Lecture 14

Design for Testability

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2006 Ron Ho, Mark Horowitz

Testing Basics

- Testing and debug in commercial systems have many parts
 - What do I do in my design for testability?
 - How do I actually debug a chip?
 - What do I do once I've debugged a chip?
- Two rules always hold true in testing/debug
 - If you design a testability feature, you probably won't need to use it
 - Corollary: If you omit a testability feature, you WILL need to use it
 - If you don't test it, it won't work, guaranteed

Two Checks

- There are two basic forms of validation
 - Functional test: Does this chip design produce the correct results?
 - Manufacturing test: Does this particular die work? Can I sell it?
- What's the difference?
 - Functional test seeks logical correctness
 - >1 year effort, up to 50 people, to ensure that the design is good
 - Manufacturing test is done on each die prior to market release
 - Send your parts through a burn-in oven and a tester before selling them
- The distinction is in the testing, not in the problem
 - Ex: A circuit marginality (such as charge-sharing in a domino gate)
 - Can show up in either functional or manufacture test

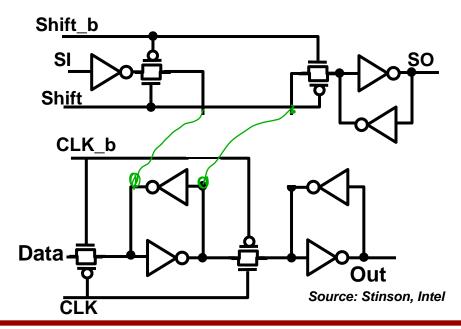
Testing Costs Are High

- Functional test consumes lots of people and lots of \$\$
 - "Architecture Validation" (AV) teams work for many years
 - Write lots of RTL tests in parallel with the chip design effort
 - Reuse RTL tests from prior projects (backwards compatibility helps!)
 - First 12 months after silicon comes back from fab.
 - Large team (50+) gathered specifically for debug, usually pulling shifts
 - First "root-cause" a problem, then do "onion-peeling" to find "many-rats"
- Manufacture test constrains high-volume production flow
 - Must run as many tests as needed to identify frequency bins
 - Including the "zero-frequency" bin for keychains
 - Automated test equipment (ATE) can cost \$1-10 million

The Stakes Are Higher

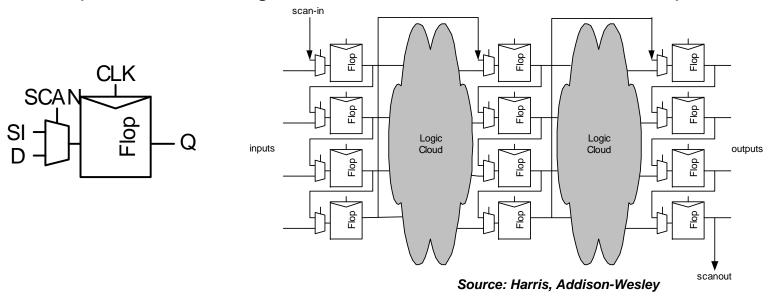
- Recall of a defective part can sink a company
 - Or at least cost a lot of money: Intel FDIV recall cost nearly \$500M
- Not just CPUs: NHTSA 97V034.001 recall
 - Izuzu Trooper had a bad voltage regulator IC, nearly 120,000 cars
- Time-to-market, or time-to-money, pressures are paramount
 - Industry littered with "missed windows" (Intel LCoS, Sun Millenium)
- How long does it take to "root-cause" a problem? (from Ron Ho)
 - Bad test, or layout-vs-schematic error, on ATE: 2 person-weeks
 - Marginal circuit with intermittent error, on ATE: 2 person-months
 - Logic error, or any error seen only on a system: 2 person-years

Testability in Design


- Build a number of test and debug features at design time
- This can include "debug-friendly" layout
 - For wirebond parts, isolate important nodes near the top
 - For face-down/C4 parts, isolate important node diffusions
- This can also include special circuit modifications or additions
 - Scan chains that connect all of your flops/latches
 - Built-in self-test (BIST)
 - Analog probe circuits
 - Spare gates
- Focus on the circuit modifications and debugging circuit issues
 - Spent time in EE271 on logical/functional testing

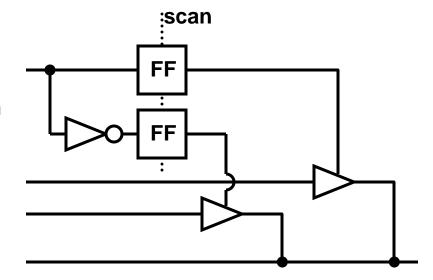
Scan Chains

- Lots and lots of flops/latches in a high-end chip
 - 200,000 latches on 2nd gen Itanium (static + dynamic)
- Scan chains offer two benefits for these latches and flops
 - Observability: you can stop the chip and read out all their states
 - Controllability: you can stop the chip and set all of their states
- Critical for debugging circuit issues too
 - They are your easiest "probe" points in the circuit
 - Can trace back errors to see where they first appear
 - Great with simulator or when a part fails in some condition
 - Even more useful with a flexible clock generator
 - Can stress certain clock cycles, and look at which bits fail


Building Scan Chains

- Scan chains add a second parallel path to each flop/latch
 - Extra cap, extra area (<5% of the chip die total)
 - Make sure scan inputs can overwrite the flop
 - Make sure enabling scan doesn't damage cell (backwriting)
 - Trend is to have every single flop/latch on the chip scan-able

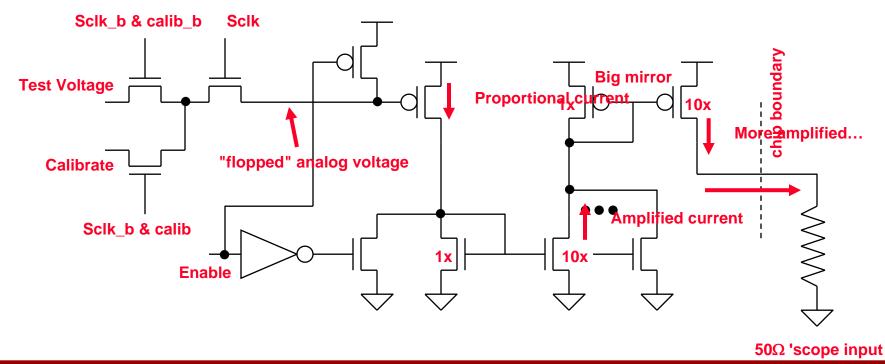
Other Scan Chains


- Previous scan flop had a dedicated shift in/out line
 - Can also share the outputs and clk
 - Simpler, but scanning out can "mess with" the rest of the chip

- Key: If nothing else works, make sure your scan chain does!
 - It is how you debug most everything on your chip

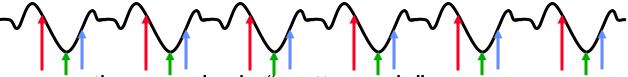
Challenges with Scan, BIST, and ATPG

- Initialization states need to be clean X's corrupt signatures
 - Especially true for memory blocks; write to the array, then do test
- Logic can have "don't care" states that the test may not realize
- Example: MUTEX
 - FF outputs cannot both be "1"
 - But FFs are on the scan chain
 - Scan can set up contention
 - Tester sees "X" on the bus
- Must constrain ATPG/BIST



Analog Test Facilities

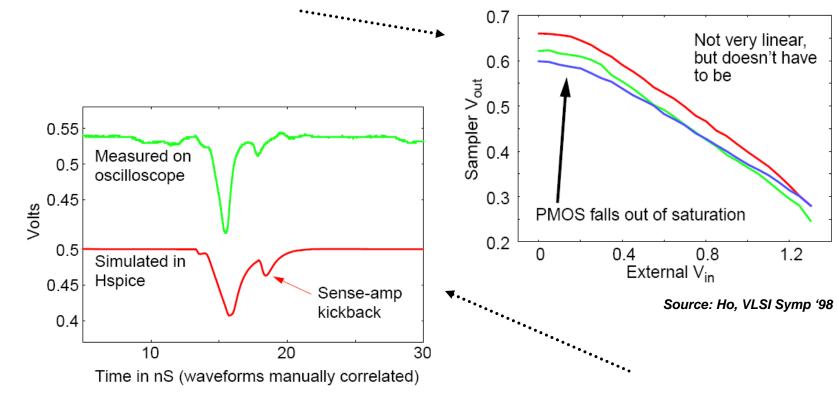
- Scan/BIST facilities look at digital signals only
 - Sometimes analog signal levels are important to probe as well
 - Clock, PLL filter cap voltage, low-swing signals, etc.
- We have a couple of tools for analog probing on silicon
 - But generally require access to the chip metal layers (top of the die)
 - Pico-probing and E-Beam probing
 - Other tools (laser probing, IR emission) only probe digital signals
 - They can tell us when nodes transition, not what voltage they are
- We can also use test circuits to probe analog circuits
 - If we know in advance what we want to probe
 - Not a general post-fab debug technique


On-Chip Sampling Oscilloscopes

- Basic idea: sample an analog voltage and turn it into a current
 - Drive current off-chip into an oscilloscope
 - Small capacitance of the sampler doesn't disturb the test voltage
 - Limited by high-voltage compliance of nMOS passgates and pMOS

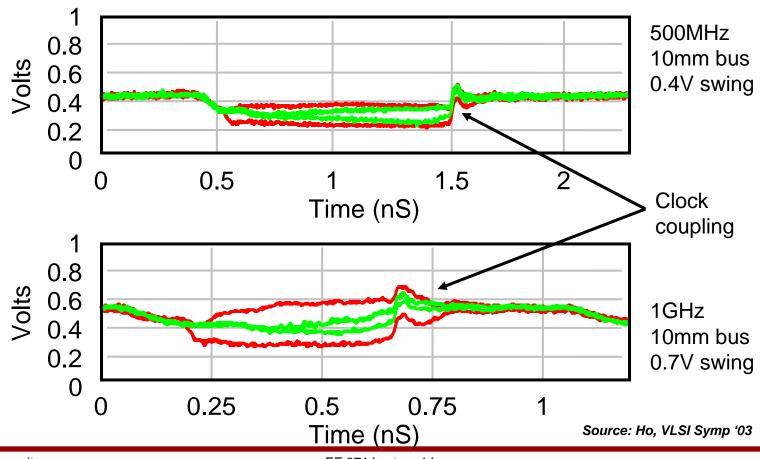
Using Sampling Oscilloscopes

- Put the chip in a repeating mode, so the test waveform repeats
- Can run the sampler in "accurate mode"
 - Sampler clock has same frequency as chip clock (no LPF)
 - Gradually walk the phase offsets between sampler and chip clocks


- Or, can run the sampler in "pretty mode"
 - Run sampler clock at slightly different frequency as chip clock
 - "Walk" through the waveforms, and plot the curve on the scope
 - Less accurate due to LPF at the input (charge-sharing)

• In both modes, jitter of sampler clock limits the BW of system

Sampling Oscilloscope Results


Calibration is important – each sampler on the chip is different

Sampled bitlines on a low-power memory compared to sims

More Sampler Results

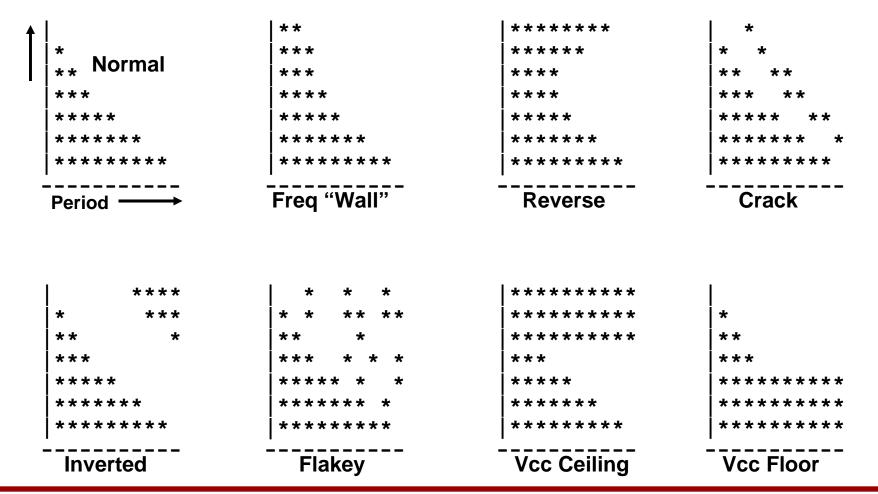
Low-swing on-chip interconnects can also be probed

Spare Gates

- Post-silicon edits can be done using Focused Ion Beams (FIB)
 - Remove wires and add new wires
- FIB cannot add new devices, however
 - So you often throw in a smattering of extra layout, just in case
 - Need to put them in the schematics, as well
- Spare gates are basic cells with grounded inputs
 - They don't do anything normally (except take up space)
 - You can insert them using a FIB edit later
 - Mixture of inv, nand-2/3, nor-2/3, a few flops
 - Plan on inserting these in your blocks, whereever you have room
 - HP calls them "happy gates" for reasons obvious to the debug team

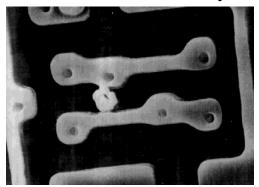
Debugging a Chip

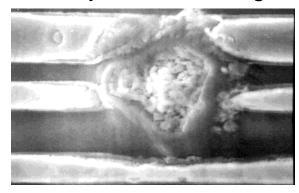
- Run parts on tester and exercise the clock shrink mechanisms
 - ODCS was discussed in the clocking section
 - Can move an arbitrary clock early or late to test speedpath theories
- Also vary the voltage and the frequency
 - Obtain "schmoo" plots
 - Named (and misspelled) after the Lil'Abner comic strip (1940s)
 - One of the first schmoo plots looked round and bulbous (!?)

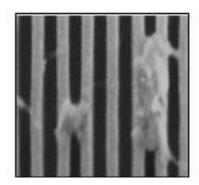

A "shmoo" (plural: shmoon)
Resembles a type of plot used by EEs
(who can't spell and call it a "schmoo")

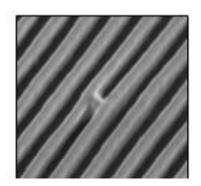
Source: www.deniskitchen.com

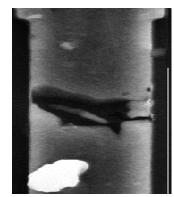
Schmoo examples



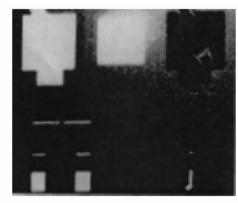

Schmoo examples


Electronic "Optics" Can Look At Chips


- Scanning Electron Microscope looks at a chip in a vacuum
 - Useful for defect analysis, not really for tests during chip operation

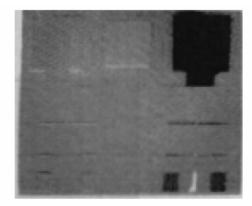


Source: M. Heath, Intel


Source: KLA-Tencor

Source: ifw-dresden.de

E-beam Probing and Controlling


- E-beam probing is a technique that requires face access
 - Shoot electrons at the chip and measure reflected electrons
 - Grounded metals look bright; high-voltage metals look dark
 - Can probe metals this way to find out their voltages
 - Can also pulse e-beams at higher energy to charge up nodes
 - Mild form of controllability to go along with observability

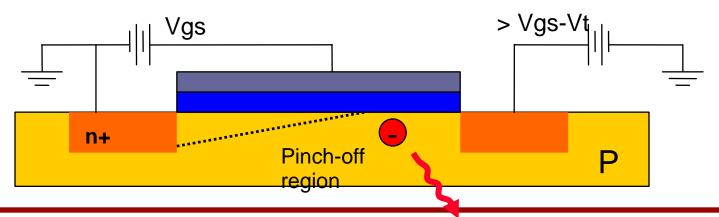
Potential contrast image of nondefective specimen

Potential contrast image of defective specimen

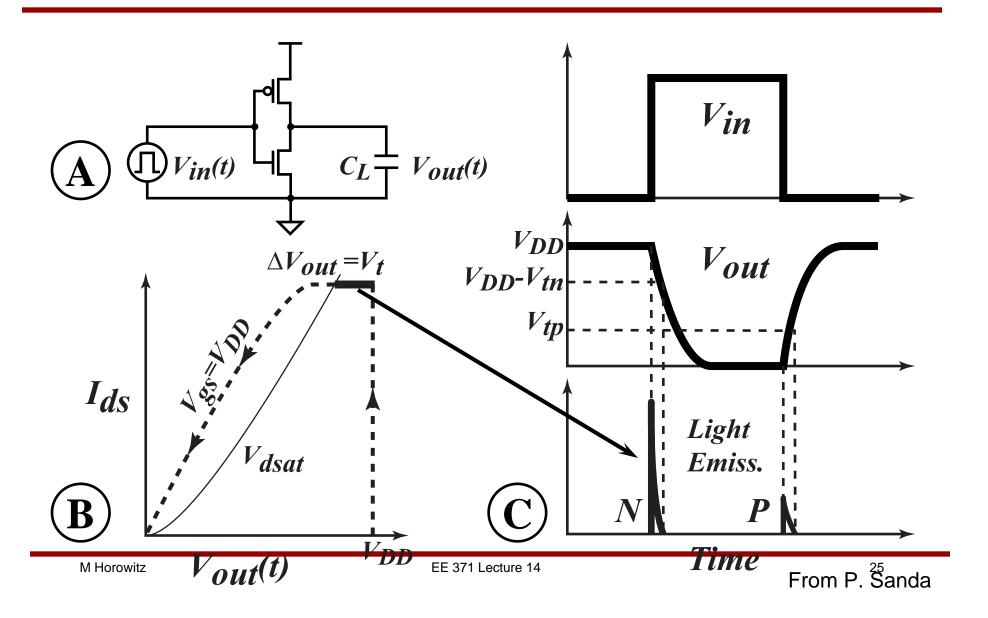
Differential image

Source: www.necel.com

Backside Access More Important Today


- Most chips are face-down and flip-chip bonded to package
- Covered already in the clock skew lecture, but briefly mention
 - PICA (IBM) and TRE (Intel)
 - Capture photons (10⁻⁶/s rate) emitted from transistors that are switching
 - Integrate over many many loops of the chip to build up a "movie"
 - LVP (Intel): Laser voltage probing
 - Just like e-beam, but through a thinned back and aimed at diffusions
 - Can see transitions, not voltage levels
 - Should put a "probe diode" near a gate you believe will be critical
- In both techniques, it's important to have alignment fiducials
 - The back of a die is otherwise flat, featureless, and boring

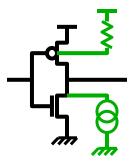
Laser Voltage Probe (LVP)


- Basic idea
 - Have picosecond pulse laser aimed at silicon
 - Measure the reflectance (complex)
 - Reflectance depends on carrier density
 - Which depends on depletion width, which depends on voltage
- Energy (light) absorbed by carriers in conduction band
 - Laser pointed at "backside" of transistors
 - Requires "flip-chip" packaging
 - Laser photon energy close to silicon band edge
 - Wavelength kept in IR or NIR band (transparent thru silicon)
 - Laser can induce carriers in conduction band
 - Need to keep intensity low enough to prevent inducing current
 - Laser must be mode-locked to test
 - Must be sync'd to test loop length

Time Resolved Emission (TRE)

- Detects photons emitted by switching xtors (also called PICA)
 - Carriers in the channel "thermalize", emitting NIR light
 - Silicon is transparent to IR
 - Need a REALLY good detector
 - Single photon per 10K switching events
 - Photons go in all directions; detector only at one angle
 - Need great timing resolution
 - Completely non-invasive
 - Collection times are significant
 - Longer time = better signal-to-noise ratio (SNR)

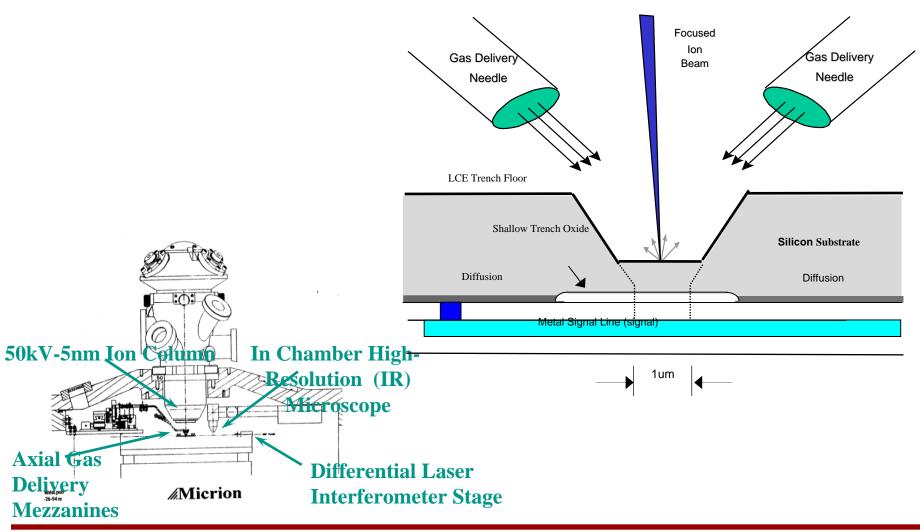
Light Emission from CMOS Circuits: Transient



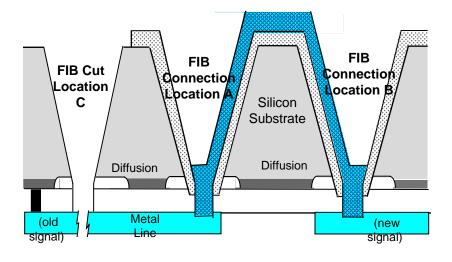
PICA Movie

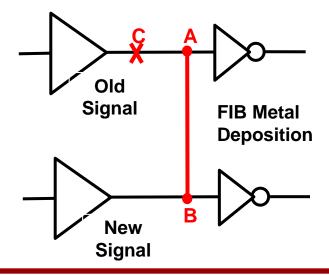
LADA: Laser-Assisted Device Alteration

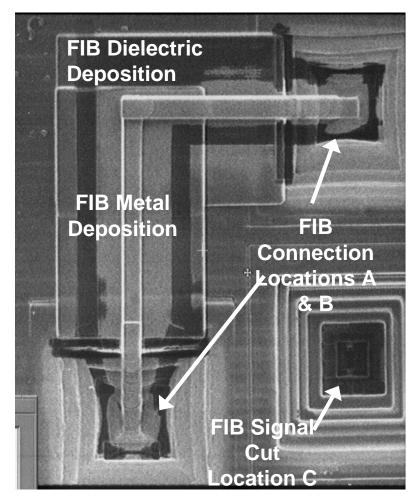
- Lasers can not only probe the voltages of diffusions
 - They can also control the behavior of the circuits
- Aim a 1.3μm wavelength laser at a circuit: heats up the circuits
 - Slows everything down
- Aim a 1.06μm wavelength laser at a circuit: generates e⁻/h⁺ pairs
 - nMOS devices have more current (in parallel with the device)
 - pMOS devices have lower Vt (reduce rise delay, increase fall delay)


Using LADA

- Generate a theory why your chip fails that circuit X is bad
- Run the ATE in a repeated mode and set environment "right"
 - Establish temperature, voltage, frequency so test *just* fails
 - Now scan the laser, raster-style, over the block containing X
 - See if the test passes; if so, note where laser was aimed
 - Aha! The device at that location was critical
- Beware multiple unintended side effects
 - Leakage, conflicting speedpaths, etc.


Fixing A Chip Problem


- Focused Ion Beam (FIB) allows post-fabrication edits on Silicon
 - Used to check if a proposed fix will actually work
 - Before you burn the \$\$\$\$ for a new mask set
 - Very expensive (\$350-\$400/hr), so don't do it unless you need to
 - Usually 3-5 hours per "normal" fix
 - Only fixes one dice at a time
- FIB edits can be additive or subtractive
 - Cut wires or lay down new wires
- FIB used to be from the top of the chip only
 - But today can also be used for backside FIB (for flip-chip die), too


Focused Ion Beam (FIB)

FIB example

Source: Stinson, Intel

FIB for Probe

- The ability to do backside FIB enables mechanical probe
 - FIB a metal probe pad on the back of the silicon; tie to a diffusion
 - Now you can break out those picoprobes that you had stored away
- Not great for high-bandwidth signals
 - Lots of extra cap, potentially inductance problems as well
 - Better for Vdd and Gnd

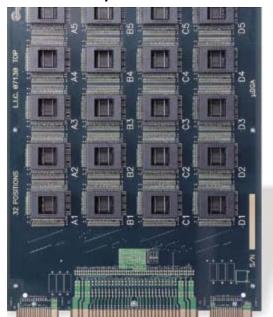
Summary

- Debug is a huge and expensive effort
- Plan for debug in your design
 - Use scan, BIST, ATPG
 - Build analog samplers if you know you'll need to probe some node
 - Insert spare gates in your blocks; you'll probably need them
- Debug itself uses tester results and probing
 - Schmoos and clock shrinking can get you pretty far
 - Test theories with mechanical or e-beam probing and lasers
- When you find the problem, call your FIB operator
 - FIB first before respinning the chip, to ensure the fix "takes"

Reliability

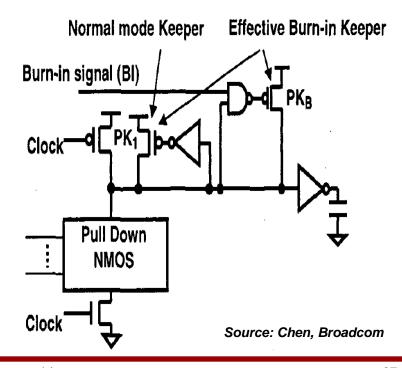
- Failure rates of devices follow a bathtub curve
 - Infant mortality: gross defects, poor manufacturing tolerances
 - Useful life: problems arising from wear and tear, random errors
 - Wear out: slower slope than infant side, but accelerated failures

Burn-In Ovens


- Can we accelerate the infant mortality portion of the curve?
 - Push all the parts into the "useful life" region
 - Discard the ones that die and sell the rest with high confidence
- Use burn-in ovens to heat and simultaneously exercise the parts
 - Bump up temperature and voltage to get "acceleration factors"
 - Temp held to 150°-200° and voltage to 1.5x-2x nominal (typically)
- Temperature depends on burn-in oven package solution
 - Package has a thermal resistivity, say ¼ °C/W (for example)
 - Holding oven at 125°C for 100W parts means 150°C junction temp

Burn-In Oven Boards

- Populate a burn-in board with your parts
 - Board exercises the parts (tests and/or power virus) during burn-in
- High-power chips strain the capacity of burn-in ovens
 - You can't put too many 100W and 100A chips on a burn-in board!



Source: reed-electronics.com

Burn-In and Design

- Chips in the burn-in oven should work at those temps & voltages
 - Don't want the artificial environment of burn-in to cause failures
- For example, higher leakage in burn-in shouldn't cause failures
 - Domino gate with big nMOS
 - Use a secondary keeper
 - Only in burn-in
 - · Combats elevated leakage
- Also an issue for > Vdd nodes
 - Burn in increases Vdd

Reliability and Design

- Two examples of how designers worry about reliability
- Wires have reliability issues relating to wear-out
 - Electromigration for unidirectional current (depends on I_{ava})
 - Self-heating for bidirectional current (depends on I_{rms})
 - Copper wires better than Aluminum, but still have limits
 - Use minimum width rules based on total capacitance for layout
- Gates have reliability rules relating to hot-carrier degradation
 - Electrons in the channel can smack into the gate and "stick"
 - Shift in V_t over time from charge trapping and general muckiness
 - Regulate this by ensuring circuits are not "on" all the time
 - Limit risetime of signals to be 20% of the cycle time (for example)

Long-Term Reliability

- The basic semantic for reliability is the FIT, or failure rate
 - "Failure in time" = failures per billion hours (note: 8760 hrs/yr)
- Time-to-failure uses Arrhenius's model (1903 Nobel laureate)
 - Time-to-failure = $(FIT)^{-1}$ = Const $e^{Ea/(kT)}$ (k=8.6x10⁻⁵ eV/°K)
 - Empirically estimate the activation energy E_a
 - Gives the ratio of failure rates at different temps (Const drops out)
- Ex: test 900 parts for 1000 hours, and find 8 rejects at 100°C
 - If E_a was 1eV, what will be the failure rate at 30°C?
 - 8 rejects/(900*1000) = 8.9x10⁻⁶ failure rate
 - Ratio of TTFs from 100°C to 30°C = 1300, so FIT scales by 1/1300
 - Failure rate at 30°C is about 6.84x10⁻⁹, or 6.84 FIT

Long-Term Reliability

- How cheesy is this, using Arrhenius's equation?
 - Why do IC failures obey a chemical reaction rate model?
- Quite surprisingly, not that cheesy
 - Many failures initiated by atomic or molecular changes, e.g.:

Oxide/dielectric breakdown $E_a = 0.8 \text{ eV}$

Electromigration $E_a = 0.5 - 0.7 \text{ eV}$

Hot-carrier V_t degradation $E_a = -0.2 \text{ eV}$ (negative!)

- Physical failure modes are diverse, but obey temp relationship
- Some failures do NOT obey this model well
 - Solder ball stress fatigue, bad manufacturing tolerances, etc.
 - Much more complex models out there

Other Reliability Issues

- Soft-errors and their prevention/mitigation affects design
 - Cosmic rays or α-particles smack into your silicon, inject electrons
 - We will examine this in more depth next week
- Usually set design and layout rules based on a 10-year lifespan
 - Not well publicized; typical consumer believes ICs work forever
 - Military specifications may well be different