

AN-724
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Rev. B | Page 1 of 8

ADuC702x Serial Download Protocol
by Aude Richard

INTRODUCTION
One of the many features of the MicroConverter® product
family is the ability of the device to download code to its on-
chip Flash/EE program memory while in-circuit. This in-circuit
code download feature is conducted over the device UART
serial port, and is thus commonly referred to as serial down-
load. Serial download capability allows developers to reprogram
the part while it is soldered directly onto the target system,
avoiding the need for an external device programmer. Serial
download also opens up the possibility of system upgrades in
the field; all that is required is serial port access to the Micro-
Converter. This means manufacturers can upgrade system
firmware in the field without having to swap out the device.

Any MicroConverter device can be configured for serial
download mode via a specific pin configuration at power-on or
during application of the external reset signal. For the
ADuC702x family of MicroConverters, the P0.0 input pin is
pulled low through a resistor (1 kΩ). If this condition is
detected by the part at power-on or during application of a hard
reset input, the part will enter serial download mode. In this

mode, an on-chip resident loader routine is initiated. The on-
chip loader configures the device UART and, via a specific serial
download protocol, communicates with any host machine to
manage the download of data into its Flash/EE memory spaces.
The format of the program data to download must be little-
endian.

It should be noted that serial download mode operates within
the standard supply rating of the part (2.7 V to 3.6 V).
Therefore, there is no requirement for a specific high pro-
gramming voltage since it’s generated on-chip. Figure 1 shows
how to enter serial download mode on an evaluation board.

As part of Analog Devices’ QuickStart™ Development Tools, a
Windows®-executable program is provided
(C:\ADuC702x\Download\ARMWSD.exe) that allows the user
to download code from the PC (PC serial ports COM1, 2, 3, or
4) to the MicroConverter. However, it should be emphasized
that any master host machine (PC, microcontroller, or DSP) can
download to the MicroConverter once the host machine
adheres to the serial download protocols detailed in this
application note.

(A) S3 AND S2 RELEASED

S3
(RESET = 1)

S3
(RESET = 1)

S2
(SERIAL DOWNLOAD = 1)

S3
(RESET = 1)

S2
(SERIAL DOWNLOAD = 1)

S2
(SERIAL DOWNLOAD = 0)

S3
(RESET = 1)

(D) RELEASE S3 (E) RELEASE S2

S2
(SERIAL DOWNLOAD = 0)

S3
(RESET = 0)

S2
(SERIAL DOWNLOAD = 0)

(B) PUSH S2 (C) PUSH S3

04
84

4-
00

1

Figure 1. MicroConverter in Serial Download Mode

AN-724

Rev. B | Page 2 of 8

This application note outlines in detail the MicroConverter
serial download protocol, allowing end users to both fully
understand the protocol and, if required, to successfully
implement this protocol (embedded host to embedded
MicroConverter) in an end-target system.

For the purposes of clarity, the term “host” refers to the host
machine (PC, microcontroller, or DSP) attempting to download
data to the MicroConverter. The term “loader” refers specifically
to the on-chip serial download firmware on the
MicroConverter.

RUNNING THE MICROCONVERTER LOADER
The loader on the ADuC702x MicroConverter is run by pulling
the P0.0 pin (serial download) low through a resistor (typically
1 kΩ pull-down) and resetting the part (toggling the RST input
pin on the part itself, or a power cycle will reset the part).

THE PHYSICAL INTERFACE
Once triggered, the loader waits for the host to send a backspace
(BS = 0x08) character to synchronize. The loader measures the
timing of this character and accordingly configures the
MicroConverter UART serial port to transmit/receive at the
host’s baud rate with 8 data bits and no parity. The baud rate
must be between 600 bps and 115200 bps included. On
receiving the backspace, the loader will immediately send the
following 24-byte ID data packet:

15 bytes = product identifier

3 bytes = hardware and firmware version number

4 bytes = reserved for future use

2 bytes = line feed and carriage return

04
84

4-
00

2

“ADuC70xx” IS
THE PRODUCT ID

“ADuC70xx<space><space>D62”
“D3Y”

“D62” CORRESPONDS
TO THE MEMORY

SIZE MODEL

“D3Yx” MEANS A SILICON REV. D AND
A VERSION 3 LOADER. “Y” IS THE

LOADER’S VERSION REVISION NUMBER.

Figure 2. ID Data Packet

DEFINING THE DATA TRANSPORT PACKET
FORMAT
Once the UART has been configured, the transfer of data can
begin. The general communications data transport packet
format is shown in Table 1.

Packet Start ID Field

The first field is the Packet Start ID field and contains two start
characters (0x07 and 0x0E). These bytes are constant and are
used by the loader to detect a valid data packet start.

Number of Data Bytes Field

The next field is the total number of data bytes, including Data
1 (Command Function). The minimum number of data bytes is
five, which corresponds to the command function and the
address. The maximum number of data bytes allowed is 255:
command function, 4-byte address, and 250 bytes of data.

Command Function Field (Data 1)

The command function field describes the function of the data
packet. One of five valid command functions is allowed. The
five command functions are described by one of five ASCII
characters: ‘E,’ ‘W’, ‘V,’ ‘P’ or ‘R.’

Address Field (Data 2 → 5)

The address field contains a 32-bit address, h, u, m, l, with MSB
in h and LSB in l.

Data Byte Fields 6 → 255

User code is downloaded/verified by bytes. The data byte field
contains a maximum of 250 data bytes. The data is normally
stripped out of the Intel® Extended Hex 16-byte record format
and reassembled by the host as part of the above data form
before transmission to the loader (see the Intel Extended Hex
Format section at the end of this application note).

Checksum Field

The data packet checksum is written into this field. The twos
complement checksum is calculated from the summation of the
hex values in the number of bytes field and the hex values in the
Data 1 to 255 fields (as many as exist). The checksum is the
twos complement value of this summation. Thus the LSB of the
sum of all the bytes from number of data bytes to the checksum
inclusive should be 0. This can also be expressed
mathematically as

CS = 0x00 − (No. Data Bytes + ∑
−1N

255

 Data ByteN)

Acknowledge of Command

The loader routine will respond with a BEL (0x07) as a negative
response or an ACK (0x06) as a positive response to each data
packet.

A BEL is transmitted by the loader if it receives an incorrect
checksum or an invalid address. The loader does not give a
warning if data is downloaded over old (unerased) data. The PC
interface must ensure that any location where code will be
downloaded is erased.

The full set of data packet command functions is shown in
Table 2.

AN-724
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Rev. B | Page 3 of 8

Table 1. Data Transport Packet Format
Start ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Data x (x = 6 → 255) Checksum

0x07 0x0E 5 → 255 E, W, V, P or R h, u, m, l xx CS

Table 2. Data Packet Command Functions
Command Functions Command Byte in Data 1 Field Loader Positive Response Loader Negative Response
Erase Page E (0x45) ACK (0x06) BEL (0x07)
Write W (0x57) ACK (0x06) BEL (0x07)
Verify V (0x56) ACK (0x06) BEL (0x07)
Protect P (0x50) ACK (0x06) BEL (0x07)
Run (Jump to User Code) R (0x52) ACK (0x06) BEL (0x07)

Table 3. Erase Flash/EE Memory Command
Start ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Data 6 (pages) Checksum

0x07 0x0E 6 E (0x45) h, u, m, l X pages (1–124) CS

Table 4. Program Flash/EE Memory Command
Start ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Data x (x = 1 → 250) Checksum

0x07 0x0E 5 + x
(6 → 255)

W (0x57) h, u, m, l Data Bytes CS

Erase Command

The erase command allows the user to erase Flash/EE from a
specific page determined by data 2 → 5. The address is
rounded down to the page start. This command also requires
the number of pages to erase. If the address is 0x00000000 and
the number of pages is 0x00, the loader will interpret it as a
mass erase command, erasing the entire user code space and the
Flash/EE protection.

The data packet for the erase command is shown in Table 3.

Write Command

The write command requires the number of data bytes (5 + x),
the command, the address of the first data byte to program, and
the data bytes to program. The bytes will be programmed into
Flash/EE as they arrive. The loader will send a BEL if the
checksum is incorrect or if the address received is out of range.
If the host receives a BEL from the loader, the download process
should be aborted and the entire download sequence started
again.

Verify Command

The verify command is almost identical to the write command,
as shown in Table 5. The command field is V (0x56), but to
improve the chance of detecting errors the data bytes are
modified: the low 5 bits are shifted to the high 5 bits, and the
high 3 bits are shifted to the low 3 bits.

Table 5. Verify Command, Bit Modifications
Original Bits Transmitted Bits Restored Bits
7 4 7
6 3 6
5 2 5
4 1 4
3 0 3
2 7 2
1 6 1
0 5 0

The loader restores the correct bit sequence and compares it to
the flash contents. If it is correct and the checksum is correct,
ACK (0x06) is returned; otherwise BEL (0x07) is returned.

AN-724

Rev. B | Page 4 of 8

Table 6. Verify Flash/EE Memory Command
Start ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Data x (x = 1 → 250) Checksum

0x07 0x0E 5 + x
(6 → 255)

V (0x56) h, u, m, l Modified Data Bytes CS

Table 7. Flash/EE Memory Protection Command
Start ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Data 6 Checksum

0x07 0x0E 0x06 P (0x50) h, u, m, l Type CS

Table 8. Jump to User Code (Remote RUN)Command
Packet ID No. of Data Bytes Data 1 CMD Data 2 → 5 (Address: h, u, m, l) Checksum

0x07 0x0E 0x05 R (0x52) h, u, m, l = 0x80000 0xA1

Flash/EE Memory Protection Command

To use this command a three-step sequence must be followed:

1. Initiation of the command: type must be 0x00 and
“huml” can be any value.

2. Send the address of the group of page to protect.
This step must be repeated for each group of page
to protect and type must be 0x0F

3. Send the key in “huml”, type must be 0x01.
FEEADR will take the value of “hu” and FEEDAT
will take the value of “ml”. If no keys are required,
“huml” must be 0xFFFFFFFF.

For example, to protect page 0 to 7 against writing, set the read
protection and use key 0x12345678, the following commands
must be sent.

1. start sequence:

0x07 0x0E 0x06 0x50 0xXXXXXXXX 0x00 CS

2. protection:

0x07 0x0E 0x06 0x50 0x00000000 0x0F CS (pages 0 to 3)

0x07 0x0E 0x06 0x50 0x00000200 0x0F CS (pages 4 to 7)

0x07 0x0E 0x06 0x50 0x0008F800 0x0F CS (read
protection)

3. key and end of sequence :

0x07 0x0E 0x06 0x50 0x12345678 0x01 CS

Note:
The protection command is only available rev O and later
revision of the loader. On rev O, FEEADR = ‘ml’ and FEEDAT =
‘ml’. On later revision of the loader FEEADR = ‘hu’.

This protocol doesn’t allow to unprotect the Flash/EE memory.
To remove the protection, a mass erase command can be used.

Jump to User Code (Remote Run) Command

Once the host has transmitted all data packets to the loader, the
host can send a final packet instructing the loader to force the
MicroConverter program counter to a given address, and thus
begin executing the code that has just been downloaded. Table 8
shows an example of a Remote RUN or “jump to user code”
from address 0x00.

Only run from start of the Flash/EE (h, u, m, l = 0x80000) is
supported at present.

INTEL EXTENDED HEX FORMAT
Intel Extended Hexadecimal format or Intel Extended Hex
format is a standard for storing machine language in displayable
ASCII or printable format. It is similar to the Hex 8 format
except that the Intel extended linear address record is output to
also establish the upper 16 bits of the data address. Each data
record begins with a colon followed by an 8-character prefix,
and ends with a 2-character checksum. Each record has the
following format:

:BBAAAATTHHHH....HHHCC

where:

BB is a 2-digit hexadecimal byte count representing the number
of data bytes that will appear on the line.

AAAA is a 4-digit hexadecimal address representing the
starting address of the data record.

TT is a 2-digit record type:

00–Data record

01–End of file record

02–Extended segment address record

03–Start segment address record

04–Extended linear address record

05–Start linear address record

 AN-724

Rev. B | Page 5 of 8

HH is a 2-digit hexadecimal data byte.

CC is a 2-digit hexadecimal checksum that is the twos
complement of the sum of all preceding bytes in the record,
including the prefix (sum of all bytes + checksum = 00).

RECORD TYPES
Data Record

Record type 00, the data record, is the record that contains the
data of the file. The data record begins with the colon start
character (“:”) followed by the byte count, the address of the
first byte, and the record type (“00”). The data bytes follow the
record type. The checksum follows the data bytes and is the
twos complement of the preceding bytes in the record,
excluding the start character. The following are examples of data
records (spaces are included for clarity only and should not be
found in a real object file).

:10 0000 00 FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0 FF

:05 0010 00 0102030405 AA

End Record

Record type 01, the end record, signals the end of the data file.
The end record starts with the colon start character (“:”)
followed by the byte count (“00”), the address (“0000”), the
record type (“01”), and the checksum (“FF”).

:00 0000 01 FF

Extended Segment Address Record

Record type 02, the extended segment address record, defines
Bits 4 through 19 of the segment base address. It can appear
anywhere within the object file and it affects the absolute
memory address of all subsequent data records in the file until
it is changed. The extended segment address record starts with
the colon start character (“:”) followed by the byte count (“02”),
the address (“0000”), the record type (“02”), the 4-character
hexadecimal number represented by Bits 4 through 19 of the
segment base address, and the 2-character checksum.

:02 0000 02 1000 55

Start Segment Address Record

Record type 03, the start segment address record, defines Bits 4
through 19 of the execution start segment base address for the
object file.

:02 0000 03 0000 55

Extended Linear Address Record

Record type 04, the extended linear address record, defines Bits
16 through 31 of the destination address. It can appear
anywhere within the object file and it affects the absolute
memory address of all subsequent data records in the file until
it is changed. The extended linear address record starts with the
colon start character (“:”) followed by the byte count (“02”), the
address (“0000”), the record type (“04”), the 4-character

hexadecimal number represented by Bits 16 through 31 of the
destination address, and the 2-character checksum.

:02 0000 04 FFFF 55

Start Linear Address Record

Record type 05, the start linear address record, defines Bits 16
through 31 of the execution start address for the object file.

:02 0000 05 0000 55

The following is an example of an Intel Hexadecimal `Object
File that contains the following records: extended linear address,
extended segment address, data, and end.

:020000040108EA

:0200000212FFBD

:0401000090FFAA5502

:00000001FF

AN-724

Rev. B | Page 6 of 8

1. Determine the extended linear address offset for the data
record (0108 in this example).

:02 0000 04 0108 EA

2. Determine the extended segment address for the data
record (12FF in this example).

:02 0000 02 12FF BD

3. 3.Determine the address offset for the data in the data
record (0100 in this example).

:04 0100 00 90FFAA55 02

4. 4.Calculate the absolute address for the first byte of the
data record.

+ 0108 0000 linear address offset shifted left 16 bits

+ 0001 2FF0 segment address offset shifted left 4 bits

+ 0000 0100 address offset from data record

= 0109 30F0 32 bit address for first data byte

5. Calculations

010930F0 90

010930F1 FF

010930F2 AA

010930F3 55

LIMITATIONS
Record types 02, 03, 04, and 05 are not implemented.
Unsupported records are ignored. Only the low 16 address bits
are significant to access internal Flash, therefore it is safe to
ignore these record types that change the high 16 bits.

 AN-724

Rev. B | Page 7 of 8

NOTES

AN-724

Rev. B | Page 8 of 8

NOTES

© 2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
 AN04844-0-1/05(A)

