

AO8403

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO8403 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. It is ESD protected.

Features

 $V_{DS}(V) = -20V$

 $I_D = -4 A$

 $R_{DS(ON)}$ < 42m Ω (V_{GS} = -4.5V)

 $R_{DS(ON)}$ < 52m Ω (V_{GS} = -2.5V)

 $R_{DS(ON)}$ < 70m Ω (V_{GS} = -1.8V)

ESD Rating: 3000V HBM

Absolute Maximum Ratings T _A =25°C unless otherwise noted									
Parameter		Symbol	Maximum	Units					
Drain-Source Voltage		V_{DS}	-20	V					
Gate-Source Voltage		V_{GS}	±8	V					
Continuous Drain	T _A =25°C		-4						
Current ^A	T _A =70°C	I_D	-3.5	А					
Pulsed Drain Current ^B		I _{DM}	-30						
	T _A =25°C	D	1.5	W					
Power Dissipation A	T _A =70°C	$-P_D$	1	VV					
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C					

Thermal Characteristics								
Parameter		Symbol	Тур	Тур Мах				
Maximum Junction-to-Ambient A	t ≤ 10s	≤ 10s		83	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State R _{0JA}		89	120	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	53	70	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-16V, V _{GS} =0V			-1	μА
	Zero Gate voltage Drain Current	T _J =55°	С		-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±4.5V			±1	μΑ
		V_{DS} =0V, V_{GS} =±8V			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-0.3	-0.55	-1	
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-25			Α
R _{DS(ON)} Stat		V _{GS} =-4.5V, I _D =-4A		35	42	mΩ
	Static Drain-Source On-Resistance	T _J =125°	С	48	60	
	Static Dialii-Source Off-Nesistance	V_{GS} =-2.5V, I_D =-4A		45	52	mΩ
		V_{GS} =-1.8V, I_D =-3A		56	70	mΩ
g FS	Forward Transconductance	V_{DS} =-5V, I_D =-4A	8	16		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.78	-1	V
I_S	I _S Maximum Body-Diode Continuous Current				-2.2	Α
DYNAMI	C PARAMETERS					
C_{iss}	Input Capacitance			1450		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =-10V, f=1MHz		205		pF
C _{rss}	Reverse Transfer Capacitance			160		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		6.5		Ω
SWITCH	ING PARAMETERS					
Q_g	Total Gate Charge			17.2		nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-4A		1.3		nC
Q_{gd}	Gate Drain Charge			4.5		nC
t _{D(on)}	Turn-On DelayTime			9.5		ns
t _r	Turn-On Rise Time	V_{GS} =-4.5V, V_{DS} =-10V, R_L =2.5 Ω	2,	17		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		94		ns
t _f	Turn-Off Fall Time			35		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4A, dI/dt=100A/μs		31		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-4A, dI/dt=100A/μs		13.8		nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 °C. The SOA curve provides a single pulse rating.