

AN-0970

Preliminary Technical Data
One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

RTD Interfacing and Linearization Using an ADuC706x Microcontroller
by Mike Looney

Rev. 0 | Page 1 of 16

INTRODUCTION

The platinum resistance temperature detector (RTD) is one of

the most accurate sensors available for measuring temperature

within the –200°C to +850°C range. The RTD is capable of

achieving a calibrated accuracy of ±0.02°C or better. Obtaining

the greatest degree of accuracy, however, requires precise signal

conditioning, A/D conversion, linearization, and calibration.

The Analog Devices, Inc., MicroConverter® product family

includes devices with a 24-bit ADC and a 32-bit AMR7 MCU in

a single chip with signal conditioning circuitry ideally suited to

RTD sensors. This application note describes how to implement

a complete RTD sensor interface using the ADuC706x and several

passive components. This application note is based on the AN-709

Application Note, RTD Interfacing and Linearization using an

ADuC8xx Microcontroller. Note that the ADuC706x device is not

yet available; the anticipated release date is November 2008.

The software utilities and sample code referenced in this

application note are highly recommended for implementing a

MicroConverter-based RTD sensor interface. These utilities and

code are available at www.analog.com/MicroConverter.

AN-0970 Preliminary Technical Data

Rev. 0 | Page 2 of 16

TABLE OF CONTENTS
Introduction .. 1

Hardware Design .. 3

Calculating RTD Resistance from the ADC Result 4

RTD Transfer Function.. 4

Linearization Techniques... 5

Direct Mathematical Method ... 5

Single Linear Approximation Method....................................... 6

Piecewise Linear Approximation Method 7

RTD Coefficient Generator Tool...9

Calibration... 11

Error Analysis ... 13

Noise .. 13

Temperature Drift .. 13

RTD Self-Heating ... 14

Other Error Sources... 14

Software and Source Code .. 15

Preliminary Technical Data AN-0970

Rev. 0 | Page 3 of 16

HARDWARE DESIGN
An RTD is a sensor with a resistance that varies as a function of

temperature in a precisely defined manner. Before attempting to

understand the details of the RTD transfer function of resistance to

temperature (which is nonlinear), assume that the nonlinearities

are corrected digitally. Then, concentrate on converting the RTD

resistance to a digital value. A common way to do this is shown in

Figure 1.

A

AADC

RRTD

IEXC
VRTD

+

–

RREF VREF

+

–

ADC MCU

0
7

5
3

8
-0

0
1

Figure 1. RTD Interfacing Hardware Configuration

In Figure 1, a single current source (IEXC) excites both the RTD

(RRTD) and a precision reference resistor (RREF) by way of a

series connection, generating the ADC input voltage (VRTD) and

reference voltage (VREF), respectively as follows:

VRTD = IEXC × RRTD

VREF = IEXC × RREF

The normalized digital output of the ADC (zero input = 0 and

full-scale input = 1) is simply a ratio of the input voltage to the

reference voltage multiplied by the gain stage, AADC.

REF

RTD
ADC

REFEXC

RTDEXC

ADC

REF

RTD
ADCnorm

R

R
A

R×I

R×I
×A

V

V
× A ADC ====

Notice how IEXC cancels out of the above equation. This means

that even if the excitation current changes or is imprecise, the

ADC result always corresponds directly to the ratio of the RTD

resistance to the reference resistance. Choosing a precision, low

drift reference resistor means the RTD resistance can be known

to a high degree of precision, even with a much less precise

current source.

Applying this same principle using a MicroConverter, Figure 2

shows the ADuC706x connected for interfacing with a 4-wire

RTD. Note that this is the same overall topology as shown in

Figure 1, except that all of the active components (excitation

current source, differential input stages for VRTD and VREF, gain

stage AADC, the ADC itself, and a microcontroller) are included

internally to the ADuC706x chip. Diode prtection and 100 Ω

resistors serve only to protect the ADuC706x from damage in

the event of overvoltage conditions at the terminal block.

Also included are other peripherals, such as serial communi-

cation ports for the digital communication paths. Notice also

 that some passive components have been added for R/C filtering

of signals and for protection from overvoltage conditions at the

terminal block. This represents a complete implementation,

requiring only a power supply and any particular peripheral

chip needed for the digital interface, such as an RS-232 or

RS-485 line driver/receiver).

RTD

TERMINAL
BLOCK

IEXC1 VDD

+2.5V

SPI
12C

UART
GPIO
ETC.

GND

ADC0

ADC1

100Ω

100Ω

0.1µF

0.1µF

0.1µF

100Ω

100Ω

RREF
(5.62kΩ)

ADuC7060

VREF+

VREF–DIODE
PROTECTION

0
7

5
3
8

-0
0

2

Figure 2. Complete RTD Interfacing Circuit Using the ADuC706x

AN-0970 Preliminary Technical Data

Rev. 0 | Page 4 of 16

CALCULATING RTD RESISTANCE FROM THE
ADC RESULT

As introduced in the Hardware Design section:

REF

RTD
ADCnorm

R

R
× A ADC =

can be rewritten as:

scaleADC
A

R
× ADC R norm

ADC

REF
normRTD ×==

where:

ADC

REF

A

R
scale =

The scale value is the fixed scaling factor used in the sample

code. Taking this a step further, a fixed offset value can be

added to the equation, resulting in:

offsetscaleADCR normRTD +×=

where the offset term represents a fixed offset that can be used

to compensate for errors. This offset term is discussed further in

the Calibration section. In most situations, a value of zero is

sufficient for this offset term. Note that a direct equation for

RTD resistance is obtained as a function of the ADC result

using only a pair of fixed values for scale and offset.

The remainder of this application note considers the most

common type of platinum RTD, which has a nominal resistance

(R0) of 100 Ω at 0°C. When using this application note, assume

a reference resistor value of 5.62 kΩ, which provides a good

match to such an RTD. With these component values, and using

the ADuC706x, an internal gain of 32 is the highest available

ADC gain setting that still allows the RTD to cover its fully

specified temperature range.

Remember, ADCnorm is limited to the range of 0 to 1, which is

what defines the temperature range limitation at higher ADC

gains. The gain of 32 corresponds to an ADC0CON value of

0x8415, or a range setting of 37.5 mV unipolar where:

32
mV5.37

V1.2
===

span

V
A REF

ADC

To correspond to this gain setting, the scale value works out to

175.625 where:

625.175
32

k62.5
===

ADC

REF

A

R
scale

which is the default scale value used in the sample code. The default

value for the offset term is zero. These equations assume an excita-

tion current of 200 µA on the IEXC0 pin. This is configured by

setting IEXCCON = 0x42.

The equations in this section for RRTD are merely methods of

determining through software the RTD resistance directly from a

given ADC conversion result. To determine the RTD temperature

as a function of its resistance requires an understanding of the RTD

transfer function.

RTD TRANSFER FUNCTION

A platinum RTD transfer function is described by two distinct

polynomial equations: one for temperatures below 0°C and

another for temperatures above 0°C.

The equations are for t ≤ 0°C is:

32
0)100(1()(tCtCBtAtRtRRTD

o
−+++=

The equations are for t ≥ 0°C is:

)1()(2
0 BtAtRtRRTD ++=

where for both equations:

t is RTD temperature (°C).

RRTD(t) = RTD resistance as a function of RTD temperature (t).

R0 is the RTD resistance at 0°C (most often 100 Ω).

A = 3.9083 × 10–3 °C–1.

B = –5.775 × 10–7 °C–2.

C = –4.183 × 10–12 °C–4.

Notice that the notation is changed from RRTD to RRTD(t) to

reflect that the RTD resistance is a function of its temperature.

Figure 3 shows the RTD transfer function (resistance plotted as

a function of temperature) along with a linear expansion of the

transfer function’s slope at 0°C (for visual comparison).

450

400

350

300

250

200

150

100

50

0
–300 –200 –100 0 100 200 300 400 500 600 700 800 900

0
7

5
3

8
-0

0
3

R
E

S
IS

T
A

N
C

E
 (
Ω

)

TEMPERATURE (°C)

LINEAR EXPANSION
FROM 0°C

ACTUAL RTD

Figure 3. RTD Transfer Function

The previous equations define the RTD resistance as a function

of its temperature, RRTD(t). However, to implement an RTD

sensor interfacing circuit, the RTD temperature must be deter-

mined instead as a function of its resistance, TRTD(r). This may

be less straightforward, given the nonlinear transfer function of

the RTD. Useful techniques for this task are explored in the

following sections.

Preliminary Technical Data AN-0970

Rev. 0 | Page 5 of 16

LINEARIZATION TECHNIQUES
There are many different ways to determine temperature as a function of RTD resistance, given the RTD transfer function. This applica-

tion note examines three techniques useful in embedded designs. These techniques are particularly well suited to MicroConverter-based

designs. Table 1 outlines the strengths and weaknesses of each method. Execution times indicated here represent empirical measurements

of an ADuC7060, at a core clock speed of 10.24 MHz, running the C subroutines referenced herein.

Table 1. Comparison of Linearization Methods

Technique Advantages Disadvantages Summary

Direct Mathematical Method Very accurate.
No look-up table required.

Requires math library (usually >1 kB).
Slow.

Useful if math library is
already used.

Single Linear Approximation
Method

Very fast (<56 µS).
Small code space needed.
Accurate over narrow temper-ature
bands.
No look-up table required.
No math library required.

Poor accuracy over wide temperature
range.

A good option when limited
code space is available and
with small temperature span.

Piecewise Linear
Approximation Method

Fast (<1 mS).
Designer control of code size and
accuracy trade-off.
Can be very accurate.
No math library required.

Greater code size than single linear
approximation method.

Most useful in most
situations.

DIRECT MATHEMATICAL METHOD

In the RTD Transfer Function section, explicit mathematical

equations are shown for RTD resistance as a function of its

temperature, RRTD(t). Is it possible to just turn those equations

around and solve for expressions of the RTD temperature as

a function of its resistance, TRTD(r)? This is a fairly straight-

forward task for the equation that defines positive temperature

behavior, because it is merely a quadratic. The solution to the

quadratic yields two expressions; to determine which one is

correct, simply substitute several known values. The result is

the following equation for RTD temperature at temperatures of

0°C or greater:

B

R

r
BAA

rTRTD
2

14

)(
0

2











−−+−

=

where:

A = 3.9083 × 10–3 °C–1.

B = –5.775 × 10–7 °C–2.

C = –4.183 × 10–12 °C–4.

R0 is the RTD resistance at 0°C (most often 100 Ω).

r is the RTD resistance.

Because this function is solved in real time, it is beneficial to

change it to the following form:

4

321
)(

Z

rZZZ
rTRTD

×++
=

where:

3
1 109083.3 −

×−=−= AZ

62
2 1058480889.174 −

×=×−= BAZ

9

0

3 1010.23
4

−
×−=

×
=

R

B
Z

6
4 10155.12 −

×=×= BZ

This is advantageous for real-time computation because Z1

through Z4 are constant and absolute, and so there are fewer

computations required. The above equation for TRTD(r) is

referred to as the positive function because it relates to temp-

eratures of 0°C and above. Since this is a direct mathematical

solution, it is 100% accurate within that range. When solving

this equation, rounding errors using 32-bit floating-point math

in ARM7 C code works out to about +0.0001°C/–0.0005°C. This

is close enough to 100% accuracy for any practical purposes. When

using the ADuC706x with a core clock speed of 10.24 MHz

running the sample C routine of RTDmath.c, the execution

time of this equation is less than 750 µS.

The previous equation is valid only for temperatures of 0°C and

above. The equation for RRTD(t) that defines negative temperature

behavior is a fourth-order polynomial (after expanding the third

term) and is impractical to solve for a single expression of tempera-

ture as a function of resistance. However, making use of computer

math tools can assist in finding a close approximation to the inverse

transfer function.

AN-0970 Preliminary Technical Data

Rev. 0 | Page 6 of 16

Use Mathematica® or a similar software math tool to come up

with the following best-fit polynomial expressions for RTD

temperature at temperatures of 0°C or less:.

TRTD(r) = −242.02 + 2.2228 × r + 2.5859 × 10−3

× r2 −4.8260 × 10−6 × r3 −2.8183 × 10−8

× r4 + 1.5243 × 10−10 × r5

TRTD(r) = −241.96 + 2.2163 × r + 2.8541 × 10−3

× r2 −9.9121 × 10−6 × r3 −1.7052 × 10−8 r4

TRTD(r) = −242.09 + 2.2276 × r + 2.5178 × 10−3

× r2 −5.8620 × 10−6 × r3

TRTD(r) = −242.97 + 2.2838 × r + 1.4727 × 10−3 × r2

These four equations are referred to as the negative functions

because each is valid only for temperatures of 0°C and below.

The top (fifth-order) equation is the most accurate, but takes

the longest time to compute, while the bottom (second-order)

equation is the least accurate, but the fastest to compute. Some

characteristics of these negative functions are given in Table 2,

and a plot of the error of each as a function of temperature is

shown in Figure 7 along with (for visual reference) the error of

the positive function extended into the negative temperature

space.

Notice in Figure 7 that at near-zero negative temperatures, there

is actually less error in the positive function than in the second-,

third-, or fourth-order negative functions. The sample code

RTDmath.c takes advantage of this behavior by using the

positive function even at slightly negative temperatures. The actual

threshold to determine if the positive or negative function should

be used differs depending on which negative function (second-,

third-, fourth-, or fifth-order) is used, and is represented in the

Threshold column of Table 2. Above this threshold value, the

positive function yields lower errors; below this threshold value,

the negative function yields lower errors. The Equation Accuracy

column in Table 2 represents errors only for temperatures below

the corresponding threshold value.

Table 2. Characteristics of Best-fit Polynomial Equations

(Negative Functions)

Equation
Size

Maximum
Execution Time1

Equation
Accuracy1 Threshold

Fifth Order 2.16 mS +0.0001°C/
−0.00005°C

0°C/
100 Ω

Fourth Order 1.61 mS +0.0022°C/
−0.001°C

−8.75°C/
96.6 Ω

Third Order 1.13 mS +0.0053°C/
−0.0085°C

−12.5°C/
95.1 Ω

Second Order 800 µS +0.075°C/
−0.17°C

−70.5°C/
72.1 Ω

1Execution time and equation accuracy were measured empirically on an
ADuC706x, at a core clock speed of 10.24 MHz, running the sample C routine
of RTDmath.c.

0.08

0.06

0.04

0.02

0

–0.02

–0.04

–0.06

–0.08
–200 –180 –160 –140 –120 –100 –80 –60 –40 –20 0

0
7

5
3

8
-0

0
4

L
IN

E
A

R
IZ

A
T

IO
N

 E
R

R
O

R
 (

°C
)

TEMPERATURE (°C)

SECOND ORDER

FIFTH ORDER

POSITIVE
FUNCTION

THIRD
ORDER

FOURTH
ORDER

Figure 4. Error Plot of Best-Fit Polynomial Equations (Negative Functions)

One drawback of the direct mathematical technique for lineari-

zation is that it requires floating-point power and square root

functions such as those found in the math library of the IAR

compiler from IAR Systems These floating-point math functions

alone typically add more than 1 kB to the code size. Similar or

better accuracy can be achieved with smaller overall code size

using the piecewise linear approximation method described in

the Piecewise Linear Approximation Method section. However,

if the math library functions are required for other operations in

the program, the direct mathematical technique may be the best

solution because those library functions are already available.

SINGLE LINEAR APPROXIMATION METHOD

In Figure 3, notice that over smaller temperature spans the RTD

transfer function resembles a straight line. If the required mea-

surement temperature range spans only a portion of the full

RTD measurement band, one might not need to linearize the

RTD signal at all. In such cases, a best-fit linear approximation

to the transfer function over the desired measurement temper-

ature range can often yield sufficient precision. For example,

over the industrial temperature range of –40°C to +85°C, a best-

fit linear approximation is accurate to ±0.3°C.

In general, a linear equation for temperature as a function of

RTD resistance (r) is of the form

Tlin(r) = A × r + B

where A and B are constants.

Note that these are not the same A and B as described in the

RTD Transfer Function section. Choosing optimum values for

A and B to minimize the error band involves some math not

explored here. There is, however, a very simple software tool,

which accompanies this application note, that can automatically

find optimum values of A and B to fit your specific temperature

range. This tool is examined in this applicaton note, but first it

must be determined whether a single linear approximation is

suitable for the specific design requirement.

Preliminary Technical Data AN-0970

Rev. 0 | Page 7 of 16

2.0

1.5

1.0

0.5

0
0 100 200 300 400 500

0
7

5
3

8
-0

0
5

L
IN

E
A

R
IZ

A
T

IO
N

 A
P

P
R

O
X

IM
A

T
IO

N
 E

R
R

O
R

 (
±
°C

)

MEASUREMENT TEMPERATURE SPAN (TMAX – TMIN (°C))

Figure 5. Single Linear Approximation Error vs. Measurement
Temperature Span

Figure 8 offers a view of the total approximation error that

results for measurement temperature spans of up to 500°C. For

more than 500°C spans, the approximation error continues to

degrade with increasing temperature spans. The imprecise

nature of the Figure 8 plot (that is, the broad width of the data

trace) is due to the fact that even for the same span of temper-

ature, the error is different for different absolute temperature

bands. For example, the temperature ranges of –200°C to 0°C

and +600°C to +800°C do not have the same precision even

though they both span exactly 200°C.

Figure 8 provides a rough idea of error in order to help gauge

whether single linear approximation should be considered as an

option. If it is determined that it might be an option, the RTD

coefficient generator tool (described in the RTD Coefficient

Generator Tool section) can help determine the actual approxi-

mation error for a specific temperature range, and can generate

source code optimized for that temperature range.

PIECEWISE LINEAR APPROXIMATION METHOD

Taking linear approximation one step further, one can concept-

ualize any number of linear segments strung together to better

approximate the nonlinear RTD transfer function. Generating

this series of linear segments so that each segment’s endpoints

meet those of neighboring segments results in what can be

viewed as a number of points connected by straight lines. These

points (or coefficients) can be calculated once to best match the

nonlinear transfer function of the RTD and then stored perm-

anently in ROM or Flash memory. From this table of coefficients,

the MCU can perform simple linear interpolation to determine

temperature based on measured RTD resistance.

To understand how this is implemented in practice, first assume

the table of coefficients already exists. Each coefficient in the

table is simply a point on the transfer function, represented by

a resistance and a temperature. Thus, the table takes the form:

{ro,t0; r1,t1; r2,t2;… rn,tn}

Given this table, the real-time task of the MCU (in determining

temperature at a given resistance, r) is to first determine which

two coefficients are closest to the point in question (call these

{rm,tm} and {rn,tn}), and then to linearly interpolate between those

two points to solve for temperature. The actual linear interpola-

tion formula for that range (that is, valid only for values of r

between rm and rn) then takes the form

mn

mn

mmSEG
rr

tt
rrtrT

−

−
−+=)()(

Note that each coefficient in the above lookup table consists of

two numbers, one for resistance and one for temperature

(essentially x and y values in the transfer function). Thus, for N

linear segments (that is, N + 1 coefficients), a total of 2N + 2

values must be stored in memory. To reduce the size of the

lookup table, consider a table consisting of N segments, each

spanning an equal breadth of resistance. Such a table can be

stored as a set of temperature points only as follows:

{t0; t1; t2; ... tN}

since, for a given coefficient {rn,tn}, the value of rn can be

calculated by

SEGn rnrr ×+= 0

where:

r0 and rSEG are fixed values, stored in ROM along with the table o

f coefficients.

r0 is the resistance at coefficient zero {r0,t0}.

rSEG is the fixed span of resistance that separates adjacent

coefficients.

The linear interpolation formula for a given segment then

becomes

()[]
SEG

i1i

SEGiSEG
r

tt
rirrtrT

−
××+−+=

+

0)(

where i indicates which segment (that is, which pair of coef-

ficients) is being used, and is calculated using the value of r as

follows:










 −
=

SEGr

rr
trunci

0

AN-0970 Preliminary Technical Data

Rev. 0 | Page 8 of 16

Again, the above expression for TSEG(r) is nothing more than a

linear interpolation between the two coefficients, ti and ti + 1. To

implement this in practice, the MCU must first solve for i (per

the last equation, above) so that the coefficients ti and ti + 1 are

the two closest to the input value for r. Then, with i solved, the

MCU can simply solve the TSEG(r) equation to determine the

temperature at the given input resistance.

The overall error generated by this piecewise linear approxima-

tion technique depends on the number of segments (or number

of coefficients, or the size of lookup table), and the overall span

of temperature.

Figure 6 shows the linear approximation error for a measure-

ment temperature range of –200°C to +850°C plotted as a

function of lookup table size (using optimized coefficients

generated by the RTD coefficient generator tool). Note that

if the measurement temperature range is reduced, a better

error results given the same size lookup table, or the same

error with results given a smaller look-up table.

100

10

1

0

0.01

0.001

0.0001

0

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

0
7
5

3
8

-0
0

6L
IN

E
A

R
 A

P
P

R
O

X
IM

A
T

IO
N

 E
R

R
O

R
 (

°C
)

TABLE SIZE (BYTES)
Figure 6. Piecewise Linear Approximation Error vs. Look-Up Table Size

(–200°C to +850°C Range)

Preliminary Technical Data AN-0970

Rev. 0 | Page 9 of 16

RTD COEFFICIENT GENERATOR TOOL
The most difficult part of implementing a piecewise linear-

ization function is generating the lookup table. However, the

RTD coefficient generator tool that accompanies this applica-

tion note (coefRTD.exe) does this automatically for platinum

RTDs. This simple DOS-executable assists with an ARM7-based

RTD interface designs using piecewise linear or single linear

approximation methods. It performs the following tasks:

• Generates optimized lookup table coefficients for a given

temperature range and look-up table size.

• Indicates resulting error band and lookup table size.

• Generates complete RTD linearization functions (including

the lookup table) in ARM7 C source code.

• Generates a table of error values as a function of temper-

ature resulting from the given lookup table.

Figure 7 shows a sample session with user input. Note that the

program requires the user to input only three parameters (TMIN,

TMAX, and NSEG). The program can generate the file RTDpwl0.c,

which is a complete C source file (customized a user’s specific

lookup table) that can be included as is in a project where the

T_rtd() function is available to be called directly from functions

in other source files. Alternatively, any portion(s) of RTDpwl0.c

can be copied and pasted directly into other source file(s).

The coefficient generator can also output an error analysis

file (errorRTD.txt), which is a tab-delimited text file that can

be imported into Microsoft® Excel or any other spreadsheet

program to examine the errors generated by the linear approx-

imation routine.

0
7

5
3
8

-0
0

7
Figure 7. Coefficient Generator Session Example with Piecewise Linear Approximation (User Input in Red)

AN-0970 Preliminary Technical Data

Rev. 0 | Page 10 of 16

0
7

5
3

8
-0

0
8

Figure 8. Coefficient Generator Session Example with Single Linear Approximation (User Input in Red)

The coefficient generator program generates linearization

functions not only for piecewise linear approximation, but

also for single linear approximation. To do this, simply enter

1 for the table size to indicate only a single linear segment.

The program recognizes this and outputs results pertaining

to the single linear approximation method instead of the piece-

wise linear approximation method, as shown in Figure 8.

Preliminary Technical Data AN-0970

Rev. 0 | Page 11 of 16

CALIBRATION
The ADuC706x has a built-in function to calibrate the ADC

for endpoint errors (offset and gain error) as documented in

the product data sheet. However, if the entire signal chain,

including the RTD itself, is taken into account instead during

calibration, one can end up with a lower overall error, and in

such a case, the built-in ADC calibration provides no added

benefit. This application note examines the overall calibration

first, and then points out some instances where the built-in

ADC calibration might still be useful.

Up to this point, the assumption has been that the RTD itself is

perfect. However, real RTDs are not perfect. Just like anything

else in the real world, they have errors associated with them as

specified by the RTD manufacturer’s data sheet. Fortunately,

many of these errors can easily be calibrated out in software.

The calibration function discussed in this application note

works as either a single-point or a two-point calibration. This

function can be used in conjunction with any of the lineariza-

tion techniques.

To understand how a single-point calibration works in princi-

ple, refer to the where RRTD(t) is discussed in the RTD Transfer

Function section and note that it is largely defined by the value

R0, which is the resistance of the RTD at 0°C. For the most

common RTDs, R0 is nominally 100 Ω. However, this R0 value is

the most significant source of error in an RTD sensor, because it

can vary significantly from one device to another. In addition,

because the R0 value is simply multiplied by the rest of the

transfer function in the expressions for RRTD(t), errors due to R0

tolerance are purely multiplicative, and so can be corrected by

adjusting the scale multiplier in the following expression (as

given previously) for RRTD as a function of normalized ADC

conversion result:

offsetscaleADCR normRTD +×=

Specifically, if the RTD can be brought to a very precise known

temperature and an ADC conversion performed, then the

corrected scale value can be calculated as

cal

cal

ADC

R
scale =

Where ADCcal is the actual normalized result of the A/D

conversion and Rcal is the ideal (expected) resistance value at

that RTD temperature. Rcal can be calculated manually using

the equations for RRTD(t). By this method (called single-point

calibration), a corrected scale value is obtained, compensating

for the RTD R0 tolerance and also, simultaneously, for the

reference resistor’s initial tolerance. To take this a step further,

one can employ a two-point calibration, which compensates not

only for these scaling errors, but also for any offset error that

might exist. Doing so requires adjusting not only the scale

value, but the offset value as well.

Assume that a single-point calibration has already been

performed, and the RTD can now be brought to a second very

precise known temperature and another ADC conversion is

performed. The equation for the scale value (that is, the slope of

the RRTD vs. ADCnorm function)

is then

precalcal

precalcal

ADCADC

RR
scale

−

−
=

where:

Rprecal and ADCprecal are the resistance and ADC conversion

result, respectively, at the previous calibration point. Rprecal

and ADCprecal are the same for the current calibration point.

Note that this is merely a way of determining the slope of the

RRTD vs. ADCnorm transfer function using two points on that line.

One has only to take care of the offset value, which, because the

scale value is now known, can be determined using a single

point. The following expression for the offset value comes by

solving for the offset of the above RRTD expression and then

replacing RRTD and ADCnorm with Rprecal and ADCprecal, respectively.

scaleADCRoffset precalprecal ×−=

Note that if Rprecal and ADCprecal are both zero (representing no

prior calibration point), then the expression for the scale value

becomes the same as for a single-point calibration, and the

expression for the offset value becomes zero, just as if this were

a single-point calibration. Therefore, the same function (Cal()

in the sample code) can be used to perform either a single-point

or a two-point calibration.

If using the sample code as is, follow these steps to perform a 2-

point calibration:

1. Choose two temperatures for calibration, making sure that

the temperature points are sufficiently separated (ideally at

least one quarter of the total measurement span) to avoid

errors accumulating near the extremes of the measurement

temperature range.

2. Bring the RTD to the first temperature point, wait for the

displayed result to settle to the new value, and then press

any key on the terminal (or terminal emulator) to display

the user I/O menu.

3. Follow the menu prompts to calibrate to a known temper-

ature, and then enter the temperature when prompted.

4. Repeat Step 2 and Step 3 for the second temperature point.

Note: for a single-point calibration, skip Step 4.

AN-0970 Preliminary Technical Data

Rev. 0 | Page 12 of 16

Although there are many benefits to calibration, there are just as

many system considerations that make it impractical for certain

applications. If a calibration cannot be performed as described

in Step 1 through Step 4, consider performing a system ADC

calibration instead, as described in the ADuC706x data sheet.

To do so, simply replace the RTD with a short (0 Ω) and trigger

a system zero-scale calibration. Then, replace the RTD with a

high precision 719.36 Ω resistance and trigger a full-scale

calibration. This compensates for internal ADC errors and for

initial tolerance of the RREF resistor, but does not account for any

errors of the RTD itself.

Note that an added benefit of the ADuC706x (and all other

MicroConverter products) is that it includes nonvolatile Flash

memory on-chip, which can be used to store the calibrated scale

and offset values. This way, the chip can restore the calibrated

values each time the system powers up, rather than requiring a

calibration each time the system is powered up.

Preliminary Technical Data AN-0970

Rev. 0 | Page 13 of 16

ERROR ANALYSIS
There are many contributing error sources to data acquisition

designs, such as ADC linearity, input amplifier noise, resistor

Johnson noise, amplifier temperature drift, and resistor temp-

erature drift. Determining which ones are dominant for a

given design can be a daunting task. Fortunately, the ADuC706x

integrates all the active stages into a single fully factory-specified

device, making error analysis a much simpler task, but one that

still requires insight in designs that involve a nonlinear sensor

element. This application note explores the few error compon-

ents that are most significant for the specific hardware and

software configurations discussed thus far.

If the system is not calibrated to a specific RTD (using the

single-point or two-point calibration), the RTD itself is almost

certainly the most significant source of absolute error. This

error, which should be well quantified in the RTD manufac-

turer’s data sheet, depends on the specific model of RTD

chosen. This application note concentrates on error sources

other than the RTD itself.

NOISE

One type of error to examine is noise. There are three main

noise sources to consider in this design: resistor Johnson noise,

amplifier/ADC input voltage noise, and amplifier/ADC input

current noise. These add together as a root-sum-of-square, and

so the lesser contributing sources are negligible when one noise

source is even slightly greater than another source. In this speci-

fic case, that dominant noise source happens to be amplifier/

ADC input voltage noise. Specifically, at the gain setting

discussed, the ADuC706x input voltage noise specification is

0.25 µV rms, or about 1.65 µV p-p.

Translating this input voltage noise into the resulting output

temperature noise may not be intuitively obvious and, because

of the nonlinear resistance-to-temperature transfer function,

results in a temperature noise that varies as a function of RTD

temperature. The result is shown in Figure 9.

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0

–
3
0
0

–
2
0
0

–
1
0
0 0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

0
7
5

3
8

-0
0

9

A
D

C
 N

O
IS

E
 (

°C
)

RTD TEMPERATURE (°C)

PEAK-TO-NOISE

RMS NOISE

Figure 9. ADC Noise vs. RTD Temperature

Notice that even at the highest RTD temperatures (that is, the

worst noise), peak-to-peak noise is always below 0.013°C; it is

even better at lower measurement temperatures. Keep in mind

that this variation of noise as a function of RTD temperature is

not a function of the ADC itself but rather is a direct result of

the nonlinear TRTD(r) transfer function implemented in the

digital domain.

TEMPERATURE DRIFT

Another source of error to consider is temperature drift; speci-

fically ADC offset and gain temperature drift and reference

resistor temperature drift. This is the change in DC errors

(offset and gain errors) as a function of changing temperature

of the ADC chip or reference resistor. This relates to ambient

temperature of the RTD conditioning circuitry rather than to

the actual measurement RTD temperature. Briefly, these two

distinct temperatures are referred to here as ambient tempera-

ture and RTD temperature, respectively. In addition, the value

of temperature drift (that is, sensitivity to ambient temperature)

changes as a function of RTD temperature due to the nonlinear

TRTD(r) transfer function. The result shown in Figure 10

requires some explanation.

The x-axis of Figure 10 is simply the RTD temperature. The y-

axis is the temperature drift in °C change in measurement error

per °C change in ambient temperature. For example, if the RTD

temperature is fixed at 100°C, the VREF drift (with a 5 ppm/°C

reference resistor) is approximately ±0.01°C/°C. Therefore, if

the ambient temperature changes by, say, 50°C, the measure-

ment temperature reading might change by as much as ±0.5°C

(neglecting other contributors to temperature drift).

0.1

0.01

0.001

0.0001

0.00001

–
3
0
0

–
2
0
0

–
1
0
0 0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

0
7
5

3
8

-0
1

0

T
E

M
P

E
R

A
T

U
R

E
 D

R
IF

T
 (

±
°C

/°
C

)

RTD TEMPERATURE (°C)

VREF DRIFT FOR 5ppm/°C RESISTOR

VREF DRIFT FOR 2ppm/°C RESISTOR

ADC GAIN DRIFT

ADC OFFSET DRIFT

Figure 10. Temperature Drift vs. RTD Temperature

It is evident that in industrial environments with ambient

temperature ranges often spanning −40°C to +85°C or more,

temperature drift can be quite a significant source of error. It is

straightforward to use the on-chip temperature sensor of the

ADuC706x to measure chip temperature (which tracks ambient

temperature closely) and then use this measured chip/ambient

temperature to compensate for temperature drift errors. This

requires an additional temperature cycling step during

manufacturing, specifically bringing the ambient temperature to

AN-0970 Preliminary Technical Data

Rev. 0 | Page 14 of 16

two fixed values and taking zero-scale and full-scale ADC

readings at each of these ambient temperatures. However,

software can be used to compensate for temperature drift

errors within the limits of temperature sensor accuracy and

temperature gradients between the reference resistor and the

ADuC706x. This application note does not explore such

temperature drift compensation techniques any further,

however note that the on-chip resources exist to make this

option possible with nothing more than software changes.

RTD SELF-HEATING

RTD self-heating is another source of error to consider. Simply

put, placing a current through the RTD causes it to dissipate

power, which raises the temperature of the RTD. Fortunately,

because the RTD is being excited with only 200 µA, the total

power dissipated by the RTD is never more than 8 µW for a

100 Ω R0. The amount of self-heating caused by this small

power dissipation varies, depending on the specific model of

RTD used, but typically the resulting self-heating is negligible.-

OTHER ERROR SOURCES

Other sources of error are mostly negligible. DC endpoint

errors (offset and gain errors) can be fully corrected using the

calibration techniques discussed in the Calibration section.

Resistor Johnson noise is well below the input voltage noise of

the ADC. The only other error source worthy of consideration

is ADC INL (integral nonlinearity or relative accuracy). The

ADuC706x data sheet specification for typical INL is 15 ppm of

full scale, which results in output-referred INL error about twice

the value of the peak-to-peak output noise shown in Figure 9.

Preliminary Technical Data AN-0970

Rev. 0 | Page 15 of 16

SOFTWARE AND SOURCE CODE
All of the software and source code referenced herein this

section is included in a zip file. This file is available at

www.analog.com/MicroConverter. The contents of the zip

file are as follows:

• coefRTD.exe. The coefficient generator tool executable.

• coefRTD.cpp. Source code for the coefficient generator

tool.

• RTDdirect.c. Linearization subroutines using the direct

mathematical linearization method.

• RTDpwl.c. Linearization subroutines using the piecewise

linear approximation method. A customized version of this

code can be generated using the coefRTD.exe program.

• RTDlin.c. Linearization subroutines using the single linear

approximation method. A customized version of this code

can be generated using the coefRTD.exe program.

• RTDLinearMain.c. An example of a complete RTD inter-

face program for the ADuC706x or ADuC706x. This

makes use of any of the three linearization functions.

• RTDLinearMain.hex. A complete compiled version of

RTDLinearMain.c and RTDpwl.c. This is ready to down-

load and run on an ADuC706x or ADuC706x.

• Calibrate.c. Example code providing subroutines for

calibrating an external RTD.

• ReadMe.txt. Text file providing revision information and

describing the function of each file.

• A complete project using the above source code must

include both a main program (RTDLinearMain.c,

Calibrate.c, or a from scratch program) and a linearization

subroutines file (RTDmath.c, RTDpwl0.c, RTDlin0.c, or a

customized source file generated by the coefRTD.exe tool).

Many details are provided in the comments of the various

C source files.

• An IAR example project.

AN-0970 Preliminary Technical Data

Rev. 0 | Page 16 of 16

NOTES

©2008 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN07538-0-7/08(0)

