
Replacement M32 Module for Wavetek 3000 Signal Generator

Recently I picked up a fixer-upper Wavetek 3000 signal generator at a flea market at a good
price because it had a known lock problem. My HP generator only covers up to 13MHz, and the
Wavetek would come in handy for those higher HF and VHF projects.

After fixing the lock issue (bad voltage regulator in M31), I could read the correct frequency on
the counter and the output levels were pretty much where they should be. When listening to
the signal output on the HF receiver, I couldn’t find a tone to zero-beat, just an increase in noise
floor. On AM It was the same, just a tunable noise hump. VHF FM, the same.

There have been many reports of op-amp, voltage regulator, and electrolytic capacitor failure
in these old equipment. The op-amps were easy to replace, and suspicious capacitors were
changed out. The noise still persisted without change.

One by one the VCO’s were checked on the spectrum analyzer and the M32 module was
REALLY noisy. I wasn’t expecting HP like signal purity, but this was certainly outside of the specs.
By applying a clean DC voltage to the varactor tune line, I did notice that the noise was less (still
awful) at low tune voltages and more at higher tune voltages. The varactor was replaced with
a fixed cap and the output signal was clean. I scrounged around and found a varactor that
covered the same frequency range with a fairly close voltage range and boxed everything
back up.

The result was much better, but still sounded raspy and would break lock on fast or large
frequency changes. Adjusting the inductor (a bent wire) tap inside that rat’s nest of point-to-
point wiring is not the easiest task. The whole thing went on the shelf for some “rest”.

Some idle time thinking on what is needed lead to a decision to replace the functionality with
something simpler, more robust and cleaner. There are too many years on this, too many mixers
and level shifters, and not enough filtering, to give nice clean results. All that is needed are
simple 1 MHz steps, from 1448 to 1487MHz, controlled by the front panel BCD switches. Should
be a simple job for a simple PLL circuit.

I scrounged around for parts and found a VCO with the right range from an old abandoned
project, an LMX2330 synthesizer chip from an old cell phone, and a 16F84 PIC. The LMX goes up
to 3GHz and is a dual PLL chip; any PLL (like the LMX for ADF series) that covers at least 1.5GHz
would do fine, and a single would be fine as this project doesn’t use the dual feature. The PIC
code is included here and should be easily translatable to almost any PIC with at least 10 I/O
lines available (7 for the BCD switches and 3 for the PLL control lines).

Theory:
Standard PLL circuit from the VCO through the synthesizer chip. I used NSC’s EasyPLL web
software to calculate the loop values. The synthesizer section was tested with NSC’s
CodeLoader software which allows loading the PLL via a PC parallel port. The output was clean,
stayed in lock throughout the entire range of the VCO, and really didn’t start to get cranky until
way outside the loop design parameters. The loop is designed for a 1MHz reference and 10KHz

bandwidth. One can see the lock stability and reference sideband suppression change as the
reference is varied from 50KHz to 5MHz with the same output frequency on the same loop
values. It’s pretty neat to be able to change all these parameters from the computer screen
with the NSC demo software. This was my first time using it. The unused IF section of the dual PLL
is programmed to power-down. The 10MHz reference input is buffered and is pulled from the
M30 reference module unused test jack. The buffer circuit is not shown; it is just using some
inverter gates from a 74LS04. The 1MHz output can be used but with a lower reference
frequency step as the minimum R value is 3 for the LMX. I wanted to keep step size equal to the
channel spacing to ease the programming requirements (though a 250KHz or 125KHz reference
would just require some addition bit shifting in the program). The lock indicator functionality was
not used, as if you give this power and a 10MHz reference, it locks.

The PIC code is fairly simple (short), but briefly it does this: initializes the registers, checks to see if
the module is plugged in, and if not, sets a default for testing so that the PLL doesn’t try to lock
on an invalid BDC code. Then it checks the input ports from the BCD switches, converts the BCD
code to the binary needed to program the PLL, loads this to the PLL, and then goes back to
read the switches again looking for a change. If it changes, the load process repeats; if not it
just loops. I use the watch dog timer (never have before) just in case the program gets
scrambled from transmitter testing on the bench or such. I use a low frequency ceramic
resonator because this tends to be less noisy than the external RC clock source and a higher

frequency crystal is not needed for speed or stability. Anything from a 32KHz clock to a 4MHz
crystal would work as well, as the LMX can handle a fairly fast serial input.

It works, does what it’s intended to do, is much simpler (and cleaner) than what it replaced. It’s
fast enough that you can see the signal lock on a new frequency due to the switch bounce as
the BCD switches are changed (maybe this is too fast, but I wasn’t going to spend time putting
delays into the code because it’s a feature that really isn’t operationally needed).

This is not intended to be an exact construction project, but is offered more as a reference to stir
some ideas for needs you may have that are similar. None of the parts are value critical, though
with PLL’s you don’t want to stray too far with the loop parameters. If changing the VCO tuning
sensitivity, PLL chip, reference frequency, or N values; I’d strongly recommend using one of the
loop filter tools to select the component values.

Enjoy

73’s de WA2SCL

; Replacement M32 module for Wavetek 3000 Signal Generator

; by WA2SCL 28Feb2012

; input selector binary shift

; 100 20 10 input output

; 0 0 0 00X 00

; 0 0 1 01X 01

; 0 1 0 02X 10

; 0 1 1 03X 11

; 1 0 0 10X 10

; 1 0 1 11X 11

; 1 1 0 12X 00

; 1 1 1 13X 10

; inputs - pin functions

; RB0 = 1 (6)

; RB1 = 2 (7)

; RB2 = 4 (8)

; RB3 = 8 (9)

; RB4 = 10 (10)

; RB5 = 20 (11)

; RB6 = 100 (12)

; outputs

; RA1 = CLK (18)

; RA2 = DATA (1)

; RA3 = LE (2)

 LIST p=16F84A ; tell assembler what chip we are using

 #include "p16F84a.inc"

 __config _CP_OFF & _WDT_ON & _PWRTE_ON & _XT_OSC ;set WDT_ON for production

 errorlevel -302

W equ 0

F equ 1

CLK1 equ 1 ; set to PORTA:1

DAT1 equ 2 ; set to A:2, etc

LE1 equ 3

OldBCD equ 020h

NewBCD equ 021h

Tens equ 022h

Units equ 023h

Bcounter equ 024h

Acounter equ 025h

SwBin equ 026h

temp equ 027h

HighB equ 030h

MidB equ 031h

LowB equ 032h

 org 0

 nop

 goto Init

 org 5

Offset_table

 addlw 1

 addwf PCL, W

 movwf PCL

 retlw B'00000000' ; 00X

 retlw B'00000001' ; 01X

 retlw B'00000010' ; 02X

 retlw B'00000011' ; 03X

 retlw B'00000010' ; 10X

 retlw B'00000011' ; 11X

 retlw B'00000000' ; 12X

 retlw B'00000001' ; 13X

BCD_Table

 addlw 1

 addwf PCL, W

 movwf PCL

 retlw B'00000000' ; 00X

 retlw B'00001010' ; 01X

 retlw B'00010100' ; 02X

 retlw B'00011110' ; 03X

BCD2Bin

 ; converts the BCD switch setting to binary

 bcf STATUS, C

 movf Tens, W

 call BCD_Table

 addwf Units, W ; now W has the binary switch setting range (00 to 39)

 movwf SwBin ; save switch binary

 addlw 0x08

 andlw B'00011111' ; mask off A counter value

 movwf Acounter ; this is the swallow counter value

 movf SwBin, W ; get it back

 addlw .232

 btfsc STATUS, C ; if clear, then A = 45

 goto Set46

 movlw .45

 movwf Bcounter ; load B counter with correct value

 goto ExitBCD

Set46

 movlw .46

 movwf Bcounter

ExitBCD

 return

CounterN

; get divisor ready for PLL format

 clrf HighB

 movfw Acounter

 movwf LowB

 movfw Bcounter

 movwf MidB

 rlf LowB, 1

 rlf LowB, 1 ; move over to make room for control bits

 bsf LowB, 0

 bsf LowB, 1 ; control bits 1,1 for RF N

 bcf STATUS, C

 rlf MidB, 1

 return ; ready to load - right justitifed data

LoadPLL

; sends data to PLL

 btfss HighB,5 ; Bit 22

 call zero1

 btfsc HighB,5

 call one1

 btfss HighB,4 ; Bit 21

 call zero1

 btfsc HighB,4

 call one1

 btfss HighB,3 ; Bit 20

 call zero1

 btfsc HighB,3

 call one1

 btfss HighB,2 ; Bit 19

 call zero1

 btfsc HighB,2

 call one1

 btfss HighB,1 ; Bit 18

 call zero1

 btfsc HighB,1

 call one1

 btfss HighB,0 ; Bit 17

 call zero1

 btfsc HighB,0

 call one1

 btfss MidB,7 ; Bit 16

 call zero1

 btfsc MidB,7

 call one1

 btfss MidB,6 ; Bit 15

 call zero1

 btfsc MidB,6

 call one1

 btfss MidB,5 ; Bit 14

 call zero1

 btfsc MidB,5

 call one1

 btfss MidB,4 ; Bit 13

 call zero1

 btfsc MidB,4

 call one1

 btfss MidB,3 ; Bit 12

 call zero1

 btfsc MidB,3

 call one1

 btfss MidB,2 ; Bit 11

 call zero1

 btfsc MidB,2

 call one1

 btfss MidB,1 ; Bit 10

 call zero1

 btfsc MidB,1

 call one1

 btfss MidB,0 ; Bit 9

 call zero1

 btfsc MidB,0

 call one1

 btfss LowB,7 ; Bit 8

 call zero1

 btfsc LowB,7

 call one1

 btfss LowB,6 ; Bit 7

 call zero1

 btfsc LowB,6

 call one1

 btfss LowB,5 ; Bit 6

 call zero1

 btfsc LowB,5

 call one1

 btfss LowB,4 ; Bit 5

 call zero1

 btfsc LowB,4

 call one1

 btfss LowB,3 ; Bit 4

 call zero1

 btfsc LowB,3

 call one1

 btfss LowB,2 ; Bit 3

 call zero1

 btfsc LowB,2

 call one1

 btfss LowB,1 ; Bit 2

 call zero1

 btfsc LowB,1

 call one1

 btfss LowB,0 ; Bit 1

 call zero1

 btfsc LowB,0

 call one1

;

load1

 call latch_en1

 return

; pings the LE line

latch_en1

 bsf PORTA, LE1

 bcf PORTA, LE1

 return

; Subroutines to send 0 and 1

zero1

 bcf PORTA, DAT1

 bsf PORTA, CLK1

 bcf PORTA, CLK1

 return

;

one1

 bsf PORTA, DAT1

 bsf PORTA, CLK1

 bcf PORTA, CLK1

 bcf PORTA, DAT1

 return

PlugCheck ; deafults to 01 if not plugged

 movwf temp ; w has and will have the switch

 incf temp, F

 btfsc STATUS, Z ; if didn't overflow, is valid

 movlw 01h ; overflowed, so default

 bcf STATUS, Z ; not needed but avoids errors in case

 return ; w is desired switch state

; start code for program initialization

Init

 clrf STATUS ; Do initialization, Select bank 0

 clrf INTCON ; Clear int-flags, Disable interrupts

 clrf PCLATH ; Keep in lower 2KByte

 bsf STATUS,RP0 ; bank1

 movlw 0xFF

 movwf TRISB ; set portb as input 0-7

 clrf TRISA ; set porta as output 0-5

 movlw B'11111110'

 movwf OPTION_REG ; Disable PORT_B pull-ups, TMR0 to WDT

 bcf STATUS,RP0

 clrf OldBCD

 clrf NewBCD

 clrf Units

 clrf Tens

 clrf Acounter

 clrf Bcounter

 clrf SwBin

 clrf PORTA ; have RA1-3 (3 bits)

 clrf PORTB ; have RB0-6 (7 bits)

 clrwdt

 comf PORTB, W ; save the BCD values on startup

; flip the bits as the input is ground active

 call PlugCheck ; check if plugged in!

 movwf OldBCD

; initialize the IF R and N regs as well as RF R reg

 movlw 28h

 movwf LowB

 movlw 00h

 movwf MidB

 movlw 0Ah

 movwf HighB

 call LoadPLL ; load the IF R register

 movlw 01h

 movwf LowB

 movlw 0FEh

 movwf MidB

 movlw 2Fh

 movwf HighB

 call LoadPLL ; load the IF N register

 movlw 2Ah

 movwf LowB

 movlw 00h

 movwf MidB

 movlw 06h

 movwf HighB

 call LoadPLL ; load the RF R register

 call Begin ; now get the RF N register

 goto Loop1

Begin

 ; prepares the switch value and send to PLL

 swapf OldBCD, W

 andlw B'00000111' ; mask off units BCD, put it W

 call Offset_table ; now W has the tens BCD ready for PLL

 movwf Tens

 movf OldBCD, W

 andlw B'00001111' ; now units is OK in W

 movwf Units

 call BCD2Bin ; puts the binary value in W

 call CounterN ; stores the counter A & B (swallow & N) values in W

 call LoadPLL

 return

Loop1

 clrwdt ; reset the WDT

 comf PORTB, W ; get the switch setting

 call PlugCheck

 movwf NewBCD ; save newBCD, stays in W

 subwf OldBCD, W ; if the difference is 0, then no change

 btfsc STATUS, Z

 goto Loop1 ; keep checking

 movf NewBCD, W

 movwf OldBCD ; save the new value as the old (current)

 call Begin

 goto Loop1

 end

