Nov 2002 ## AO7405 # P-Channel Enhancement Mode Field Effect Transistor # **General Description** The AO7405 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge, and operation with gate voltages as low as 2.5V, in the small SOT363 footprint. It can be used for a wide variety of applications, including load switching, low current inverters and low current DC-DC converters. #### **Features** $V_{DS}(V) = -30V$ $I_{D} = -1.6A$ $R_{DS(ON)}$ < 150m Ω (V_{GS} = -10V) $R_{DS(ON)}$ < 200m Ω (V_{GS} = -4.5V) $R_{DS(ON)}$ < 280m Ω (V_{GS} = -2.5V) | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | Drain-Source Voltage | | V_{DS} | -30 | V | | | | | | Gate-Source Voltage | | V_{GS} | ±12 | V | | | | | | Continuous Drain | T _A =25°C | | -1.6 | | | | | | | Current ^A | T _A =70°C | I_D | -1.3 | А | | | | | | Pulsed Drain Current ^B | | I _{DM} | -10 | | | | | | | | T _A =25°C | P _D | 0.625 | W | | | | | | Power Dissipation A | T _A =70°C | T D | 0.4 | VV | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | Thermal Characteristics | | | | | | | | | |--|--------------|------------------|-----|-------|------|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | В | | 200 | °C/W | | | | | Maximum Junction-to-Ambient ^A | Steady-State | $ R_{\theta JA}$ | | 220 | °C/W | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | | | °C/W | | | | ## Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | | |---|---|--|------|----------|------------|-------|--| | STATIC I | PARAMETERS | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $I_D = -250 \mu A, V_{GS} = 0 V$ | -30 | | | V | | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =-24V, V _{GS} =0V
T _J =55°C | | | -1 | μА | | | I _{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} =±12V | | | -5
±100 | nA | | | V _{GS(th)} | Gate Threshold Voltage $V_{DS} = V_{GS} I_D = -250 \mu A$ | | -0.6 | -1 | -1.4 | V | | | | On state drain current | V_{GS} =-4.5V, V_{DS} =-5V | -10 | <u> </u> | | A | | | R _{DS(ON)} On state drain current R _{DS(ON)} Static Drain-Source On-Resistance | On state drain current | V_{GS} =-10V, I_{D} =-1.6A | 10 | 115 | 150 | | | | | Statio Drain Source On Resistance | T _j =125°G | | 110 | 100 | mΩ | | | | Static Drain-Source On-Resistance | V _{GS} =-4.5V, I _D =-1A | | 135 | 200 | mΩ | | | | | V _{GS} =-2.5V, I _D =-1A | | 190 | 280 | mΩ | | | g FS | Forward Transconductance | V _{DS} =-5V, I _D =-1.2A | 3 | 4.5 | | S | | | V_{SD} | Diode Forward Voltage | I _S =-1A,V _{GS} =0V | | -0.85 | -1 | V | | | I _S | Maximum Body-Diode Continuous Current | | | | -0.5 | Α | | | DYNAMI | CPARAMETERS | | | | | | | | C _{iss} | Input Capacitance | | | 409 | | pF | | | C _{oss} | Output Capacitance | V_{GS} =0V, V_{DS} =-15V, f=1MHz | | 55 | | pF | | | C _{rss} | Reverse Transfer Capacitance | | | 42 | | pF | | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 12 | | Ω | | | SWITCHI | NG PARAMETERS | | | | | | | | Q_g | Total Gate Charge | | | 5.06 | | nC | | | Q_{gs} | Gate Source Charge | V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-1A | | 0.72 | | nC | | | Q_{gd} | Gate Drain Charge | | | 1.58 | | nC | | | t _{D(on)} | Turn-On DelayTime | | | 6.2 | | ns | | | t _r | Turn-On Rise Time | V_{GS} =-10V, V_{DS} =-15V, R_L =15 Ω , | | 3.2 | | ns | | | t _{D(off)} | Turn-Off DelayTime | R_{GEN} =3 Ω | | 41.2 | | ns | | | t _f | Turn-Off Fall Time |] | | 14.5 | | ns | | | t _{rr} | Body Diode Reverse Recovery Time | I _F =-1A, dI/dt=100A/μs | | 13.2 | | ns | | | Q _{rr} | Body Diode Reverse Recovery Charge | I _F =-1A, dI/dt=100A/μs | | 5.4 | | nC | | A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.