AO6404 # **N-Channel Enhancement Mode Field Effect Transistor** ### **General Description** The AO6404 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\text{GS(MAX)}}$ rating. #### **Features** $V_{DS}(V) = 20V$ $I_{\rm D} = 8.5A$ $R_{DS(ON)}$ < 15m Ω (V_{GS} = 10V) $R_{DS(ON)}$ < 16m Ω (V_{GS} = 4.5V) $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V) $R_{DS(ON)} < 30 \text{m}\Omega \text{ (V}_{GS} = 1.8 \text{V)}$ | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | Drain-Source Voltage | | V_{DS} | 20 | V | | | | | | Gate-Source Voltage | | V_{GS} | ±12 | V | | | | | | Continuous Drain | T _A =25°C | | 8.5 | | | | | | | Current ^A | T _A =70°C | I_D | 7.3 | Α | | | | | | Pulsed Drain Current ^B | | I _{DM} | 30 | | | | | | | | T _A =25°C | D | 2 | W | | | | | | Power Dissipation A | T _A =70°C | $-P_{D}$ | 1.44 | VV | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | Thermal Characteristics | | | | | | | | | | |--|--------------|----------------------|-----|-------|------|--|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{\theta JA}$ | 45 | 62.5 | °C/W | | | | | | Maximum Junction-to-Ambient ^A | Steady-State | κ_{θ} JA | 70 | 110 | °C/W | | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 33 | 50 | °C/W | | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter Conditions | | Min | Тур | Max | Units | | | | |---------------------|--|---|-----|------|-----|--------|--|--|--| | STATIC PARAMETERS | | | | | | | | | | | BV_{DSS} | Drain-Source Breakdown Voltage | I_D =250 μ A, V_{GS} =0V | 20 | | | V | | | | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =16V, V _{GS} =0V | | | 10 | | | | | | | | T _J =55°C | ; | | 25 | μΑ | | | | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} =±12V | | | 100 | nA | | | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS}$ $I_D=250\mu A$ | 0.5 | 0.75 | 1 | V | | | | | $I_{D(ON)}$ | On state drain current | V_{GS} =4.5V, V_{DS} =5V | 30 | | | Α | | | | | | | V _{GS} =10V, I _D =8.5A | | 12 | 15 | mΩ | | | | | | | T _J =125°C | ; | | | 1115.2 | | | | | R _{DS(ON)} | Static Drain-Source On-Resistance | V_{GS} =4.5V, I_D =5A | | 13.5 | 16 | mΩ | | | | | | | V_{GS} =2.5V, I_D =4A | | 17.5 | 22 | mΩ | | | | | | | V_{GS} =1.8V, I_D =3A | | 24.5 | 30 | mΩ | | | | | g _{FS} | Forward Transconductance | | | | | S | | | | | V_{SD} | Diode Forward Voltage I _s =1A,V _{GS} =0V | | | 0.73 | 1 | V | | | | | I_S | Maximum Body-Diode Continuous Current | | | | 2.9 | Α | | | | | DYNAMIC | PARAMETERS | | | | | | | | | | C _{iss} | Input Capacitance | | | 1690 | | pF | | | | | C _{oss} | Output Capacitance | put Capacitance V _{GS} =0V, V _{DS} =10V, f=1MHz | | 230 | | pF | | | | | C _{rss} | Reverse Transfer Capacitance | | | 184 | | pF | | | | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 1.6 | | Ω | | | | | SWITCHII | NG PARAMETERS | | | | | | | | | | Q_g | Total Gate Charge | | | 17.8 | | nC | | | | | Q_{gs} | Gate Source Charge | V_{GS} =4.5V, V_{DS} =10V, I_{D} =8.5A | | 1.76 | | nC | | | | | Q_{gd} | Gate Drain Charge | | | 5 | | nC | | | | | $t_{D(on)}$ | Turn-On DelayTime | | | 3.3 | | ns | | | | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =10V, R_L =1.2 Ω , | | 5.9 | | ns | | | | | $t_{D(off)}$ | Turn-Off DelayTime | R_{GEN} =3 Ω | | 44 | | ns | | | | | t _f | Turn-Off Fall Time | | | 7.7 | | ns | | | | | t _{rr} | Body Diode Reverse Recovery Time | Reverse Recovery Time I _F =8.5A, dI/dt=100A/μs | | 22 | | ns | | | | | Q_{rr} | Body Diode Reverse Recovery Charge I _F =8.5A, dI/dt=100A/μs | | | 9.8 | | nC | | | | A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.