

AO4807

Dual P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4807 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, and ultra-low low gate charge. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = -30V$ $I_{D} = -5.8 \text{ A}$

 $R_{DS(ON)} < 38m\Omega \text{ (V}_{GS} = -10V)$ $R_{DS(ON)} < 63m\Omega \text{ (V}_{GS} = -4.5V)$

Absolute Maximum Ratings T _A =25°C unless otherwise noted									
Parameter		Symbol	Maximum	Units					
Drain-Source Voltage		V_{DS}	-30	V					
Gate-Source Voltage		V_{GS}	±20	V					
Continuous Drain	T _A =25°C		-5.8						
Current ^A	T _A =70°C	I_D	-4.9	Α					
Pulsed Drain Current ^B		I _{DM}	-40						
	T _A =25°C	P _D	2	W					
Power Dissipation A	T _A =70°C	L D	1.44	VV					
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C					

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	Ь	48	62.5	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	State R _{0JA}		110	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	35	40	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	meter Conditions		Тур	Max	Units
STATIC I	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	^
		T _J =5	55°C		-5	μΑ
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.2	-1.8	-2.2	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V				Α
R _{DS(ON)} S		V _{GS} =-10V, I _D =-5A		29	38	mΩ
	Static Drain-Source On-Resistance	T _J =12	25°C	40		
		V _{GS} =-4.5V, I _D =-5A		39	63	mΩ
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-10A				S
V_{SD}	Diode Forward Voltage I _S =-1A,V _{GS} =0V			-0.75	-1	V
Is	Maximum Body-Diode Continuous Current				-4.2	Α
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance			920		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		190		pF
C _{rss}	Reverse Transfer Capacitance			122		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3.6		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			2.4		nC
Q_{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-15V, I_{D} =-7.	5A	4.5		nC
Q_{gd}	Gate Drain Charge			9.3		nC
t _{D(on)}	Turn-On DelayTime			7.6		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =20	2,	5.2		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		21.6		ns
t _f	Turn-Off Fall Time			8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-7.5A, dI/dt=100A/μs				ns
Q _{rr}	Body Diode Reverse Recovery Charge	ry Charge I _F =-7.5A, dI/dt=100A/μs				nC

A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.