

AO6404

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO6404 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\text{GS(MAX)}}$ rating.

Features

 $V_{DS}(V) = 20V$

 $I_{\rm D} = 8.5A$

 $R_{DS(ON)}$ < 15m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 16m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)} < 30 \text{m}\Omega \text{ (V}_{GS} = 1.8 \text{V)}$

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	20	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		8.5					
Current ^A	T _A =70°C	I_D	7.3	Α				
Pulsed Drain Current ^B		I _{DM}	30					
	T _A =25°C	D	2	W				
Power Dissipation A	T _A =70°C	$-P_{D}$	1.44	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	45	62.5	°C/W				
Maximum Junction-to-Ambient ^A	Steady-State	κ_{θ} JA	70	110	°C/W				
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	33	50	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS									
BV_{DSS}	Drain-Source Breakdown Voltage	I_D =250 μ A, V_{GS} =0V	20			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V			10				
		T _J =55°C	;		25	μΑ			
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V			100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=250\mu A$	0.5	0.75	1	V			
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	30			Α			
		V _{GS} =10V, I _D =8.5A		12	15	mΩ			
		T _J =125°C	;			1115.2			
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =5A		13.5	16	mΩ			
		V_{GS} =2.5V, I_D =4A		17.5	22	mΩ			
		V_{GS} =1.8V, I_D =3A		24.5	30	mΩ			
g _{FS}	Forward Transconductance					S			
V_{SD}	Diode Forward Voltage I _s =1A,V _{GS} =0V			0.73	1	V			
I_S	Maximum Body-Diode Continuous Current				2.9	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			1690		pF			
C _{oss}	Output Capacitance	put Capacitance V _{GS} =0V, V _{DS} =10V, f=1MHz		230		pF			
C _{rss}	Reverse Transfer Capacitance			184		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.6		Ω			
SWITCHII	NG PARAMETERS								
Q_g	Total Gate Charge			17.8		nC			
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =8.5A		1.76		nC			
Q_{gd}	Gate Drain Charge			5		nC			
$t_{D(on)}$	Turn-On DelayTime			3.3		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_L =1.2 Ω ,		5.9		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		44		ns			
t _f	Turn-Off Fall Time			7.7		ns			
t _{rr}	Body Diode Reverse Recovery Time	Reverse Recovery Time I _F =8.5A, dI/dt=100A/μs		22		ns			
Q_{rr}	Body Diode Reverse Recovery Charge I _F =8.5A, dI/dt=100A/μs			9.8		nC			

A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.