AO4828, AO4828L (Lead-Free) Dual N-Channel Enhancement Mode Field Effect Transistor ## **General Description** The AO4828 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. AO4828L is offered in a lead-free package. ## **Features** $V_{DS}(V) = 60V$ $I_{D} = 4.5A$ $R_{DS(ON)}$ < 56m Ω (V_{GS} = 10V) $R_{DS(ON)}$ < 77m Ω (V_{GS} = 4.5V) | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | | |--|----------------------|-----------------------------------|------------|-------|--|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | | Drain-Source Voltage | | V_{DS} | 60 | V | | | | | | | Gate-Source Voltage | | V_{GS} | ±20 | V | | | | | | | Continuous Drain | T _A =25°C | | 4.5 | | | | | | | | Current ^A | T _A =70°C | I _D | 3.6 | Α | | | | | | | Pulsed Drain Current ^B | | I _{DM} | 20 | | | | | | | | | T _A =25°C | В | 2 | W | | | | | | | Power Dissipation | T _A =70°C | $-P_{D}$ | 1.28 | VV | | | | | | | Junction and Storage Temperature Range | | T _J , T _{STG} | -55 to 150 | °C | | | | | | | Thermal Characteristics | | | | | | | | | | |--|--------------|----------------------|-----|-------|------|--|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{\theta JA}$ | 48 | 62.5 | °C/W | | | | | | Maximum Junction-to-Ambient ^A | Steady-State | κ_{θ} JA | 74 | 110 | °C/W | | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 35 | 60 | °C/W | | | | | ## Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | | | | |------------------------|---------------------------------------|--|-----|-------|------|-------|--|--|--| | STATIC PARAMETERS | | | | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | I_D =250 μ A, V_{GS} =0V | 60 | | | V | | | | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =48V, V _{GS} =0V | | | 1 | μА | | | | | | Osta Dadulaska sa sumant | T _J =55°C | | | 5 | | | | | | I _{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} = ±20V | | | 100 | nA | | | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=250\mu A$ | 1 | 2.1 | 3 | V | | | | | $I_{D(ON)}$ | On state drain current | V_{GS} =10V, V_{DS} =5V | 20 | | | Α | | | | | R _{DS(ON)} | Static Drain-Source On-Resistance | V _{GS} =10V, I _D =4.5A | | 46 | 56 | mΩ | | | | | | | V _{GS} =4.5V, I _D =3A | | 64 | 77 | mΩ | | | | | g _{FS} | Forward Transconductance | V_{DS} =5V, I_{D} =4.5A | | 11 | 7.7 | S | | | | | V _{SD} | Diode Forward Voltage | $I_S=1A, V_{GS}=0V$ | | 0.74 | 1 | V | | | | | Is | Maximum Body-Diode Continuous Current | | | 0.7 1 | 3 | A | | | | | | PARAMETERS | | | | Ū | ,, | | | | | C _{iss} | Input Capacitance | | | 450 | 540 | pF | | | | | C _{oss} | Output Capacitance | V_{GS} =0V, V_{DS} =30V, f=1MHz | | 60 | | pF | | | | | C _{rss} | Reverse Transfer Capacitance |] [| | 25 | | pF | | | | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 1.65 | 2 | Ω | | | | | SWITCHII | NG PARAMETERS | | | | | | | | | | Q _g (10V) | Total Gate Charge | | | 8.5 | 10.5 | nC | | | | | Q _g (4.5V) | Total Gate Charge | V _{GS} =10V, V _{DS} =30V, I _D =4.5A | | 4.3 | 5.5 | nC | | | | | Q_gs | Gate Source Charge | V _{GS} -10V, V _{DS} -30V, I _D -4.3A | | 1.6 | | nC | | | | | Q_{gd} | Gate Drain Charge |] | | 2.2 | | nC | | | | | $t_{D(on)}$ | Turn-On DelayTime | | | 4.7 | | ns | | | | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =30V, R_{L} =6.7 Ω , | | 2.3 | | ns | | | | | $t_{D(off)}$ | Turn-Off DelayTime | R_{GEN} =3 Ω | | 15.7 | | ns | | | | | t _f | Turn-Off Fall Time | | | 1.9 | | ns | | | | | t _{rr} | Body Diode Reverse Recovery Time | I _F =4.5A, dI/dt=100A/μs | | 27.5 | 35 | ns | | | | | Q_{rr} | Body Diode Reverse Recovery Charge | I _F =4.5A, dI/dt=100A/μs | | 32 | | nC | | | | A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.