

AOD407, AOD407L (Lead-Free) P-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD407 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and low gate resistance. With the excellent thermal resistance of the DPAK package, this device is well suited for high current load applications. AOD407L is offered in a lead-free package.

Features

 $V_{DS}(V) = -60V$

 $I_{D} = -12A$

 $R_{DS(ON)} < 115 m\Omega (V_{GS} = -10 V)$

 $R_{DS(ON)}$ < 150m Ω (V_{GS} = -4.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	-60	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain	T _A =25°C ^G		-12				
Current B,G	T _A =100°C ^G	I _D	-12	A			
Pulsed Drain Current		I _{DM}	-30				
Avalanche Current ^C		I _{AR}	-12	Α			
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	23	mJ			
	T _C =25°C	В	60	W			
Power Dissipation ^B	T _C =100°C	$-P_{D}$	30				
	T _A =25°C	В	2.5	W			
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.6	vv			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C			

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	16.7	25	°C/W		
Maximum Junction-to-Ambient A	Steady-State	Γ _θ JA	40	50	°C/W		
Maximum Junction-to-Case ^C	Steady-State	$R_{\theta JL}$	1.9	2.5	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-48V, V _{GS} =0V			-0.003	-1	
			T _J =55°C			-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$		-1.5	-2.1	-3	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V		-30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-12A			91	115	mΩ
			T _J =125°C				11122
		V_{GS} =-4.5V, I_{D} =-8A			114	150	mΩ
g _{FS}	Forward Transconductance	V _{DS} =-5∀, I _D =-12A			11		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.76	-1	V
I_S	Maximum Body-Diode Continuous Current					-12	Α
DYNAMIC	PARAMETERS						
C_{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-30V, f=1MHz			925	1110	pF
Coss	Output Capacitance				88		pF
C_{rss}	Reverse Transfer Capacitance				40		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			7	10	Ω
SWITCHI	NG PARAMETERS						
$Q_g(10V)$	Total Gate Charge (10V)	V _{GS} =-10V, V _{DS} =-30V, I _D =-12A			15.8	20	nC
Q _g (4.5V)	Total Gate Charge (4.5V)				7.4	9	nC
Q_{gs}	Gate Source Charge				3		nC
Q_{gd}	Gate Drain Charge				3.5		nC
t _{D(on)}	Turn-On DelayTime				9		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-30V, R_L =2.5 Ω , R_{GEN} =3 Ω			10		ns
t _{D(off)}	Turn-Off DelayTime				25		ns
t _f	Turn-Off Fall Time				11		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μ	ıs		27.5	35	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μ	ıs		30		nC

A: The value of R_{0JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on steady-state R_{0JA} and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB or heatsink allows it. B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

- C: Repetitive rating, pulse width limited by junction temperature $T_{\text{(MAX)}}$ =175°C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is limited by the package current capability.