AO7400 # **N-Channel Enhancement Mode Field Effect Transistor** ## **General Description** The AO7400 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 2.5V, in the small SOT323 footprint. ### **Features** $V_{DS}(V) = 30V$ $I_D = 1.7 A$ $R_{DS(ON)}$ < 85m Ω (V_{GS} = 10V) $R_{DS(ON)}$ < 100m Ω (V_{GS} = 4.5V) $R_{DS(ON)} < 140 m\Omega (V_{GS} = 2.5 V)$ | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | |--|----------------------|-----------------------------------|------------|-----|--|--|--|--| | Parameter Drain-Source Voltage | | Symbol | Units | | | | | | | | | V _{DS} | 30 | V | | | | | | Gate-Source Voltage | | V_{GS} | ±12 | V | | | | | | Continuous Drain | T _A =25°C | | 1.7 | | | | | | | Current ^A | T _A =70°C | I _D | 1.3 | A | | | | | | Pulsed Drain Current ^B | | I _{DM} | 15 | 7 | | | | | | | T _A =25°C | Ь | 0.35 | 10/ | | | | | | Power Dissipation ^A | T _A =70°C | $-P_D$ | 0.22 | W | | | | | | Junction and Storage Temperature Range | | T _J , T _{STG} | -55 to 150 | °C | | | | | | Thermal Characteristics | | | | | | | | | | |--|--------------|----------------------|-----------|-----|------|--|--|--|--| | Parameter | Symbol | Тур | Typ Max l | | | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{\theta JA}$ | | 360 | °C/W | | | | | | Maximum Junction-to-Ambient ^A | Steady-State | $\kappa_{\theta JA}$ | 300 | 425 | °C/W | | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{\theta JL}$ | | | °C/W | | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |-----------------------|---------------------------------------|--|-----|------|-----|-------| | STATIC F | PARAMETERS | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 30 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =24V, V _{GS} =0V | | | 1 | μА | | | | T _J =55°C | | | 5 | μΑ | | I_{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} =±12V | | | 100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_D=250\mu A$ | 0.6 | 1 | 1.4 | V | | $I_{D(ON)}$ | On state drain current | V_{GS} =4.5V, V_{DS} =5V | 10 | | | Α | | R _{DS(ON)} S | Static Drain-Source On-Resistance | V _{GS} =10V, I _D =1.5A | | 70 | 85 | mΩ | | | | T _J =125°C | | | | 11122 | | | Static Dialii-Source Off-Nesistance | V_{GS} =4.5V, I_D =1.5A | | 81 | 100 | mΩ | | | | V_{GS} =2.5V, I_D =1A | | 114 | 140 | mΩ | | g FS | Forward Transconductance | V _{DS} =5V, I _D =1.5A | | 6 | | S | | V_{SD} | Diode Forward Voltage | I _S =1A,V _{GS} =0V | | 0.79 | 1 | V | | I _S | Maximum Body-Diode Continuous Current | | | | 0.5 | Α | | DYNAMIC | PARAMETERS | | | | | | | C _{iss} | Input Capacitance | | | 390 | | pF | | C _{oss} | Output Capacitance | V_{GS} =0V, V_{DS} =15V, f=1MHz | | 54.5 | | pF | | C_{rss} | Reverse Transfer Capacitance | | | 41 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 3 | | Ω | | SWITCHI | NG PARAMETERS | | | | | | | Q_g | Total Gate Charge | | | 0.62 | | nC | | Q_{gs} | Gate Source Charge | V_{GS} =4.5V, V_{DS} =15V, I_{D} =1.7A | | 1.58 | | nC | | Q_{gd} | Gate Drain Charge | | | 4.82 | | nC | | t _{D(on)} | Turn-On DelayTime | | | 2.5 | | ns | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =15V, R_L =10.0 Ω , | | 2.3 | | ns | | t _{D(off)} | Turn-Off DelayTime | R_{GEN} =3 Ω | | 22 | | ns | | t _f | Turn-Off Fall Time |] | | 3 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =1.7A, dI/dt=100A/μs | | 10 | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | I _F =1.7A, dI/dt=100A/μs | | 3.6 | | nC | A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.