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INTRODUCTION 

The platinum resistance temperature detector (RTD) is one of 

the most accurate sensors available for measuring temperature 

within the –200°C to +850°C range. The RTD is capable of 

achieving a calibrated accuracy of ±0.02°C or better. Obtaining 

the greatest degree of accuracy, however, requires precise signal 

conditioning, A/D conversion, linearization, and calibration.  

The Analog Devices, Inc., MicroConverter® product family 

includes devices with a 24-bit ADC and a 32-bit AMR7 MCU in 

a single chip with signal conditioning circuitry ideally suited to 

RTD sensors. This application note describes how to implement 

a complete RTD sensor interface using the ADuC706x and several 

passive components. This application note is based on the AN-709 

Application Note, RTD Interfacing and Linearization using an 

ADuC8xx Microcontroller. Note that the ADuC706x device is not 

yet available; the anticipated release date is November 2008. 

The software utilities and sample code referenced in this 

application note are highly recommended for implementing a 

MicroConverter-based RTD sensor interface. These utilities and 

code are available at www.analog.com/MicroConverter. 
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HARDWARE DESIGN 
An RTD is a sensor with a resistance that varies as a function of 

temperature in a precisely defined manner. Before attempting to 

understand the details of the RTD transfer function of resistance to 

temperature (which is nonlinear), assume that the nonlinearities 

are corrected digitally. Then, concentrate on converting the RTD 

resistance to a digital value. A common way to do this is shown in 

Figure 1. 
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Figure 1. RTD Interfacing Hardware Configuration 

In Figure 1, a single current source (IEXC) excites both the RTD 

(RRTD) and a precision reference resistor (RREF) by way of a 

series connection, generating the ADC input voltage (VRTD) and 

reference voltage (VREF), respectively as follows: 

VRTD = IEXC × RRTD 

VREF = IEXC × RREF 

The normalized digital output of the ADC (zero input = 0 and 

full-scale input = 1) is simply a ratio of the input voltage to the 

reference voltage multiplied by the gain stage, AADC. 
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Notice how IEXC cancels out of the above equation. This means 

that even if the excitation current changes or is imprecise, the 

ADC result always corresponds directly to the ratio of the RTD 

resistance to the reference resistance. Choosing a precision, low 

drift reference resistor means the RTD resistance can be known 

to a high degree of precision, even with a much less precise 

current source. 

Applying this same principle using a MicroConverter, Figure 2 

shows the ADuC706x connected for interfacing with a 4-wire 

RTD. Note that this is the same overall topology as shown in 

Figure 1, except that all of the active components (excitation 

current source, differential input stages for VRTD and VREF, gain 

stage AADC, the ADC itself, and a microcontroller) are included 

internally to the ADuC706x chip. Diode prtection and 100 Ω 

resistors serve only to protect the ADuC706x from damage in 

the event of overvoltage conditions at the terminal block. 

Also included are other peripherals, such as serial communi-

cation ports for the digital communication paths. Notice also 

 that some passive components have been added for R/C filtering 

of signals and for protection from overvoltage conditions at the 

terminal block. This represents a complete implementation, 

requiring only a power supply and any particular peripheral 

chip needed for the digital interface, such as an RS-232 or  

RS-485 line driver/receiver). 
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Figure 2. Complete RTD Interfacing Circuit Using the ADuC706x 
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CALCULATING RTD RESISTANCE FROM THE  
ADC RESULT 

As introduced in the Hardware Design section: 

REF

RTD
ADCnorm

R

R
× A ADC =  

can be rewritten as: 

scaleADC
A

R
× ADC R norm

ADC

REF
normRTD ×==  

where: 

ADC

REF

A

R
scale =  

The scale value is the fixed scaling factor used in the sample 

code. Taking this a step further, a fixed offset value can be 

added to the equation, resulting in: 

offsetscaleADCR normRTD +×=  

where the offset term represents a fixed offset that can be used 

to compensate for errors. This offset term is discussed further in 

the Calibration section. In most situations, a value of zero is 

sufficient for this offset term. Note that a direct equation for 

RTD resistance is obtained as a function of the ADC result 

using only a pair of fixed values for scale and offset. 

The remainder of this application note considers the most 

common type of platinum RTD, which has a nominal resistance 

(R0) of 100 Ω at 0°C. When using this application note, assume 

a reference resistor value of 5.62 kΩ, which provides a good 

match to such an RTD. With these component values, and using 

the ADuC706x, an internal gain of 32 is the highest available 

ADC gain setting that still allows the RTD to cover its fully 

specified temperature range.  

Remember, ADCnorm is limited to the range of 0 to 1, which is 

what defines the temperature range limitation at higher ADC 

gains. The gain of 32 corresponds to an ADC0CON value of 

0x8415, or a range setting of 37.5 mV unipolar where: 

32
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===
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ADC  

To correspond to this gain setting, the scale value works out to 

175.625 where: 

625.175
32

k62.5
===

ADC

REF

A

R
scale  

which is the default scale value used in the sample code. The default 

value for the offset term is zero. These equations assume an excita-

tion current of 200 µA on the IEXC0 pin. This is configured by 

setting IEXCCON = 0x42. 

The equations in this section for RRTD are merely methods of 

determining through software the RTD resistance directly from a 

given ADC conversion result. To determine the RTD temperature 

as a function of its resistance requires an understanding of the RTD 

transfer function. 

RTD TRANSFER FUNCTION 

A platinum RTD transfer function is described by two distinct 

polynomial equations: one for temperatures below 0°C and 

another for temperatures above 0°C.  

The equations are for t ≤ 0°C is: 

32
0 )100(1()( tCtCBtAtRtRRTD

o
−+++=  

The equations are for t ≥ 0°C is: 

)1()( 2
0 BtAtRtRRTD ++=  

where for both equations: 

t is RTD temperature (°C).  

RRTD(t) = RTD resistance as a function of RTD temperature (t).  

R0 is the RTD resistance at 0°C (most often 100 Ω).  

A = 3.9083 × 10–3 °C–1.  

B = –5.775 × 10–7 °C–2.  

C = –4.183 × 10–12 °C–4. 

Notice that the notation is changed from RRTD to RRTD(t) to 

reflect that the RTD resistance is a function of its temperature. 

Figure 3 shows the RTD transfer function (resistance plotted as 

a function of temperature) along with a linear expansion of the 

transfer function’s slope at 0°C (for visual comparison). 

450

400

350

300

250

200

150

100

50

0
–300 –200 –100 0 100 200 300 400 500 600 700 800 900

0
7

5
3

8
-0

0
3

R
E

S
IS

T
A

N
C

E
 (
Ω

)

TEMPERATURE (°C)

LINEAR EXPANSION
FROM 0°C

ACTUAL RTD

 

Figure 3. RTD Transfer Function 

The previous equations define the RTD resistance as a function 

of its temperature, RRTD(t). However, to implement an RTD 

sensor interfacing circuit, the RTD temperature must be deter-

mined instead as a function of its resistance, TRTD(r). This may 

be less straightforward, given the nonlinear transfer function of 

the RTD. Useful techniques for this task are explored in the 

following sections. 
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LINEARIZATION TECHNIQUES 
There are many different ways to determine temperature as a function of RTD resistance, given the RTD transfer function. This applica-

tion note examines three techniques useful in embedded designs. These techniques are particularly well suited to MicroConverter-based 

designs. Table 1 outlines the strengths and weaknesses of each method. Execution times indicated here represent empirical measurements 

of an ADuC7060, at a core clock speed of 10.24 MHz, running the C subroutines referenced herein. 

Table 1. Comparison of Linearization Methods 

Technique Advantages Disadvantages Summary 

Direct Mathematical Method Very accurate. 
No look-up table required. 

Requires math library (usually >1 kB).  
Slow. 

Useful if math library is 
already used. 

Single Linear Approximation 
Method 

Very fast (<56 µS).  
Small code space needed.  
Accurate over narrow temper-ature 
bands.  
No look-up table required.  
No math library required. 

Poor accuracy over wide temperature 
range. 
 

A good option when limited 
code space is available and 
with small temperature span. 

Piecewise Linear 
Approximation Method 

Fast (<1 mS). 
Designer control of code size and 
accuracy trade-off.  
Can be very accurate.  
No math library required. 

Greater code size than single linear 
approximation method. 
 

Most useful in most 
situations. 

 

DIRECT MATHEMATICAL METHOD 

In the RTD Transfer Function section, explicit mathematical 

equations are shown for RTD resistance as a function of its 

temperature, RRTD(t). Is it possible to just turn those equations 

around and solve for expressions of the RTD temperature as  

a function of its resistance, TRTD(r)? This is a fairly straight-

forward task for the equation that defines positive temperature 

behavior, because it is merely a quadratic. The solution to the 

quadratic yields two expressions; to determine which one is 

correct, simply substitute several known values. The result is  

the following equation for RTD temperature at temperatures of 

0°C or greater: 

B
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where: 

A = 3.9083 × 10–3 °C–1.  

B = –5.775 × 10–7 °C–2.  

C = –4.183 × 10–12 °C–4. 

R0 is the RTD resistance at 0°C (most often 100 Ω).  

r is the RTD resistance.  

Because this function is solved in real time, it is beneficial to 

change it to the following form: 
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This is advantageous for real-time computation because Z1 

through Z4 are constant and absolute, and so there are fewer 

computations required. The above equation for TRTD(r) is 

referred to as the positive function because it relates to temp-

eratures of 0°C and above. Since this is a direct mathematical 

solution, it is 100% accurate within that range. When solving 

this equation, rounding errors using 32-bit floating-point math 

in ARM7 C code works out to about +0.0001°C/–0.0005°C. This 

is close enough to 100% accuracy for any practical purposes. When 

using the ADuC706x with a core clock speed of 10.24 MHz 

running the sample C routine of RTDmath.c, the execution 

time of this equation is less than 750 µS.  

The previous equation is valid only for temperatures of 0°C and 

above. The equation for RRTD(t) that defines negative temperature 

behavior is a fourth-order polynomial (after expanding the third 

term) and is impractical to solve for a single expression of tempera-

ture as a function of resistance. However, making use of computer 

math tools can assist in finding a close approximation to the inverse 

transfer function.  
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Use Mathematica® or a similar software math tool to come up 

with the following best-fit polynomial expressions for RTD 

temperature at temperatures of 0°C or less:. 

TRTD(r) = −242.02 + 2.2228 × r + 2.5859 × 10−3 

× r2 −4.8260 × 10−6 × r3 −2.8183 × 10−8 

× r4 + 1.5243 × 10−10 × r5  

TRTD(r) = −241.96 + 2.2163 × r + 2.8541 × 10−3 

× r2 −9.9121 × 10−6 × r3 −1.7052 × 10−8 r4 

TRTD(r) = −242.09 + 2.2276 × r + 2.5178 × 10−3 

× r2 −5.8620 × 10−6 × r3  

TRTD(r) = −242.97 + 2.2838 × r + 1.4727 × 10−3 × r2 

These four equations are referred to as the negative functions 

because each is valid only for temperatures of 0°C and below. 

The top (fifth-order) equation is the most accurate, but takes 

the longest time to compute, while the bottom (second-order) 

equation is the least accurate, but the fastest to compute. Some 

characteristics of these negative functions are given in Table 2, 

and a plot of the error of each as a function of temperature is 

shown in Figure 7 along with (for visual reference) the error of 

the positive function extended into the negative temperature 

space.  

Notice in Figure 7 that at near-zero negative temperatures, there 

is actually less error in the positive function than in the second-, 

third-, or fourth-order negative functions. The sample code 

RTDmath.c takes advantage of this behavior by using the 

positive function even at slightly negative temperatures. The actual 

threshold to determine if the positive or negative function should 

be used differs depending on which negative function (second-, 

third-, fourth-, or fifth-order) is used, and is represented in the 

Threshold column of Table 2. Above this threshold value, the 

positive function yields lower errors; below this threshold value, 

the negative function yields lower errors. The Equation Accuracy 

column in Table 2 represents errors only for temperatures below 

the corresponding threshold value. 

Table 2. Characteristics of Best-fit Polynomial Equations 

(Negative Functions) 

Equation 
Size 

Maximum 
Execution Time1 

Equation 
Accuracy1 Threshold 

Fifth Order 2.16 mS +0.0001°C/ 
−0.00005°C 

0°C/ 
100 Ω 

Fourth Order 1.61 mS +0.0022°C/ 
−0.001°C 

−8.75°C/ 
96.6 Ω 

Third Order 1.13 mS +0.0053°C/ 
−0.0085°C 

−12.5°C/ 
95.1 Ω 

Second Order 800 µS +0.075°C/ 
−0.17°C 

−70.5°C/ 
72.1 Ω 

1Execution time and equation accuracy were measured empirically on an 
ADuC706x, at a core clock speed of 10.24 MHz, running the sample C routine 
of RTDmath.c. 
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Figure 4. Error Plot of Best-Fit Polynomial Equations (Negative Functions) 

One drawback of the direct mathematical technique for lineari-

zation is that it requires floating-point power and square root 

functions such as those found in the math library of the IAR 

compiler from IAR Systems These floating-point math functions 

alone typically add more than 1 kB to the code size. Similar or 

better accuracy can be achieved with smaller overall code size 

using the piecewise linear approximation method described in 

the Piecewise Linear Approximation Method section. However, 

if the math library functions are required for other operations in 

the program, the direct mathematical technique may be the best 

solution because those library functions are already available. 

SINGLE LINEAR APPROXIMATION METHOD 

In Figure 3, notice that over smaller temperature spans the RTD 

transfer function resembles a straight line. If the required mea-

surement temperature range spans only a portion of the full 

RTD measurement band, one might not need to linearize the 

RTD signal at all. In such cases, a best-fit linear approximation 

to the transfer function over the desired measurement temper-

ature range can often yield sufficient precision. For example, 

over the industrial temperature range of –40°C to +85°C, a best-

fit linear approximation is accurate to ±0.3°C. 

In general, a linear equation for temperature as a function of 

RTD resistance (r) is of the form 

Tlin(r) = A × r + B 

where A and B are constants.  

Note that these are not the same A and B as described in the 

RTD Transfer Function section. Choosing optimum values for 

A and B to minimize the error band involves some math not 

explored here. There is, however, a very simple software tool, 

which accompanies this application note, that can automatically 

find optimum values of A and B to fit your specific temperature 

range. This tool is examined in this applicaton note, but first it 

must be determined whether a single linear approximation is 

suitable for the specific design requirement. 
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Figure 5. Single Linear Approximation Error vs. Measurement  
Temperature Span 

Figure 8 offers a view of the total approximation error that 

results for measurement temperature spans of up to 500°C. For 

more than 500°C spans, the approximation error continues to 

degrade with increasing temperature spans. The imprecise 

nature of the Figure 8 plot (that is, the broad width of the data 

trace) is due to the fact that even for the same span of temper-

ature, the error is different for different absolute temperature 

bands. For example, the temperature ranges of –200°C to 0°C 

and +600°C to +800°C do not have the same precision even 

though they both span exactly 200°C.  

Figure 8 provides a rough idea of error in order to help gauge 

whether single linear approximation should be considered as an 

option. If it is determined that it might be an option, the RTD 

coefficient generator tool (described in the RTD Coefficient 

Generator Tool section) can help determine the actual approxi-

mation error for a specific temperature range, and can generate 

source code optimized for that temperature range. 

PIECEWISE LINEAR APPROXIMATION METHOD 

Taking linear approximation one step further, one can concept-

ualize any number of linear segments strung together to better 

approximate the nonlinear RTD transfer function. Generating 

this series of linear segments so that each segment’s endpoints 

meet those of neighboring segments results in what can be 

viewed as a number of points connected by straight lines. These 

points (or coefficients) can be calculated once to best match the 

nonlinear transfer function of the RTD and then stored perm-

anently in ROM or Flash memory. From this table of coefficients, 

the MCU can perform simple linear interpolation to determine 

temperature based on measured RTD resistance. 

To understand how this is implemented in practice, first assume 

the table of coefficients already exists. Each coefficient in the 

table is simply a point on the transfer function, represented by  

a resistance and a temperature. Thus, the table takes the form: 

{ro,t0; r1,t1; r2,t2;… rn,tn} 

Given this table, the real-time task of the MCU (in determining 

temperature at a given resistance, r) is to first determine which 

two coefficients are closest to the point in question (call these 

{rm,tm} and {rn,tn}), and then to linearly interpolate between those 

two points to solve for temperature. The actual linear interpola-

tion formula for that range (that is, valid only for values of r 

between rm and rn) then takes the form 

mn

mn

mmSEG
rr

tt
rrtrT

−

−
−+= )()(  

Note that each coefficient in the above lookup table consists of 

two numbers, one for resistance and one for temperature 

(essentially x and y values in the transfer function). Thus, for N 

linear segments (that is, N + 1 coefficients), a total of 2N + 2 

values must be stored in memory. To reduce the size of the 

lookup table, consider a table consisting of N segments, each 

spanning an equal breadth of resistance. Such a table can be 

stored as a set of temperature points only as follows: 

{t0; t1; t2; ... tN} 

since, for a given coefficient {rn,tn}, the value of rn can be 

calculated by 

SEGn rnrr ×+= 0  

where: 

r0 and rSEG are fixed values, stored in ROM along with the table o 

f coefficients.  

r0 is the resistance at coefficient zero {r0,t0}. 

rSEG is the fixed span of resistance that separates adjacent 

coefficients.  

The linear interpolation formula for a given segment then 

becomes 

( )[ ]
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−
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where i indicates which segment (that is, which pair of coef-

ficients) is being used, and is calculated using the value of r as 

follows: 
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Again, the above expression for TSEG(r) is nothing more than a 

linear interpolation between the two coefficients, ti and ti + 1. To 

implement this in practice, the MCU must first solve for i (per 

the last equation, above) so that the coefficients ti and ti + 1 are 

the two closest to the input value for r. Then, with i solved, the 

MCU can simply solve the TSEG(r) equation to determine the 

temperature at the given input resistance.  

The overall error generated by this piecewise linear approxima-

tion technique depends on the number of segments (or number 

of coefficients, or the size of lookup table), and the overall span 

of temperature.  

Figure 6 shows the linear approximation error for a measure-

ment temperature range of –200°C to +850°C plotted as a 

function of lookup table size (using optimized coefficients 

generated by the RTD coefficient generator tool). Note that  

if the measurement temperature range is reduced, a better  

error results given the same size lookup table, or the same  

error with results given a smaller look-up table. 
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(–200°C to +850°C Range) 

 



Preliminary Technical Data AN-0970 
 

Rev. 0 | Page 9 of 16 

RTD COEFFICIENT GENERATOR TOOL 
The most difficult part of implementing a piecewise linear-

ization function is generating the lookup table. However, the 

RTD coefficient generator tool that accompanies this applica-

tion note (coefRTD.exe) does this automatically for platinum 

RTDs. This simple DOS-executable assists with an ARM7-based 

RTD interface designs using piecewise linear or single linear 

approximation methods. It performs the following tasks: 

• Generates optimized lookup table coefficients for a given 

temperature range and look-up table size. 

• Indicates resulting error band and lookup table size. 

• Generates complete RTD linearization functions (including 

the lookup table) in ARM7 C source code. 

• Generates a table of error values as a function of temper-

ature resulting from the given lookup table.  

Figure 7 shows a sample session with user input. Note that the 

program requires the user to input only three parameters (TMIN, 

TMAX, and NSEG). The program can generate the file RTDpwl0.c, 

which is a complete C source file (customized a user’s specific 

lookup table) that can be included as is in a project where the 

T_rtd() function is available to be called directly from functions 

in other source files. Alternatively, any portion(s) of RTDpwl0.c 

can be copied and pasted directly into other source file(s).  

The coefficient generator can also output an error analysis  

file (errorRTD.txt), which is a tab-delimited text file that can  

be imported into Microsoft® Excel or any other spreadsheet 

program to examine the errors generated by the linear approx-

imation routine. 
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Figure 7. Coefficient Generator Session Example with Piecewise Linear Approximation (User Input in Red) 
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Figure 8. Coefficient Generator Session Example with Single Linear Approximation (User Input in Red) 

 

The coefficient generator program generates linearization 

functions not only for piecewise linear approximation, but  

also for single linear approximation. To do this, simply enter  

1 for the table size to indicate only a single linear segment.  

The program recognizes this and outputs results pertaining  

to the single linear approximation method instead of the piece-

wise linear approximation method, as shown in Figure 8. 
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CALIBRATION 
The ADuC706x has a built-in function to calibrate the ADC  

for endpoint errors (offset and gain error) as documented in  

the product data sheet. However, if the entire signal chain, 

including the RTD itself, is taken into account instead during 

calibration, one can end up with a lower overall error, and in 

such a case, the built-in ADC calibration provides no added 

benefit. This application note examines the overall calibration 

first, and then points out some instances where the built-in 

ADC calibration might still be useful. 

Up to this point, the assumption has been that the RTD itself is 

perfect. However, real RTDs are not perfect. Just like anything 

else in the real world, they have errors associated with them as 

specified by the RTD manufacturer’s data sheet. Fortunately, 

many of these errors can easily be calibrated out in software. 

The calibration function discussed in this application note 

works as either a single-point or a two-point calibration. This 

function can be used in conjunction with any of the lineariza-

tion techniques. 

To understand how a single-point calibration works in princi-

ple, refer to the where RRTD(t) is discussed in the RTD Transfer 

Function section and note that it is largely defined by the value 

R0, which is the resistance of the RTD at 0°C. For the most 

common RTDs, R0 is nominally 100 Ω. However, this R0 value is 

the most significant source of error in an RTD sensor, because it 

can vary significantly from one device to another. In addition, 

because the R0 value is simply multiplied by the rest of the 

transfer function in the expressions for RRTD(t), errors due to R0 

tolerance are purely multiplicative, and so can be corrected by 

adjusting the scale multiplier in the following expression (as 

given previously) for RRTD as a function of normalized ADC 

conversion result: 

offsetscaleADCR normRTD +×=  

Specifically, if the RTD can be brought to a very precise known 

temperature and an ADC conversion performed, then the 

corrected scale value can be calculated as 

cal

cal

ADC

R
scale =  

Where ADCcal is the actual normalized result of the A/D 

conversion and Rcal is the ideal (expected) resistance value at 

that RTD temperature. Rcal can be calculated manually using  

the equations for RRTD(t). By this method (called single-point 

calibration), a corrected scale value is obtained, compensating 

for the RTD R0 tolerance and also, simultaneously, for the 

reference resistor’s initial tolerance. To take this a step further, 

one can employ a two-point calibration, which compensates not 

only for these scaling errors, but also for any offset error that 

might exist. Doing so requires adjusting not only the scale 

value, but the offset value as well.  

Assume that a single-point calibration has already been 

performed, and the RTD can now be brought to a second very 

precise known temperature and another ADC conversion is 

performed. The equation for the scale value (that is, the slope of 

the RRTD vs. ADCnorm function)  

is then 

precalcal

precalcal

ADCADC

RR
scale

−

−
=  

where: 

Rprecal and ADCprecal are the resistance and ADC conversion 

result, respectively, at the previous calibration point. Rprecal  

and ADCprecal are the same for the current calibration point.  

Note that this is merely a way of determining the slope of the 

RRTD vs. ADCnorm transfer function using two points on that line. 

One has only to take care of the offset value, which, because the 

scale value is now known, can be determined using a single 

point. The following expression for the offset value comes by 

solving for the offset of the above RRTD expression and then 

replacing RRTD and ADCnorm with Rprecal and ADCprecal, respectively. 

scaleADCRoffset precalprecal ×−=  

Note that if Rprecal and ADCprecal are both zero (representing no 

prior calibration point), then the expression for the scale value 

becomes the same as for a single-point calibration, and the 

expression for the offset value becomes zero, just as if this were 

a single-point calibration. Therefore, the same function (Cal() 

in the sample code) can be used to perform either a single-point 

or a two-point calibration. 

If using the sample code as is, follow these steps to perform a 2-

point calibration: 

1. Choose two temperatures for calibration, making sure that 

the temperature points are sufficiently separated (ideally at 

least one quarter of the total measurement span) to avoid 

errors accumulating near the extremes of the measurement 

temperature range. 

2. Bring the RTD to the first temperature point, wait for the 

displayed result to settle to the new value, and then press 

any key on the terminal (or terminal emulator) to display 

the user I/O menu. 

3. Follow the menu prompts to calibrate to a known temper-

ature, and then enter the temperature when prompted. 

4. Repeat Step 2 and Step 3 for the second temperature point. 

Note: for a single-point calibration, skip Step 4. 
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Although there are many benefits to calibration, there are just as 

many system considerations that make it impractical for certain 

applications. If a calibration cannot be performed as described 

in Step 1 through Step 4, consider performing a system ADC 

calibration instead, as described in the ADuC706x data sheet. 

To do so, simply replace the RTD with a short (0 Ω) and trigger 

a system zero-scale calibration. Then, replace the RTD with a 

high precision 719.36 Ω resistance and trigger a full-scale 

calibration. This compensates for internal ADC errors and for 

initial tolerance of the RREF resistor, but does not account for any 

errors of the RTD itself. 

Note that an added benefit of the ADuC706x (and all other 

MicroConverter products) is that it includes nonvolatile Flash 

memory on-chip, which can be used to store the calibrated scale 

and offset values. This way, the chip can restore the calibrated 

values each time the system powers up, rather than requiring a 

calibration each time the system is powered up.  
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ERROR ANALYSIS 
There are many contributing error sources to data acquisition 

designs, such as ADC linearity, input amplifier noise, resistor 

Johnson noise, amplifier temperature drift, and resistor temp-

erature drift. Determining which ones are dominant for a  

given design can be a daunting task. Fortunately, the ADuC706x 

integrates all the active stages into a single fully factory-specified 

device, making error analysis a much simpler task, but one that 

still requires insight in designs that involve a nonlinear sensor 

element. This application note explores the few error compon-

ents that are most significant for the specific hardware and 

software configurations discussed thus far. 

If the system is not calibrated to a specific RTD (using the 

single-point or two-point calibration), the RTD itself is almost 

certainly the most significant source of absolute error. This 

error, which should be well quantified in the RTD manufac-

turer’s data sheet, depends on the specific model of RTD 

chosen. This application note concentrates on error sources 

other than the RTD itself. 

NOISE 

One type of error to examine is noise. There are three main 

noise sources to consider in this design: resistor Johnson noise, 

amplifier/ADC input voltage noise, and amplifier/ADC input 

current noise. These add together as a root-sum-of-square, and 

so the lesser contributing sources are negligible when one noise 

source is even slightly greater than another source. In this speci-

fic case, that dominant noise source happens to be amplifier/ 

ADC input voltage noise. Specifically, at the gain setting 

discussed, the ADuC706x input voltage noise specification is 

0.25 µV rms, or about 1.65 µV p-p.  

Translating this input voltage noise into the resulting output 

temperature noise may not be intuitively obvious and, because 

of the nonlinear resistance-to-temperature transfer function, 

results in a temperature noise that varies as a function of RTD 

temperature. The result is shown in Figure 9.  
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Figure 9. ADC Noise vs. RTD Temperature 

Notice that even at the highest RTD temperatures (that is, the 

worst noise), peak-to-peak noise is always below 0.013°C; it is 

even better at lower measurement temperatures. Keep in mind 

that this variation of noise as a function of RTD temperature is 

not a function of the ADC itself but rather is a direct result of 

the nonlinear TRTD(r) transfer function implemented in the 

digital domain. 

TEMPERATURE DRIFT 

Another source of error to consider is temperature drift; speci-

fically ADC offset and gain temperature drift and reference 

resistor temperature drift. This is the change in DC errors 

(offset and gain errors) as a function of changing temperature  

of the ADC chip or reference resistor. This relates to ambient 

temperature of the RTD conditioning circuitry rather than to 

the actual measurement RTD temperature. Briefly, these two 

distinct temperatures are referred to here as ambient tempera-

ture and RTD temperature, respectively. In addition, the value 

of temperature drift (that is, sensitivity to ambient temperature) 

changes as a function of RTD temperature due to the nonlinear 

TRTD(r) transfer function. The result shown in Figure 10 

requires some explanation.  

The x-axis of Figure 10 is simply the RTD temperature. The y-

axis is the temperature drift in °C change in measurement error 

per °C change in ambient temperature. For example, if the RTD 

temperature is fixed at 100°C, the VREF drift (with a 5 ppm/°C 

reference resistor) is approximately ±0.01°C/°C. Therefore, if 

the ambient temperature changes by, say, 50°C, the measure-

ment temperature reading might change by as much as ±0.5°C 

(neglecting other contributors to temperature drift). 
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Figure 10. Temperature Drift vs. RTD Temperature 

It is evident that in industrial environments with ambient 

temperature ranges often spanning −40°C to +85°C or more, 

temperature drift can be quite a significant source of error. It is 

straightforward to use the on-chip temperature sensor of the 

ADuC706x to measure chip temperature (which tracks ambient 

temperature closely) and then use this measured chip/ambient 

temperature to compensate for temperature drift errors. This 

requires an additional temperature cycling step during 

manufacturing, specifically bringing the ambient temperature to 
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two fixed values and taking zero-scale and full-scale ADC 

readings at each of these ambient temperatures. However, 

software can be used to compensate for temperature drift  

errors within the limits of temperature sensor accuracy and 

temperature gradients between the reference resistor and the 

ADuC706x. This application note does not explore such 

temperature drift compensation techniques any further, 

however note that the on-chip resources exist to make this 

option possible with nothing more than software changes. 

RTD SELF-HEATING 

RTD self-heating is another source of error to consider. Simply 

put, placing a current through the RTD causes it to dissipate 

power, which raises the temperature of the RTD. Fortunately, 

because the RTD is being excited with only 200 µA, the total 

power dissipated by the RTD is never more than 8 µW for a 

100 Ω R0. The amount of self-heating caused by this small 

power dissipation varies, depending on the specific model of 

RTD used, but typically the resulting self-heating is negligible.- 

OTHER ERROR SOURCES 

Other sources of error are mostly negligible. DC endpoint 

errors (offset and gain errors) can be fully corrected using the 

calibration techniques discussed in the Calibration section. 

Resistor Johnson noise is well below the  input voltage noise of 

the ADC. The only other error source worthy of consideration 

is ADC INL (integral nonlinearity or relative accuracy). The 

ADuC706x data sheet specification for typical INL is 15 ppm of 

full scale, which results in output-referred INL error about twice 

the value of the peak-to-peak output noise shown in Figure 9. 
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SOFTWARE AND SOURCE CODE 
All of the software and source code referenced herein this 

section is included in a zip file. This file is available at 

www.analog.com/MicroConverter. The contents of the zip  

file are as follows: 

• coefRTD.exe. The coefficient generator tool executable. 

• coefRTD.cpp. Source code for the coefficient generator 

tool. 

• RTDdirect.c. Linearization subroutines using the direct 

mathematical linearization method. 

• RTDpwl.c. Linearization subroutines using the piecewise 

linear approximation method. A customized version of this 

code can be generated using the coefRTD.exe program. 

• RTDlin.c. Linearization subroutines using the single linear 

approximation method. A customized version of this code 

can be generated using the coefRTD.exe program. 

• RTDLinearMain.c. An example of a complete RTD inter-

face program for the ADuC706x or ADuC706x. This 

makes use of any of the three linearization functions. 

• RTDLinearMain.hex. A complete compiled version of 

RTDLinearMain.c and RTDpwl.c. This is ready to down-

load and run on an ADuC706x or ADuC706x. 

• Calibrate.c. Example code providing subroutines for 

calibrating an external RTD. 

• ReadMe.txt. Text file providing revision information and 

describing the function of each file. 

• A complete project using the above source code must 

include both a main program (RTDLinearMain.c, 

Calibrate.c, or a from scratch program) and a linearization 

subroutines file (RTDmath.c, RTDpwl0.c, RTDlin0.c, or a 

customized source file generated by the coefRTD.exe tool). 

Many details are provided in the comments of the various 

C source files. 

• An IAR example project. 
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NOTES 
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