Vertical Resolution Discussion

Barry Bolling
Application Engineer
Yokogawa Corporation of America

Overview

- OBJECTIVE: Provide practical knowledge and understanding of oscilloscope / recorder vertical resolution.
- Points covered will include:
 - What is vertical resolution?
 - Theoretical Examples
 - Real world examples
 - Specific Examples (Yokogawa)
 - System Resolution Calculation ScopeCorder Examplew
 - The ScopeCorder has 20 Divisions ...
 - ScopeCorder Examples
 - Tips
 - High Resolution Mode
 - Appendix (time domain examples & FFT examples)

What is Resolution? What is Accuracy?

- Resolution In measurement terms, the resolution of an instrument is the smallest increment that the instrument indicates or displays.
- Resolution is the ability to 'resolve' differences; that is, to draw a distinction between two things.
- Resolution can be expressed a few different ways. Common to data acquisition and oscilloscopes, it is usually expressed as the number of bits – it is the degree to which a change can be detected.
- Resolution is not accuracy.
- Accuracy In measurement terms, is a measure of the magnitude of error between the result of a measurement and the true value of the parameter being measured.
- The classic 'Target Example' #1 poor resolution & good accuracy, #2 good resolution with poor accuracy, #3 good resolution and good accuracy:

What is *vertical-axis* resolution?

8-bit Analog to Digital Converter Output as function of 0 to 1V Input

Example: 8-bit oscilloscope – theoretical

8 bits, 256 levels, 32 LSB/Div, where (32 X 8Div) = 192

Total					

Example: 8-bit oscilloscope – *real world*

7.6 bits, 192 levels, 24 LSB/Div, where (24 X 8Div) = 192

LSB/DIV as a Specification (guaranteed)

Model	Bits	Levels	LSB/Div (spec'd)	Screen Divisions	Total Divisions	Actual Levels
DL1600	8	256	24	8	10.58	253.92
SB5310	8	256	25	8	10.00	250.00
DL9000	8	256	25	8	10.00	250.00
DL7100	8	255	24	8	10.58	253.92
DL7400	8	255	24	8	10.58	253.92
DLM2000	8	255	25	8	10.10	252.50

Frequency characteristics (-3 dB attenuation when inputting a sinewave of amplitude ±3div)*1*2

rrequerity characteristics (-5 db attenuation when inputting a sinewave of amplitude ±5div)							
		DLM202x	DLM203x	DLM205x			
1 M Ω (when using passi	ive probe)						
	100 mV to 100 V/div	DC to 200 MHz	DC to 350 MHz	DC to 500 MH	łz		
	20 mV to 50 mV/div	DC to 150 MHz	DC to 300 MHz	DC to 400 MH	łz		
50 Ω							
	10 mV to 10 V/div	DC to 200 MHz	DC to 350 MHz	DC to 500 MH	Ηz		
	2 mV to 5 mV/div	DC to 150 MHz	DC to 300 MHz	DC to 400 MH	Ηz		
Isolation between channe	els	-34 dB@ analog	g bandwidth (typi	cal value)			
Residual noise level*3		The larger of 0.4	4 mV rms or 0.05	div rms			
		(typical value)					
A/D resolution		8bit (25LSB/div))				
		Max. 12 bit (in F	ligh Resolution n	node)			
Bandwidth limit		FULL, 200 MHz	z, 100MHz, 20 Mł	Hz, 10 MHz,			
		5 MHz, 2 MHz,	1 MHz, 500 kHz,	250 kHz,			

125 kHz, 62.5 kHz, 32 kHz, 16 kHz, 8 kHz

(can be set for each channel)

DLM2000 - 10.5 Divisions

There is ample space to utilize most all of the A/D Converter – by using the *fine* scale Volts/Div. Signal will clip in the red region.

256LSB/10.15DIV = 25 LSB/Div

At 25 LSB/Div, 8 Div X 25 LSB/Div = 7.6 bits And staying on-screen with your waveform

Example: Using 4 Div on the DLM2000

DLM2000 set to 1 V/Div. and the Input Waveform is 4Vpp. DLM2000 is 25 LSB/Div guaranteed specification.

Vertical Resolution

- = V/Div / LSB/DIV
- = 1 / 25
- = 40 mV.

ADC Count

- = Log₂(4Vpp / 8Vfull-scale) * 25 LSB/DIV*8 DIV
- $= Log_2(4/8)*(200)$
- $= Log_2(100)$
- = 6.6 bits

Each bit halves the resolution (improves)

Example: Using 8 Div on the DLM2000

DLM2000 set to 0.5 V/Div. and the Input Waveform is 4Vpp. DLM2000 is 25 LSB/Div guaranteed specification.

Vertical Resolution

- = V/Div / LSB/DIV
- = 0.5 / 25
- = 20 mV.

ADC Count

- = Log₂(4Vpp / 4Vfull-scale) * 25 LSB/DIV*8 DIV
- $= Log_2(1)*(200)$
- $= Log_2(200)$
- = 7.6 bits

Each bit halves the resolution (improves)

So, keep the waveform near or at full-scale.

System Resolution Calculation #1

System Resolution Calculation #2

The ScopeCorder has 20 Divisions ...

10 Divisions are on-screen

20 Divisions are specified

25 Divisions in reality – but not specified.

Those extra 5 Divisions should be regarded as "headroom"

We can do even better on resolution, examples follow ...

High-Voltage 100 kS/s, 16-Bit Isolation Module (with RMS) (701260) Specifications

Item	Specifications	
Standard operating	•	23°C±5°C
conditions	Humidity: 2	20% to 80%RH
>	After a 30-minute	e warm-up and after calibration
Effective measurement	20 div (±10 div a	round 0 V, display range: 10 div, when Variable is OFF)
range		
Number of input channels	2	
Input coupling	AC, DC, GND, A	C-RMS, and DC-RMS
Maximum sample rate	100 kS/s	
Input format	Isolated unbalan	ced

ScopeCorder – Visualize 20 Divisions

- Green Region This is the LCD, 10 Div
- Yellow Region 5 additional divisions, both above and below the LCD's 10 divisions, for a total of 20 divisions.
- Pink Region some "head room".
- Red Region Waveform will "clip" and cannot enter the red region.

This information describes the DL750/DL750P/SL1400 – not the DL708 / DL716, or any other.

The DL708 / DL716 did not offer this feature.

These 20 divisions can be utilized to best advantage and to gain one more bit of resolution (halving the resolution).

Pink Region: 'Head Room' area not intended for waveforms. Yellow Region: A useful additional 5 Div area "above" the main display area over which waveforms may be acquired; Green Region: This is the 10 division display screen area which Yellow Region: A useful additional 5 Div ara "below" the main display area over which waveforms may be acquired; Pink Region: 'Head Room' area not intended for waveforms

Tips to Optimize Resolution

- **Tip 1**: Use the instrument at or near full-scale.
- Tip 2: Use the 'FINE' scale on your instrument's input amplifier.
- Tip 3: When measuring small signals, use 1:1 for best SNR.
- Tip 4: Calculate and know your ADC count (this is not 'ENOB'), example follows:

You can double your vertical resolution for each bit of improvement to your ADC Count.

Hi-Resolution Mode

- 1. These scopes feature Hi-Res mode: DL1600, DL9000, SB5000, DL6000, DLM6000, DLM2000.
- 2. Hi-Res mode is an industry-standard sequential algorithm:

 Pre-Filter → Over-Sample → Average → Data-Thinning → Filter
- 3. Hi-Res mode removes HF noise and increases vertical resolution.
- 4. Hi-Res improves the resolution of small signals in the presence of large signals.
- 5. Hi-Res increases Dynamic Range; FFTs are improved.
- 6. Theoretical limit is 13-bits; in-practice, 12-bits; select from 9, 10, 11, 12.
- 7. Hi-Res DATA is saved as 16-bit format.
- 8. The record length is reduced: 6.25 Mpts is reduced to 2.5 Mpts on 6000/9000.
- 9. If the record length is maxed-out, then the displayed sample-rate is halved.
- 10. The ADC at the front-end is *still running at full-speed*.
- 11. When Hi-Res is 'ON', the maximum bandwidth of any channel is 200 MHz.
- 12. Yokogawa's Hi-Res mode compares favorably with the industry:
 The Hi-Res mode works at all Time/Div settings (unlike Tek's Hi-Res mode).
- 13. It is easy to use; just turn it ON and select a filter. Resolution is increased; Accuracy is un-changed; Hi-Res measurements are *repeatable*.
- 14. The DLM2000 Hi-Res, combined with interleave, can provide -52 dB of noise reduction! As you can see, Yokogawa continues to improve its products.

Hi-Resolution Mode

---> 12 bit : Resolution reduction is due to rounding-error of IIR calculation.

20*LOG(1/63.75) = -36 dB

Hi-Resolution Mode – DLM2000

DLM2054	Interleave-OFF	<u> </u>	Interleave=ON		
Bandwidth	Noise Suppression	Resolution	Noise Suppression	Resolution	
200 MHz	1/(1.6)	8.5 bits	1/(2.0)	9.0 bits	
100 MHz	1/(2.4)	9.3 bits	1/(3.4)	9.8 bits	
20 MHz	1/(4.9)	10.3 bits	1/(6.9)	10.8 bits	
10 MHz	1/(6.9)	10.8 bits	1/(9.8)	11.3 bits	
5 MHz	1/(10.6)	11.4 bits	1/(15.0)	11.9 bits	
2 MHz	1/(15.5)	12.0 bits	1/(21.9)	12.5> 12.0 bits	
1 MHz	1/(22.3)	12.5> 12.0 bits	1/(31.5)	13.0> 12.0 bits	
500 kHz	1/(31.7)	13.0> 12.0 bits	1/(44.9)	13.5> 12.0 bits	
250 kHz	1/(45.1)	13.5> 12.0 bits	1/(63.7)	14.0> 12.0 bits	
125 kHz	1/(63.9)	14.0> 12.0 bits	1/(90.3)	14.5> 12.0 bits	
62.5 kHz	1/(90.4)	14.5> 12.0 bits	1/(127.9)	15.0> 12.0 bits	
32 kHz	1/(127.9)	15.0> 12.0 bits	1/(180.9)	15.5> 12.0 bits	
16 kHz	1/(181.0)	15.5> 12.0 bits	1/(255.9)	16.0> 12.0 bits	
8 kHz	1/(256.0)	16.0> 12.0 bits	1/(362.0)	16.5> 12.0 bits	

Hi-Resolution Mode – Step 1 of 2

Hi-Resolution Mode – Step 2 of 2

Hi-Resolution Mode Example & Calculation

Appendix

- Samples of Hi-Resolution in use
- Samples of Hi-Resolution Mode's effect on FFT (before and after)
- Graph of Hi-Resolution Performance DLM2000
- Graph of Hi-Resolution Performance DLM2000

Hi-Res OFF - BW_1GHz_Noise at 0dB

Hi-Res_ON - BW_200MHz_Noise at -4dB

Hi-Res_ON - BW_20MHz_Noise at -5dB

Hi-Res_ON - BW_8MHz_Noise at -10dB

Hi-Res_ON - BW_4MHz_Noise at -12dB

Hi-Res_ON - BW_2MHz_Noise at -17dB

Hi-Res_ON - BW_1MHz_Noise at -18dB

Hi-Res_ON - BW_500kHz_Noise at -24dB

Hi-Res_ON - BW_250kHz_Noise at -25dB

Hi-Res_ON - BW_125kHz_Noise at -29dB

Hi-Res_ON - BW_62.5kHz_Noise at -29dB

Hi-Res_ON - BW_32kHz_Noise at -33dB

Hi-Res_ON - BW_16kHz_Noise at -33dB

Hi-Res_ON - BW_8kHz_Noise at -33dB

FFT w/o Hi-Res Mode - "Before"

FFT w/ Hi-Res Mode - "After"

