AO4402 # **N-Channel Enhancement Mode Field Effect Transistor** ## **General Description** The AO4402 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. ### **Features** $V_{DS}(V) = 30V$ $I_{D} = 12A$ $R_{DS(ON)}$ < 13m Ω (V_{GS} = 10V) $R_{DS(ON)}$ < 16m Ω (V_{GS} = 4.5V) $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V) $R_{DS(ON)}$ < 35m Ω (V_{GS} = 1.8V) | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | Drain-Source Voltage | | V_{DS} | 30 | V | | | | | | Gate-Source Voltage | | V_{GS} | ±12 | V | | | | | | Continuous Drain | T _A =25°C | | 12 | | | | | | | Current ^A | T _A =70°C | I_D | 10 | Α | | | | | | Pulsed Drain Current B | | I _{DM} | 80 | | | | | | | | T _A =25°C | D | 3 | W | | | | | | Power Dissipation | T _A =70°C | $-P_{D}$ | 2.1 | VV | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | Thermal Characteristics | | | | | | | | | |---------------------------------------|--------------|--------------------|-----|-------|------|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{ heta JA}$ | 20 | 40 | °C/W | | | | | Maximum Junction-to-Ambient A | Steady-State | Γ∖ _θ JA | 40 | | °C/W | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 10 | 16 | °C/W | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |---------------------|---------------------------------------|--|-----------------------|-----|------|------|-------| | STATIC F | PARAMETERS | | | | | | | | BV_{DSS} | Drain-Source Breakdown Voltage | I _D =250μA, V _{GS} =0V | | 30 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =24V, V _{GS} =0V | | | | 1 | | | | | | T _J =55°C | | | 5 | μΑ | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} = ±12V | • | | | 100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | V_{DS} = V_{GS} I_D =250μA | | 0.5 | 0.75 | 1.4 | V | | $I_{D(ON)}$ | On state drain current | V _{GS} =4.5V, V _{DS} =5V | | 60 | | | Α | | , | | V _{GS} =10V, I _D =12A | | | 10.8 | 13 | mΩ | | | | | T _J =125°C | | 16 | 19.2 | 11152 | | R _{DS(ON)} | Static Drain-Source On-Resistance | V_{GS} =4.5V, I_D =10A | | | 13 | 16 | mΩ | | | | V_{GS} =2.5V, I_D =8A | | | 18.5 | 22 | mΩ | | | | V_{GS} =1.8V, I_D =4A | | 28 | 35 | mΩ | | | g FS | Forward Transconductance | V_{DS} =5V, I_D =5A | | 20 | 32 | | S | | V_{SD} | Diode Forward Voltage | I _S =1A,V _{GS} =0V | | | 0.68 | 1 | V | | Is | Maximum Body-Diode Continuous Current | | | | | 4.5 | Α | | DYNAMIC | PARAMETERS | | · | | • | • | | | C _{iss} | Input Capacitance | V _{GS} =0V, V _{DS} =15V, f=1MHz | | | 1700 | | pF | | C _{oss} | Output Capacitance | | | | 194 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | | 142 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | | 0.6 | | Ω | | SWITCHI | NG PARAMETERS | | | | | | | | Q_g | Total Gate Charge | V _{GS} =4.5V, V _{DS} =15V, I _D =12A | | | 19.4 | | nC | | Q_{gs} | Gate Source Charge | | | | 3.3 | | nC | | Q_{gd} | Gate Drain Charge | | | | 6.2 | | nC | | t _{D(on)} | Turn-On DelayTime | | | | 8 | | ns | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =15V, R_{L} =1.25 Ω , R_{GEN} =6 Ω | | | 4 | | ns | | t _{D(off)} | Turn-Off DelayTime | | | | 52 | | ns | | t _f | Turn-Off Fall Time | | | | 4 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =5A, dI/dt=100A/μs | | | 20 | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | e I _F =5A, dI/dt=100A/μs | | | 16 | | nC | A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.