AO8403 # P-Channel Enhancement Mode Field Effect Transistor ## **General Description** The AO8403 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. It is ESD protected. #### **Features** $V_{DS}(V) = -20V$ $I_D = -4 A$ $R_{DS(ON)}$ < 42m Ω (V_{GS} = -4.5V) $R_{DS(ON)}$ < 52m Ω (V_{GS} = -2.5V) $R_{DS(ON)}$ < 70m Ω (V_{GS} = -1.8V) ESD Rating: 3000V HBM | Absolute Maximum Ratings T _A =25°C unless otherwise noted | | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | | Drain-Source Voltage | | V_{DS} | -20 | V | | | | | | | Gate-Source Voltage | | V_{GS} | ±8 | V | | | | | | | Continuous Drain | T _A =25°C | | -4 | | | | | | | | Current ^A | T _A =70°C | I_D | -3.5 | А | | | | | | | Pulsed Drain Current ^B | | I _{DM} | -30 | | | | | | | | | T _A =25°C | D | 1.5 | W | | | | | | | Power Dissipation A | T _A =70°C | $-P_D$ | 1 | VV | | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | | Thermal Characteristics | | | | | | | | | |--|-------------------------------|-----------------|-----|---------|------|--|--|--| | Parameter | | Symbol | Тур | Тур Мах | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | ≤ 10s | | 83 | °C/W | | | | | Maximum Junction-to-Ambient ^A | Steady-State R _{0JA} | | 89 | 120 | °C/W | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{\theta JL}$ | 53 | 70 | °C/W | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--------------------------|--|--|------|-------|------|-------| | STATIC I | PARAMETERS | | | | | | | BV_{DSS} | Drain-Source Breakdown Voltage | $I_D = -250 \mu A, V_{GS} = 0 V$ | -20 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =-16V, V _{GS} =0V | | | -1 | μА | | | Zero Gate voltage Drain Current | T _J =55° | С | | -5 | μΑ | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} =±4.5V | | | ±1 | μΑ | | | | V_{DS} =0V, V_{GS} =±8V | | | ±10 | μΑ | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=-250\mu A$ | -0.3 | -0.55 | -1 | | | $I_{D(ON)}$ | On state drain current | V_{GS} =-4.5V, V_{DS} =-5V | -25 | | | Α | | R _{DS(ON)} Stat | | V _{GS} =-4.5V, I _D =-4A | | 35 | 42 | mΩ | | | Static Drain-Source On-Resistance | T _J =125° | С | 48 | 60 | | | | Static Dialii-Source Off-Nesistance | V_{GS} =-2.5V, I_D =-4A | | 45 | 52 | mΩ | | | | V_{GS} =-1.8V, I_D =-3A | | 56 | 70 | mΩ | | g FS | Forward Transconductance | V_{DS} =-5V, I_D =-4A | 8 | 16 | | S | | V_{SD} | Diode Forward Voltage | I _S =-1A,V _{GS} =0V | | -0.78 | -1 | V | | I_S | I _S Maximum Body-Diode Continuous Current | | | | -2.2 | Α | | DYNAMI | C PARAMETERS | | | | | | | C_{iss} | Input Capacitance | | | 1450 | | pF | | Coss | Output Capacitance | V_{GS} =0V, V_{DS} =-10V, f=1MHz | | 205 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 160 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 6.5 | | Ω | | SWITCH | ING PARAMETERS | | | | | | | Q_g | Total Gate Charge | | | 17.2 | | nC | | Q_{gs} | Gate Source Charge | V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-4A | | 1.3 | | nC | | Q_{gd} | Gate Drain Charge | | | 4.5 | | nC | | t _{D(on)} | Turn-On DelayTime | | | 9.5 | | ns | | t _r | Turn-On Rise Time | V_{GS} =-4.5V, V_{DS} =-10V, R_L =2.5 Ω | 2, | 17 | | ns | | $t_{D(off)}$ | Turn-Off DelayTime | R_{GEN} =3 Ω | | 94 | | ns | | t _f | Turn-Off Fall Time | | | 35 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =-4A, dI/dt=100A/μs | | 31 | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | I _F =-4A, dI/dt=100A/μs | | 13.8 | | nC | A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 °C. The SOA curve provides a single pulse rating.