Nov 2002

AO7405

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO7405 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge, and operation with gate voltages as low as 2.5V, in the small SOT363 footprint. It can be used for a wide variety of applications, including load switching, low current inverters and low current DC-DC converters.

Features

 $V_{DS}(V) = -30V$

 $I_{D} = -1.6A$

 $R_{DS(ON)}$ < 150m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 200m Ω (V_{GS} = -4.5V)

 $R_{DS(ON)}$ < 280m Ω (V_{GS} = -2.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	-30	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		-1.6					
Current ^A	T _A =70°C	I_D	-1.3	А				
Pulsed Drain Current ^B		I _{DM}	-10					
	T _A =25°C	P _D	0.625	W				
Power Dissipation A	T _A =70°C	T D	0.4	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	В		200	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$ R_{\theta JA}$		220	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$			°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V T _J =55°C			-1	μА	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			-5 ±100	nA	
V _{GS(th)}	Gate Threshold Voltage $V_{DS} = V_{GS} I_D = -250 \mu A$		-0.6	-1	-1.4	V	
	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-10	<u> </u>		A	
R _{DS(ON)} On state drain current R _{DS(ON)} Static Drain-Source On-Resistance	On state drain current	V_{GS} =-10V, I_{D} =-1.6A	10	115	150		
	Statio Drain Source On Resistance	T _j =125°G		110	100	mΩ	
	Static Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-1A		135	200	mΩ	
		V _{GS} =-2.5V, I _D =-1A		190	280	mΩ	
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-1.2A	3	4.5		S	
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.85	-1	V	
I _S	Maximum Body-Diode Continuous Current				-0.5	Α	
DYNAMI	CPARAMETERS						
C _{iss}	Input Capacitance			409		pF	
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		55		pF	
C _{rss}	Reverse Transfer Capacitance			42		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		12		Ω	
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge			5.06		nC	
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-1A		0.72		nC	
Q_{gd}	Gate Drain Charge			1.58		nC	
t _{D(on)}	Turn-On DelayTime			6.2		ns	
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =15 Ω ,		3.2		ns	
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		41.2		ns	
t _f	Turn-Off Fall Time]		14.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =-1A, dI/dt=100A/μs		13.2		ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-1A, dI/dt=100A/μs		5.4		nC	

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.