

AN-895
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADuC702x MicroConverter® I2C®-Compatible Interface

by Michael Looney

Rev. 0 | Page 1 of 16

INTRODUCTION
This application note describes the hardware master and slave
implementation of an I2C-compatible (inter-integrated circuit)
interface using the ADuC702x family of precision Analog
Devices, Inc. microcontrollers. This application note also
contains example code showing how a master and a slave can
communicate with each other using the I2C interface (see the
Implementation of the Serial EEPROM Protocol section).

The main features of the I2C bus are:

• Only two bus lines are required, a serial data line (SDA)
and a serial clock line (SCL). Both of these lines are
bidirectional, meaning that both the master and the slave
can operate as transmitters or as receivers.

• An I2C master can communicate with multiple slave
devices. Because each slave device has a unique 7-bit
address, single master/slave relationships can exist at all
times even in a multislave environment.

• The master and slave can transmit and receive at up to
400 kbps.

• On-chip filtering rejects <50 ns spikes on the SDA and the
SCL lines to preserve data integrity.

A typical block diagram of an I2C interface is shown in Figure 1.

SCL

SDA SDA

SCL

3.3V

ADuC702x
(MASTER)

ADuC702x
(SLAVE 1)

ADuC702x
(SLAVE 2)

SDA

SCL

PULL-UP
RESISTOR

PULL-UP
RESISTOR

06
54

9-
00

1

Figure 1. Single Master Multislave I2C Block Diagram

AN-895

Rev. 0 | Page 2 of 16

TABLE OF CONTENTS
Introduction .. 1
I2C Interface Overview... 3
I2C Fundamentals ... 3
Serial EEPROM Protocols ... 6

I2C Implementation on the ADuC702x Series MicroConverter.7
I2C Register Definitions... 13
Implementation of the Serial EEPROM Protocol 16

 AN-895

Rev. 0 | Page 3 of 16

I2C INTERFACE OVERVIEW
I2C is a 2-wire serial communication system developed by
Philips that allows multiple masters and multiple slaves to be
connected via two wires (SCL and SDA). In an I2C interface,
there must be at least a single master and a single slave.

The SCL signal controls the data transfer between master and
slave. The SCL signal is always transmitted from the master to
the slave. The slave, however, does have the ability to pull this
line low if it is not ready for the next transmission to begin. This
is called clock stretching. One clock pulse must be generated for
each data bit transferred.

The SDA signal is used to transmit or receive data. The SDA
input must be stable during the high period of SCL. A transition
of the SDA line while SCL is high is seen as a start or stop
condition (see Figure 2 and Figure 3).

I2C FUNDAMENTALS
Start Condition

A typical data transfer sequence for an I2C interface starts with
the start condition. The start condition is simply a high to low
transition in the SDA line while the SCL line is pulled high (see
Figure 2). The master is always responsible for generating the
start condition. The start (and stop) conditions are the only
times that the SDA line should change during a high period of
the SCL line. During normal data transfer (including slave
addressing), the data on the SDA line must be stable during the
high period of the SCL line.

06
54

9-
00

2

SCL

SDA

START

Figure 2. Start Condition for I2C

06
54

9-
02

2

SCL

SDA

STOP

Figure 3. Stop Condition for I2C

Slave Address

After the start condition, the master sends a byte, most
significant bit (MSB) first, on the SDA line, along with eight
SCL pulses. The first seven bits of this byte is the 7-bit slave
address. The slave only responds to the master if this 7-bit
address matches the address of the slave device (or one of the
four slave addresses). The eighth bit, the least significant bit
(LSB), is the R/W status bit. The R/W status bit determines the
direction of the message. If this bit is cleared, the master writes
data to a selected slave. If this bit is set, the master expects to
receive data from the slave. The master generates the clock in
both cases.

If the slave receives the correct address, that is, the seven MSBs
from the master match the seven MSBs of the I2C0ADR
memory mapped register (MMR), the slave returns a valid
ACK, pulls the SCL line low, and sets flags in the I2C0STA.

While the slave does all the manipulation of the I2C slave
addressing automatically in hardware, as described previously, it
is up to the master to output the slave address appropriately.

Acknowledge (ACK)/No Acknowledge (NACK)

If the slave address matches the address sent by the master, the
slave automatically sends an acknowledge (ACK). Otherwise, it
sends a no acknowledge (NACK). An ACK is seen as a low level
on the SDA line on the ninth clock pulse. A NACK is seen as a
high level on the SDA line on the ninth clock pulse (see Figure 4).

During data transfer, the ACK or the NACK is always generated
by the receiver. However, the clock pulse required for the ACK
is always generated by the master. The transmitter must release
the SDA line (high) during the ACK clock pulse. For a valid
ACK, the receiver must pull the SDA line low.

On the ADuC702x MicroConverter, both the ACK and the
NACK are automatically generated in hardware, at the end of
each byte in the reception.

If a master receives a NACK from a slave-receiver (either the
slave did not respond to the slave address or the data
transmitted), the master should generate the stop condition to
abort the transfer (see the Data Transfer section).

A master receiver must signal the end of a data sequence to the
slave-transmitter by generating a no acknowledge (NACK) after
the last byte that was sent by the slave. Once the slave receives
the NACK, it releases the SDA line to allow the master to
generate the stop condition.

AN-895

Rev. 0 | Page 4 of 16

Data Transfer

In the I2C interrupt service routine (ISR), or in a polled
implementation, the slave decides whether or not to transmit or
receive depending on the status of the R/W bit sent by the
master. The slave then either transmits or receives a bit on each
clock sent by the master. It is up to the master to provide the
nine clocks (eight for the data and one for the ACK) for the
slave to transmit/receive data to/from the master. The I2C
interrupt bit is set every time a valid data byte is transmitted or
received by the slave.

Note again that in a slave-transmitter, master-receiver system
the master must signal the end of a data sequence to the slave by
sending a NACK after the last byte transmitted by the slave.
Once the slave receives the NACK, it releases the SDA line to
allow the master to generate the stop condition.

If a master wants to abort a data transfer or to interrupt the data
transfer of another master on the bus, it can do this by sending
a start condition followed by a stop condition.

Stop Condition

The data transfer sequence is terminated by the stop condition.
A stop condition is defined by a low to high transition on the
SDA line while SCL is high (see Figure 3).

The stop condition is always generated by the master. The
master sends the stop condition once the master is satisfied that
the data sequence is over or if it receives a NACK from the slave
device. The reception of the stop condition resets the slave
device into waiting for the slave address again.

The I2C interface on the ADuC702x parts can be configured to
generate an interrupt on the stop condition. This is enabled by
Bit 14 in the I2CxCFG MMR.

A typical transfer sequence is shown in Figure 5.

06
54

9-
00

3

SDA FLOATS (HIGH) FOR NACK

RECEIVER PULLS SDA LOW FORACK

TRANSMITTER RELEASES SDA

CLOCK PULSE FOR ACKNOWLEDGE

7 8 9

DATA OUTPUT BY
RECEIVER

DATA OUTPUT BY
TRANSMITTER DATA LSB

MASTER CLOCK

Figure 4. Acknowledge (ACK) and No Acknowledge (NACK) on the I2C Bus

06
54

9-
00

4

MSB

START
BIT

SCL

ACK
BIT

ACK
BIT

STOP
BIT

SLAVE ADDRESSSDA

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

Figure 5. Typical I2C Transfer Sequence

 AN-895

Rev. 0 | Page 5 of 16

Repeated Start Condition

A repeated start condition occurs when a second start condition
is sent to a slave without a stop condition being sent in between.
This allows the master to reverse the direction of the transfer, by
changing the R/W bit without having to give up control of the bus.

An example of a transfer sequence is shown in Figure 6. This is
generally used where the first data sent to the part sets up the
register address to be read from.

An interrupt is generated when a repeated start + slave address
is received. This can be differentiated from a start + slave
address by using the status bits in the I2CxSSTA MMR.

Note that the ADuC702x device cannot directly generate an I2C
repeated start sequence when in master mode.

If a user has full control of the entire I2C bus, a workaround is
possible by disabling the generation of the stop condition before
the desired second start condition. This is possible using the
following steps:

1. Put a lower value pull-up resistor on the SDA line. For
example, connect SDA to VCC via a 4.7 kΩ resistor; connect
SCL to VCC via a 20 kΩ resistor.

2. Add the following code sequence:

I2C0CCNT = 0x0; // Sets Start/Stop condition counter value to 0 - minimum value.

I2C0ADR = 0xA0; // Write sequence

I2C0MTX = 0x7; // Load the Tx FIFO

while ((I2C0FSTA & 0x30) != 0x00) {} // Wait for the Tx FIFO to empty

I2C0CNT = 0x1; // Read 2 bytes from the slave

I2C0ADR = 0xA1; // Send out the Read condition

I2C0CCNT = 0x80; // Set the Start/Stop counter to a nonzero value to re-enable the Stop
Condition

06
54

9-
00

5

MSB

START
BIT

SCL

ACK
BIT

ACK
BIT

SLAVE ADDRESS
SDA

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

MSB

START
BIT

ACK
BIT

ACK
BIT

STOP
BIT

SLAVE ADDRESS

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

Figure 6. I2C Repeated Start Sequence

AN-895

Rev. 0 | Page 6 of 16

Clock Stretching

In an I2C communication, the master device determines the
clock speed. Unlike RS232, the I2C bus provides an explicit
clock signal that relieves master and slave from synchronizing
exactly to a predefined baud rate.

However, there are situations where an I2C slave is not able to
cooperate with the clock speed given by the master and needs to
slow down a little. This is done by a mechanism referred to as
clock stretching.

An I2C slave is allowed to hold down the clock if it needs to
reduce the bus speed. The master, on the other hand, is required
to read back the clock signal after releasing it to a high state and
wait until the line has actually gone high.

Bit 11 of the I2CxCFG MMR allows clock stretching.

SERIAL EEPROM PROTOCOLS
The ATMEL AT24C series serial EEPROM supports five
commands:

• Random write
• Sequential write
• Current address read
• Random read
• Sequential read

These five commands are described in Figure 7 through
Figure 11.

06
54

9-
00

6

ST
A

R
T

DEVICE
ADDRESS W

R
IT

E

WORD ADDRESS DATA ST
O

P

SDA LINE

M
SB LS

B

R
/W

A
C

K

LS
B

A
C

K

M
SB

A
C

K

Figure 7. Random Write

06
54

9-
00

7

ST
A

R
T

DEVICE
ADDRESS W

R
IT

E

WORD ADDRESS (n) DATA (n)

SDA LINE

M
SB R
/W

A
C

K

LS
B

A
C

K

M
SB

A
C

K

DATA (n + 1)

A
C

K

DATA (n + x) ST
O

P

A
C

K

Figure 8. Sequential Write

06
54

9-
00

8

ST
A

R
T

DEVICE
ADDRESS R

EA
D

ST
O

P

DATA

SDA LINE

M
SB R
/W

A
C

K

LS
B

N
O

 A
C

K

Figure 9. Current Read

06
54

9-
00

9

ST
A

R
T

DEVICE
ADDRESS W

R
IT

E

WORD ADDRESS (n)

SDA LINE

M
SB LS

B

R
/W

A
C

K

LS
B

A
C

K

M
SB

ST
A

R
T

ST
O

PDEVICE
ADDRESS R

EA
D

M
SB

A
C

K

LS
B

N
O

 A
C

KDATA (n)

DUMMY WRITE
Figure 10. Random Read

06
54

9-
01

0

R
EA

DDEVICE
ADDRESS

SDA LINE

A
C

K

N
O

 A
C

K

A
C

K

A
C

K

A
C

K

ST
O

P

R
/W DATA (n + 2) DATA (n + x)DATA (n + 1)DATA (n)

Figure 11. Sequential Read

 AN-895

Rev. 0 | Page 7 of 16

I2C IMPLEMENTATION ON THE ADUC702X SERIES
MICROCONVERTER
The ADuC702x series of parts contain two full hardware master
and slave I2C ports. These ports support up to four addresses
each and have configurable interrupts that allow the serial
EEPROM commands to be implemented.

At a basic level, the I2C hardware interface behaves like a
standard UART. There are receive and transmit buffers each of
which consists of 2-byte FIFOs. This application note describes
in detail the four types of communication (master/slave
receive/transmit) and the use of the FIFO.

Use of the FIFO

There are four 2-byte FIFOs per I2C block:

• Master receive
• Master transmit
• Slave receive
• Slave transmit

The following sections describe the transmit FIFO and the
receive FIFO.

Table 1. I2CxFSTA MMR Bit Descriptions
Bit No. Description
31 to 10 Reserved.
9 Master Transmit FIFO Flush.
 Set by the user to flush the master Tx FIFO. This bit also flushes the slave receive FIFO.
 Cleared automatically once the master Tx FIFO is flushed.
8 Slave Transmit FIFO Flush.
 Set by the user to flush the slave Tx FIFO.
 Cleared automatically once the slave Tx FIFO is flushed.
7 to 6 Master Rx FIFO Status Bits.
 00 FIFO empty
 01 Byte written to FIFO
 10 1 byte in FIFO
 11 FIFO full
5 to 4 Master Tx FIFO Status Bits.
 00 FIFO empty
 01 Byte written to FIFO
 10 1 byte in FIFO
 11 FIFO full
3 to 2 Slave Rx FIFO Status Bits.
 00 FIFO empty
 01 Byte written to FIFO
 10 1 byte in FIFO
 11 FIFO full
1 to 0 Slave Rx FIFO Status Bits.
 00 FIFO empty
 01 Byte written to FIFO
 10 1 byte in FIFO
 11 FIFO full

AN-895

Rev. 0 | Page 8 of 16

Transmit FIFO

To transmit data, the I2C0STX/I2C0MTX registers must be
loaded. Writing a byte to the Tx register is equivalent to writing
to Byte 1 of the FIFO (see Figure 12).

• If Byte 0 is empty, the byte in Byte 1 gets pushed to Byte 0
automatically. This is described in the state machine (see
Figure 13). Note that the states are visible to the user in the
I2C0FSTA register.

• If Byte 0 is already full, the byte stays in Byte 1. Writing in
Tx again overwrites Byte 1.

Setting the transmit FIFO flush bit in the I2CFSTA register
empties the FIFO.

When a transmission occurs, Byte 0 is transmitted, Byte 1 is
shifted to Byte 0, and the FIFO is in State 2.

Receive FIFO

When receiving data, the data arrives in Byte 0.

• If Byte 1 is empty, Byte 0 is shifted automatically to Byte 1.
• If Byte 1 is already full, Byte 0 stays until I2C0SRX is read

(equivalent to reading Byte 1).
• If other data arrive while the FIFO is full, the slave delivers

a NACK for the data and Bit 4 of I2C0SSTA is set.

06
54

9-
02

0

OUT

I2C0STX

BYTE 1 BYTE 0

Figure 12. Transmit FIFO

06
54

9-
01

1

WRITE Tx

WRITE Tx

TRANSMIT

TRANSMIT/
Tx FIFO
FLUSH

Tx FIFO
FLUSH AUTOMATIC

STATE 0
FIFO EMPTY

STATE 1
BYTE 1 FULL

STATE 2
BYTE 0 FULL

STATE 3
FIFO FULL

Figure 13. Transmit FIFO State Machine

06
54

9-
02

1

IN

IC0SRX

BYTE 1 BYTE 0

Figure 14. Receive FIFO

06
54

9-
01

2

RECEIVE

RECEIVE

READ Rx

READ Rx

AUTOMATIC

STATE 0
FIFO EMPTY

STATE 1
BYTE 0 FULL

STATE 2
BYTE 1 FULL

STATE 3
FIFO FULL

Figure 15. Receive FIFO State Machine

 AN-895

Rev. 0 | Page 9 of 16

Master Transmit

In order to transmit a byte, the data must first be loaded into
the transmit FIFO. The address of the slave must be specified in
the I2C0ADR register. For a write of data, the write (W) bit in
the address register must be set to zero. Writing to the
I2C0ADR register automatically generates a start condition.

On the first clock of each byte transmitted, an I2C interrupt is
generated. Bit 2 and Bit 1 in I2C0MSTA are set, indicating that
the master has just transmitted a byte and that the FIFO is
underflow. This allows the user to add a byte to the FIFO.

If only one byte is in the FIFO when initiating the transfer, the
first I2C interrupt occurs on the first clock of the address
transmitted. If two bytes are in the FIFO, then the interrupt is
generated on the first clock of the first byte transmitted.

The transmission ends when the FIFO is empty. A stop
condition is automatically generated. This occurs 5.1 μs after
the last byte is transmitted.

A simple example of how this operates is shown in the
flowchart in Figure 16.

06
54

9-
01

3

//ENABLE I2C on GPIO P1.0 AND P1.1
GP1CON = 0x22;

//RETURN FROM ISR

VECTOR TO
INTERRUPT SERVICE ROUTINE

//SET UP I2C MASTER MODE, 100kHz
I2C0CFG = 0x82;
I2C0DIV = 0xCFCF;

//CHECK FOR TX INTERRUPT
if ((I2C0MSTA AND 0x4) == 0x4)

//PLACE DATA IN TX FIFO
I2C0MTX = DATA;

//SPECIFY INTERRUPT SERVICE ROUTINE
AND ENABLE MASTER I2C INTERRUPT
IRQ = MY_IRQ_FUNCTION;
IRQEN = 0x400;

//PLACE FIRST TWO BYTES IN TX FIFO
I2C0MTX = 0x11;
I2C0MTX = 0x22;
//SET UP ADDRESS WITH W BIT SET TO 0
I2C0ADR = 0xA0;

MORE
DATA? Y

N

Figure 16. Master Transmit Flowchart

AN-895

Rev. 0 | Page 10 of 16

Slave Receive

As the data is received by an I2C slave, an interrupt is generated
as each byte of data is placed in the receive FIFO, that is, after
the ninth clock of each byte is received. If the FIFO is not read
before a third byte is received, the interface automatically
delivers a NACK for the last data transmitted, and Bit 4 of the
I2CSSTA register is set, indicating a receive FIFO overflow.

To read data from the FIFO, the I2C0RX register is used. Bit 3
of the I2C0SSTA register indicates that the slave has received
data. Only reading I2C0SRX clears this bit. Flushing the FIFO
does not clear Bit 3.

The master automatically sends a stop condition after sending
the last data.

06
54

9-
01

4

//ENABLE I2C on GPIO P1.0AND P1.1
GP1CON = 0x22;

//RETURN FROM ISR

VECTOR TO
INTERRUPT SERVICE ROUTINE

//SET UP I2C SLAVE MODE
I2C0CFG = 0x1;

WAIT FOR MASTER

//CHECK FOR RX INTERRUPT
if ((I2C0SSTA AND 0x08) == 0x08)

//READ DATA FROM FIFO
dat[i] = I2C0SRX

//SPECIFY INTERRUPT SERVICE ROUTINE
AND ENABLE SLAVE I2C INTERRUPT
IRQ = MY_IRQ_FUNCTION;
IRQEN = 0x200;

Figure 17. Slave Receive Flowchart

06
54

9-
01

5

ST
A

R
T

DEVICE
ADDRESS W

R
IT

E

WORD ADDRESS (n) DATA (n)

SDA LINE

M
SB LS

B

R
/W

A
C

K

LS
B

A
C

K

M
SB

A
C

K

DATA (n + 1)

A
C

K

DATA (n + x) ST
O

P

A
C

K

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

Figure 18. Example of a Slave Receive

 AN-895

Rev. 0 | Page 11 of 16

Master Receive

In master mode, to read data from a slave, a similar approach is
used. First, the number of bytes to be read is configured by the
I2C0CNT register. This denotes the number of bytes to be read
from the slave, plus one. It can have a value between 0 and 7 but
can be reset during code execution in order to read larger
amounts of data.

In order to start receiving data, the read (R) bit is set in the
I2C0ADR register. This initiates a transfer with a start condition
generated with the address and a R/W bit set by the I2C0ADR
register. After each byte is received (after the ninth clock, ACK
or NACK), an interrupt is generated. Bit 3 of I2C0MSTA is set,
indicating that a byte has just been received. Only reading
I2C0MRX clears this bit.

When the master does not need to receive more data, it
automatically generates a NACK to the last byte received. This
tells the slave to cease transmitting bytes and allows the master
to then generate a stop condition.

If the data received is not read on time and the FIFO is full, the
master delivers a NACK for the extra data received.

A flowchart of receiving four bytes from the slave is shown in
Figure 19.

The I2C0CNT is a load register to an internal counter that is
not user accessible. It is only a 3-bit counter, which means that
the master can only be configured to transmit eight bytes at a
time. However, it is possible to reload the internal counter by
writing in I2C0ADR during a transmit sequence.

06
54

9-
01

6

//ENABLE I2C on GPIO P1.0AND P1.1
GP1CON = 0x22;

VECTOR TO
INTERRUPT SERVICE ROUTINE

//SET UP I2C MASTER MODE, 100kHz
I20CFG = 0x82;
I20DIV = 0xCFCF;

//CHECK FOR RX INTERRUPT
if ((I2COMSTA AND 0x8) == 0x8)

//READ DATA FROM FIFO
dat[i] = I2C0MRX

//SPECIFY INTERRUPT SERVICE ROUTINE
AND ENABLE MASTER I2C INTERRUPT
IRQ = MY_IRQ_FUNCTION;
IRQEN = 0x400;

//SET NUMBER OF BYTES TO BE RECEIVED
I2C0CNT = 0x04;
//SET UP ADDRESS WITH R BIT SET TO 1
I2C0ADR = 0xA1;
//WAIT FOR FIRST BYTE TO BE RECEIVED

//RETURN FROM ISR

Figure 19. Master Receive Flowchart

AN-895

Rev. 0 | Page 12 of 16

Slave Transmit

The slave generates an interrupt on each request for data to be
transmitted, the first occurring after the ACK of the address,
that is, while Byte 0 of the FIFO is sent. Data needs to be
preloaded into the slave Tx FIFO, otherwise the first read
request from the master results in a NACK being generated. If
the FIFO is preloaded with two sets of data, one interrupt
occurs after the ACK of the address and then after the ACK of

each byte sent. If the FIFO is preloaded with one set of data
only, two interrupts occur after the ACK of the address, the
FIFO emptying after sending the first data.

Once a byte has been transmitted, an interrupt is generated as
long as the master continues to request data. Bit 2 of I2C0SSTA
is set each time a byte is transmitted to the master.

An example of a slave responding to a request for data from a
master is shown in Figure 21.

06
54

9-
01

7

//ENABLE I2C on GPIO P1.0AND P1.1
GP1CON = 0x22;

//RETURN FROM ISR

VECTOR TO
INTERRUPT SERVICE ROUTINE

//SET UP I2C SLAVE MODE
I2C0CFG = 0x1;

//CHECK FOR TX INTERRUPT
if (I2C0SSTA AND 0x04)

//LOAD NEXT BYTE INTO TX FIFO
I2C0STX = DATA;

//SPECIFY INTERRUPT SERVICE ROUTINE
AND ENABLE SLAVE I2C INTERRUPT
IRQ = MY_IRQ_FUNCTION;
IRQEN = 0x200;

//PLACE FIRST TWO BYTES IN TX FIFO
I2C0STX = 0x11;
I2C0STX = 0x22;
//WAIT FOR MASTER

Figure 20. Slave Transmit Flowchart

06
54

9-
01

8

R
EA

DDEVICE
ADDRESS

SDA LINE

A
C

K

N
O

 A
C

K

A
C

K

A
C

K

A
C

K

ST
O

P

R
/W DATA (n + 2) DATA (n + x)DATA (n + 1)DATA (n)

TRANSMIT
INTERRUPT

TRANSMIT
INTERRUPT

TRANSMIT
INTERRUPT

TRANSMIT
INTERRUPT

Figure 21. Example of a Slave Transmit

 AN-895

Rev. 0 | Page 13 of 16

I2C REGISTER DEFINITIONS
The I2C peripheral interface consists of 15 registers in total:

• Four registers that include the transmit/receive
master/slave MMR (I2CxSRX, I2CxSTX, I2CxMRX,
I2CxMTX).

• Three status registers that include the master/slave/FIFO
(I2CxMSTA, I2CxSSTA, I2CxFSTA).

• Eight configuration registers that include four slave
addresses, one master address byte, one master clock
divider, one master receive data count, and one I2C
configuration register (I2CxID0, I2CxID1, I2CxID2,
I2CxID3, I2CxADR, I2CxDIV, I2CxCNT, I2CxCFG).

• Other registers for general call are not discussed in this
application note.

Four of these registers are described in detail in the following
sections:

• I2CxDIV, the clock divider register.
• I2CxMSTA, the master status register, see Table 2.
• I2CxCFG, the I2C configuration register, see Table 3.
• I2CxSSTA, the slave status register, see Table 4.

I2CxDIV, Clock Divider Register

This is a 16-bit register containing two 8-bit values, DIVH and
DIVL. The value in this register sets up the speed of the I2C bus.
This is set up according to the formula

) (2)2(DIVLDIVH +++
= UCLK

kserialcloc
f

f

where:

fUCLK is the clock before the clock divider.
DIVH is the high period of the clock.
DIVL is the low period of the clock.

Thus, for 100 kHz operation,

DIVH = DIVL =0xCF (I2C0DIV = 0xCFCF)

and for 400 kHz,

DIVH = 0x28 DIVL = 0x3C (I2C0DIV = 0x283C)

I2CxMSTA: Master Status Register

Table 2. I2CxMSTA MMR Bit Descriptions
Bit No. Description
7 Master Transmit FIFO Flush.
 Set by the user to flush the master Tx FIFO. This bit also flushes the slave Rx FIFO.
 Cleared automatically once the master Tx FIFO is flushed.
6 Master Busy.
 Set automatically if the master is busy.
 Cleared automatically.
5 Arbitration Loss.
 Set in multimaster mode if another master has the bus.
 Cleared when the bus becomes available.
4 No ACK.
 Set automatically if there is no acknowledge of the address by the slave device.
 Cleared automatically by reading the I2C0MSTA register.
3 Master Receive IRQ.
 Set after receiving data.
 Cleared automatically by reading the I2C0MRX register.
2 Master Transmit IRQ.
 Set at the end of a transmission.
 Cleared automatically by writing to the I2C0MTX register.
1 Master Transmit FIFO Underflow.
 Set automatically if the master transmit FIFO is underflowing.
 Cleared automatically by writing to the I2C0MTX register.
0 Master Tx FIFO Empty.
 Set automatically if the master transmit FIFO is empty.
 Cleared automatically by writing to the I2C0MTX register.

AN-895

Rev. 0 | Page 14 of 16

I2CxCFG: I2C Configuration Register

Table 3. I2CxCFG MMR Bit Descriptions
Bit No. Description
31 to 15 Reserved. These bits should be written by the user as 0.
14 Enable Stop Interrupt.
 Set by the user to enable the generation of an interrupt on receiving a stop condition after receive a valid start + matching address.
 Cleared by the user to disable the generation of an interrupt on receiving a stop condition.
13 to 12 Reserved. These bits should be written by the user as 0.
11 Enable Stretch SCL (Holds SCL Low).
 Set by the user to enable stretching of the SCL line. This bit instructs the I2C interface to hold SCL low if it is already low, or

when it next goes low.
 Cleared by the user to disable stretching of the SCL line.
10 Reserved. This bit should be written by the user as 0.
9 Slave Tx FIFO Request Interrupt Enable.
 Set by the user to disable the slave Tx FIFO request interrupt.
 Cleared by the user to generate an interrupt request just after the negative edge of the clock for the R/W bit. This allows the

user to input data into the slave Tx FIFO if it is empty. At 400 kbps and the core clock running at 41.78 MHz, the user has 45
clock cycles to take appropriate action, taking interrupt latency into account.

8 General Call Status Bit Clear.
 Set by the user to clear the general call status bits.
 Cleared automatically by hardware after the general call status bits have been cleared.
7 Master Serial Clock Enable Bit.
 Set by the user to enable generation of the serial clock in master mode.
 Cleared by the user to disable serial clock in master mode.
6 Loop Back Enable Bit.
 Set by the user to internally connect the transition to the reception, and to test user software.
 Cleared by the user to operate in normal mode.
5 Start Back-Off Disable Bit.
 Set by the user in multimaster mode. If losing arbitration the master tries to transmit again immediately.
 Cleared by the user to enable start back-off. The master after losing arbitration waits before trying to transmit again.
4 Hardware General Call Enable.
 When this bit and the general call enable bit are set, and have received a general call (Address 0x00) and a data byte, the

devices checks the contents of the I2C0ALT against the receive register. If they match, the device has received a hardware
general call. This is used if a device needs urgent attention from a master device without knowing which master it needs to
turn to. The ADuC702x watch for these addresses. The device that requires attention embeds its own address into the
message. All masters listen and the master that knows how to handle the device contacts its slave and acts appropriately.
The LSB of the I2C0ALT register should always be written as a 1, as per the I2C-Bus Specification, version 2.1, January 2000.

3 General Call Enable Bit.
 Set this bit to enable the slave device to deliver an ACK for an I2C general call, Address 0x00 (write). The device then

recognizes a data bit. If it receives a 0x06 as the data byte, that is, “reset and write programmable part of slave address by
hardware,” the I2C interface resets as per the I2C-Bus Specification. This command can be used to reset an entire I2C system.
The general call interrupt status bit sets on any general call. It is up to the user to take correct action by setting up the I2C
interface after a reset. If it receives a 0x04 as the data byte, that is, “write programmable part of slave address by hardware,”
the general call interrupt status bit sets on any general call. It is up to the user to take correct action by reprogramming the
device address.

2 Reserved.
1 Master Enable Bit.
 Set by the user to enable the master I2C channel.
 Cleared by the user to disable the master I2C channel.
0 Slave Enable Bit.
 Set by the user to enable the slave I2C channel. A slave transfer sequence is monitored for the device address in I2C0ID0,

I2C0ID1, I2C0ID2, and I2C0ID3. If the device address is recognized, the part participates in the slave transfer sequence.
 Cleared by the user to disable the slave I2C channel.

 AN-895

Rev. 0 | Page 15 of 16

I2CxSSTA: Slave Status Register
Note: reading the status register modifies its contents. Only read it once and save its value in a variable during an ISR.

Table 4. I2CxSSTA MMR Bit Descriptions
Bit No. Description
31 to 15 Reserved. These bits should be written by the user as 0.
14 Start Decode Bit.
 Set by the hardware if the device receives a valid start + matching address.
 Cleared either by an I2C stop condition, or by an I2C general call reset.
13 Repeated Start Decode Bit.
 Set by the hardware if the device receives a valid repeated start + matching address.
 Cleared by either an I2C stop condition, by a read of the I2CxSSTA register, or by an I2C general call reset.
12 to 11 ID Decode Bit.
 00 Received address matched ID Register 0
 01 Received address matched ID Register 1
 10 Received address matched ID Register 2
 11 Received address matched ID Register 3
10 Stop After Start and Matching Address Interrupt.
 Set by hardware if the slave device receives an I2C stop condition after a previous I2C start condition and matching address.
 Cleared by a read of the I2CxSSTA register.
9 to 8 General Call ID.
 00 No general call
 01 General call reset and program address
 10 General call program address
 11 General call matching alternative ID
7 General Call Interrupt.
6 Slave Busy.
 Set automatically if the slave is busy.
 Cleared automatically.
5 No ACK.
 Set if the master asks for data and no data is available.
 Cleared automatically.
4 Slave Receive FIFO Overflow.
 Set automatically if the slave receive FIFO is overflowing.
 Cleared automatically by reading I2C0SRX.
3 Slave Receive IRQ.
 Set after receiving data.
 Cleared automatically by reading the I2C0SRX register.
2 Slave Transmit IRQ.
 Set at the end of a transmission.
 Cleared automatically by writing to the I2C0STX register.
1 Slave Transmit FIFO Underflow.
 Set automatically if the slave transmit FIFO is underflowing.
 Cleared automatically by writing to the I2C0STX register.
0 Slave Transmit FIFO Empty.
 Set automatically if the slave transmit FIFO is empty.
 Cleared automatically by writing to the I2C0STX register.

AN-895

Rev. 0 | Page 16 of 16

IMPLEMENTATION OF THE SERIAL EEPROM
PROTOCOL
This section covers the implementation of the five commands
supported by the serial EEPROM specifications in the case of a
single I2C address:

• Current address read
• Random read
• Random write
• Sequential read
• Sequential write

In the interrupt service routine, the status register must be read
once and its value saved. The flowchart of the interrupt service
routine is shown in Figure 22.

06
54

9-
01

9

FALSE

TRUE

BIT 2 SET
READ

BIT 3 SET
WRITE

BIT 10 SET
STOP

STATUS

FIRST

I2C0STX=
DAT[++BYTE ADDR] FIRST = TRUE

FIRST = FALSE

BYTE_ADDR=
I2C0SRX

FLUSH TX FIFO

I2C0STX=
DAT[BYTE_ADDR]

I2C0STX=
DAT[++BYTE_ADDR]

FLUSH TX FIFO

GET DATA

RETURN

Figure 22. Slave Interrupt Service Routine

See AN-895 Companion Code.zip for companion codes.

Command Codes

I2C Configuration
I2CCFG = 0x4001; // Enable slave, enable STOP detect

I2C0ID0 = 0xA0; // Slave ID

I2C0STX = dat[0]; // Set initial data

Variable Initialization
Byte_addr = 0

First = 1

Enable I2C Slave Interrupt
IRQEN = 0x200; // I2C0 Slave Interrupt

while (1) // Wait for interrupt

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.

©2007 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN06549-0-1/07(0)

