

AO4402

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4402 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = 30V$

 $I_{D} = 12A$

 $R_{DS(ON)}$ < 13m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 16m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)}$ < 35m Ω (V_{GS} = 1.8V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	30	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		12					
Current ^A	T _A =70°C	I_D	10	Α				
Pulsed Drain Current B		I _{DM}	80					
	T _A =25°C	D	3	W				
Power Dissipation	T _A =70°C	$-P_{D}$	2.1	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	20	40	°C/W			
Maximum Junction-to-Ambient A	Steady-State	Γ∖ _θ JA	40		°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	10	16	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V				1	
			T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V	•			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} I_D =250μA		0.5	0.75	1.4	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		60			Α
,		V _{GS} =10V, I _D =12A			10.8	13	mΩ
			T _J =125°C		16	19.2	11152
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =10A			13	16	mΩ
		V_{GS} =2.5V, I_D =8A			18.5	22	mΩ
		V_{GS} =1.8V, I_D =4A		28	35	mΩ	
g FS	Forward Transconductance	V_{DS} =5V, I_D =5A		20	32		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.68	1	V
Is	Maximum Body-Diode Continuous Current					4.5	Α
DYNAMIC	PARAMETERS		·		•	•	
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			1700		pF
C _{oss}	Output Capacitance				194		pF
C _{rss}	Reverse Transfer Capacitance				142		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.6		Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =12A			19.4		nC
Q_{gs}	Gate Source Charge				3.3		nC
Q_{gd}	Gate Drain Charge				6.2		nC
t _{D(on)}	Turn-On DelayTime				8		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.25 Ω , R_{GEN} =6 Ω			4		ns
t _{D(off)}	Turn-Off DelayTime				52		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=100A/μs			20		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =5A, dI/dt=100A/μs			16		nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.