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Testing Basics

• Testing and debug in commercial systems have many parts
– What do I do in my design for testability?
– How do I actually debug a chip?
– What do I do once I’ve debugged a chip?

• Two rules always hold true in testing/debug
– If you design a testability feature, you probably won’t need to use it

• Corollary: If you omit a testability feature, you WILL need to use it
– If you don’t test it, it won’t work, guaranteed
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Two Checks

• There are two basic forms of validation
– Functional test: Does this chip design produce the correct results?
– Manufacturing test: Does this particular die work? Can I sell it?

• What’s the difference?
– Functional test seeks logical correctness 

• >1 year effort, up to 50 people, to ensure that the design is good
– Manufacturing test is done on each die prior to market release

• Send your parts through a burn-in oven and a tester before selling them

• The distinction is in the testing, not in the problem
– Ex: A circuit marginality (such as charge-sharing in a domino gate)

• Can show up in either functional or manufacture test
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Testing Costs Are High

• Functional test consumes lots of people and lots of $$
– “Architecture Validation” (AV) teams work for many years

• Write lots of RTL tests in parallel with the chip design effort
• Reuse RTL tests from prior projects (backwards compatibility helps!)

– First 12 months after silicon comes back from fab
• Large team (50+) gathered specifically for debug, usually pulling shifts
• First “root-cause” a problem, then do “onion-peeling” to find “many-rats”

• Manufacture test constrains high-volume production flow
– Must run as many tests as needed to identify frequency bins

• Including the “zero-frequency” bin for keychains
– Automated test equipment (ATE) can cost $1-10 million
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The Stakes Are Higher

• Recall of a defective part can sink a company
– Or at least cost a lot of money: Intel FDIV recall cost nearly $500M

• Not just CPUs: NHTSA 97V034.001 recall
– Izuzu Trooper had a bad voltage regulator IC, nearly 120,000 cars

• Time-to-market, or time-to-money, pressures are paramount
– Industry littered with “missed windows” (Intel LCoS, Sun Millenium)

• How long does it take to “root-cause” a problem? (from Ron Ho)
– Bad test, or layout-vs-schematic error, on ATE: 2 person-weeks
– Marginal circuit with intermittent error, on ATE: 2 person-months
– Logic error, or any error seen only on a system: 2 person-years
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Testability in Design

• Build a number of test and debug features at design time

• This can include “debug-friendly” layout
– For wirebond parts, isolate important nodes near the top
– For face-down/C4 parts, isolate important node diffusions

• This can also include special circuit modifications or additions
– Scan chains that connect all of your flops/latches
– Built-in self-test (BIST)
– Analog probe circuits
– Spare gates

• Focus on the circuit modifications and debugging circuit issues
– Spent time in EE271 on logical/functional testing
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Scan Chains

• Lots and lots of flops/latches in a high-end chip
– 200,000 latches on 2nd gen Itanium (static + dynamic)

• Scan chains offer two benefits for these latches and flops
– Observability: you can stop the chip and read out all their states
– Controllability: you can stop the chip and set all of their states

• Critical for debugging circuit issues too
– They are your easiest “probe” points in the circuit
– Can trace back errors to see where they first appear

• Great with simulator or when a part fails in some condition
– Even more useful with a flexible clock generator

• Can stress certain clock cycles, and look at which bits fail
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Building Scan Chains

• Scan chains add a second parallel path to each flop/latch
– Extra cap, extra area (<5% of the chip die total)
– Make sure scan inputs can overwrite the flop
– Make sure enabling scan doesn’t damage cell (backwriting)
– Trend is to have every single flop/latch on the chip scan-able
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Other Scan Chains

• Previous scan flop had a dedicated shift in/out line
– Can also share the outputs and clk
– Simpler, but scanning out can “mess with” the rest of the chip

• Key: If nothing else works, make sure your scan chain does!
– It is how you debug most everything on your chip
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Challenges with Scan, BIST, and ATPG

• Initialization states need to be clean – X’s corrupt signatures
– Especially true for memory blocks; write to the array, then do test

• Logic can have “don’t care” states that the test may not realize

• Example: MUTEX
– FF outputs cannot both be “1”
– But FFs are on the scan chain
– Scan can set up contention
– Tester sees “X” on the bus

• Must constrain ATPG/BIST
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Analog Test Facilities

• Scan/BIST facilities look at digital signals only
– Sometimes analog signal levels are important to probe as well
– Clock, PLL filter cap voltage, low-swing signals, etc.

• We have a couple of tools for analog probing on silicon
– But generally require access to the chip metal layers (top of the die)

• Pico-probing and E-Beam probing 
– Other tools (laser probing, IR emission) only probe digital signals

• They can tell us when nodes transition, not what voltage they are

• We can also use test circuits to probe analog circuits
– If we know in advance what we want to probe
– Not a general post-fab debug technique
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On-Chip Sampling Oscilloscopes

• Basic idea: sample an analog voltage and turn it into a current
– Drive current off-chip into an oscilloscope
– Small capacitance of the sampler doesn’t disturb the test voltage
– Limited by high-voltage compliance of nMOS passgates and pMOS
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Using Sampling Oscilloscopes

• Put the chip in a repeating mode, so the test waveform repeats
• Can run the sampler in “accurate mode”

– Sampler clock has same frequency as chip clock (no LPF)
– Gradually walk the phase offsets between sampler and chip clocks

• Or, can run the sampler in “pretty mode”
– Run sampler clock at slightly different frequency as chip clock
– “Walk” through the waveforms, and plot the curve on the scope
– Less accurate due to LPF at the input (charge-sharing)

• In both modes, jitter of sampler clock limits the BW of system
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Sampling Oscilloscope Results

• Calibration is important – each sampler on the chip is different

• Sampled bitlines on a low-power memory compared to sims

Source: Ho, VLSI Symp ‘98
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More Sampler Results

• Low-swing on-chip interconnects can also be probed
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Spare Gates

• Post-silicon edits can be done using Focused Ion Beams (FIB)
– Remove wires and add new wires

• FIB cannot add new devices, however
– So you often throw in a smattering of extra layout, just in case
– Need to put them in the schematics, as well

• Spare gates are basic cells with grounded inputs
– They don’t do anything normally (except take up space)
– You can insert them using a FIB edit later
– Mixture of inv, nand-2/3, nor-2/3, a few flops
– Plan on inserting these in your blocks, whereever you have room
– HP calls them “happy gates” for reasons obvious to the debug team
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Debugging a Chip

• Run parts on tester and exercise the clock shrink mechanisms
– ODCS was discussed in the clocking section
– Can move an arbitrary clock early or late to test speedpath theories

• Also vary the voltage and the frequency
– Obtain “schmoo” plots
– Named (and misspelled) after the Lil’Abner comic strip (1940s)

• One of the first schmoo plots looked round and bulbous (!?)

A “shmoo” (plural: shmoon)
Resembles a type of plot used by EEs

(who can’t spell and call it a “schmoo”)

Source: www.deniskitchen.com
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Schmoo examples
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Schmoo examples
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Electronic “Optics” Can Look At Chips

• Scanning Electron Microscope looks at a chip in a vacuum
– Useful for defect analysis, not really for tests during chip operation

Source: M. Heath, Intel

Source: KLA-Tencor Source: ifw-dresden.de
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E-beam Probing and Controlling

• E-beam probing is a technique that requires face access
– Shoot electrons at the chip and measure reflected electrons
– Grounded metals look bright; high-voltage metals look dark
– Can probe metals this way to find out their voltages
– Can also pulse e-beams at higher energy to charge up nodes

• Mild form of controllability to go along with observability

Source: www.necel.com
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Backside Access More Important Today

• Most chips are face-down and flip-chip bonded to package

• Covered already in the clock skew lecture, but briefly mention
– PICA (IBM) and TRE (Intel)

• Capture photons (10-6/s rate) emitted from transistors that are switching
• Integrate over many many loops of the chip to build up a “movie”

– LVP (Intel): Laser voltage probing
• Just like e-beam, but through a thinned back and aimed at diffusions
• Can see transitions, not voltage levels
• Should put a “probe diode” near a gate you believe will be critical

• In both techniques, it’s important to have alignment fiducials
– The back of a die is otherwise flat, featureless, and boring
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Laser Voltage Probe (LVP)

• Basic idea
– Have picosecond pulse laser aimed at silicon
– Measure the reflectance (complex)
– Reflectance depends on carrier density

• Which depends on depletion width, which depends on voltage

• Energy (light) absorbed by carriers in conduction band
– Laser pointed at “backside” of transistors

• Requires “flip-chip” packaging
• Laser photon energy close to silicon band edge
• Wavelength kept in IR or NIR band (transparent thru silicon)

– Laser can induce carriers in conduction band
• Need to keep intensity low enough to prevent inducing current

– Laser must be mode-locked to test
• Must be sync’d to test loop length
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Time Resolved Emission (TRE)
• Detects photons emitted by switching xtors (also called PICA)

– Carriers in the channel “thermalize”, emitting NIR light
• Silicon is transparent to IR

– Need a REALLY good detector
• Single photon per 10K switching events
• Photons go in all directions; detector only at one angle
• Need great timing resolution

– Completely non-invasive
– Collection times are significant

• Longer time = better signal-to-noise ratio (SNR)
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Light Emission from CMOS Circuits: Transient

A

B C
From P. Sanda
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PICA Movie
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LADA: Laser-Assisted Device Alteration

• Lasers can not only probe the voltages of diffusions
– They can also control the behavior of the circuits

• Aim a 1.3μm wavelength laser at a circuit: heats up the circuits
– Slows everything down

• Aim a 1.06μm wavelength laser at a circuit: generates e-/h+ pairs
– nMOS devices have more current (in parallel with the device)
– pMOS devices have lower Vt (reduce rise delay, increase fall delay)
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Using LADA

• Generate a theory why your chip fails – that circuit X is bad

• Run the ATE in a repeated mode and set environment “right”
– Establish temperature, voltage, frequency so test *just* fails
– Now scan the laser, raster-style, over the block containing X
– See if the test passes; if so, note where laser was aimed
– Aha! The device at that location was critical

• Beware multiple unintended side effects
– Leakage, conflicting speedpaths, etc.
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Fixing A Chip Problem

• Focused Ion Beam (FIB) allows post-fabrication edits on Silicon
– Used to check if a proposed fix will actually work

• Before you burn the $$$$ for a new mask set
– Very expensive ($350-$400/hr), so don’t do it unless you need to

• Usually 3-5 hours per “normal” fix
• Only fixes one dice at a time

• FIB edits can be additive or subtractive
– Cut wires or lay down new wires

• FIB used to be from the top of the chip only
– But today can also be used for backside FIB (for flip-chip die), too
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FIB example
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FIB for Probe

• The ability to do backside FIB enables mechanical probe
– FIB a metal probe pad on the back of the silicon; tie to a diffusion
– Now you can break out those picoprobes that you had stored away

• Not great for high-bandwidth signals
– Lots of extra cap, potentially inductance problems as well
– Better for Vdd and Gnd
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Summary

• Debug is a huge and expensive effort

• Plan for debug in your design
– Use scan, BIST, ATPG
– Build analog samplers if you know you’ll need to probe some node
– Insert spare gates in your blocks; you’ll probably need them

• Debug itself uses tester results and probing
– Schmoos and clock shrinking can get you pretty far
– Test theories with mechanical or e-beam probing and lasers

• When you find the problem, call your FIB operator
– FIB first before respinning the chip, to ensure the fix “takes”
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Reliability

• Failure rates of devices follow a bathtub curve
– Infant mortality: gross defects, poor manufacturing tolerances
– Useful life: problems arising from wear and tear, random errors
– Wear out: slower slope than infant side, but accelerated failures
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Burn-In Ovens

• Can we accelerate the infant mortality portion of the curve?
– Push all the parts into the “useful life” region
– Discard the ones that die and sell the rest with high confidence

• Use burn-in ovens to heat and simultaneously exercise the parts
– Bump up temperature and voltage to get “acceleration factors”
– Temp held to 150o-200o and voltage to 1.5x-2x nominal (typically)

• Temperature depends on burn-in oven package solution
– Package has a thermal resistivity, say ¼ oC/W (for example)
– Holding oven at 125oC for 100W parts means 150oC junction temp
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Burn-In Oven Boards

• Populate a burn-in board with your parts
– Board exercises the parts (tests and/or power virus) during burn-in

• High-power chips strain the capacity of burn-in ovens
– You can’t put too many 100W and 100A chips on a burn-in board!

Source: reed-electronics.com

Source: reed-electronics.com
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Burn-In and Design

• Chips in the burn-in oven should work at those temps & voltages
– Don’t want the artificial environment of burn-in to cause failures

• For example, higher leakage in burn-in shouldn’t cause failures
– Domino gate with big nMOS
– Use a secondary keeper

• Only in burn-in
• Combats elevated leakage

• Also an issue for > Vdd nodes
– Burn in increases Vdd

Source: Chen, Broadcom
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Reliability and Design

• Two examples of how designers worry about reliability

• Wires have reliability issues relating to wear-out
– Electromigration for unidirectional current (depends on Iavg)
– Self-heating for bidirectional current (depends on Irms)
– Copper wires better than Aluminum, but still have limits
– Use minimum width rules based on total capacitance for layout

• Gates have reliability rules relating to hot-carrier degradation
– Electrons in the channel can smack into the gate and “stick”
– Shift in Vt over time from charge trapping and general muckiness
– Regulate this by ensuring circuits are not “on” all the time
– Limit risetime of signals to be 20% of the cycle time (for example)
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• The basic semantic for reliability is the FIT, or failure rate
– “Failure in time” = failures per billion hours (note: 8760 hrs/yr)

• Time-to-failure uses Arrhenius’s model (1903 Nobel laureate)
– Time-to-failure = (FIT)-1 = Const eEa/(kT) (k=8.6x10-5 eV/oK)
– Empirically estimate the activation energy Ea

– Gives the ratio of failure rates at different temps (Const drops out)

• Ex: test 900 parts for 1000 hours, and find 8 rejects at 100oC
– If Ea was 1eV, what will be the failure rate at 30oC?
– 8 rejects/(900*1000) = 8.9x10-6 failure rate
– Ratio of TTFs from 100oC to 30oC = 1300, so FIT scales by 1/1300
– Failure rate at 30oC is about 6.84x10-9, or 6.84 FIT

Long-Term Reliability
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• How cheesy is this, using Arrhenius’s equation? 
– Why do IC failures obey a chemical reaction rate model?

• Quite surprisingly, not that cheesy
– Many failures initiated by atomic or molecular changes, e.g.:

Oxide/dielectric breakdown Ea = 0.8 eV
Electromigration Ea = 0.5 – 0.7 eV
Hot-carrier Vt degradation Ea = -0.2 eV (negative!)

– Physical failure modes are diverse, but obey temp relationship

• Some failures do NOT obey this model well
– Solder ball stress fatigue, bad manufacturing tolerances, etc.
– Much more complex models out there

Long-Term Reliability
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Other Reliability Issues

• Soft-errors and their prevention/mitigation affects design
– Cosmic rays or α-particles smack into your silicon, inject electrons
– We will examine this in more depth next week

• Usually set design and layout rules based on a 10-year lifespan
– Not well publicized; typical consumer believes ICs work forever
– Military specifications may well be different


