

The World Leader in High-Performance Signal Processing Solutions

Calibrating the ADE7754 for Watt, RMS and VA measurements

Feb 17, 2003

Agenda

Watt-hour Calibration

- Signal path and functionality
- Gain calibration
- Offset Calibration
- Phase calibration
- RMS Calibration
 - Signal path and functionality
 - Offset Calibration
- VA-hour Calibration
 - Signal path and functionality
 - Gain calibration
- Reactive Energy
 - Theory of Operation
 - ADE7754 implementation

► The World Leader in High-Performance Signal Processing Solutions

Watt-Hour Calibration

ADE7754 Watt-hour signal path

Total Watt-hour Signal Path

Total Watt-hour Signal Path

- 2 independent Total Watt-Hour signal paths:
 - AENERGY
 - LAENERGY (accurate if only one phase is selected)
- Bit3-5 of WATMODE register (0x0D) select input phases for AENERGY register and CF pulse output
- Bit0-2 of WATMODE register (0x0D) select input phases for LAENERGY register
- Frequency output CF generated based on AENERGY configuration
 - Bit2 of OPMODE register (0x0A) enable/disable CF output
- Under same conditions: AENERGY = LAENERGY/4
- Reverse active power information per phase available in bitC-E of CFNUM register (0x25)

LAENERGY accumulation

- Principle: Accumulation of the Active Energy over N half line cycles (<65535)
 - If bit A of IRQMASK register (0x0F) is set => IRQ goes Low when finished
- Benefits:
 - Cancel the ripple frequency effect (2 x line freq) in Energy Measurement
 - Shorten calibration time

LAENERGY configuration

Watt-Hour GAIN Calibration

• Gain calibration:

- Meter to meter gain adjustment
- Phase to phase input gain matching
- Pulse output rate
- Wh/LSB constant

• CF gain adjustment:

$$CF = CF_{initial} \times \frac{CFNUM[11:0]}{CFDEN[11:0]} \times \left(1 + \frac{WGAIN[11:0]}{2^{12}}\right)$$

AENERGY/LAENERGY Gain adjustment:

$$AENERGY = AENERGY_{initial} \times \frac{1}{WDIV[11:0]}$$

WGAIN[11:0]

Relationship between CF and LAENERGY

Conversion of AENERGY value to Wh

Watt-Hour GAIN calibration example: Procedure

Watt-Hour GAIN calibration example: Configuration

- Algona Math

	Phase A	Phase B	Phase C
MMODE (0x0B)	0x10	0x21	0x42
WATMODE (0x0D)	0x24	0x12	0x09
LINCYC (0x13)	0d200		
MASK (0x0F)	0x0400		

Watt-Hour GAIN calibration example: CF calibration

1 200

Watt-Hour GAIN calibration example: Wh/LSB calibration

 When CF is calibrated, AENERGY and LAENERGY registers will give the same value from design to design

$$LAENERGY = 38760 \times \left(1 - \frac{1}{2^{12}}\right) = 38751$$

With Itest = 10A ; Vtest = 240V and accumulation time = 2s

Wh/LSB constant from previous test:

 $Wh/LSB = \frac{240 \times 10 \times 8336 \times 2.4 \cdot 10^{-6} \times 200}{3600 \times 38751/4} = 0.2753 \cdot 10^{-3} Wh/LSB$ From Eq. 3

Watt-Hour OFFSET Calibration

Offset calibration for:

Outstanding performances over wide dynamic range (10,000:1)

• 2 measurements at PF=1 needed:

- Nominal current for reference: I₁
- Lowest current specified for correction: I₂

Energy Offset =
$$\frac{LAENERGY_2 \times I_1 - LAENERGY_1 \times I_2}{I_1 - I_2}$$

Watt-Hour OFFSET Calibration

Watt-Hour OFFSET calibration: Example

- At 10A, with LINCYC=200: LAENERGY=38751
- ◆ At 10mA, with LINCYC=200 => LANERGY≅39
 - I LSB variation at this level => 2.5% error
 - LINCYC is too small to make an accurate offset compensation
 - With LINCYC=10320 at 10mA => LANERGY=2041=LAENERGY₂
 - 1 LSB variation represents .05% error
 - At 10A: LAENERGY=1999528=LAENERGY₁

$$Energy Offset = \frac{2041 \times 10 - 1999528 \times 0.01}{10 - 0.01} = 41$$
From Eq. 4
• n=10320*Line Period/2/(CLKIN/4)=258082560

$$APOS = -\frac{Energy Offset \times 2^{28}}{n} = -\frac{41 \times 2^{28}}{258082560} = -43$$
From Eq. 5

Watt-Hour PHASE Calibration

Phase calibration for: Compensation of phase shift from CT to CT 2 Measurements needed: Nominal current @ PF=1: W1 Nominal current @ PF=0.5 Inductive Load: W2

 $Error = \frac{\frac{2}{W_{1/2}}}{\frac{2}{W_{1/2}}}$ Phase Error(°) = -Arcsin($\frac{Error}{\sqrt{3}}$)

Eq. 6

Watt-Hour PHASE Calibration

• ADE7754 provides phase calibration per phase:

• ADE7754's phase calibration is a time delay:

$$Delay = PHCAL \ register \times 1.2 \, \mu s$$

Phase Correction(°) =
$$Delay \times 360^{\circ} \times \frac{1}{Period(s)}$$

Dynamic range: +/-0.34° at 50Hz

Period can be measured with ADE7754's Period register
 Period (s) = PERIOD register x 2.4μs

$$\begin{array}{l} Phase \ Correction(^{\circ}) = -Phase \ Error \\ \Rightarrow PHCAL \ Register = Arcsin\left(\frac{Error}{\sqrt{3}}\right) \times \frac{PERIOD \ Register \times 2}{360^{\circ}} \end{array} \ Eq. 7$$

Watt-Hour PHASE Calibration: Example

- Alera

• At 10A, PF=1 ; 50Hz with LINCYC=200

- PF=1: LAENERGY=38751
- PF=0.5 Inductive: LAENERGY = 19442

$$Error = \frac{\frac{19442 - \frac{38751}{2}}{38751} = 0.344\%}{From Eq. 6}$$

Phase $Error(^{\circ}) = -Arcsin\left(\frac{0.00344}{\sqrt{3}}\right) = -0.11^{\circ}$

PHCAL Register =
$$0.11 \times \frac{8336 \times 2}{360^\circ} = 5$$

From Eq. 7

► The World Leader in High-Performance Signal Processing Solutions

RMS Calibration

ADE7754 RMS: Theory of operation

ADE7754 RMS Register Reading

- Since the LPF is not perfect, ripple noise from 2ω term is present in the rms measurement
- Synchronize rms reading with zero crossings of voltage input from each phase to minimize this noise effect

000

RMS Signal Processing Datapaths for Voltage and Current Channels

Voltage RMS Offset Compensation

Current RMS Offset Compensation

• Current RMS compensation is performed before the square root:

 $I_{rms}^{2} = I_{rms0}^{2} + 32768 \times IRMSOS$

where I_{rms0} is the rms measurement without offset correction

- Current rms calculation is linear from FS to FS/100
- To measure the I_{RMS} offset (IRMSOS), measure rms values at two different current levels (e.g. I_{test} and I_{max}/100)

$$IRMSOS = \frac{1}{32768} \times \frac{I_1^2 \times I_{rms2}^2 - I_2^2 \times I_{rms1}^2}{I_2^2 - I_1^2}$$

where I_{ms1} and I_{rms2} are rms register values without offset correction for input I_1 and I_2 respectively

Note: To minimize noise, synchronize each reading with zero crossing of voltage input in each phase and take the average of these readings

Eq. 9

Voltage RMS offset correction: Example

Nom-

Current RMS offset correction: Example

al one

► The World Leader in High-Performance Signal Processing Solutions

VA-Hour Calibration

ADE7754 VA-Hour Signal Path

Total VA-Hour Signal Path

Calibration and use of ADE7754

Total VA-Hour Signal Path

- 2 independent Total Apparent hour signal paths:
 - VAENERGY
 - LVAENERGY (see VAR)
- Bit3-5 of VAMODE register (0x0E) select input phases for VAENERGY register
- Bit0-2 of VAMODE register (0x0E) select input phases for LVAENERGY register

LVAENERGY accumulation

- Principle: Accumulation of the Apparent Energy over N half line cycles (<65535)
 - If bit A of IRQMASK register (0x0F) is set => IRQ goes Low when finished
- Benefits:
 - Cancel the ripple frequency effect (2 x line freq) in Energy Measurement

LVAENERGY configuration

VA-Hour GAIN Calibration

Gain calibration for

- Meter to meter gain adjustment
- Phase to phase input gain matching
- VAh/LSB constant

VAENERGY/LVAENERGY Gain adjustment:

Conversion of VAENERGY value to VAh

VAENERGY is an Energy register One constant is sufficient to convert it to VAh $VAh = VAENERGY \times VAh/LSB$ constant To calibrate VAh/LSB constant: Known integration time Known Load (VA = V_{rms} x I_{rms}) • VAh/LSB constant can be determined with LVAENERGY test: $\frac{VA \times A \ ccumulation \ time(s)}{LVA \ ENERGY}$ Eq. 11 3600 $VAh/_{LSB}$ constant = -Where *Line Period*(s) = *Period* Register $\times 2.4 \cdot 10^{-6}$

VA-Hour GAIN calibration example: Procedure

- Calibration of VA-Hour GAIN should be done after RMS offset corrections
- Calibration of VA-Hour GAIN can be done at the same time as Watt-Hour GAIN calibration
 - Program VAMODE and WATMODE to the same value
 - Read LAENERGY and LVAENERGY

VA-Hour GAIN calibration example: VAh/LSB calibration

Calibration of VA-hour GAIN to get a pre-determined value

- V=240V ; I=10A ; 50Hz ; LINCYC = 200
- LVAENERGY_{reference} = LVAENERGY_{phase A}=10582
- PERIOD register = 8336 => Accumulation time = 2.0006s

$$VAh/_{LSB}$$
 constant = $\frac{240 \times 10 \times 2.0006}{3600 \times 10582} = 1.26 \cdot 10^{-4}$ From

From Eq. 11

From Eq. 10

Calibration of BVAGAIN to get to this value:

- LVAENERGY phase B initial = 10558
- With BVAGAIN=9 => LVAENERGY_{phase B}=10581

→ The World Leader in High-Performance Signal Processing Solutions

Reactive Energy Measurement

Reactive Power calculation (VAR)

The reactive power is defined in the IEEE Standard Dictionary 100-1996 under the energy "magner" as: Reactive power = $\sum V_n \cdot I_n \cdot \sin(\varphi_n)$ where V_n and I_n are respectively the voltage and current rms values of the nth harmonics of the line frequency, and ϕ_n is the phase difference between the voltage and the current nth harmonics. Active power = $\sum V_n \cdot I_n \cdot \cos(\varphi_n)$ Note:

Reactive Power calculation

 The implementation of the reactive power definition can be done by introducing a 90° phase shift on one channel at any frequency – Hilbert Transform

$$v(t) = \sqrt{2}.V.sin(\omega t)$$

$$i(t) = \sqrt{2}.I.\sin(\omega t + \theta)$$
 \Longrightarrow $i'(t) = -\sqrt{2}.I.\cos(\omega t + \theta)$

Hilbert transform

$$VAR(t) = v(t) \cdot i'(t) = V \cdot I \cdot \sin(\theta) - V \cdot I \cdot \sin(2\omega t + \theta)$$

Reactive Power is the DC part of the instantaneous reactive power: V.I.sin(θ)

ADE7754 Reactive Power: Theory of operation

A low frequency low pass filter introduces a 89° phase shift at any frequency In the ADE7754, the Reactive Power calculation is processed by using a frequency Low-pass filter @ 2Hz (LPF1) LPF1 HPF MULTIPLIER LPF2 Reactive Power Signal - P Instantaneous Reactive Power Signal - p(t)

Bit5 Register 0x0C = 0 LVAENERGY configuration

Bit5 Register 0x0C = 1 LVARENERGY configuration

Reactive Energy Measurement

- Sign of Reactive Energy can be directly read from the LVARENERGY[23:0]
- The sign of LVARENERGY indicates inductive or capacitive loading
- Proposed Method to measure Reactive Energy and Power Factor including harmonics:

Using synchronous VAh and Wh data

Varh = $\sqrt{(VAh^2 - Wh^2)} = \sqrt{(LVAENERGY^2 - LAENERGY^2)}$

PF = sign(LVARENERGY) * LAENERGY/ LVAENERGY

