ID? query returnsthe ID information of the data generator.
SYSTEM

*IDN?

ID?

None

ID <Manufacturer>/<Model>, <Firmware Level>

where

<Manufacturer>::=SONY_TEK

<Model>::=DG2020A

<Firmware Level>::=CF:<Code and Format Version>, and
FV:<Firmware Version>.

:ID?
returns SONY_TEK/DG2020A,CF:91.1CN,FV:1.00

DG2020A Programmer Manual

Command Descriptions

*IDN?

Group

Related Commands

LOCk (2)

DG2020A Programmer Manual

Syntax
Arguments

Responses

Examples

The *IDN? common query returns the ID information of the data generator.

SYSTEM

ID?

*IDN?

None

<Manufacturer>, <Model1>, <Serial Number>, <Firmware Level>
where

<Manufacturer>::=SONY/TEK,

<Model>::=DG2020A,

<Serial Number>::=0,

<Firmware Level>::=CF:<Code and Format Version>,
<sp>FV:<Firmware Version>, and

<sp>::= Space.

*IDN?
might return SONY /TEK,DG2020A,0,CF:91.1CN FV:1.00

The LOCk command enables or disables the knob and all front panel buttons
except the ON/STBY button.

The LOCk? query returns a status indicating whether the knob and the buttons are
locked or not.

These data generators do not switch between remote control and local control
modes, but rather allow simultaneous setting from an external controller and
from the front panel. Use this command to lock the functions of the front panel
buttons and knobs to disable front panel operations during operation from an
external controller or during external controller software execution.

2-71

Command Descriptions

NOTE. When the front panel control operations are locked out by the LOCk
command, the instrument displays the character string” FP: LOCKED” at the
upper right of the screen.

Group SYSTEM
Related Commands UNLock

Syntax LOCk {ALL | NONe}
LOCk?

Arguments ALL
disables the front panel buttons and the knob except the ON/STBY button.

NONe
enables the front panel buttons and the knob.

Examples :L0Ck ALL
disables the front panel buttons and the knab.

2-72 DG2020A Programmer Manual

Command Descriptions

MMEMory:CATalog[:ALL]?

Group

Related Commands
Syntax

Arguments

Responses

The MMEMory:CATalog[:ALL]? query returns alist of al files and directoriesin
the current directory on the floppy disk.

MEMORY
MMEMory:CATalog:0RDer
MMEMory:CATalog[:ALL]?
None

[:MMEMORY :CATALOG:ALL] <File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>,<File Size>,<Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

NOTE. Afile size of O isreturned for subdirectories.

MMEMory:CATalog:ORDer (?)

Group

Related Commands

Syntax

Arguments

DG2020A Programmer Manual

TheMMEMory: CATalog:0RDer command sets the display order for file informa-
tion in disk directory listings. The MMEMory : CATalog:0RDer? query returns the
display order for file information in disk directory listings.

MEMORY
MMEMory:CATalog[:ALL]?

MMEMory:CATalog:0RDer {NAME1 | NAME2 | TIME1l | TIME2}
MMEMory:CATalog:0RDer?

NAME1
orders the display according to the ASCII collating sequence of the file names.

2-73

Command Descriptions

Responses

Examples

NAME?2
orders the display in the reverse order of the NAMEL order.

TIMEL
orders the display with older (Date and Time) filesfirst.

TIME2
orders the display with more recent (Date and Time) files fird.

[:MMEMORY : CATALOG:ORDER] {NAME1 | NAME2 | TIMEl | TIME2}

:MMEMORY : CATALOG: ORDER NAME1
sets the order of file information recorded in disk directory listings to alphabeti-
cal order by file name.

MMEMory:CDIRectory (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-74

The MMEMory:CDIRectory command changes the current working directory. The
MMEMory :CDIRectory? query returns the current working directory path.

MEMORY

MMEMory:MDIRectory

MMEMory:CDIRectory <Directory Path>
MMEMory:CDIRectory?

<Directory Path>::=<string>
where <string> is the name of the new current working directory.

[:MMEMORY : CDIRECTORY] <Directory Path>

:MMEMORY : CDIRECTORY "\DG\WORK3"
changes the current working directory to \DG\WORK 3.

DG2020A Programmer Manual

Command Descriptions

MMEMory:COPY

TheMMEMory: COPY command copies afile on the disk and creates a new file. If
the copy destination file already exists, an error isissued and the existing fileis
not overwritten.

Group MEMORY
Related Commands MMEMory:DELete:ALL, MMEMory:DELete[:NAME]
Syntax MMEMory:COPY <From-path>,<To-path>
Arguments <From-path>::=<string>
where <string> is the path name of the sourcefile.
<To-path>::=<string>

where <string> isthe path name of the destination file.

Examples :MMEMORY : COPY "MYDATA.PDA","MYWORK.PDA"
copiesthe file MY DATA.PDA in the current directory and creates a new file,
MYWORK.PDA, in the current directory.

MMEMory:DELete:ALL

The MMEMory:DELete:ALL command deletes al files and subdirectoriesin the
current directory. However, non—empty subdirectories are not deleted.

Group MEMORY
Related Commands MMEMory:DELete[:NAME]
Syntax MMEMory:DELete:ALL
Arguments None

Examples :MMEMORY : DELETE:ALL
deletes all files and empty subdirectories in the current directory.

DG2020A Programmer Manual 2-75

Command Descriptions

MMEMory:DELete[:NAME]

Group
Related Commands
Syntax

Arguments

Examples

MMEMory:FREE?

Group

Related Commands
Syntax

Arguments

Responses

Examples

2-76

The MMEMory:DELete [:NAME] command deletes the file or subdirectory with the

specified path name. However, non—empty subdirectories are not deleted.

MEMORY

MMEMory:DELete:ALL

MMEMory:DELete[:NAME] <Path Name>

<Path Name>::=<string>
where <string> isthe path name of the file or subdirectory to be deleted.

:MMEMORY : DELETE "NOMORE.PDA"
deletes the file NOMORE.PDA in the current directory.

The MMEMory : FREE? query returns used size and unused size of the mass
memory. This query is equivalent to the MMEMory : FREE: ALL? query.

MEMORY

MMEMory : FREE?

None

<MMEMORY : FREE <Used Size>, <Unused Size>
where

<Used Size>::=<NR1>and

<Unused Size>::=<NR1>.

:MMEMORY : FREE?
might return :MMEMORY : FREE 104584,1352704

DG2020A Programmer Manual

Command Descriptions

MMEMory:INITialize

TheMMEMory:INITialize command formats afloppy disk. The format typeis
specified by the argument.

Group MEMORY
Related Commands
Syntax MMEMory:INITialize {DD1 | DD2 | HD1 | HD2 | HD3}

Arguments You can select from the following formats:

Argument Description

DD1 2DD, 720 KB, 80 tracks, 9 sectorg/track, 512 bytes/sector.
Format for IBM PC 2DD and Toshiba J3100 2DD.

DD2 2DD, 640 KB, 80 tracks, 8 sectors/track, 512 bytes/sector.
Format for NEC PC-9800 2DD.

HD1 2HD, 1.232 MB, 77 tracks, 15 sectors/track, 1,024 bytes/sector.
Format for NEC PC—9800 2HD.

HD2 2HD, 1.200 MB, 80 tracks, 15 sectors/track, 512 bytes/sector.
Format for Toshiba J3100 2HD.

HD3 2HD, 1.440 MB, 80 tracks, 18 sectors/track, 512 bytes/sector.
Format for IBM PC 2HD.

Examples :MMEMORY : INITIALIZE HD3
formats a floppy disk for IBM PC 2HD.

MMEMory:LOAD

TheMMEMory : LOAD command loads in pattern data and block, group, sequence,
and setup information in DG2020A format into the instrument’s internal memory
from adisk file.

Group MEMORY

Related Commands MMEMory:SAVE

DG2020A Programmer Manual 2-717

Command Descriptions

Syntax

Arguments

Examples

MMEMory:LOCK (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-78

MMEMory:LOAD <File Name>

<File Name>::=<string>
where <string> isthe name of the file to be loaded.

:MMEMORY : LOAD "MYDATA.PDA"
loads all information from the file MY DATA.PDA in the current directory into
the instrument’s internal memory.

The MMEMory : LOCK command sets and clears file locks. When afileislocked, it
cannot be deleted or written to. The MMEMory : LOCK? query returns whether or
not the fileislocked.

MEMORY

MMEMory:LOCK <Path Name>,{ON | OFF | 1 | 0}
MMEMory:LOCK? <Path Name>

<Path Name>::=<string>
where <string> isthe name of the file to be locked or unlocked.

ON or 1
locks thefile.

OFF or O
unlocks thefile.

0 the fileis not locked.
1 thefileislocked.

:MMEMORY : LOCK "COUNT1.PDA",ON
locks the file COUNT1.PDA in the current directory.

DG2020A Programmer Manual

Command Descriptions

MMEMory:MDIRectory

TheMMEMory :MDIRectory command creates a new subdirectory. The command
isinvalid if adirectory with the specified name already exists.

Group MEMORY
Related Commands MMEMory:CDIRectory
Syntax ~ MMEMory:MDIRectory <Directory Path>

Arguments <Directory Path>::=<string>
where <string> isthe name or path of the new directory.

Examples :MMEMORY :MDIRECTORY "WORK4"
creates the new directory WORK4 in the current working directory.

MMEMory:RDIRectory

The MMEMory:RDIRectory command removes a subdirectory. If afile existin
the subderectory, this command will not be performed.

Group MEMORY
Related Commands MMEMory:CDIRectory, MMEMory:MDIRectory
Syntax MMEMory:RDIRectory <Directory Path>

Arguments <Directory Path>::=<string>
where <string> isthe name of the directory to be removed.

Examples :MMEMORY : RDIRECTORY "WORK4"
removes the directory WORK4 in the current working directory.

DG2020A Programmer Manual 2-79

Command Descriptions

MMEMory:REName

Group
Related Commands
Syntax

Arguments

Examples

MMEMory:SAVE

Group
Related Commands
Syntax

Arguments

Examples

2-80

The MMEMory : REName command changes the name of the specified file. A file
that islocked using the MMEMory : LOCk command cannot be renamed.

MEMORY

MMEMory : COPY

MMEMory:REName <From-filename>, <To-filename>
<From-filename>::=<string>

where <string> isthe name of the file to be changed.
<To-filename>::=<string>

where <string> isthe name of thefile after it is changed.

:MMEMORY : RENAME "COUNT1.PDA","COUNT2.PDA"
changes the name of the file COUNT1.PDA in the current working directory to
COUNT2.PDA.

TheMMEMory : SAVE command saves the pattern data and block, group, sequence,
and setup information stored in the internal memory into adisk filein DG2020A
format.

MEMORY

MMEMory : LOAD

MMEMory:SAVE <Path Name>

<Path Name>::=<string>
where <string> isthe path name of thefile.

:MMEMORY : SAVE "NEWDATA.PDA"
saves dl the information in internal memory to the file NEWDATA.PDA in the
current working directory.

DG2020A Programmer Manual

Command Descriptions

MODE?

Group

Related Commands
Syntax

Arguments

Responses

Examples

MODE:STATe (?)

Group
Related Commands

Syntax

Arguments

DG2020A Programmer Manual

TheMODE? query returns all the setting states related to the pattern generation
mode.

MODE

MODE:STATe, MODE:UPDate

MODE?

None

[:MODE:STATE] {REPEAT | SINGLE | STEP | ENHANCED}; [UPDATE] {AUTO
| MANUAL}

MODE?

might return :MODE: STATE REPEAT;UPDATE AUTO

Here, the run mode is set to repeat and the output pattern update method is set to
automatic. (See the items on the MODE : STATe and MODE : UPDate commands.)

TheMODE: STATe command sets the run mode for pattern generation. The
MODE:STATe? query returns the pattern generation run mode setting.

MODE

MODE?

MODE:STATe {REPeat | SINGle | STEp | ENHanced}
MODE:STATe?

REPeat Pattern data output is repeated.

SINGle Pattern data output is performed exactly once.

STEp Pattern data is output not according to the internal clock, but
rather by a clock signal created by the STEP key.

ENHanced Pattern data is output according to the defined sequence.

2-81

Command Descriptions

Responses

Examples

MODE:UPDate (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-82

[:MODE:STATE] {REPEAT | SINGLE | STEP | ENHANCED}

:MODE:STATE SINGLE
sets the run mode to single.

TheMODE :UPDate command sets the output pattern update method used when
datarelated to pattern generation is changed. The MODE : UPDate? query returns
the output pattern update method used when data related to pattern generation is
changed.

MODE

MODE?

MODE:UPDate {AUTO | MANual}
MODE:UPDate?

AUTO Pattern output reflects changes each time the datais changed in
any way.
MANuaT Pattern output is not changed when data is changed until an

update forcing command is received.

[:MODE:UPDATE] {AUTO | MANUAL}

:MODE: UPDATE AUTO
sets the output pattern update method to AUTO.

DG2020A Programmer Manual

Command Descriptions

*OPC (2)

Group

Related Commands

Syntax

Arguments

Examples

DG2020A Programmer Manual

The *0PC common command causes bit 0 in the SESR (Standard Event Status
Register) to be set, and the operation complete message to be issued, when all
pending operations are finished.

The *0PC? query waits until all pending operations are finished and returnsa“1”
ASCII character.

SYNCHRONIZATION

*WAI

*OPC
*0PC?
None
HCOPY : PORT DISK;HCOPY START;*OPC

causes the SESR bit O to be set and the operation complete message to be issued
on the completion of hardcopy.

2-83

Command Descriptions

*OPT?

Group

Related Commands
Syntax

Arguments

Responses

Examples

OUTPut?

Group

Related Commands
Syntax

Arguments

Examples

2-84

The *0PT common query returns the implemented options of the data generator.

SYSTEM

None

*0PT?

None

<Option>[,<Option>]...

where

0 indicates no option,

UNIT1 indicates the option 01 (12 additional output channels) ,and
UNIT1,UNIT2 indicates the option 02 (24 additional output channels)
*QPT?

might return UNIT1,UNIT2 to indicate that the option 02 isinstalled in the
instrument.

The OUTPUT? query returns all settings rerated to the channel and clock outputs.

OUTPUT

DATA?

OUTPut?

None

OUTPUT?

might return (when the POD A isonly available and the TTL pod is connected to
the POD A connector)

DG2020A Programmer Manual

Command Descriptions

:OUTPUT:PODA:CHO: INHIBIT 0;ASSIGN 0;:0UTPUT:PODA:CH1:INHIBIT 0;ASSIGN 1;
:OUTPUT:PODA:CH2: INHIBIT 0;ASSIGN 2;:0UTPUT:PODA:CH3:INHIBIT 0;ASSIGN 3;
:0UTPUT:PODA:CH4: INHIBIT 0;ASSIGN 4;:0UTPUT:PODA:CH5:INHIBIT 0;ASSIGN 5;
:OUTPUT: PODA: CH6: INHIBIT 0;ASSIGN 6;:0UTPUT:PODA:CH7:INHIBIT 0;ASSIGN 7;
:OUTPUT: PODA: CH8:DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 8;

:OUTPUT: PODA:CH9:DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 9;
:OUTPUT:PODA:CH10:DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 10;
:OUTPUT:PODA:CH11:DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 11;

:OUTPUT:PODA:TYPE TTL;DEFINE #2750,0,0<LF>1,1,0<LF>2,2,0<LF>3,3,0<LF>
4,4,0<LF>5,5,0<LF>6,6,0<LF>7,7,0<LF>8,8,0<LF>9,9,0<LF>10,10,0<LF>11,11,0

or might return (when the POD A is only available and the Variable pod is
connected to the POD A connector)

:OUTPUT : PODA:CHO:HIGH
:OUTPUT:PODA:CH1:HIGH
:OUTPUT: PODA:CHZ : HIGH
:OUTPUT: PODA:CH3:HIGH
:OUTPUT : PODA:CH4 :HIGH
:OUTPUT: PODA:CH5:HIGH
:OUTPUT: PODA:CH6:HIGH
:OUTPUT : PODA:CH7 : HIGH

.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY
.500;LOW -0.500;DELAY

0.00E-0.9;INHIBIT 0;ASSIGN 0
0.00E-0.9;INHIBIT 0;ASSIGN 1
0.00E-0.9;INHIBIT 0;ASSIGN 2
0.00E-0.9;INHIBIT 0;ASSIGN 3
0.00E-0.9;INHIBIT 0;ASSIGN 4
0.00E-0.9;INHIBIT 0;ASSIGN 5
0 6
0 7
0 8
0 9

- - - -

9

.00E-0.9; INHIBIT 0;ASSIGN
.00E-0.9; INHIBIT 0;ASSIGN
:OUTPUT:PODA:CH8:HIGH 0.500;LOW -0.500;DELAY 0.00E-0.9;INHIBIT 0;ASSIGN
:OUTPUT:PODA:CH9:HIGH 0.500;LO0W -0.500;DELAY 0.00E-0.9;INHIBIT 0;ASSIGN
:OUTPUT:PODA:CH10:HIGH 0.500;LO0W -0.500;DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 10;
:OUTPUT:PODA:CH11:HIGH 0.500;LOW -0.500;DELAY 0.00E-0.9;INHIBIT 0;ASSIGN 11;
:OUTPUT:PODA:TYPE VAR;DEFINE #2750,0,0<LF>1,1,0<LF>2,2,0<LF>3,3,0<LF>
4,4,0<LF>5,5,0<LF>6,6,0<LF>7,7,0<LF>8,8,0<LF>9,9,0<LF>10,10,0<LF>11,11,0;
:OUTPUT:ELEVEL 0.5;ILEVEL 0.5

- - -

OO OO OO0 O OO

9
.
9

DG2020A Programmer Manual 2-85

Command Descriptions

OUTPut:ELEVel (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

OUTPut:ILEVel (?)

Group
Related Commands

Syntax

Arguments

Responses

2-86

The OUTPut:ELEVel command sets the pod event input threshold level. An error
isissued if the pod is not avariable level pod. The OUTPut:ELEVel? query
returns the event input threshold level setting.

OUTPUT

OUTPut:ELEVel <Volt>
OUTPut:ELEVel?

<Volt>::=<NR2>[<Unit>]
where<Unit>::={V | mV} witharangeof 5.0V t05.0V in 0.1V steps.

[OUTPUT:ELEVEL] <Volt>

:OUTPUT:ELEVEL 500mV
sets the event input threshold level to 500 mV.

The OUTPut:ILEVel command sets the pod high—mpedance control input
(inhibit input) threshold level. An error isissued if the pod is not avariable level
pod. The OUTPut:ILEVel? query returnsthe pod high—mpedance control input
threshold level setting.

OUTPUT

OUTPut:ILEVel <Volt>
OUTPut:ILEVel?

<Volt>::=<NR2>[<Unit>]
where<Unit>::={V | mV} witharangeof 5.0V t05.0V in0.1V steps.

[OUTPUT:ILEVEL] <Volt>

DG2020A Programmer Manual

Command Descriptions

Examples

:OUTPUT:ILEVEL 300mV
sets the high—mpedance control input threshold level to 300 mV.

OUTPut:POD<s>:CH<n>:ASSIGn (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

The OUTPut : POD<s>:CH<n>:ASSIGn command assigns a data bit to the specified
channel of the specified pod. The OUTPut : POD<s>:CH<n>:ASSIGn? query
returns the data bit assigned to the specified channel of the specified pod. A bit
number of —1 isreturned if no data bit is assigned to the channel.

OUTPUT

OUTPut:POD<s>:CH<n>:RELEase, OUTPut:POD<s>:DEFine

OUTPut :POD<s>:CH<n>:ASSIGn <Bit>
OUTPut :POD<s>:CH<n>:ASSIGn?
(<s>::={A | B | C}, <n>::={0to 11})

<Bit>::=<NR1>
where <NR1> is adata bit number (0 to 35).

[:OUTPUT:POD<s>:CH<n>:ASSIGN] <Bit>

:OUTPUT : PODA:CH5:ASSIGN 3
assigns data bit D03 to pod A channel 5.

OUTPut:POD<s>:CH<n>:DELAy (?)

Group

Related Commands

DG2020A Programmer Manual

The OUTPut : POD<s>: CH<n>:DELAy command sets the delay time for the
specified channel of the specified pod. The delay time can only be set for
channels 8 through 11. The OUTPut : POD<s>:CH<n>:DELAy? query returns delay
time setting for the specified channel of the specified pod.

OUTPUT

2-87

Command Descriptions

Syntax OUTPut:POD<s>:CH<n>:DELAy <Time>
OUTPut:POD<s>:CH<n>:DELAy?
(<s>::={A | B | C}, <n>::={8to 11})

Arguments <Time>::=<NR2>[<unit>]
where <NR2> combined with [<unit>] specifiesatime, and [<unit>]::=
{s|ms|us|ns}, for seconds, milliseconds, microseconds, or nanoseconds.

Responses [:0UTPUT:POD<s>:CH<n>:DELAY] <Time>

Examples :OUTPUT: PODB:CH8:DELAY 10ns
sets the delay time for pod B channel 8 to 10ns.

OUTPut:POD<s>:CH<n>:HIGH (?)

The OUTPut : POD<s>: CH<n>:HIGH command sets the high-level output voltage
for . Thiscommand is only valid for variable level pods. The OUT-
Put:POD<s>:CH<n>:HIGH? query returns the high-evel output voltage setting
for the specified channel of the specified pod.

Group OUTPUT
Related Commands OUTPut:POD<s>:CH<n>:LOW

Syntax OUTPut:POD<s>:CH<n>:HIGH <Volt>
OUTPut :POD<s>:CH<n>:HIGH?
(<s>::={A | B | C}, <n>::={0to 11})

Arguments <Volt>::=<NR2>[<Unit>]
where <NR2> combined with [<Uni t>] specifies a high-level voltage; and
<Unit>::={V | mV}, for volt or millivolt.

Responses [:OUTPUT:POD<s>:CH<n>:HIGH] <Volt>

Examples :OUTPUT:PODA:CH11:HIGH 1V
setsthe pod A channel 11 high-evel output voltageto 1 V.

2-88 DG2020A Programmer Manual

Command Descriptions

OUTPut:POD<s>:CH<n>:INHibit (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The OUTPut : POD<s>:CH<n>:INHibit command sets the control method for the
output impedance of the specified channel of the specified pod. The OUT-
Put:POD<s>:CH<n>:INHibit? query returnsthe control method currently used
for the output impedance of the pod's channel specified in the header.

OUTPUT

OUTPut:POD<s>:CH<n>:INHibit {OFF | INTernal | EXTernal | BOTH | 0
| 1]2] 3}

OUTPut:POD<s>:CH<n>:INHibit?

(<s>::={A | B | C}, <n>::={0to 11})

{OFF | 0}
No output impedance control

{INTernal | 1}
The output impedance is controlled by the pod’s channel 0 signal.

{EXTernal | 2}
The output impedance is controlled by an external input signa (INH).

{BOTH | 3}
The output impedance is controlled by the logical OR of the pod’'s channel 0
signal and an external input signal (INH).

[:0UTPUT:POD<s>:CH<n>:INHIBIT] {0 | 1 | 2 | 3}

:OUTPUT:PODA:CH6: INHIBIT EXTERNAL
sets the output impedance of pod A channel 6 to be controlled by an external
input signal (INH).

2-89

Command Descriptions

OUTPut:POD<s>:CH<n>:LOW (?)

The OUTPut : POD<s>:CH<n>: LOW command sets the low—evel output voltage for
the specified channel of the specified pod. This command is only valid for
variable level pods. The OUTPut : POD<s>:CH<n>:LOW? query returnsthe
low—evel output voltage setting for the specified channel of the specified pod.

Group OUTPUT
Related Commands OUTPut:POD<s>:CH<n>:HIGH

Syntax OUTPut :POD<s>:CH<n>:LOW <Volt>
OUTPut:POD<s>:CH<n>:LOW?
(<s>::={A | B | C}, <n>::={0to 11})

Arguments <Volt>::=<NR2>[<Unit>]
where <NR2> combined with [<Uni t>] specifies alow—level voltage; and
<Unit>::={V | mV}, for volt or millivolt.

Responses [:OUTPUT:POD<s>:CH<n>:LOW] <Volt>

Examples :OUTPUT:PODC:CH7:LOW -1V
sets the pod C channel 7 low—evel output voltageto —1 V.

2-90 DG2020A Programmer Manual

Command Descriptions

OUTPut:POD<s>:CH<n>:RELEase

Group
Related Commands

Syntax

Arguments

Examples

The OUTPut : POD<s>:CH<n>:RELEase command clears the data bit assignment
for the specified channel of the specified pod.

OUTPUT

OUTPut : POD<s>:CH<n>:ASSIGn, OUTPut :POD<s>:DEFine

OUTPut:POD<s>:CH<n>:RELEase
(<s>::={A | B | C}, <n>::={0to 11})

None

:OUTPUT : PODA:CH3:RELEASE
clears data bit assignment for pod A channel 3.

OUTPut:POD<s>:DEFine (?)

Group
Related Commands

Syntax

Arguments

DG2020A Programmer Manual

The OUTPut : POD<s>:DEFine command assigns data bits to all the channels of
the pod specified in the header. The data bit assignment is cleared for any data
bit not specified in the argument. The QUTPut : POD<s>:DEFine? query returns
the data bits assigned to the channels of the pod specified in the header.

OUTPUT

OUTPut:POD<s>:CH<n>:ASSIGn, OUTPut:POD<s>:CH<n>:RELEase

OUTPut:POD<s>:DEFine <Assigninfo>
OUTPut:POD<s>:DEFine?
(ss>::={A | B | C})

<Assigninfo>::=<blockheader><Assign>[<LF><Assign] [<LF><As-
sign>]... arbitrary block data that defines the pod channel assignments
where,

<blockheader>::=<byte count digit><byte count>

<Assign>::=<AChannel>,<ABit>,<AHoldE>

2-91

Command Descriptions

2-92

Responses

Examples

The<AChannel>, <ABit>, and <AHo1dE> items are ASCI| character strings
that express the following information.

<AChannel> channel number (O to 11)

<ABit> data bit number (0 to 35)

<AHoldE> high—impedance control selection
(O: no contral, 1: channel O control, 2: external input signal,
3: logical or of the channel 0 signal and the external input
signal)
(Seethe OUTPut : POD<s>:CH<n>:INHibit command.)

<LF>::= <ASCII line feed code (10)>

[:OUTPUT:POD<s>:DEFINE] <Assigninfo>
where <Assigninfo> isan arbitrary data block with the same format as the
argument.

OUTPut:PODA:DEFine #2170,4,1<LF>1,5,2<LF>2,7,0
assigns the pod A channels as follows when executed.

Channel 0: Bit 4, high—impedance state controlled by the channel 0 signal
Channel 1: Bit 5, high-impedance state controlled by an external input signal
Channel 2: Bit 7, no high—mpedance control

Other channels: Assignments cleared

DG2020A Programmer Manual

Command Descriptions

OUTPut:POD<s>:TYPE?
The OUTPut : POD<s>:TYPE? query returns the type of the pod specified in the
header.
Group OUTPUT

Related Commands

Syntax OUTPut:POD<s>:TYPE?
(ss>::={A | B | C})

Arguments None

Responses [OUTPut:POD<s>:TYPE] {NONE | TTL | VAR}

where

NONE no pod

TTL aTTL level pod
VAR avariable level pod

Examples :0UTPut:POD<s>:TYPE?
might return :QUTPUT: PODA:TYPE TTL, which indicates that pod A isaTTL
level pod.

DG2020A Programmer Manual 2-93

Command Descriptions

*PSC (?)

2-94

Group
Related Commands

Syntax

Arguments

Responses

Examples

The *PSC common command controls the automatic power-on clearing of the
ESER (Event Status Enable Register), the SRER (Service Request Enable
Register), and DESER (Device Event Status Enable Register). These registers
are used in the status and event reporting system.

The *PSC? common query returns status of the power-on status clear flag.

STATUS & EVENT

DESE, *ESE, FACTory, *SRE

*PSC <Power-0On Status Clear>
*PSC?

<Power-On Status Clear>::=<NR1>
where <NR1> isadecimal integer that must range from —32767 to 32767, the
value of which determines whether power on clearing occurs as follows:

Zero value sets the power-on status clear flag to FALSE. When thisflag is
set FAL SE, the values of the DESER, the SESR, and the ESER
arerestored at power on. With these values restored, the
instrument can assert SRQ after powering on.

Nonzero value sets the power-on status clear flag to TRUE. When thisflagis
set TRUE, all the bitsin the DESER are set and are reset in the
SESR and ESER. This action prevents the instrument from
asserting any SRQs after powering on.

1 the power-on status clear flag is currently set to TRUE.
0 the power-on status clear flag is currently set to FALSE.
*PSC 1

sets the power-on status flag to TRUE.

*PSC?
might return :0 to indicate that the power-on status clear flag is currently set to
FALSE.

DG2020A Programmer Manual

Command Descriptions

*RST

Group

Related Commands
Syntax

Arguments

Examples

RUNNing?

Group

Related Commands
Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The *RST common command resets this data generator to the default state

(default values are listed in Appendix D).

SYSTEM

FACTory, SECUre

*RST

None

*RST
resets the instrument.

The RUNNing? query returns status that indicates whether or not pattern data (or a

sequence) is being output.

MODE

STARt, STOP

RUNNing?

None

1 pattern data or a sequence is being output.

0 nothing is being output.

:RUNNING?
might return :RUNNING 1.

2-95

Command Descriptions

SOURce[:0SCillator]?

Group

Related Commands

Syntax
Arguments

Responses

Examples

The SOURce[:0SCillator] ? query returns all the settings states related to clock
signals.

SOURCE

SOURce:0SCillator:EXTernal:FREQuency.
SOURce:0SCillator[:INTernal]:FREQuency,
SOURce:0SCillator[:INTernal]:PLLTock, SOURce:0SCillator:SOURce

SOURce[:0SCillator]?

None

[:SOURCE:0SCILLATOR:SOURCE] {INTERNAL | EXTERNAL}; [EXTERNAL:
FREQUENCY] <NR3>HZ;[:SOURCE:0SCILLATOR: INTERNAL:FREQUENCY]
<NR3>HZ; [PLLLOCK] {1 | 0}

:SOURce:0SCillator?

might return : SOURCE: 0SCILLATOR:SOURCE INTERNAL;EXTERNAL:FREQUENCY
1.000E +8HZ; : SOURCE : OSCILLATOR: INTERNAL: FREQUENCY 2.000E + 8HZ; PLLLOCK
1

SOURce:0SCillator:EXTernal:FREQuency (?)

Group

Related Commands

Syntax

2-96

The SOURce:0SCiTlator:EXTernal:FREQuency command enters the frequency
of the externally supplied clock signal. The SOURce:0SCillator:EXTer-
nal:FREQuency? query returns the externally supplied clock signal frequency
setting.

SOURCE

SOURce[:0SCillator]?, SOURce:0SCillator[:INTernal]:FREQuency
SOURce:0SCillator[:INTernal]:PLLTock, SOURce:0SCillator:SOURce

SOURce:0SCilTator:EXTernal:FREQuency <Frequency>
SOURce:0SCillator:EXTernal:FREQuency?

DG2020A Programmer Manual

Command Descriptions

Arguments

Responses

Examples

<Frequency>: :=<NR3>[<Unit>]

where <NR3> is a decimal number that combines with [<Unit>] to have arange
of 10.00E-3~200.0E+6Hz, and [<Unit>]::={Hz | kHz | MHz}, for hertz,
kilohertz or megahertz.

[:SOURCE:OSCILLATOR: EXTERNAL:FREQUENCY] <NRf>HZ

:SOURCE:OSCILLATOR: EXTERNAL: FREQUENCY 10.0MHZ
sets the external clock signal frequency input setting to 10 MHz.

SOURce:0SCillator[:INTernal]:FREQuency (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The SOURce:0SCillator[:INTernal] : FREQuency command sets the frequency
of theinternal clock oscillator. The SOURce:0SCillator[:INTernal]:
FREQuency? query returns the internal clock oscillator frequency setting.

SOURCE

SOURce[:0SCillator]?, SOURce:0SCillator:EXTernal:FREQuency
SOURce:0SCillator[:INTernal]:PLLTock, SOURce:0SCillator:SOURce

SOURce:0SCillator[:INTernal]:FREQuency <Frequency>
SOURce:0SCillator[:INTernal]:FREQuency?

<Frequency>: :=<NR3>[<Uni t>]

where <NR3> is adecimal number that combines with [<Unit>] to have arange
of 10.00E-3~200.0E+6Hz, and [<Unit>]::={Hz | kHz | MHz}, for hertz,
kilohertz or megahertz.

[:SOURCE:OSCILLATOR: INTERNAL:FREQUENCY] <NRf>HZ

:SOURCE:OSCILLATOR: INTERNAL : FREQUENCY 100MHZ
sets the internal clock oscillator frequency to 100 MHz.

2-97

Command Descriptions

SOURce:OSCillator[:INTernal]:PLLlock (?)

The SOURce:0SCillator[:INTernal] :PLLTock command sets whether or not
the internal clock oscillator is phase synchronized (by PLL operation) with the
reference oscillator. The SOURce:0SCillator[:INTernal] :PLLTock? query
returns whether or not the internal clock oscillator is phase synchronized (by
PLL operation) with the reference oscillator.

Group SOURCE

Related Commands SOURce[:0SCillator]?, SOURce:0SCillator:EXTernal:FREQuency,
SOURce:0SCillator[:INTernal]:FREQuency, SOURce:0SCillator:SOURce

Syntax SOURce:0SCillator[:INTernal]:PLLlock {ON | OFF | 1 | 0}
SOURce:0SCillator[:INTernal]:PLLTock?

Arguments ON or 1 The phase is synchronized. (PLL on)
OFF or 0 The phase is not synchronized. (PLL off)

Responses [:SOURCE:OSCILLATOR: INTERNAL:PLLLOCK] {1 | 0}

Examples :SOURCE:OSCILLATOR: INTERNAL:PLLLOCK ON
synchronizes the internal clock oscillator with the reference oscillator.

SOURce:0SCillator:SOURce (?)

The SOURce:0SCiTlator:SOURce command sets whether the internal clock
oscillator or an external clock input signal is used as the clock signal source. The
SOURce:0SCiTlator:SOURce? query returns whether the internal clock
oscillator or an external clock input signal is used as the clock signal source.

Group SOURCE

Related Commands SOURce[:0SCillator]?, SOURce:0SCillator:EXTernal:FREQuency,
SOURce:0SCiTlator[:INTernal] :FREQuency,
SOURce:0SCiTlator[:INTernal]:PLLTock

Syntax SOURce:0SCillator:SOURce {INTernal | EXTernal}
SOURce:0SCilTator:SOURce?

2-98 DG2020A Programmer Manual

Command Descriptions

Arguments

Responses

Examples

INTernal
use the internal clock source.

EXTernal
use an external clock source connected to the external clock input.

[:SOURCE:0SCILLATOR:SOURCE] {INTERNAL | EXTERNAL}

:SOURCE:OSCILLATOR:SOURCE INTERNAL
sets the internal clock oscillator to be used as the clock signal source.

SOURce:POD<s>:EVENT:ENABIe (?)

Group

Related Commands

Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The SOURce: POD<s>: EVENT : ENABTe command enables or disablesthe EVENT
input of the pod specified in the header. The SOURce: POD<s>:EVENT: ENABTe?
query returns whether or not the EVENT input of the specified pod is enabled.

SOURCE

SOURce:POD<s>:EVENT:ENABTe {ON | OFF | 1 | 0}
SOURce:POD<s>:EVENT:ENABTe?
(<s>::={A | B | C})

ON or 1

enablesthe EVENT inpuit.
OFF or 0

disablesthe EVENT input.

[:SOURCE:POD<s>:EVENT:ENABLE] {1 | 0}

:SOURCE : PODB: EVENT: ENABLE ON
enablesthe EVENT input of the pod B.

2-99

Command Descriptions

*SRE (?)

2-100

Group
Related Commands

Syntax

Arguments

Examples

The *SRE common command sets the bits of the SRER (Service Request Enable
Register). The *SRE? common query returns the contents of SRER.

The power-on default for the SRER is all bitsreset if the power-on statusflag is
TRUE. If thisflag is set to FALSE, the SRER maintains its value through a
power cycle.

STATUS & EVENT

*CLS, DESE, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *STB?

*SRE <Bit Value>
*SRE?

<Bit Value>::=<NR1>
where the argument must be decimal number from 0 to 255. The SRER bits are
set in binary bit according to the decimal number.

*SRE 48
sets the SRER to 48 (binary 00110000), which sets the ESB and MAV hits.

*SRE?
might return 32 which indicates that the SRER contains the binary number
00100000.

DG2020A Programmer Manual

Command Descriptions

STARt

Group

Related Commands
Syntax

Arguments

Examples

*STB?

Group

Related Commands
Syntax

Arguments

Responses

Examples

DG2020A Programmer Manual

The STARt command sets the instrument to the start state. If the run mode is set
to repest or step, pattern data or sequence output starts. If the run mode is set to
single, then the instrument goes to the trigger wait state.

MODE

RUNNing?, STOP, *TRG

STARt

None

:START
sets the instrument to the start state.

The *STB? common query returns the value of the SBR (Status Byte Register).
Bit 6 of the SBR isread asaMSS (Master Status Summary) bit. Refer to Section
3 Satus and Events, for more details on the SBR.

STATUS & EVENT

*CLS, DESE, *ESE, *ESR, EVENT?, EVMsg?, EVQty?, *SRE

*STB?

None

<NR1>
which is adecima number.

*STB?
might return 96, which indicates that the SBR contains the binary number
01100000.

2-101

Command Descriptions

STOP

Group

Related Commands
Syntax

Arguments

Examples

SYSTem:DATE (2)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-102

The STOP command stops pattern data or sequence output. If the run mode is set
to single, the trigger wait state is cancelled.

MODE

RUNNing?, STARt, *TRG

STOP

None

:STOP
stops pattern data or sequence output.

The SYSTem:DATE command sets the internal clock date. The SYSTem:DATE?
query returns the internal clock date.

SYSTEM

SYSTem: TIME

SYSTem:DATE <Year>,<Month>,<Day>
SYSTem:DATE?

<Year>::=<NR1> the year
<Month>::=<NR1> the month
<Day>::=<NR1> the day

[:SYSTEM:DATE] <Year>,<Month>,<Day>

:SYSTEM:DATE 95,5,15
sets the date.

DG2020A Programmer Manual

Command Descriptions

SYSTem:PPAUse (?)

The SYSTem: PPAUse command sets whether or not the instrument goes to the
operator key input wait state (power—up pause) when an error is detected by the
power—up diagnostics or no output pod is connected. The SYSTem: PPAUse?
query returns the power—up pause setting (on or off).

Group SYSTEM
Related Commands

Syntax SYSTem:PPAUse {ON | OFF | 1 | 0}
SYSTem:PPAUse?

Arguments ON or 1
enables the power—up pause.

OFF or 0
disables the power—up pause.

Responses [:SYSTEM:PPAUSE?] {1 | 0}

Examples :SYSTEM:PPAUSE ON
turns power—up pase on.

SYSTem:SECurity:IMMediate

The SYSTem:SECurity:IMMediate command sets all internal settings to the
factory setting state (the same state that results when the FACTory command is
executed) and completely erases al data. Bit patterns, groups, blocks, and
sequences are included in the erased data. The GPIB and RS-232-C settings, and
the data and time settings are not reset.

Group SYSTEM
Related Commands FACTory, *RST

Syntax SYSTem:SECurity:IMMediate

DG2020A Programmer Manual 2-103

Command Descriptions

Arguments

None

SYSTem:SECurity:STATe (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

SYSTem:TIME (?)

Group
Related Commands

Syntax

2-104

The SYSTem:SECurity:STATe command sets security to on or off. The
SYSTem:SECurity:STATe? query returns whether the security setting ison or
off. When the security setting is changed from on to off, the contents of internal
memory are completely erased. The security on/off setting is not changed by
executing the FACTory command.

SYSTEM

SYSTem:SECurity:IMMediate

SYSTem:SECurity:STATe {ON | OFF | 1 | 0}
SYSTem:SECurity:STATe?

ON or 1

sets the security state to on.
OFF or O

sets the security state to off.

[:SYSTEM:SECURITY:STATE] {1 | 0}

:SYSTEM: SECURITY:STATE ON
sets the security state to on.

The SYSTem: TIME command sets the internal clock time. The SYSTem: TIME?
query returns the interna clock time.

SYSTEM

SYSTem:DATE

SYSTem:TIME <Hour>,<Minute>,<Second>
SYSTem:TIME?

DG2020A Programmer Manual

Command Descriptions

Arguments

Responses

Examples

*TRG

Group

Related Commands
Syntax

Arguments

Examples

TRIGger?

Group
Related Commands
Syntax

Arguments

DG2020A Programmer Manual

<Hour> the hours
<Minute> the minutes
<Second> the seconds

[:SYSTEM:TIME] <Hour>,<Minute>,<Second>

:SYSTEM:TIME 11, 23, 58
setsthe time.

The *TRG common command generates trigger event.

MODE

RUNNing?, STARt, STOP

*TRG

None

*TRG
generates trigger event.

The TRIGger? query returns all of the currently specified settings related to the

trigger function.

MODE

TRIGger:IMPedance, TRIGger:LEVel, TRIGger:SLOPe

TRIGger?

None

2-105

Command Descriptions

Examples

:TRIGGER?
might return : TRIGGER: IMPEDANCE HIGH;LEVEL 1.400;SLOPE POSITIVE

TRIGger:IMPedance (?)

Group
Related Commands

Syntax

Arguments

Examples

TRIGger:LEVel (?)

Group
Related Commands

Syntax

2-106

The TRIGger: IMPedance command selects high impedance (1 k<) or low
impedance (50 Q) for the external trigger input connector.

The TRIGger: IMPedance? query returns currently selected impedance.
MODE

TRIGger:LEVel, TRIGger:SLOPe

TRIGger:IMPedance {HIGH | LOW}
TRIGger:IMPedance?

HIGH

selects high impedance: 1 kQ2
LOW

selects low impedance: 50 Q

:TRIGGER: IMPEDANCE LOW
selects low impedance.

The TRIGger:LEVel command setsthe level on the external trigger at which the
trigger event is generated. The TRIGger:LEVel? query returnsthe level currently
Set.

MODE

TRIGger:IMPedance, TRIGger:SLOPe

TRIGger:LEVel <Level>
TRIGger:LEVel?

DG2020A Programmer Manual

Command Descriptions

Arguments

Examples

TRIGger:SLOpe (?)

Group
Related Commands

Syntax

Arguments

Examples

DG2020A Programmer Manual

<Level>::=<NR2>[<unit>]
where<unit>::={V | mV} witharangeof 5.0V t05.0V,in0.1V steps.

:TRIGGER:LEVEL 200mV
setsthe level to 200 mV.

The TRIGger:SLOpe command selects the rising or falling edge of the external
signal which generates the trigger event. The TRIGger:SLOPe? query returns
status indicating which slope is currently selected.

MODE

TRIGger:IMPedance, TRIGger:LEVel

TRIGger:SLOPe {POSitive | NEGative}
TRIGger:SLOPe?

POSitive
selectsrising edge.

NEGative
selectsfalling edge.

:TRIGGER:SLOPE POSITIVE
selects rising edge for trigger.

2-107

Command Descriptions

*TST?

The *TST? common query performs the self test and returns the results. If an
error is detected during self test, execution stop immediately. This command
takes up to 90 seconds to run the self test, and the data generator will not respond
to any commands and queries while it runs.

Group DIAGNOSTIC

Related Commands DIAGnostic:RESU1t?, DIAGnostic:SELect, DIAGnostic:STATe

Syntax *TST?

Arguments None

Responses <Result>
where <Result>::=<NR1> and <NR1> is one of following arguments.

0
100
200
300
400
500
600
700

Examples *TST?

Terminated without error.

Detected an error in the CPU unit.
Detected an error in the display unit.
Detected an error in the front panel unit.
Detected an error in the clock unit.
Detected an error in the trigger unit.
Detected an error in the sequence memory.
Detected an error in the pattern memory.

might return 200 to indicate that errors were detected in the display unit.

2-108

DG2020A Programmer Manual

Command Descriptions

UNLock

Group
Related Commands
Syntax

Arguments

Examples

UPTime?

Group

Related Commands
Syntax

Arguments

Examples

DG2020A Programmer Manual

The UNLock command enables al front panel buttons and knob. This command

is equivalent to the command LOCk NONe.

SYSTEM

LOCk

UNLOCK ALL

ALL
enables the front panel buttons and knob.

:UNLOCk ALL
enables the front panel buttons and knob.

The UPTIme? query returns the time elapsed since the data generator was

powered on.

SYSTEM

None

UPTime?

None

:UPTIME 7.016

indicates the instrument has been powered on for 7.016 hours.

2-109

Command Descriptions

VERBose (?)

The VERBose command selects the long headers or the short headers to be
returned with response messages. Longer response headers enhance readability
for other programmers; shorter response headers provide faster bus transfer
Speed.

Group SYSTEM
Related Commands HEADer

Syntax VERBose {ON | OFF | <NR1>}
VERBose?

Arguments ON or nonzero value
selects long response header.

OFF or zero value
selects short response header.

Responses Responses are decimal numbers (<NR1>) and are defined as follows.

1 Long header is currently selected.
0 Short header is currently selected.

Examples :VERBOSE ON
setslong header for query responses.

:VERBOSE?
might return : VERBOSE 1, which indicates that the long response header is
currently selected.

2-110 DG2020A Programmer Manual

Command Descriptions

*WAI

The *WAI common command prevents the data generator from executing any
further commands or queries until all pending operations are compl eted.

Group SYNCHRONIZATION
Related Commands *0PC
Syntax *WAI
Arguments None

Examples *WAI
prevents the execution of any commands or queries until all pending operations
complete.

DG2020A Programmer Manual 2-111

Command Descriptions

2-112 DG2020A Programmer Manual

-/ |
Retrieving Response Messages

The method used for retrieving response messages differs depending on whether
aGPIB interface or an RS-232-C interface is used. Figures 2-3 and 2-4 give an
overview of these methods.

Controller DG2020A Data Generator
Query
Command execution
- controller
- Queuing
Retrieve operation
Output Output queue
queue controller
I Response message
Figure 2-3: GPIB: Retrieving response messages
Controller DG2020A Data Generator
Query
Command execution
o controller
— Output
Y
Output buffer
_— Response message

Figure 2-4: RS-232-C: Retrieving response messages

DG2020A Programmer Manual 2-113

Retrieving Response Messages

2-114

Figure 2-3 shows the response message retrieval operation when a GPIB
interface is used. When a query command is sent from the external controller the
data generator puts the response message for the query on the output queue. This
response message cannot be retrieved unless the user performs aretrieval
operation through the external controller.

If there is aresponse message queued in the output queue and another query
command is sent from the external controller before aretrieval operation for the
earlier message is performed, the data generator will delete the queued response
message and put the response message for the more recently sent query
command in the output queue.

The SBR (status byte register) MAV bit can be used to check the response
message queuing state. See Section 3, “ Status and Events’, for more information
on the output queue, SBR, and control methods.

Figure 2-4 shows the response message retrieval operation when an RS-232-C
interface is used. When a query command is sent from the external controller, the
data generator immediately sends the response message to the external controller
through an output buffer. As aresult, when either adumb terminal or aterminal
emulator program running on a PC is used as the external controller, the response
message will be displayed on the CRT immediately after the query command is
typedin.

Unlike the GPIB interface, if an RS-232-C interface is used, response messages
will never be deleted even if query commands are sent one after another.

DG2020A Programmer Manual

./
Status and Event Reporting

Registers

Status Registers

DG2020A Programmer Manual

This section describes how the DG2020A Data Generator reports its status and
internal events for both the GPIB and RS-232-C interfaces. It describes the
elements that comprise the status and events reporting system and explains how
status and events are handled.

The status and event reporting system reports certain significant events that
occur within the data generator. It is made up of five registers plus two queues.
Four of the registers and one of the queues are compatible with |EEE Std
488.2-1987; the other register and queue are specific to Tektronix.

Theregistersfall into two functional groups:

B Status registers which store information about the status of data generator.
They include the Standard Event Status Register (SESR) and the Status Byte
Register (SBR).

®m Enable registers which determine whether certain events are reported to the
Status Registers and the Event Queue. They include the Device Event Status
Enable Register (DESER), the Event Status Enable Register (ESER), and the
Service Request Enable Register (SRER).

The Standard Event Status Register (SESR) and the Status Byte Register (SBR)
record certain types of events that may occur while the data generator isin use.
|EEE Std 488.2-1987 defines these registers.

Each bit in a Status Register records a particular type of event, such as an
execution error or service request. When an event of a given type occurs, the data
generator sets the bit that represents that type of event to a value of one. (You can
disable bits so that they ignore events and remain at zero. See the Enable
Registers section on page 3-4.) Reading the status registerstells you what types
of events have occurred.

The Standard Event Status Register (SESR). The SESR, shown in Figure 3-1,
records eight types of events that can occur within the data generator. Use the
*ESR? query to read the SESR register. Reading the register clears the hits of the
register, so that the register can accumulate information about new events.

3-1

Status and Event Reporting

PON | URQ

CME

EXE | DDE [QYE | RQC | OPC

Figure 3-1: Standard event status (SESR)

Table 3-1: SESR bit functions

Bit

Function

7 (MSB)

PON (Power On). Indicates that the data generator was powered on.

6

URQ (User Request). Indicates an event occurred and because of that event
the data generator needs attention from the operator.

CME (Command Error). Indicates that an error occurred while the data
generator was parsing a command or query. Command error messages are
listed in Table 3-5 on page 3-10.

EXE (Execution Error). Indicates that an error occurred while the data
generator was executing a command or query. An execution error occurs for
either of the following reasons:

m Avalue designated for the argument is out of the range allowed by the
data generator, is not valid for the command, or is incorrect in some
other sense.

m Execution took place improperly under conditions different from those
which should have been requested.

Execution error messages are listed in Table 3-6 on page 3-12.

DDE (Device Dependent Error). Indicates that a device-specific error
occurred. Device error messages are listed in Table 3-7 on page 3-14.

QYE (Query Error). Indicates that an error occurred upon attempting to read
the output queue. Such an error occurs for one of the following two reasons.

m An attempt was made to retrieve a message from the output queue
even through it is empty or pending.

m QOutput queue message was cleared while it was being retrieved from
the output queue.

RQC (Request Control).The data generator does not use this bit. Request
Control (RQC) is used to show that an instrument has requested to transfer
bus control back to the controller. (This is the usage prescribed by the IEEE
Std. 488.1.)

0 (LSB)

OPC (Operation Complete). Indicates that the operation is complete. This
bit is set when all pending operations complete following a *0PC command.

DG2020A Programmer Manual

Status and Event Reporting

The Status Byte Register (SBR). shown in Figure 3-2, records whether output is
available in the Output Queue, whether the data generator requests service, and
whether the SESR has recorded any events.

Use a Serial Poll or the *STB? query to read the contents of the SBR. The bitsin
the SBR are set and cleared depending on the contents of the SESR, the Event
Status Enable Register (ESER), and the Output Queue. When you use a Serial
Poll to abtain the SBR, bit 6 is the RQS bit. When you use the *STB? query to
obtain the SBR, hit 6 is the MSS bit. Reading the SBR does not clear the bits,

including the MSS bit.
6
7 RQS |5 4 3 2 1 0
— |s ESB|MAV| — | — | — | —
MSS

Figure 3-2: Status byte register (SBR)

Table 3-2: SBR bit functions

Bit Function
7 (MSB) Not used. (Must be set to zero for data generator operation.
6 The RQS (Request Service) bit, when obtained from a serial poll. Shows

that the data generator requests service from the GPIB controller (that is,
the SRQ line is asserted on the GPIB). This bit is cleared when the serial
poll completes.

6 The MSS (Master Status Summary) bit, when obtained from *STB? query.
Summarizes the ESB and MAV bits in the SBR. (In other words, that status
is present and enabled in the SESR or a message is available at the Output
Queue or both.)

5 The ESB (Event Status Bit). Shows that status is enabled and present in the
SESR.!

4 The MAV (Message Available) bit . Shows that output is available in the
Output Queue.

3-0 Not used. (Must be set to zero for data generator operation.

1 When operating over the RS-232-C interface, you can read the contents of the SBR
using the *STB? query. However, this bit (ESB) is the only SBR bit of any signifi-
cance to RS-232-C operation.

DG2020A Programmer Manual 3-3

Status and Event Reporting

Enable Registers

You use the DESER (Device Event Status Enable Register), the ESER (Event
Status Enable Register), and the SRER (Service Request Enable Register) to
select which events are reported to the Status Registers and the Event Queue.
Each of these Enable Registers acts as afilter to a Status Register (the DESER
also acts as afilter to the Event Queue) and can allow or prevent information
from being recorded in the register or queue.

Each bit in an Enable Register corresponds to a bit in the Status Register it
controls. In order for an event to be reported to its bit in the Status Register, the
corresponding bit in the Enable Register must be set to one. If the bit in the
Enable Register is set to zero, the event is not recorded.

Various commands set the hits in the Enable Registers. The Enable Registers and
the commands used to set them are described below.

The Device Event Status Enable Register (DESER). Shown in Figure 3-3. This
register controls which events of those shown are reported to the SESR and the
Event Queue. The bitsin the DESER correspond to those in the SESR, aswas
described earlier.

Use the DESE command to enable and disable the bitsin the DESER. Use the
DESE? query to read the DESER.

PON | URQ | CME | EXE | DDE | QYE | RQC | OPC

Figure 3-3: Device event status enable register (DESER)

The Event Status Enable Register (ESER). Shown in Figure 3-4. It controls which
events of those shown are allowed to be summarized by the Event Status Bit
(ESB) inthe SBR.

Use the *ESE command to set the bitsin the ESER. Use the *ESE? query to read
it.

PON | URQ | CME | EXE | DDE | QYE | RQC | OPC

Figure 3-4: event status enable register (ESER)

DG2020A Programmer Manual

Status and Event Reporting

Queues

DG2020A Programmer Manual

Output Queue

Event Queue

The Service Request Enable Register (SRER). Shown in Figure 3-5. It controls
which bitsin the SBR generate a Service Request and are summarized by the
Master Status Summary (MSS) hit.

Use the *SRE command to set the SRER. Use the *SRE? query to read it. The
RQS bit remains set to one until either the Status Byte Register isread with a
Seria Poll or the M SS bit changes back to a zero.

— — | ESB | MAV| — — — —

Figure 3-5: Service request enable register (SRER)

The status and event reporting system contains two queues, the Event Queue and
the Output Queue. The Event Queue which is used when operating with either
the GPIB and RS-232-C interface, while the Output Queue is used only when
operating over the GPIB interface. (Instead of using an output queue, an output
buffer buffers query-response messages for immediate transfer to the data
transmission line for RS-232-C operation.)

The Output Queue isa FIFO (First In First Out) queue that hold response
messages while until they are requested. When a message is put in the queue, the
MAV hit of the Status Byte Register (SBR) is set.

The Output Queue empties each time the data generator receives a new command
or query. Therefore the controller must read the output queue before it sends the
next command or query command or it will lose responses to earlier queries. If a
command or query command is given without taking it out, an error results and
the Output Queue is emptied.

The Event Queue is a FIFO gqueue which can hold up to 20 data generator-gener-
ated events. When the number of events exceeds 20, the 20t event is replaced by
the event code 350, “ Queue overflow”.

To read out from the Event Queue, do the following steps.

1. Send *ESR? To read out the contents of SESR. When the contents of SESR
are read out, SESR is cleared allowing you to take out events from the Event
Queue.

3-5

Status and Event Reporting

2. Send one of the following queries:

m ALLEv?Toread out and returns all events made available by *ESR?.
Returns both the event code and message text.

m EVENT?To read out and return the oldest event of those made available
by *ESR?. Returns only the event code.

m EVMsg? To read out and return the oldest event of those made available
by *ESR?. Returns both the event code and message text.

Reading the SESR erases any events that were made available by previous *ESR?
reads, but that were not read from the Event Queue. Events that occur after an
*ESR? read are put in the Event Queue but are not available until *ESR? is used
again.

Processing Sequence

Figure 3-6 shows the status and event processing flow.

1. Anevent occurs, which causes the DESR to be checked. Based on the state
of the DESR, the following actions occur:

m [f the control bit for that event is set in the DESER, the SESR hit that
corresponds to this event becomes set to 1.

® The set control bit |ets the event be placed into the Event Queue. Placing
the event in the Event Queue sets the MAV bit in the SBR to one.

m |f the control bit for that event is also set in the ESER, the ESB hit of
SBR becomes set aso.

2. When either bit of SBR has been set to 1 and the corresponding control bit
of SRER isalso set, the MSS hit of SBR becomes set and a service request
is generated for use with GPIB interface operation.

As noted earlier, the RS-232-C interface does not use the output queue;
therefore, the MAV hit would not become set in the sequence just described.
Rather, response messages are sent to the output buffer for immediately transfer
to the external controller on the output line. Message transfer is automatic and it
IS not necessary to use commands to retrieve these messages.

3-6 DG2020A Programmer Manual

Status and Event Reporting

Device Events

l

Device Event Status Enable Register
set with :DESE read with : DESE?

PON | URQ| CME| EXE | DDE | QYE | RQC| OPC
7 6 5 4 3 2 1 0
Standard Event Status Register read and clear Event
with *ESR? clear with *CLS Queue
[Pon | urQ| cmE]| EXE [DDE| QYE| RQC| OPC |+ -
& CODE
& CODE
Logic N r&> CODE
OR S /-
O
- ®
B \&> A Output
\&D Queue
A
< &
L7z T 61 5T a4l 3T 27171 0] e
Standard Event Status Enable Register set BYTE
with *ESR? clear with *CLS
Queue not empty
| Status Byte Register read with serial poll or
Senvi l *STB? clear with *CLS
ervice
Request {l - ,\Rﬂgg esBfmav] - [- | - -]
Generation T
i
—©
4
A
&
OR ® ~
®
®
®
L f&>
Y 4
i
— 2 >l 5 | 4 | 3] 2] 1] o]
Service Request Enable Register set with
*SRE? clear with *SRE
Figure 3-6: Status and event handling process overview
DG2020A Programmer Manual 3-7

Status and Event Reporting

3-8 DG2020A Programmer Manual

Messages

DG2020A Programmer Manual

Tables 3-3 through 3-11 list the status and event messages used in the GPIB/
RS-232-C status and event reporting system. You use the * ESR? query to make

the messages available for dequeuing; you use the : EVENT?, EVMsg?, and ALLEv?
queries to dequeue and return the messages. The messages return as follows:

m The :EVENT? query command returns the event code only. When using

these query commands, use the * ESR? query to make the events available

for return.

m TheEVMsg?, and ALLEv? queries return both the event code and event
message in the following format:

<event code>, “<event message ; secondary message>"

Most messages returned have both an event message, followed by a semicolon

(;), and a second message which contains more detailed information. Although
these secondary messages are not listed in this manual, you can use the EVMsg?
and ALLEv? queriesto display them.

Table 3-3 lists the definition of event codes.

Table 3-3: Definition of event codes

Event code
Event class ranges Descriptions
No Events 0-1 No event nor status
Reserved 2-99 (unused)
Command Errors 100-199 Command errors
Execution Errors 200-299 Command execution errors
Device-Specific Errors 300-399 Internal device errors
(Hardware errors)
Query Errors 400-499 System event and query errors
Execution Warnings 500-599 Execution warnings
Reserved 600-1999 (unused)
Extended Execution Errors 2000-2999 Device dependent command execution
errors
Extended 3000-3999 Device dependent device errors
Device-Specific Errors
Reserved 4000- (unused)

39

Messages

3-10

Table 3-4 lists the message when the system has no events nor status to report.

These have no associated SESR hit.

Table 3-4: Normal condition

Code Description

0 No events to report — queue empty

1 No events to report — new events pending *ESR?

Table 3-5 lists the error messages generated due to improper command syntax. In
this case, check that the command is properly formed and that it follows the

syntax.

Table 3-5: Command errors (CME bit:5)

Code Description

100 Command error

101 Invalid character

102 Syntax error

103 Invalid separator

104 Data type error

105 GET not allowed

106 Invalid program data separator
108 Parameter not allowed

109 Missing parameter

110 Command header error
111 Header separator error
112 Program mnemonic too long
113 Undefined header

114 Header suffix out of range
118 Query not allowed

120 Numeric data error

121 Invalid character in number
123 Exponent too large

124 Too many digits

128 Numeric data not allowed
130 Suffix error

DG2020A Programmer Manual

Messages

DG2020A Programmer Manual

Table 3-5: Command errors (CME bit:5) (Cont.)

Code Description

131 Invalid suffix

134 Suffix too long

138 Suffix not allowed

140 Character data error

141 Invalid character data

144 Character data too long

148 Character data not allowed
150 String data error

151 Invalid string data

152 String data too long

158 String data not allowed

160 Block data error

161 Invalid block data

168 Block data not allowed

170 Expression error

171 Invalid expression

178 Expression data not allowed
180 Macro error

181 Invalid outside macro definition
183 Invalid inside macro definition
184 Macro parameter error

3-11

Messages

3-12

Table 3-6 lists the execution errors that are detected during execution of a

command.

Table 3-6: Execution errors (EXE bit:4)

Code Description

200 Execution error

201 Invalid while in local
202 Settings lost due to RTL
203 Command protected
210 Trigger error

211 Trigger ignored

212 Armed ignored

213 Init ignored

214 Trigger deadlock

215 ARM deadlock

220 Parameter error

221 Settings conflict

222 Data out of range
223 Too much data

224 lllegal parameter value
225 Parameter under range
226 Parameter over range
227 Parameter rounded
230 Data corrupt or stale
231 Data questionable
240 Hardware error

241 Hardware missing
250 Mass storage error
251 Missing mass storage
252 Missing media

253 Corrupt media

254 Media full

255 Directory full

256 File name not found
257 File name error

DG2020A Programmer Manual

Messages

DG2020A Programmer Manual

Table 3-6: Execution errors (EXE bit:4) (Cont.)

Code Description

258 Media protected

260 Expression error

261 Math error in expression
262 Expression syntax error
263 Expression execution error
270 Macro error

271 Macro syntax

272 Macro execution error
273 lllegal macro label

274 Macro parameter error
275 Macro definition too long
276 Macro recursion error
277 Macro redefinition not allowed
278 Macro header not found
280 Program error

281 Cannot create program
282 lllegal program name

283 lllegal variable name

284 Program currently running
285 Program syntax error

286 Program run time error

3-13

Messages

Table 3-7 lists the internal errors that can occur during operation of the data
generator. These errors may indicate that the data generator needs repair.

Table 3-7: Internal device errors (DDE bit:3)

Code Description

300 Device-specific error

310 System error

311 Memory error

312 PUD memory lost

313 Calibration memory lost

314 Save/recall memory lost

315 Configuration memory lost

330 Self-test failed

350 Queue overflow (does not affect the DDE bit)

Table 3-8 lists the system event messages. These messages are generated when-
ever certain system conditions occur.

Table 3-8: System event and query errors

Code Description

401 Power on

402 Operation complete

403 User request

404 Power fail

405 Request control

410 Query INTERRUPTED

420 Query UNTERMINATED

430 Query DEADLOCKED

440 Query UNTERMINATED after indefinite response

3-14 DG2020A Programmer Manual

Messages

DG2020A Programmer Manual

Table 3-9 lists warning messages that do not interrupt the flow of com-
mand execution. These messages warn you that you may get unexpected results.

Table 3-9: Warnings (EXE bit:4)

Code Description

500 Execution warning

Table 3-10 lists status messages that are specific to the data generator. These
messages appear when a operation starts, ends, or isin process. These messages
have no associated SESR hit.

Table 3-10: Device-dependent command execution errors

Code Description
2000 File error

2001 Directory not empty

2002 Too many files
2003 File locked
2004 File already exists

2005 File already opened
2006 Invalid file type
2007 File type mismatch

2008 Internal memory full

2009 Invalid file format

2010 Comment error

2012 Invalid data in comment string

2020 Pattern data error
2021 To much pattern data
2022 Pattern data byte count error

2023 Pattern data load error
2024 Internal pattern memory full
2025 Invalid pattern size

2026 Invalid pattern data

2030 Sequence error

2032 Too much sequence data

2033 Invalid sequence repeat count

3-15

Messages

3-16

Table 3-10: Device-dependent command execution errors (Cont.)

Code Description

2034 Invalid sequence syntax
2035 Sequence load error
2036 Internal sequence memory full
2037 No sequence

2038 Invalid sequence number
2039 Sequence incomplete
2040 Data error

2041 Invalid data syntax

2042 Invalid data value

2050 Time error

2051 Invalid time syntax

2052 Invalid time value

2060 Invalid group name

2061 Group name is empty
2062 Same name already exists
2063 Too much group

2064 Group name not found
2065 Group number is not found
2066 Invalid group data

2067 Invalid group syntax

2070 Invalid block position
2071 To much block

2072 Block already exists

2073 Block is not found

2074 lllegal block name

2075 lllegal block size

2076 Block name already exists
2077 Block is not defined

2078 Too much block data
2079 Invalid block syntax

2080 Import error

2081 Code table syntax error
2082 Too much table data

DG2020A Programmer Manual

Messages

DG2020A Programmer Manual

Table 3-10: Device-dependent command execution errors (Cont.)

Code Description

2100 Hardcopy error

2101 Hardcopy busy

2102 Hardcopy timeout error
2200 Message error

Table 3-11 lists device error messages that are specific to the device.

Table 3-11: Extended device specific errors

Code

Description

3001

RS-232-C input buffer overflow

3-17

Messages

3-18 DG2020A Programmer Manual

-/ |
Programming Examples

This section presents sample programs that show specific examples of techniques
for controlling the DG2020A over a GPIB interface. The sample programs are
stored on the floppy disk (labeled Software Library) included with the
DG2020A. Since this manual does not include alisting of these programs you
may want to reference those files while reading this manual. The majority of
these programs are provided in C versions, and thus can be used in the Microsoft
Visual C++ environment. Some of the programs are also provided in Quick
BASIC or LabVIEW versions.

SONY /Tektronix holds the copyright to the programs described in this section.
These programs may be copied, distributed, or modified for testing, research, and
development purposes. However, SONY /Tektronix assumes no responsibility or
liability for any loss or damage that is caused due to the use of these programsin
their original form or in any modified form.

Overview of the Sample Programs

getbit Readsout bit patterns from the DG2020A data memory in bit units and displays
that data on the screen. Since standard output is used for data display, the output
can be redirected to afile for storage. Thisis an example of a program that reads
out bit pattern data. This program is provided in both C and BASIC versions.

putbit Transfersbit units pattern data stored in afile by the getbit program described
above to DG2020A data memory. This is an example of a program that writes bit
pattern data.

getword Readsout bit patterns from the DG2020A memory in word units and displays
that data on the screen. Since standard output is used for data display, the output
can be redirected to afile for storage. Thisis an example of a program that reads
out bit pattern data.

putword Transfers word units pattern data stored in afile by the getword program
described above to DG2020A data memory. Thisis an example of a program that
writes bit pattern data.

putblk Setsup ablock definition section in the DG2020A data memory using data from
afile prepared in advance. This program presents an example of the use of the
block definition command.

DG2020A Programmer Manual 4-1

Programming Examples

putgrp

putseq

putsub

intcom

Sets up a group definition section in the DG2020A data memory using data from
afile prepared in advance. This program presents an example of the use of the
group definition command.

Sets up a sequence definition section in the DG2020A data memory using data
from afile prepared in advance. This program presents an example of the use of
the sequence definition command.

Sets up a subsequence definition section in the DG2020A data memory using
data from afile prepared in advance. This program presents an example of the
use of the subsequence definition command.

Supports interactive GPIB command and message exchange with the DG2020A.
This program allows the operator to easily confirm the actual operation of the
GPIB commands. This program also serves as an example of the communica-
tions protocol s used between the DG2020A and the GPIB interface.

Required Execution Environment

Floppy Disk Files

MSVC Directory

These programs run on an IBM PC/AT compeatible personal computer that has a
National Instruments, Inc. GPIB interface installed. The C sample programs run
in the MS-DOS prompt window and require a Windows 95 operating system,
and the National Instruments, Inc. GPIB95 driver software. The BASIC sample
programs require aMS-DOS, version 5.0 or later, and the National Instruments,
Inc. AT-GPIB driver software. In addition, Microsoft Visual C++, Quick BASIC
4.5 or LabVIEW isrequired to compile and run the sample programs. You
should provide an environment that meets these conditions and install the
respective software according to their manuals.

The floppy disk contains the following files. The README.TXT file stored in
the floppy disk also provides you the detailed information.

Filename Description

getbit.c The getbit C source file
putbit.c The putbit C source file
getword.c The getword C source file
putword.c The ptword C source file
putblk.c The putbTk C source file

DG2020A Programmer Manual

Programming Examples

QBASIC Directory

DATA Directory

DG2020A Programmer Manual

Filename Description

putgrp.c The putgrp C source file

putseq.c The putseq C source file

putsub.c The putsub C source file

intcom.c The intcom C source file

gpiblib.c The GPIB library used with the above programs
Filename Description

getbit.bas The getbit BASIC source file

putbit.bas The putbit BASIC source file

makeexe.bat

The batch file used to compile these programs with Quick BASIC

Each of the sample programs uses its own unique input or output format. Several
sample files with examples of those formats are stored on the floppy disk in this
directory. Thesefilesare all ASCII text files and can be viewed and edited with a

text editor.
Filename Description
patbit.dat Outpui file for the getbit sample program, or input file for putbit.
patword.dat Output file for the getword sample program, or input file for putword.
blkdef.dat Input file for the putb1k sample program
grpdef.dat Input file for the putgrp sample program
seqdef.dat Input file for the putseq sample program
subdef.dat Input file for the putsub sample program

podassig.cmd

GPIB command file that performs output pod bit allocation

poddelay.cmd GPIB command file that sets the output pod delay times
podinhib.cmd GPIB command file for output pod high-impedance control
podievel.cmd GPIB command file that sets the output pod output voltage levels

4-3

Programming Examples

Installing and Compiling the Programs

Making Copy

Compiling the source
codes

Executable programs must be created by compiling the source files provided on
the floppy disk. The programs are compiled after copying the source files to the
hard disk. To prevent any possibility of damaging the original during these
operations, it is recommended that you first make a copy of the floppy disk, store
the original in a safe place, and use the copy for the following procedures.

Create a directory on the hard disk, in which you install all of the sample
programs. This procedure assumes that the hard drive is drive c: and the floppy
driveisdrivea.

In the DOS prompt window, type the following commands.
mkdir c:\DGSAMPLE.20A

Copy the folders and files in the floppy disk with the directory tree structure kept
intact. You can simply do this operation by drag and drop method in the
Windows 95 Explorer window.

1. Click Drive A: (floppy) icon to display thefilesin the floppy disk.

2. Select Select All from the File menu. (Alternatively, you can make this
operation by pressing Control + A keys on the keyboard.)

3. Drag the selected filesin the floppy to the new directory created in step 1.

Do the following procedures to compile the sample program source code. The
procedures are different depending on the type of source codes. C or BASIC.

In case of C programs.

1. You need the National Instrument GPIB library file to use the sample
program source codes. The library is assumed to be resided in the following
default path.

c:\GPIB95\LANGINT\C

When you have a different environment, change the default path setting
defined in the project file or to make the directory as required.

2. To compile the C sample source codes, you need Microsoft Devel oper
Studio. Select File from the Open Workspace menu in the Microsoft
Developer.

When the compiler environment has been installed properly, you can just
click the project workspace file in the Explorer window to compile the
sample program source code.

DG2020A Programmer Manual

Programming Examples

For example,

® Double-click the CADGSAMPLE.20A\GETBIT\GETBIT.MDP fileicon
in the Explorer window to open the getbit sample program.

The Developer Studio will automatically be invoked and the project
workspace will be opened.

m Select Build from the Build menu to compile the sample program source
code.

3. Execute the compiled programsin the MS-DOS prompt window. Type the
following commands, for example.

cd c:\DGSAMPLE.20A\GETBIT
.\GETBIT <parameters>

In case of BASIC programs.

1. Inthe MS-DOS prompt window, move to the directory in which you have
copied the sample BASIC files from the floppy disk in the procedures
described in Making Copy on page 4-4. Select a name that does not
duplicate an existing name in the file system.

cd c:\DGSAMPLE.20A\QBASIC

2. Next, copy the necessary files associated with the GPIB drivers. This
procedure assumes that the National Instruments drivers are installed in the
c:\at-gpib directory.

copy c:\at-gpib\gbasic\gbdecl.bas
copy c:\at-gpib\gbasic\gbib.obj

3. Compile the sample programs using the batch file
makeexe.bat

4. If following the above procedures did not result in the compilation complet-
ing correctly, check that there is adequate free space on the hard disk and that
the compiler isinstalled correctly. In particular, check that the path setting is
correct.

DG2020A Programmer Manual 4-5

Programming Examples

Installing the Sample Data

Create an appropriate directory on the hard disk. Select a name that does not
duplicate an existing file or directory name in the file system. (This procedure
usesthe directory "sample _d”.) This procedure assumes that the hard drive is
drive c:, that the floppy driveis drive a, and that the current directory is an
appropriate directory on the hard disk.

mkdir sample_d
cd sample d
copy a:\data*.*

Sample Program Functions and Usage

Getbit

4-6

This section describes the functions of the sample programs and their use. Words
set in italics are abstract parameters that must be replaced with actual character
strings.

This program reads out bit pattern datafrom DG2020A data memory in bit units
and displays that data on the screen. The bit number (0 to 35) to beread out is
specified as command line arguments. If multiple arguments are specified
separated by spaces, the bit datais displayed in the specified order. This
command has the following syntax:

getbit bit_number [bit_number ...]

Bit datais read out from the whole range of memory data set up in the
DG2020A, that is, datais read out from address 0 to the maximum address.

The program displays the memory size, the starting address (always 0) and the
bit number parameters and then the bit data for those parameters. The parameters
are displayed starting with a number sign (#) character, each on itsown line. The
bit datais expressed as a sequence of the characters 0 and 1 representing those
bit values. The listing below shows the output from reading out bits 3 and 2
when the memory sizeis 64.

#sze 64

#start 0

#hit 3
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,
0,0,0,0,1,00,0,1,1,1,1,2,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,
#hit 2
0,1,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

Since the result is displayed on standard output, the data can be saved by
redirecting the output to afile. Thisfile can be used as an input to the putbit
program described bel ow.

DG2020A Programmer Manual

Programming Examples

Putbit This program sends bit pattern data to the DG2020A data memory in bit units.
Datainput isfrom afilein aunique format. This command has the following
syntax, with the input data file name being specified as a parameter.

putbit filename

The contents of the input file must express the data length, start address, and bit
number parameters, as well asthe bit dataitself in ASCII text. Each parameter
must appear on a separate line and start with anumber sign (#) character. Bit data
is expressed as a sequence of the characters 1 and O representing the bit values.
Thisformat is the same format as that produced by redirecting the output of the
getbit program. Thefilepatbhit.dat isasample datafilein this format.

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input fileis not correct.

Getword This program reads out bit pattern data from DG2020A data memory in word
units and displays that data on the screen. The start address for the read and the
number of words are specified as command line arguments in decimal, separated
by a space. This command has the following syntax:

getword address length

The program displays the memory size and the starting address parameters and
then the bit pattern data for those parameters. The parameters are displayed
starting with a number sign (#) character, each on its own line. The bit pattern
datais displayed as 36-hit words of 5 bytes each, with each byte displayed in
hexadecimal. The bytes of each word are displayed on a single line starting with
the most significant byte. Only the lower 4 bits are used in the most significant
byte. The listing below shows the output for reading out the words from
addresses O to 64.

#size 64

#start O
00,00,00,00,00,
00,00,00,00,08,
08,00,00,00,00,
00,00,00,00,0c,
00,00,00,00,00,
00,00,00,00,00,
00,00,00,00,00,

Since the result is displayed on standard output, the data can be saved by
redirecting the output to afile. Thisfile can be used as an input to the putword
program described bel ow.

DG2020A Programmer Manual 4-7

Programming Examples

4-8

Putword

Putgrp

Putblk

This program sends bit pattern data to the DG2020A data memory in word units.
Datainput isfrom afilein aunique format. This command has the following
syntax, with the input data file name being specified as a parameter.

putword filename

The contents of the input file must express the data length and start address
parameters, as well as the bit pattern dataitself in ASCII text. Each parameter
must appear on a separate line and start with anumber sign (#) character. The bit
pattern datais expressed as 36-hit words of 5 bytes each starting with the most
significant byte, with each byte expressed in hexadecimal. A newline character is
required for each dataword. This format is the same format as that produced by
redirecting the output of the getword program. See the patword.dat sample
datafile.

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input fileis not correct.

This program sends group definition data to the DG2020A data memory. Data
input isfrom afile in aunique format. This command has the following syntax,
with the input data file name being specified as a parameter.

putgrp filename

The contents of the input file must express the group name, the group’s highest
and lowest bit numbersin ASCII with one group per line. This format corre-
sponds to the parameter block supplied to the DATA: GROUP : DEFINE command
with the delimiter codes replaced by the newline code used in normal text files.
Seethegrpdef.dat sample datafile.

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input fileis not correct. In particular, note that commas are used to delimit the
parametersin thisinput file and that spaces may not be inserted.

This program sends block definition data to the DG2020A data memory. Data
input is from afile in aunique format. This command has the following syntax,
with the input data file name being specified as a parameter.

putblk filename

The contents of the input file must express the block name and the block starting
addressin ASCII with one block per line. Thisformat corresponds to the
parameter block supplied to the DATA:BLOCK: DEFINE command with the
delimiter codes replaced by the newline code used in normal text files. See the
bTkdef.dat sample datafile.

DG2020A Programmer Manual

Programming Examples

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input file is not correct. In particular, note that commas are used to delimit the
parameters in thisinput file and that spaces may not be inserted.

Putseq This program sends sequence definition data to the DG2020A data memory. Data
input is from afilein a unique format. This command has the following syntax,
with the input data file name being specified as a parameter.

putseq filename

The contents of the input file must express the block name, the repeat count, the
line number of the event jJump destination, the trigger wait on/off setting, the
event jump on/off setting and the infinite loop on/off setting, in ASCII with one
step per line. Thisformat corresponds to the parameter block supplied to the
DATA:SEQUENCE : DEFINE command with the delimiter codes replaced by the
newline code used in normal text files. The first linein this file corresponds to
sequence line number 0, and each following line to the sequence line number
incremented by 1. Seethe seqdef.dat sample datafile.

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input fileis not correct. In particular, note that commas are used to delimit the
parameters in thisinput file and that spaces may not be inserted.

Putsub This program sends subsequence definition data to the DG2020A data memory.
Datainput is from afilein aunique format. This command has the following
syntax, with the input data file name being specified as a parameter.

putsub filename

The contents of the input file must express the block name and the repeat count,
in ASCII with one step per line. This format corresponds to the parameter block
supplied to the DATA: SUBSEQUENCE : DEFINE command with the delimiter codes
replaced by the newline code used in normal text files. The first linein thisfile
corresponds to subsequence line number 0, and each following line to the
subsequence line number incremented by 1. Seethe subdef.dat sample data
file.

Input format checking has been dispensed with to make this sample program
easier to understand. This program may not operate correctly if the format of the
input fileis not correct. In particular, note that commas are used to delimit the
parametersin thisinput file and that spaces may not be inserted.

Intcom This program implements interactive communication between an external
controller and the DG2020A. That is, it transmits GPIB commands entered from
the keyboard to the DG2020A and displays messages returned from the

DG2020A Programmer Manual 4-9

Programming Examples

4-10

DG2020A on the screen. The command has the following syntax, in which the
argument specifies the device name registered in the GPIB driver system. The
device devl isused asthe default if the argument is omitted.

intcom [device]

When this program is started it displays its own prompt and waits for input.
When a command is entered, it executes the processing for that command and
then returns to the command wait state. It iterates this sequence until the
termination command is entered. The prompt indicates the GPIB device name, as
shown below.

devl>>

The DG2020A GPIB commands, the program’sinternal (built—in) commands,
and redirection commands can be used as intcom commands. These commands
are described in detail below.

m GPIB commands

All commands and queries defined in this manual may be used. If a question
mark character (?) appearsin the input character string, the command is
interpreted as a query command. The program waits for the DG2020A
response, automatically extracts that response, and displays it on the screen.
If an error occurs, the program extracts the event code and event message
from the event queue and displays them on the screen.

B Built-in commands

Intcom supports the following built—in commands:

exec filename Reads in commands from afile oneline at atime and
executes them through the end of thefile. Thisallows a
sequence of commands to be prepared in advance and
used as a batch file. This differs from standard input
redirection described below in that the contents of the
file arefirst interpreted by this program’s command
processing routine. The result is that while the built—in
commands and the redirection commands can be used,
GPIB commands that include binary data and newline
codes cannot be used.

help Displays command descriptions on the screen.

resets Returns the registers used by the event and status
reporting system to the standard state set up by this
program. If the set values of the GPIB commands
registers such as DESE and * ESE are changed, this
command should be used as soon as possible to return
their values to the standard values.

DG2020A Programmer Manual

Programming Examples

DG2020A Programmer Manual

view filename

Outputs the contents of the file specified by filename to
standard output, i.e., displays the file on the screen.

Executes the immediately preceding command once
again.

Redirection commands

The following commands can be used to switch standard input or standard
output to afile and thus realize communications between the DG2020A and

afileor files.

<filename

>filename

>>filename

Sends the contents of the file specified by filename to
the DG2020A directly without modification. This
allows a sequence of commands to be prepared in
advance and used as a batch file. In particular, only this
command can be used to send GPIB commands that
include binary data blocks to the DG2020A.

Intercepts the data output to standard output and
outputsit to the file specified by filename. If thefile
aready exists, it is overwritten. If the file does not
exist, anew fileis created.

Intercepts the data output to standard output and
outputsit to the file specified by filename in the same
way asthe’>" command. However, if the file already
existsit does not overwrite the file but rather appends
the new data at the end of thefile.

4-11

Programming Examples

4-12 DG2020A Programmer Manual

-/
Appendix A: Character Charts

Table A-1: DG2020A character set

0 1 2 3 4 5 6 7

0 NUL space 0 @ P ‘ p
0 16 32 48 64 80 96 112

Q ! A Q q
1 17 33 49 65 81 97 13

) ” B R r
18 34 50 66 82 98 114

C S s
3 19 35 51 67 83 99 115

$ D T t
4 20 36 52 68 84 100 116

% E U u
5 21 37 53 69 85 101 17

n & F ' v
6 22 38 54 70 86 102 18

‘ ’ G w w
7 23 39 55 7 87 103 19

—_ (H X X
8 24 40 56 72 88 104 120

HT) | Y y
9 - 2 4 57 73 89 105 121

LF (00) * J Z z
10 26 42 58 74 90 106 122

ESC + K [{
1 27 43 59 75 91 107 123

L \
)

:|: 12 28 44 60 76 92 108 I 124

CR # — M] }
13 29 45 61 77 93 109 125

~ N A p
14 30 46 62 78 94 110 126

° / 0] _ rubout

15 31 47 63 79 95 11 127
DG2020A Programmer Manual A-1

Appendix A: Character Charts

Table A-2: ASCIl & GPIB code chart

B7 0 0 0 0 1 1 1 1
B6 0 0 1 0 0 1 1
B5 0 1 0 1 0 1 0 1
BITS NUMBERS
B4 B3 B2 Bi CONTROL SYMBOLS UPPER CASE LOWER CASE
0 20 40 LAO | 60 LA16 | 100 TAO | 120 TA16 | 140 SA0 | 160 SA16
00 00 NUL DLE SP @ P \ p
0 0] 10 16 | 20 32 | 30 48 | 40 64 | 50 80 | 60 % | 70 12
1 GTL | 21 LLo | 41 LA1 | 61 LA17 | 101 T | 121 TA17 | 141 SA1 | 161 SA17
0001 SOH DC1 ! A a q
1 1 1 17 | 21 33 | 31 49 | 41 65 | 51 81 61 97 | 1 113
2 22 42 LA2 | 62 LA18 | 102 A2 | 122 TA18 | 142 sA2 | 162 SA18
0010 STX DC2 " B R b r
2 2 12 18 | 22 34 | 32 50 | 42 66 | 52 82 | 62 98 | 72 114
3 23 43 LA3 | 63 LA19 | 103 TA3 | 123 TA19 | 143 SA3 | 163 SA19
00 11 ETX DC3 # C S c 3
3 3] 13 19 | 23 35 | 33 51 | 43 67 | 53 83 | 63 99 | 73 115
4 soc | 24 DCL | 44 LAs | 64 LA20 | 104 A4 | 124 TA20 | 144 SA4 | 164 SA20
0100 EOT DC4 $ D T d t
4 4 14 20 | 24 36 | 34 52 | 44 68 | 54 84 | 64 100 | 74 116
5 PPC 25 PPU | 45 LA5 | 65 LA21 105 TA5 125 TA21 145 SA5 | 165 SA21
0101 ENQ NAK % E U e u
5 5| 15 21 | 25 37 | 35 53 | 45 69 | 55 85 | 65 101 | 75 17
6 26 46 LAG | 66 LA22 | 106 6 | 126 TA22 | 146 SA6 | 166 SA22
0110 ACK SYN & F Vv f v
6 6| 16 2 | 2 38 | 36 54 | 46 70 | 56 86 | 66 102 | 76 118
7 27 47 LA7 | 67 LA23 107 TA7 127 TA23 | 147 SA7 | 167 SA23
01 11 BEL ETB ! G w g w
7 7|17 23 |27 39 | 37 55 | 47 7 |57 87 | 67 108 | 77 119
10 GET 30 SPE | 50 LA8 | 70 LA24 110 TA8 130 TA24 | 150 SA8 | 170 SA24
1000 BS CAN (H X h X
8 8 | 18 24 | 28 40 | 38 56 | 48 72 | 58 88 | 68 104 | 78 120
1 TCT 31 SPD | 51 LA9 | 1 LA25 m TA9 131 TA25 | 151 SA9 | 171 SA25
1001 HT EM) | Y i y
9 9|19 2 | 29 41 | 39 57 | 49 73 | 59 89 | 69 105 | 79 121
12 32 52 LA10 | 72 LA26 | 112 TA10 132 TA26 | 152 SA10 | 172 SA26
1010 LF SUB * J Y4 j z
A 10 | 1A % | 2a 42 | 3 58 | 4A 74 | 5A 90 | 6A 106 | 7A 122
13 33 53 LA 73 LA27 113 TA11 133 TA27 | 153 SA11 173 SA27
1011 VT ESC + K [k {
B 1| 1B 27 | 28 43 | 3B 59 | 4B 75 | 5B 91 | 6B 107 | 78 123
14 34 54 LA12 | 74 LA28 114 TA12 134 TA28 | 154 SA12 | 174 SA28
1100 FF FS y L \ | :
c 12 | 1 28 | 2c 4 | 3C 60 | 4C 76 | 5C 92 | 6C 108 | 7C 124
15 35 55 LA13 | 75 LA29 | 115 TA13 | 135 TA29 | 155 SA13 | 175 SA29
1101 CR GS - M | m }
D 13 1D 29 | 2D 45 | 3D 61 4D 77 | 5D 93 | 6D 109 | 7D 125
16 36 56 LA1a | 76 LA30 | 116 TAta [136 TA30 | 156 SA14 | 176 SA30
1110 SO RS . N n
E 14 1E 30 | 2E 46 | 3E 62 | 4E 78 | 5E 94 | 6E 10 | 7E 126
17 37 57 LA15 | 77 UNL | 117 TA15 137 UNT | 157 SA15 | 177
1111 Sl us | 0 - 0 RU[?E?-UT
F 15 | 1F 3 | oF a7 | oF 63 | 4F 79 | 5F 95 | 6F 1M1 (EY .,
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS
KEY octa—s PPC=— GPIB code (with ATN asserted) Tektronix
ENQ <——— ASCII character REF: ANSI STD X3.4-1977
hex —>1 5 5-<— decimal IEEE STD 488.1-1987
ISO STD 646-2973
A-2 DG2020A Programmer Manual

./
Appendix B: Reserved Words

Thewordsin the following list are reserved words for use with the

DG2020A Data Generator.

ABORt ENABle LOCk SELect
ABSTouch ESE LOOP SEQuence
ADD ESR LOW SiZe
ALL EVENT MDIRectory SLOpe
ALLEv EW MENU SNOop
ASSIGn EVJTO MMEMory SOURce
BIT EVMsg MODE SRE
BLOCK EVQty MSIZe STARt
BRIGhtness EXTernal NAME STATe
CATalog FACTory OPC STB
CDIRectory FORMat OPT STOP
CH<n> FREE ORDer SUBSequence
CLEAr FREQuency OSCillator SYSTem
CLEar GROUp OUTPut TEXT
CLOCk HCOPy PATTern TIME
CLS HEADer PLLIock

COPY HIGH POD<s> TRG
DATA ID PORT TRIGger
DATE IDN PPAUse TST
DEBug ILEVel PSC TWAIT
DEFine IMMediate RELEase TYPE
DELAy IMPedance REName UNLock
DELete INHibit REPeat UPDate
DESE INITialize RESUIt UPTime
DIAGnostic INTernal RST VERBose
DIMmer LEVel RUNNing WAI
DISPlay LOAD SAVE WINDow
ELEVel LOCK SECurity WORD

DG2020A Programmer Manual B-1

Appendix B: Reserved Words

B-2 DG2020A Programmer Manual

-/ |
Appendix C: Interface Specification

This appendix lists and describes the GPIB functions and messages that the
DG2020A Data Generator implements.

Interface Functions

Table C—1 shows which GPIB interface functions are implemented in this
instrument. Following the tableis a brief description of each function.

Table C-1: GPIB interface function implementation

Implemented
Interface function subset Capability
Acceptor Handshake (AH) AH1 Complete
Source Handshake (SH) SH1 Complete
Listener (L) L4 Basic Listener
Unaddress if my talk address (MTA)
No talk only mode
Talker (T) T5 Basic Talker, Serial Poll
Unaddress if my-listen-address (MLA)
Device Clear (DC) DCH1 Complete
Remote/Local (RL) RL1 Complete
Service Request (SR) SR1 Complete
Parallel Poll (PP) PPO None
Device Trigger (DT) DT1 Complete
Controller (C) Co None
Electrical Interface E2 Three-state driver

m Accepter Handshake (AH). Allows a listening device to help coordinate the
the proper reception of data. The AH function holds off initiation or
termination of a datatransfer until the listening deviceis ready to receive the
next data byte.

m Source Handshake (SH). Allows atalking device to help coordinate the
proper transfer of data. The SH function controls the initiation and termina-
tion of the transfer of data bytes.

DG2020A Programmer Manual C-1

Appendix C: Interface Specification

Interface Messages

Listener (L). Allows a device to receive device-dependent data over the
interface. This capability exists only when the device is addressed to listen.
This function uses a one-byte address.

Talker (T). Allows a device to send device-dependent data over the interface.
This capability exists only when the device is addressed to talk. The function
uses a one-byte address.

Device Clear (DC). Allows adeviceto be cleared or initialized, either
individually or as part of agroup of devices.

Remote/Local (RL). Allows adevice to select between two sources for
operating control. This function determines whether input information from
the front panel controls (local) or GPIB commands (remote) control the data
generator.

Service Request (SR). Allows a device to request service from the controller.

Controller (C). Allows a device with the capability to send the device
address, universal commands, and addressed commands to other device over
the interface to do so.

Electrical Interface (E) Identifies the type of the electrical interface. The
notation E1 indicates the electrical interface uses open collector drivers,
while E2 indicates the electrical interface uses three-state drivers.

Table C-2 liststhe GPIB Universal and Addressed commands that the
DG2020A Data Generator implements. A brief description of each function
follows the table.

Table C-2: GPIB interface messages

Interface message Implemented
Device Clear (DC) Yes
Local Lockout (LLO) Yes
Serial Poll Disable (SPD) Yes
Serial Poll Enable (SPE) Yes
Parallel Poll Unconfigure (PPU) No
Go To Local (GTL) Yes
Selected Device Clear (SDC) Yes
Group Execute Trigger (GET) Yes

C-2

DG2020A Programmer Manual

Appendix C: Interface Specification

Table C-2: GPIB interface messages (Cont.)

Interface message Implemented
Take Control (TCT) No
Parallel Poll Configure (PPC) No

m Device Clear (DCL). Clears (initializes) all devices on the busthat have a
device clear function, whether the controller has addressed them or not.

m | oca Lockout (LLO). Disablesthe return to local function.

m Seria Poll Enable (SPE). Puts all devices on the bus, that have a service
request function, into the serial poll enabled state. In this state, each device
sends the controller its status byte, instead of the its normal output, after the
device receivesitstalk address on the datalines. This function may be used
to determine which device sent a service request.

m Serial Poll Disable (SPD). Changes all devices on the bus from the serial
poll state to the normal operating state.

m Go ToLocal (GTL). Causes the listen-addressed device to switch from
remote to local (front-panel) control.

B Select Device Clear (SDC). Clearsor initializes al listen-addressed devices.

® Group Execute Trigger (GET). Triggers al applicable devices and causes
them to initiate their programmed actions.

m Take Control (TCT).Allows controller in charge to pass control of the busto
another controller on the bus.

m Parallel Poll Configure (PPC). Causes the listen-addressed device to respond
to the secondary commands Parallel Poll Enable (PPE) and Parallel Poll
Disable (PPD), which are placed on the bus following the PPC command.
PPE enables a device with parallel poll capability to respond on a particular
dataline. PPD disables the device from responding to the parallel poll.

DG2020A Programmer Manual C-3

Appendix C: Interface Specification

C-4 DG2020A Programmer Manual

-/ |
Appendix D: Factory Initialization Settings

The following table lists the commands affected by a factory initialization and
their factory initialization settings.

Table D-1: Factory initialized settings

Header Default settings
DATA commands

DATA:MSIZe 1000
DIAGNOSTIC commands

DIAG:SELect ALL
DISPLAY commands

DISPlay:BRIGhtness 0.7
DISPT1ay:CLOCk 0
DISPTay:DIMmer 0
DISPlay:ENABTe 1
DISPTlay:MENU[:NAME] EDIT
DISPTay:MENU:STATe 1
HARDCOPY commands

HCOPy: FORMat BMP
HCOPy : PORT DISK
MEMORY commands

MMEMory :CATalog:0RDer NAME1
MODE commands

MODE:STATe REPEAT
MODE:UPDate AUTO
TRIGger:IMPedance HIGH
TRIGger:LEVel 1.4
TRIGger:SLOPe POSITIVE

DG2020A Programmer Manual D-1

Appendix :Factory Initialization Settings

D-2

Table D-1: Factory initialized settings (Cont.)

Header

Default settings

OUTPUT commands

OUTPut:ELEVel

OUTPut:ILEVel

OUTPut:POD<s>:CH<n>:DELAy

OUTPut :POD<s>:CH<n>:HIGH

o|lo| |

OUTPut:POD<s>:CH<n>:INHibit

OUTPut:POD<s>:CH<n>:LOW

Ol O W | O |k

SOURCE commands

SOURce:0SCillator:EXTernal:FREQuency

1.0E+8

SOURce:0SCillator[:INTernal] :FRE-
Quency

1.0E+8

SOURce:0SCillator[:INTernal]:PLLTock

INTERNAL

SOURce:0SCillator:SOURce

SOURce:POD<s>:EVENT:ENABle

STATUS & EVENT commands

DESE

*ESE

*PSC

*SRE

SYSTEM commands

DEBug:SNOop:DELAy:TIME

DEBug: SNOop: STATe

HEADer

LOCk

SYSTem:PPAUse

SYSTem:SECurity:STATe

VERBose

DG2020A Programmer Manual

-/ |
Glossary

ASCII
Acronym for the American Standard Code for Information Interchange.
Controllers transmit commands to the instrument using ASCII character
encoding.

Address
A 7-bit code that identifies an instrument on the communication bus. The
instrument must have a unique address for the controller to recognize and
transmit commandsto it.

BNF (Backus-Naur Form)
A standard notation system for command syntax diagrams. The syntax
diagramsin this manual use BNF notation.

Controller
A computer or other device that sends commands to and accepts responses
from the digitizing oscilloscope.

EQOI
A mnemonic referring to the control line “End or Identify” on the GPIB
interface bus. One of the two possible end-of-message terminators.

EOM
A generic acronym referring to the end-of-message terminator. The

end-of-message terminator can be either an EOI or the ASCII code for line
feed (LF).

GPIB
Acronym for General Purpose Interface Bus, the common name for the
communications interface system defined in IEEE Std 488.

|IEEE
Acronym for the Institute for Electrical and Electronic Engineers.

QuickC
A computer language (distributed by Microsoft) that is based on C.

DG2020A Programmer Manual Glossary-1

Glossary

Glossary-2 DG2020A Programmer Manual

Index
A

ABSTouch, 2-19
ALLEV?, 2-20
ASCII, code and character charts, A-1

Backus-Naur-Form, 2-1

C

Characters, ASCII chart, A-1
*CLS, 2-21
Command
BNF notation, 2-1
Structure of, 2-2
Syntax, 2-1, 2-19
Command errors, 3-10
Commands, words reserved for, B—1

D

DATA commands, DATA?, 2-21

Data commands
DATA:BLOCK:ADD, 2-22
DATA:BLOCK:DEFine, 2-23
DATA:BLOCK:DEL ete, 2-24
DATA:BLOCK:DELete:ALL, 2-24
DATA:BLOCK:REName, 2-25
DATA:BLOCK:SIZe, 2-25
DATA:GROUp:ADD, 2-26
DATA:GROUp:BIT, 2-27
DATA:GROUp:DEFine, 2-28
DATA:GROUp:DELete, 2-29
DATA:GROUp:DELete:ALL, 2-29
DATA:GROUp:NAME?, 2-29
DATA:GROUp:REName, 2-30
DATA:MSIZe, 2-31
DATA:PATTern:BIT, 2-31
DATA:PATTern[:WORD], 2-33
DATA:SEQuence:ADD, 2-34
DATA:SEQuence:DEFine, 2-35
DATA:SEQuence:DEL ete, 2-36
DATA:SEQuence:DELete:ALL, 2-36
DATA:SEQuence:EVJ, 2-37
DATA:SEQuence:EVJTO, 2-38
DATA:SEQuence:LOOR, 2-39

DG2020A Programmer Manual

DATA:SEQuence:REPest, 2-39
DATA:SEQuence: TWAIT, 2-40
DATA:SUBSequence:ADD, 2-41
DATA:SUBSequence:CLEAT, 2-41
DATA:SUBSequence:DEFine, 2-42
DATA:SUBSequence:DEL ete, 2-43
DATA:SUBSequence:DEL ete:ALL, 2-43
DATA:SUBSequence:REPezt, 2-44
DATA:UPDate, 2-45
DATA?, 2-21
DATA:BLOCK:ADD, 2-22
DATA:BLOCK:DEFine, 2-23
DATA:BLOCK:DEL ete, 2-24
DATA:BLOCK:DELete:ALL, 2-24
DATA:BLOCk:REName, 2-25
DATA:BLOCK:SIZe, 2-25
DATA:GROUp:ADD, 2-26
DATA:GROUp:BIT, 2-27
DATA:GROUp:DEFine, 2-28
DATA:GROUp:DELete, 2-29
DATA:GROUp:DELete:ALL, 2-29
DATA:GROUp:NAME?, 2-29
DATA:GROUp:REName, 2-30
DATA:MSIZg, 2-31
DATA:PATTern:BIT, 2-31
DATA:PATTern[:WORD], 2-33
DATA:SEQuence:ADD, 2-34
DATA:SEQuence:DEFine, 2-35
DATA:SEQuence:DEL ete, 2-36
DATA:SEQuence:DELete:ALL, 2-36
DATA:SEQuence:EVJ, 2-37
DATA:SEQuence:EVJTO, 2-38
DATA:SEQuence:LOOP, 2-39
DATA:SEQuence:REPeat, 2-39
DATA:SEQuence: TWAIT, 2-40
DATA:SUBSequence:ADD, 2-41
DATA:SUBSequence:CLEAT, 2-41
DATA:SUBSequence:DEFine, 2-42
DATA:SUBSequence:DEL ete, 2-43
DATA:SUBSequence:DELete:ALL, 2-43
DATA:SUBSequence:REPeat, 2-44
DATA:UPDate, 2-45
DEBug?, 2-45
DEBug:SNOop?, 2-46
DEBug:SNOop:DELAy?, 2-47
DEBug:SNOop:DELAy:TIME, 2-48
DEBug:SNOop:STATe, 2-49
Default Settings, D—1

Index-1

Index

Description
GPIB, 1-1
RS-232-C, 1-2
DESE, 2-50
DESE command, 3-4
DESER register, 3-4
Diagnostic commands
*TST?, 2-108
DIAGnostic?, 2-51
DIAGnostic:RESUIt?, 2-52
DIAGnostic:SEL ect, 2-53
DIAGnostic:STATe, 2-53
DIAGnostic?, 2-51
DIAGnostic:RESUIt?, 2-52
DIAGnostic: SEL ect, 2-53
DIAGnostic:STATEe, 2-53
Display commands
ABSTouch, 2-19
DISPlay?, 2-54
DISPlay:BRIGhtness, 2-55
DISPlay:CLOCK, 2-55
DISPlay:DIMmer, 2-56
DISPlay:ENABIe, 2-57
DISPlay:MENU?, 2-57
DISPlay:MENU[:NAME], 2-58
DISPlay:MENU:NAME?, 2-59
DISPlay:MENU:STATe, 2-59
DISPlay[:WINDow]: TEXT:CLEar, 2-60
DISPlay[:WINDow]: TEXT[:DATA], 2-61
DISPlay?, 2-54
DISPlay:BRIGhtness, 2-55
DISPlay:CLOCK, 2-55
DISPlay:DIMmer, 2-56
DISPlay:ENABIe, 2-57
DISPlay:MENU?, 2-57
DISPlay:MENU[:NAME], 2-58
DISPlay:MENU:NAME?, 2-59
DISPlay:MENU:STATe, 2-59
DISPlay[:WINDow]: TEXT:CLEar, 2-60
DISPlay[:WINDow]: TEXT[:DATA], 2-61

E

Enable Registers, Defined, 3-1, 3-4
Error, No events, 3-10

Error Messages, Listed, 3-9

*ESE, 2-61, 3-4

ESER register, 3-4

*ESR?, 2-62

*ESR? query, 3-1

Event handling, 3-1

Index-2

Event Queue, 3-5

EVENT?, 2-63

EVMsg?, 2-63

EVQty?, 2-64

Execution Errors, 3-12, 3-14
Execution errors, 3-15, 3-17
Execution warning, 3-15

F

FACTory, 2-64
Factory Initialization, D1

G

GPIB
Compared to the RS-232-C, 1-2
Connector, 1-3
Description of, 1-1
Function Layers, 1-1
Installation, 1-3
Installation restrictions, 1-4
interface functions, C-1
interface messages, C2
Setting parametersfor, 1-5
Standard conformed to, 1-1
System configurations, 1-4

H

Hardcopy commands
HCOPy?, 2-65
HCOPy:ABOR, 2-66
HCOPy:DATA?, 2-66
HCOPy:FORMat, 2-67
HCOPy:PORT, 2-68
HCOPy:STARt, 2-69

HCOPy?, 2-65

HCOPy:ABORt, 2-66

HCOPy:DATA?, 2-66

HCOPy:FORMat, 2-67

HCOPy:PORT, 2-68

HCOPy:STARt, 2-69

HEADer, 2-69

ID?, 2-70
*IDN?, 2-71

DG2020A Programmer Manual

Index

L

LOCKk, 2-71

Memory commands
MMEMory:CATalog[:ALL]?, 2-73
MMEMory:CATal0g:ORDer, 2-73
MMEMory:CDIRectory, 2-74
MMEMory:COPY, 2-75
MMEMory:DELeteALL, 2-75
MMEMory:DELete[:NAME], 2-76
MMEMory:FREE?, 2-76
MMEMory:INITialize, 2-77
MMEMory:LOAD, 2-77
MMEMory:LOCK, 2-78
MMEMory:MDIRectory, 2-79
MMEMory:RDIRectory, 2-79
MMEMory:REName, 2-80
MMEMory:SAVE, 2-80

Message, Handling, 3-1

Messages
Error, 3-9
Event, 3-9

MMEMory:CATalog[:ALL]?, 2-73

MMEMory:CATa og:ORDer, 2-73

MMEMory:CDIRectory, 2-74

MMEMory:COPY, 2-75

MMEMory:DELeteALL, 2-75

MMEMory:DEL ete]:NAME], 2-76

MMEMory:FREE?, 2-76

MMEMory:INITialize, 2-77

MMEMory:LOAD, 2-77

MMEMory:LOCK, 2-78

MMEMory:MDIRectory, 2-79

MMEMory:RDIRectory, 2-79

MMEMory:REName, 2-80

MMEMory:SAVE, 2-80

MODE, 2-81

Mode commands
*TRG, 2-105
MODE, 2-81
MODE:STATE, 2-81
MODE:UPDate, 2-82
RUNNing, 2-95
STAR, 2-101
STOPR, 2-102
TRIGger?, 2-105
TRIGger:IMPedance, 2-106
TRIGger:LEVel, 2-106
TRIGger:SLOpe, 2-107

DG2020A Programmer Manual

MODE:STATe, 2-81
MODE:UPDate, 2-82

0]

*OPC, 2-83

*OPT, 2-84

OUTPUT commands, OUTPut?, 2-84

Output commands
OUTPut:ELEVel, 2-86
OUTPut:ILEVE!, 2-86
OUTPut:POD<s>:CH<n>:ASSIGn, 2-87
OUTPut:POD<s>:CH<n>:DEL Ay, 2-87
OUTPut:POD<s>:CH<n>:HIGH, 2-88
OUTPut:POD<s>:CH<n>:INHibit, 2-89
OUTPut:POD<s>:CH<n>:LOW, 2-90
OUTPut:POD<s>:CH<n>:REL Ease, 2-91
OUTPut:POD<s>:DEFine, 2-91
OUTPut:POD<s>:TYPE?, 2-93

Output Queue, 3-5

OUTPut?, 2-84

OUTPut:ELEVe, 2-86

OUTPut:ILEVe, 2-86

OUTPut:POD<s>:CH<n>:ASSIGn, 2-87

OUTPut:POD<s>:CH<n>:DEL Ay, 2-87

OUTPut:POD<s>:CH<n>:HIGH, 2-88

OUTPut:POD<s>:CH<n>:INHibit, 2-89

OUTPut:POD<s>:CH<n>:LOW, 2-90

OUTPut:POD<s>:CH<n>:REL Ease, 2-91

OUTPut:POD<s>:DEFine, 2-91

OUTPut:POD<s>:TY PE?, 2-93

P

Programming Examples, 4-1
*PSC, 2-94

Q

Query, Structure of, 2-2
Queue

Event, 3-5

Output, 3-5

R

Register
DESER, 3-4
ESER, 3-4
SESR, 3-1

Index-3

Index

SRER, 3-5
Registers, Status, 3-1
Reserved words, B—1
RS-232-C
Cablewiring, 1-8
Common connectors for, 1-6
Compared to the GPIB, 1-2
Connector location, 1-7
Connector pin assignments, 1-8
Description of, 1-2
Installation, 1-6
Setting Parameters of, 1-9
*RST, 2-95
RUNNing, 2-95

S

Serid poll, 3-3
SESR register, 3-1
Source commands
SOURCce[:OSCillator]?, 2-96
SOURce: OSCillator:EX Ternal : FREQuency, 2-96
SOURce:OSCillator[:INTernal]:FREQuency, 2-97
SOURce:OSCillator[:INTernal]:PLLIock, 2-98
SOURce: OSCillator: SOURCce, 2-98
SOURce:POD<s>:EVENT:ENABIe, 2-99
SOURce[:OSCillator]?, 2-96
SOURce: OSCillator:EX Ternal :FREQuency, 2-96
SOURce:OSCillator[:INTernal]:FREQuency, 2-97
SOURce:OSCillator[:INTernal]:PLLIock, 2-98
SOURce: OSCillator: SOURCce, 2-98
SOURCce:POD<s>:EVENT:ENABIe, 2-99
*SRE, 2-100
*SRE command, 3-5
SRER register, 3-5
STARt, 2-101
Status, 3-1
Status & event commands
*CLS, 2-21
*ESE, 2-61
*ESR?, 2-62
*PSC, 2-94
*SRE, 2-100
*STB?, 2-101
ALLEv?, 2-20
DESE, 2-50
EVENT?, 2-63
EVMsg?, 2-63
EVQty?, 2-64
Status and error commands
DESE, 3-4
*ESE, 3-4

Index-4

*ESR?, 3-1
*SRE, 3-5
*STB?, 3-3
Status and events, processing of, 3-6
Status Registers, Defined, 3-1
*STB?, 2-101
*STB? query, 3-3
STOPR, 2-102
Synchronization commands
*OPC, 2-83
*WAI, 2-111
System commands
*IDN?, 2-71
*OPT, 2-84
*RST, 2-95
DEBug?, 2-45
DEBug:SNOop?, 2-46
DEBug:SNOop:DELAy?, 2-47
DEBug:SNOop:DELAY:TIME, 2-48
DEBug:SNOop:STATe, 2-49
FACTory, 2-64
HEADer, 2-69
ID?, 2-70
LOCKk, 2-71
SY STem:DATE, 2-102
SY STem:PPAUsg, 2-103
SY STem: SECurity:IMMediate, 2-103
SY STem:SECurity:STATe, 2-104
SYSTem:TIME, 2-104
UNLock, 2-109
UPTime, 2-109
VERBosg, 2-110
System events, 3-14
SY STem:DATE, 2-102
SY STem:PPAUSse, 2-103
SY STem:SECurity:IMMediate, 2-103
SY STem:SECurity:STATe, 2-104
SYSTem:TIME, 2-104

T

*TRG, 2-105

TRIGger?, 2-105
TRIGger:IMPedance, 2-106
TRIGger:LEVel, 2-106
TRIGger:SLOpe, 2-107
*TST?, 2-108

U

UNLock, 2-109

DG2020A Programmer Manual

Index

UPTime, 2-109 W
*WAI, 2-111
V Where to find other information, v

VERBosg, 2-110

DG2020A Programmer Manual Index-5

Index

Index-6 DG2020A Programmer Manual

	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Preface
	Related Manuals

	Getting Started
	Overview
	Choosing an Interface
	Installing for GPIB Communication
	Installing for RS-232-C Communication

	Command Syntax
	Command Notation
	Program and Response Messages
	Command and Query Structure
	Character Encoding
	Syntactic Delimiters
	White Space
	Special Characters
	Arguments
	Header
	Concatenating Commands
	Query Responses
	Other General Command Conventions

	Command Groups
	Command Summaries

	Command Descriptions
	Retrieving Response Messgages
	Status and Event Reporting
	Registers
	Queues
	Processing Sequence

	Messages
	Programming Examples
	Overview of the Sample Programs
	Required Execution Environment
	Floppy Disk Files
	Installing and Compiling the Programs
	Sample Program Functions and Usage

	Appendix A: Character Charts
	Appendix B: Reserved Words
	Appendix C: Interface Specification
	Interface Functions
	Interface Messages

	Appendix D: Factory Initialization Settings
	Glossary
	Index

