

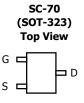
AO7400

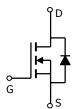
N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO7400 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 2.5V, in the small SOT323 footprint.

Features


 $V_{DS}(V) = 30V$


 $I_D = 1.7 A$

 $R_{DS(ON)}$ < 85m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 100m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)} < 140 m\Omega (V_{GS} = 2.5 V)$

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter Drain-Source Voltage		Symbol	Units					
		V _{DS}	30	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		1.7					
Current ^A	T _A =70°C	I _D	1.3	A				
Pulsed Drain Current ^B		I _{DM}	15	7				
	T _A =25°C	Ь	0.35	10/				
Power Dissipation ^A	T _A =70°C	$-P_D$	0.22	W				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Typ Max l						
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$		360	°C/W				
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	300	425	°C/W				
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$			°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
		T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$	0.6	1	1.4	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	10			Α
R _{DS(ON)} S	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =1.5A		70	85	mΩ
		T _J =125°C				11122
	Static Dialii-Source Off-Nesistance	V_{GS} =4.5V, I_D =1.5A		81	100	mΩ
		V_{GS} =2.5V, I_D =1A		114	140	mΩ
g FS	Forward Transconductance	V _{DS} =5V, I _D =1.5A		6		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.79	1	V
I _S	Maximum Body-Diode Continuous Current				0.5	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			390		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		54.5		pF
C_{rss}	Reverse Transfer Capacitance			41		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			0.62		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V, I_{D} =1.7A		1.58		nC
Q_{gd}	Gate Drain Charge			4.82		nC
t _{D(on)}	Turn-On DelayTime			2.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =10.0 Ω ,		2.3		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		22		ns
t _f	Turn-Off Fall Time]		3		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =1.7A, dI/dt=100A/μs		10		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =1.7A, dI/dt=100A/μs		3.6		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.