AO4807 ## **Dual P-Channel Enhancement Mode Field Effect Transistor** ## **General Description** The AO4807 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, and ultra-low low gate charge. This device is suitable for use as a load switch or in PWM applications. #### **Features** $V_{DS}(V) = -30V$ $I_{D} = -5.8 \text{ A}$ $R_{DS(ON)} < 38m\Omega \text{ (V}_{GS} = -10V)$ $R_{DS(ON)} < 63m\Omega \text{ (V}_{GS} = -4.5V)$ | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | | Drain-Source Voltage | | V_{DS} | -30 | V | | | | | | | Gate-Source Voltage | | V_{GS} | ±20 | V | | | | | | | Continuous Drain | T _A =25°C | | -5.8 | | | | | | | | Current ^A | T _A =70°C | I_D | -4.9 | Α | | | | | | | Pulsed Drain Current ^B | | I _{DM} | -40 | | | | | | | | | T _A =25°C | P _D | 2 | W | | | | | | | Power Dissipation A | T _A =70°C | L D | 1.44 | VV | | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | | Thermal Characteristics | | | | | | | | | |--|--------------|------------------------|-----|-------|------|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | Ь | 48 | 62.5 | °C/W | | | | | Maximum Junction-to-Ambient ^A | Steady-State | State R _{0JA} | | 110 | °C/W | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 35 | 40 | °C/W | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | meter Conditions | | Тур | Max | Units | |-----------------------|---|--|------|-------|------|-------| | STATIC I | PARAMETERS | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | I_D =-250 μ A, V_{GS} =0V | -30 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =-24V, V _{GS} =0V | | | -1 | ^ | | | | T _J =5 | 55°C | | -5 | μΑ | | I _{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} =±20V | | | ±100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=-250\mu A$ | -1.2 | -1.8 | -2.2 | V | | $I_{D(ON)}$ | On state drain current | V _{GS} =-10V, V _{DS} =-5V | | | | Α | | R _{DS(ON)} S | | V _{GS} =-10V, I _D =-5A | | 29 | 38 | mΩ | | | Static Drain-Source On-Resistance | T _J =12 | 25°C | 40 | | | | | | V _{GS} =-4.5V, I _D =-5A | | 39 | 63 | mΩ | | g FS | Forward Transconductance | V _{DS} =-5V, I _D =-10A | | | | S | | V_{SD} | Diode Forward Voltage I _S =-1A,V _{GS} =0V | | | -0.75 | -1 | V | | Is | Maximum Body-Diode Continuous Current | | | | -4.2 | Α | | DYNAMI | C PARAMETERS | | | | | | | C _{iss} | Input Capacitance | | | 920 | | pF | | C _{oss} | Output Capacitance | V_{GS} =0V, V_{DS} =-15V, f=1MHz | | 190 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 122 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 3.6 | | Ω | | SWITCHI | NG PARAMETERS | | | | | | | Q_g | Total Gate Charge | | | 2.4 | | nC | | Q_{gs} | Gate Source Charge | V_{GS} =-10V, V_{DS} =-15V, I_{D} =-7. | 5A | 4.5 | | nC | | Q_{gd} | Gate Drain Charge | | | 9.3 | | nC | | t _{D(on)} | Turn-On DelayTime | | | 7.6 | | ns | | t _r | Turn-On Rise Time | V_{GS} =-10V, V_{DS} =-15V, R_L =20 | 2, | 5.2 | | ns | | t _{D(off)} | Turn-Off DelayTime | R_{GEN} =3 Ω | | 21.6 | | ns | | t _f | Turn-Off Fall Time | | | 8 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =-7.5A, dI/dt=100A/μs | | | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | ry Charge I _F =-7.5A, dI/dt=100A/μs | | | | nC | A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.