
A forum for the exchange of circuits, systems, and software for real-world signal processing  •  Volume 49, Number 4, 2015

Analog Dialogue

analog.com/analogdialogue

Editor’s Notes; New Product Introductions

Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
Part 2—the Analog Devices/Xilinx SDR Rapid Prototyping Platform: Its Capabilities, Benefits, and Tools

Using ESD Diodes as Voltage Clamps

Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
Part 3—Mode S Signals Decoding Algorithm Validation Using Hardware in the Loop

Versatile, Precision Single-Ended-to-Differential Signal Conversion Circuit with Adjustable Output
Common Mode Boosts System Dynamic Range

Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
Part 4—Rapid Prototyping Using the Zynq SDR Kit and Simulink Code Generation Workflow

New Complete, High Resolution, and Multifunctional Bipolar DACs: an Easy to Use, Universal Solution

2

3

8

11

16

19

26

http://www.analog.com/library/analogDialogue/
http://www.analog.com/en/index.html
http://www.analog.com/library/analogDialogue/

 Analog Dialogue Volume 49 Number 42

Editor’s Notes
IN THIS ISSUE

Four Quick Steps to Production: Using Model-Based
Design for Software-Defined Radio

Part 2—Mode S Detection and Decoding Using MATLAB
and Simulink
The series on model-based software-defined radio system design
continues toward the ultimate objective of building a platform
that will receive and decode the automatic dependent surveil-
lance broadcast (ADS-B) transmissions from commercial aircraft.
This month our designers analyze the Mode S extended squitter
format used in ADS-B signal transmissions and demonstrate
how to capture these Mode S signals with a receiver platform
based on the AD9361 RF Agile Transceiver™ IC. (Page 3)

Using ESD Diodes as Voltage Clamps
When external overvoltage conditions are applied to an ampli-
fier’s input, ESD diodes are the last line of defense between
the amplifier and the catastrophic damage that can result from
electrical overstress. In this article our expert shows us how ESD
cells are implemented in an amplifier device, discusses their
characteristics, and explains how they can be used to improve
the robustness of a design. (Page 8)

Four Quick Steps to Production: Using Model-Based
Design for Software-Defined Radio

Part 3—Mode S Signals Decoding Algorithm Validation
Using Hardware in the Loop
Part 3 of our ongoing series on software-defined radio,
covering validation of the system algorithm using live data as
input and some powerful software and system development
tools provided by ADI, MathWorks, and Avnet. If you’ve read
Parts 1 and 2, you’ve seen this SDR system steadily progress
from initial prototyping toward a production design. (Page 11)

Versatile, Precision Single-Ended-to-Differential Signal
Conversion Circuit with Adjustable Output Common Mode
Boosts System Dynamic Range
This article revisits an earlier design of a versatile, low power
single-ended-to-differential converter circuit. This time around,
this useful converter circuit is made even more versatile. The
authors have addressed using the circuit in applications that
require greater output dynamic range, such as in signal condi-
tioning of temperature and pressure sensor outputs. (Page 16)

Four Quick Steps to Production: Using Model-Based
Design for Software-Defined Radio

Part 4—Rapid Prototyping Using the Zynq SDR Kit and
Simulink Code Generation Workflow
This article concludes the four-part series on software-defined
radio design. The authors bring the algorithm and hardware
together and take their radio for a real-world test drive. This is
the culmination of a journey that has taken us from simulation
to prototyping to production-worthy design, and now we see it
in action. (Page 19)

New Complete, High Resolution, and Multifunctional
Bipolar DACs: an Easy to Use, Universal Solution
This article focuses on the critical role that precision bipolar
DACs serve in calibration and control functions in a multitude of
applications from motor control to industrial automation. Several
system block diagrams are explored with a focus on the design
considerations for the DAC functions involved therein. (Page 26)

Jim Surber [jim.surber@analog.com]

Product Introductions: Volume 49, Number 4
Data sheets for all ADI products can be found by entering the part
number in the search box at analog.com.

October
Rail-to-rail input/output low noise amplifier....................................... ADA4807-4
Low power, multimode, rail-to-rail amplifier for driving SAR ADCs....... ADA4806-1
Multifunction video interface IC with (MIPI®/DSI) input port and
	 (HDMI®) output.. ADV7535
3.75 kV rms quad digital isolator family:
	 Quad-channel isolator with input disable and 0 reverse channels.... ADuM140D
	 Quad-channel isolator with input disable and 1 reverse channel...... ADuM141D
	 Quad-channel isolator with input disable and 2 reverse channels.... ADuM142D
Ultralow power step-down buck regulator.. ADP5300
Complete, 1.25 GHz, dual integrated dcl with PPMU......................... ADATE320
Blackfin+ DSP family combines dual 16-bit MAC, 32-bit MAC, and 16-bit
complex MAC with L2 SRAM and DDR2/LPDDR interface:
	 400 MHz, 1 MB... ADSP-BF707
	 400 MHz, 512 kB... ADSP-BF705
	 400 MHz, 256 kB... ADSP-BF703
	 200 MHz, 128 kB... ADSP-BF701
Triple-channel OOK (on-off-keying) isolated coupler family:
	 Input disable, 3/0 channel directionality.. ADuM230D
	 Output enable, 3/0 channel directionality...................................... ADuM230E
	 Output enable, 2/1 channel directionality...................................... ADuM231E
	 Input disable, 2/1 channel directionality.. ADuM231D
	 Input disable, 4/0 channel directionality.. ADuM240D
	 Output enable, 4/0 channel directionality...................................... ADuM240E
	 Input disable, 3/1 channel directionality.. ADuM241D
	 Output enable, 3/1 channel directionality...................................... ADuM241E
	 Input disable, 2/2 channel directionality.. ADuM242D
	 Output enable, 4/0 channel directionality...................................... ADuM242E
Ultralow power step-down buck regulator.. ADP5303
50 mA/500 mA, ultralow power step-down regulator............................ ADP5302
Synchronous, pulse-width modulation (PWM) controller..................... ADP1974
2.5 GHz to 7 GHz, wideband, double balanced passive mixer............ HMC557A
6 GHz to 26.5 GHz, GaS, MMIC fundamental mixer............................ HMC773A
JESD204B-compatible high performance dual-loop integer
	 N jitter attenuator.. HMC7044
November
Operational amplifier with a femtoampere level input
	 bias current.. ADA4530-1
High isolation, nonreflective, 0.1 GHz to 6 GHz silicon
	 SPDT switch... HMC8038
Low power, complete 3-axis accelerometer with signal conditioned
	 voltage outputs... ADXL316
Ultralow noise, low power current amplifier.. ADPD2210
High quality, low power, single-input HDMI to LVDS display bridge..... ADV7613
Highly efficient, ultralow quiescent current step-down regulator............ ADP5304
High performance, dc-to-dc inverting regulator generates regulated
	 negative rails... ADP5073
1.2 A dc-to-dc switching inverting regulator.. ADP5074
High isolation, silicon SPDT, nonreflective switch, covers
	 9 GHz to 13.0 GHz range.. HMC1118
Triple SPDT switch with user-defined fault protection
	 and detection.. ADG5243F
December
Zero-drift amplifier with wide operating voltage and
	 temperature ranges.. ADA4522-4
Single-channel digital isolator.. ADuM110N
MMIC VCO with half frequency output 11.07 GHz to 11.62 GHz.......... HMC1165
GaAs, pHEMT, MMIC power amplifier provides 19 dB of gain............. HMC1144
6-bit digital phase shifter that is rated from 4 GHz to 7 GHz................... HMC1133

Analog Dialogue
Analog Dialogue, www.analog.com/analogdialogue, the technical
magazine of Analog Devices, discusses products, applications,
technology, and techniques for analog, digital, and mixed-signal
processing. Published continuously for 49 years—starting in 1967—it
is available in two versions. Monthly editions offer technical articles;
timely information including recent application notes, circuit notes, new-
product briefs, webinars, and published articles; and a universe of links
to important and relevant information on the Analog Devices website,
www.analog.com. Printable quarterly issues and ebook versions feature
collections of monthly articles. For history buffs, the Analog Dialogue
archive, www.analog.com/library/analogdialogue/archives.html,
includes all regular editions, starting with Volume 1, Number 1 (1967),
and three special anniversary issues. To subscribe, please go to
www.analog.com/library/analogdialogue/subscribe.html. Your comments
are always welcome: Facebook: www.facebook.com/analogdialogue;
EngineerZone: ez.analog.com/blogs/analogdialogue; Email: dialogue.
editor@analog.com or Jim Surber, Editor [jim.surber@analog.com].

mailto:jim.surber%40analog.com?subject=
http://analog.com
http://www.analog.com/analogdialogue
http://www.analog.com
http://www.analog.com/library/analogdialogue/archives.html
http://www.analog.com/library/analogDialogue/subscribe.html
http://www.facebook.com/analogdialogue
https://ez.analog.com/blogs/analogdialogue
mailto:dialogue.editor@analog.com
mailto:dialogue.editor@analog.com
mailto:jim.surber%40analog.com?subject=

 Analog Dialogue Volume 49 Number 4 3

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 2—Mode S Detection and Decoding Using MATLAB and Simulink

By Mike Donovan, Andrei Cozma, and Di Pu

Automatic Dependent Surveillance Broadcast
Waveforms

Wireless signals that can be detected and decoded are
everywhere, and they are easily accessible with today’s software-
defined radio (SDR) hardware like the Analog Devices
AD9361/AD9364 integrated RF Agile Transceivers.™1,2
The automatic dependent surveillance broadcast (ADS-B)
transmissions from commercial aircraft provide a readily
available wireless signal that can be used to demonstrate a
rapid prototyping flow based on the AD9361 connected to
a Xilinx® Zynq®-7000 All Programmable SoC. Commercial
aircraft use ADS-B transmitters to report their position,
velocity, altitude, and aircraft ID to air traffic controllers.3
The flight data format is defined in the International Civil
Aviation Organization’s (ICAO) Mode S Extended Squitter
specification.4 ADS-B is being introduced throughout the
world to modernize air traffic control and collision avoidance
systems. It has already been adopted in Europe and is being
gradually introduced in the United States.

The Mode S Extended Squitter standard provides details of
the RF transmission format and encoded data fields. The tran-
sponder transmission has the following properties:
• Transmit frequency: 1090 MHz
• Modulation: pulse position modulation (PPM)
• Data rate: 1 Mbps
• Message length: 56 μs or 112 μs
• 24-bit CRC checksum

The tuning frequency and bandwidth are well within the
capabilities of the AD9361 RF transceiver, and the received
I/Q samples can be detected and decoded with a variety of
software or embedded platform options.

In this article we will discuss how to capture these Mode S
signals with a receiver platform based on the AD9361, and
then use MATLAB and Simulink® to develop an algorithm that
can decode the messages. The algorithm will be developed
with the ultimate goal of deploying the solution onto a Zynq
SoC platform, such as Avnet’s PicoZed™ SDR System on
Module (SOM).

Receiver Design Challenges

Mode S messages are either short (56 μs) or long (112 μs).
Short messages contain the message type, aircraft identifica-
tion number, and a cyclic redundancy check (CRC) checksum.
Long messages also contain the altitude, position, velocity,
and flight status. In either case, the Mode S transmission
begins with an 8 μs preamble. This preamble pattern is used
by receivers to establish that a valid message is being transmit-
ted and helps the receivers determine when the message bits
start. See Figure 1 for details.5

1 1 1 0 0 0 …

Preamble Message Bits

 0
µs

1 2 3.5 8
µs

10 12 14
µs

4.5
µs

© 1984-2015 The MathWorks, Inc.

Figure 1. Structure of a Mode S message.

The Mode S waveform is fairly simple, but there are still
several challenges involved in successfully receiving and
decoding the transmitted messages.

1. The receive environment typically contains very short mes-
sages interspersed with long idle periods, and the received
signals can be very weak when the transmitting aircraft is
a long distance from the receiver. Legacy waveforms are
also transmitted at 1090 MHz. The receiver needs to use the
preamble to identify both high and low amplitude Mode S
transmissions in a congested frequency band.

2. Bits have one of two possible patterns within the 1 μs bit
interval. A Logic 1 is ON for the first ½ μs and OFF for the
second ½ μs. A Logic 0 is OFF for the first ½ μs and ON for
the second ½ μs. Since the bit decisions are made based on
time-based patterns, the receiver needs to use the preamble to
accurately find the I/Q sample where the message bits start.

3. The Mode S message is composed of 88 information bits and
24 checksum bits. The receiver needs to be able to clear reg-
isters, make bit decisions, compute the checksum, and read
the checksum registers at the correct times. Timing control
is required for the receiver to function properly.

4. For an embedded design, the decoding process has to work
on a sample by sample basis. Storing large amounts of data
for batch processing is not a realistic receiver design for an
embedded system.

The combination of a powerful RF front end like the AD9361
and a technical computing language like MATLAB® greatly
simplifies the problems associated with detecting and decod-
ing these transmissions. Functions from MATLAB and Signal
Processing Toolbox can be used to identify the sync pattern,
calculate the noise floor, make bit decisions, and calculate the
checksum. The conditional and execution control functions
in MATLAB simplify the control logic. Accessing test data is
easy, both from binary or text files, or streamed directly into
MATLAB using the AD9361 SDR platforms. Finally, the inter-
preted nature of MATLAB makes it easy to interact with data,
try different approaches, and interactively develop a solution.

http://www.analog.com/ad9361
http://www.analog.com/ad9364

 Analog Dialogue Volume 49 Number 44

We used some code based on these commands to capture
several data sets at a sample rate of 12.5 MHz. The 12.5 MHz
rate was chosen to provide enough samples to fine tune the
alignment of the preamble to the first message bit and average
out some of the noise in the samples used to make bit deci-
sions. The results of a one million sample capture are shown
in Figure 5.

© 1984-2015 The MathWorks, Inc.

Figure 5. Sample data capture at 1090 MHz.

In this short data set there are 14 signals that stand out above
the noise floor. Of those 14 signals, two are Mode S messages.
The rest are legacy or spurious signals that should be rejected.
Zooming in to the region near sample number 604000 shows
one of the valid messages (see Figure 6).

© 1984-2015 The MathWorks, Inc.

Figure 6. Single Mode S message.

In this plot the preamble can clearly be seen, and the bit
transitions due to the PPM modulation are apparent. Even
with a clean signal like this, decoding the bits by inspection
would require good eyesight and a lot of patience. Clearly
an automated program is required to decode these messages.
MATLAB is a good solution for developing this program.

The MATLAB code that can receive and decode Mode S
messages can be summarized as follows:

1. Calculate the noise floor and preamble correlation with the
filter() function over a short time window. In our solution
we use 75 samples, which is equivalent to 6 μs.

Modeling and Verifying Mode S Receiver Algorithms
in MATLAB

Readers who are interested in following along with the MATLAB
source code can find the files on the Analog Devices GitHub
repository. The entry level function is ad9361_ModeS.m, and
the files called by this function are also provided.

The first step in designing a receiver algorithm is to access
some source data. Since many aircraft are now equipped with
Mode S transponders it’s possible to just tune a receiver to the
broadcast frequency of 1090 MHz and capture local transmis-
sions. In our case we can use the Zynq SDR Rapid Prototyping
Platform. Analog Devices provides a MATLAB System
Object™ that is capable of receiving data from the FMCOMMS
platform over Ethernet.6 The System Object allows a user to
select a tuning frequency and sampling rate, collect receive
samples using the radio hardware, and bring the receive
samples directly into the MATLAB workspace as a MATLAB
variable. The required code is very short; a few lines of code to
set up the MATLAB System Object, a few more to set up the
FMCOMMS3, and a few lines of code to capture I/Q samples
and write them to a MATLAB variable. A sample of the code
is shown in Figure 2, Figure 3, and Figure 4.

© 1984-2015 The MathWorks, Inc.

Figure 2. Sample MATLAB code to set up MATLAB System object.

© 1984-2015 The MathWorks, Inc.

Figure 3. Sample MATLAB code to configure FMCOMMS3 board.

© 1984-2015 The MathWorks, Inc.

Figure 4. Sample MATLAB code to capture I/Q samples and write
them to the Rx variable.

https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/

 Analog Dialogue Volume 49 Number 4 5

2. When the preamble correlation exceeds the noise floor by a
significant factor, launch logic to find the first message bit
sample.
a. The choice of this threshold is subjective. It should be

small enough to detect weak signals but large enough to
prevent a lot of false positives. We chose a value of 10×
above the noise floor as a reasonable threshold that cap-
tures most decodable messages.

b. The preamble pattern produces several peaks. Since the
best match is over the first 6 μs, store the first peak, start
the search for the first message bit, and see if another
larger peak occurs in the next 3 μs. If it does occur, store
the new peak and reset the search for the start of the first
message bit.

c. When the max peak occurs, start the message bit decod-
ing 2 μs later.

d. Figure 7 shows the noise floor in green and the result
of correlating an ideal preamble to the incoming data.
There are several peaks above the noise floor, but the
one of interest is the one with the maximum amplitude.
The sample for the first message bit occurs 2 μs after
that peak.

6.035

–10

–5

0

5

6.040 6.045

Time (s)

A
m

p
lit

ud
e

× 105

× 10–4 Sync Pulse Correlation

Sync Correlation
Noise Floor

6.050 6.055 6.060

6.035

1

0

2

3

4

6.040 6.045

Time (s)

A
m

p
lit

ud
e

× 105

× 10–5 Received Samples (112 µs message)

6.050 6.055 6.060

© 1984-2015 The MathWorks, Inc.

Figure 7. Calculation of noise floor and preamble correlation.

3. For each individual bit, sum the amplitude of the samples
for the first ½ μs and second ½ μs. Whichever sum is larger
determines whether the bit is Logic 1 or Logic 0.

4. Compute the checksum as the bit decisions are made. This
requires some control logic for resetting the CRC registers
when the first bit arrives, calculating the checksum for
88 bits, and then emptying the CRC registers for the final
24 bits. The ADS-B message is valid when the receive bits
match the checksum.

5. Parse the message bits according to the Mode S standard
(see Figure 8).

© 1984-2015 The MathWorks, Inc.

Figure 8. Decoded Mode S messages.

The above figure from the MATLAB command window shows
the two messages that were successfully decoded from the one
million sample data set. The hex characters that make up the
88-bit message and 24-bit checksum are displayed, and the

results of the decoding process show the aircraft ID, message
type, and aircraft velocity, altitude, and position.

MATLAB provides a powerful mathematical and signal pro-
cessing language to make it possible to solve this problem
relatively easily. The MATLAB code needed to process the
data samples and ultimately decode the messages is short—
only 200 lines of MATLAB code. In addition, the interpreted
nature of MATLAB makes it easy to interactively try out
design ideas and quickly settle on a viable solution. Several
timing mechanisms, thresholds, and noise levels were tested
on various data sets to produce a satisfactory program.

This MATLAB code has been tested on signals from aircraft
flying in the local airspace and the decoded messages have
been checked against sources like airframes.org and flight-
aware.com. The hardware and the code perform very well;
we’ve been able to decode transmissions from planes at a
distance of 50 miles.

Path to Implementation

Readers who are interested in following along with the
Simulink model can find the files on the Analog Devices
GitHub repository:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

MATLAB is a great environment for testing design ideas
and running algorithms on a PC, but if the ultimate goal is
to produce software or HDL to be used on an embedded
platform, particularly one like a Zynq SoC, then Simulink
is a good solution. Simulink is well suited to modeling the
hardware specific elaborations needed to target the program-
mable device. A good workflow is to use MATLAB to develop
and verify an algorithm, and then translate the design into
Simulink and continue down the development path to a final
hardware implementation.

Fortunately, the MATLAB code for this algorithm processes
data on a sample by sample basis, so the conversion to Sim-
ulink is fairly straightforward. In contrast to the 200 lines of
MATLAB code, the Simulink model is simple to display and
describe (see Figure 9).

© 1984-2015 The MathWorks, Inc.

Figure 9. Simulink model of Mode S detection and decoding algorithm.

In Figure 9, you can see the first step in the decoding is to
calculate the noise floor and the correlation to the preamble.
Digital filter blocks are used for these calculations. The timing
control block is implemented using Stateflow,® which is a
state machine tool that is used to generate the timing, reset,
and control signals for the rest of the decoding algorithm.
Stateflow is very useful for models where you want to sepa-
rate the control logic from the data flow. Once the timing
and triggers are activated, the block named BitProcess takes

http://www.airframes.org/
http://flightaware.com/
http://flightaware.com/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink

 Analog Dialogue Volume 49 Number 46

the input I/Q samples and calculates the data bits, and the
CRC_Check block computes the checksum. The message
parsing still takes place in a MATLAB script driven by this
Simulink model.

Digging deeper into the model you can see a few features that
make Simulink suitable for embedded development, especially
for partitioning the design into functions targeted at a Zynq
SoC and for generating HDL code and C code.

1. Simulink has excellent fixed-point support, so you can build
and test a bit-true version of your design. The individual
blocks allow you to set the word length and fractional length
for the mathematical operations in your model. The digital
filter block that is used to calculate the preamble correla-
tion is a good example (Figure 10). You can set the rounding
mode and the overflow behavior for the calculations (Floor
and Wrap are the simplest choices for math being done in
HDL). In addition, you can specify different word lengths
and fractional precisions for the product and accumulator
operations for the filter (Figure 11). You can use word length
choices that map to the receiver ADC and take advantage
of hardware multipliers like the 18 bit × 25-bit multipliers
within the DSP48 slices of the Zynq SoC.

© 1984-2015 The MathWorks, Inc.

Figure 10. Simulink digital filter block used for preamble correlation,
12-bit data types.

© 1984-2015 The MathWorks, Inc.

Figure 11. Fixed-point data type settings.

2. Embedded designs often have many of modes of operation
and conditionally executed algorithms. Stateflow is partic-
ularly good at managing these control signals. Stateflow
gives you a visual representation of the control logic needed
to detect and decode the Mode S messages. In Figure 12
below, you can see the states in the logic are:
a. SyncSearch: look for the preamble in the captured samples
b. WaitForT0: look for the start of the first message bit
c. BitProcess: enable the bit processing
d. EmptyReg: empty the checksum register and compare

the bits to the output of the bit processing

As the detection and decoding algorithm progresses through
the different states, the Stateflow block generates the signals
that enable the bit processing, reset the bit decision counters
and checksum registers, and read out the checksum bits at the
end of the Mode S messages.

© 1984-2015 The MathWorks, Inc.

Figure 12. Stateflow chart for decoding Mode S messages.

3. The Simulink block libraries give engineers options to
work at a very high level or at a very fine level of detail.
Simulink has high level blocks like Digital Filter, FFT, and
Numerically Controlled Oscillator to make it easy to build
signal processing designs. If more precise control of the
design is required, possibly for speed or area optimizations,
engineers can use low level blocks like Unit Delays, Logic
Operators (XOR for example), and Switches. The 24-bit
checksum in this model is a feedback shift register built
using those low level blocks (Figure 13).

© 1984-2015 The MathWorks, Inc.

Figure 13. Feedback shift register for Mode S checksum computation.

 Analog Dialogue Volume 49 Number 4 7

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

This Simulink model is a hardware specific version of the
MATLAB algorithm that detects and decodes Mode S mes-
sages. Simulink is a useful tool for bridging the gap between a
behavioral algorithm written in MATLAB and implementation
code for embedded hardware. You can introduce hardware
specific elaborations into the Simulink model, run the model,
and verify that the changes you’ve made don’t break the
decoding algorithm.

Conclusion

The combination of a Zynq SDR Rapid Prototyping Platform
and MathWorks software gives communication engineers a
new and flexible way to quickly prototype design ideas for
wireless receivers. The high degree of programmability and
performance provided by the AD9361/AD9364 agile wide-
band RF transceiver and the simple connectivity between the
hardware and MATLAB environment makes a wide variety
of interesting wireless signals available to the engineer. Engi-
neers who use MATLAB can quickly try a multitude of design
ideas and settle on a promising solution. If the ultimate target
of the design is an embedded processor, Simulink is a tool that
engineers can use to refine the design with hardware specific
ideas and ultimately produce the code used to program the
processor. This workflow reduces the number of skills needed
to design a wireless receiver and shortens the development
cycle from concept to working prototype.

In the next article in this series, we will show how to use
hardware in the loop (HIL) to validate a receiver design,
capturing signals with the target transceiver while executing
a model of the signal processing system on the host in
Simulink for verification.

References
1 AD9361. Analog Devices.
2 AD9364. Analog Devices.
3 960-1164 MHz. National Telecommunications and Informa-

tion Administration.
4 Technical Provisions for Mode S Services and Extended

Squitter. International Civil Aviation Organization.
5 Surveillance and Collision Avoidance Systems. Aeronautical

Telcommunications, Volume IV. International Civil Aviation
Organization.

6 Di Pu, Andrei Cozma, and Tom Hill. “Four Quick Steps to
Production: Using Model-Based Design for Software-Defined
Radio.” Analog Dialogue, Volume 49.

Links to Source Code and Models

MATLAB Mode S Decoding Algorithm: https://github.com/
analogdevicesinc/MathWorks_tools/blob/master/hil_models/
ADSB_MATLAB/
Simulink Mode S Decoding Models:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

Acknowledgements

The authors would like to thank Mike Mulligan from
MathWorks who contributed some of the MATLAB code
used in this example.

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Mike Donovan [mike.donovan@mathworks.com] is a manager in the Application Engineering
Group at MathWorks. He has a B.S.E.E. from Bucknell University and an M.S.E.E. from the
University of Connecticut. Prior to joining MathWorks, Mike worked on radar and satellite
communications systems and in the broadband telecommunications industry.

Mike Donovan

mailto:andrei.cozma@analog.com
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html
http://www.ntia.doc.gov/files/ntia/publications/compendium/0960.00-1164.00_01MAR14.pdf
http://www.cats.com.kh/download.php?path=vdzw4dHS08mjtKi6vNi31Mbn0tnZ2eycn6ydmqPE19rT7Mze4cSYpsetmdXd0w==
http://www.cats.com.kh/download.php?path=vdzw4dHS08mjtKi6vNi31Mbn0tnZ2eycn6ydmqPE19rT7Mze4cSYpsetmdXd0w==
http://www.icao.int/Meetings/anconf12/Document%20Archive/AN10_V2_cons%5B1%5D.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&p[url]=http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202%20http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html&source=webclient
mailto:di.pu%40analog.com?subject=
mailto:mike.donovan%40mathworks.com?subject=

 Analog Dialogue Volume 49 Number 48

Using ESD Diodes as Voltage Clamps
By Paul Blanchard and Brian Pelletier

Abstract

When external overvoltage conditions are applied to an amplifier,
ESD diodes are the last line of defense between your amplifier and
electrical over stress. With proper understanding of how an ESD
cell is implemented in a device, a designer can greatly extend the
survival range of an amplifier with the appropriate circuit design.
This article aims to introduce readers to the various types of ESD
implementations, discuss the characteristics of each implementation,
and provide guidance on how to utilize these cells to improve the
robustness of a design.

Introduction

In many applications where the input is not under system
control but rather connects to the outside world, such as test
equipment, instrumentation, and some sensing equipment, it
is possible for input voltages to exceed the maximum rated
voltage of a front-end amplifier. In these applications, protec-
tion schemes must be implemented to preserve the survival
range and robustness of the design. The front-end amplifier’s
internal ESD diodes are sometimes used for clamping over-
voltage conditions, but many factors need to be considered to
ensure these clamps will provide sufficient and robust protec-
tion. Understanding the various ESD diode architectures that
are inside of front-end amplifiers, along with understanding
the thermal and electromigration implications of a given pro-
tection circuit, can help a designer avoid problems with their
protection circuits and improve the longevity of their applica-
tions in the field.

ESD Diode Configurations

It is important to understand that not all ESD diodes are
simple diode clamps to the power supplies and ground. There
are many possible implementations that can be used, such as
multiple diodes in series, diodes and resistors, and back to
back diodes. Some of the more common implementations are
detailed below.

Diodes Connected to the Power Supply

Figure 1 shows an example of an amplifier with diodes con-
nected between the input pins and the supplies. The diodes
are reverse-biased under normal operating conditions, but
become forward-biased as the inputs rise above the positive
supply voltage or below the negative power supply voltage.
As the diodes become forward-biased, current flows through
the amplifier’s inputs to the respective supply.

In the case of the circuit in Figure 1, the input current is not
inherently limited by the amplifier itself when the overvoltage
goes above +Vs, and will require external current limiting in
the form of a series resistor. When the voltage goes below –Vs
the 400 Ω resistor provides some current limiting, which
should be factored into any design considerations.

–IN

+IN

+VS

+VS

–VS

–VS

400 Ω

400 Ω

–VS

OUT

AD8221

D1

D3

+VS D2

D4

Figure 1. Input ESD topology of AD8221.

Figure 2 shows an amplifier with a similar diode configuration,
but in this case the current is limited by the internal 2.2 kΩ
series resistor. This differs from the circuit shown in Figure 1
by not only the value of the limiting R but also the 2.2 kΩ
protects from voltages above +Vs. This is an example of the
intricacies that must be fully understood to optimize protec-
tion when using ESD diodes.

–IN

+IN

+VS

+VS

–VS

–VS

2.2 kΩ

2.2 kΩ

–VS

OUT

AD8250

D1

D3

+VS D2

D4

Figure 2. Input ESD topology of AD8250.

Current-Limiting JFETs

In contrast to the implementation in Figure 1 and Figure 2,
current-limiting JFETs may be used in IC designs as an alter-
native to diode clamps. Figure 3 shows an example where
JFETs are used to protect a device when the input voltages
exceed the specified operating range of the device. This device
is inherently protected up to 40 V from the opposite rail by the
JFET inputs. Because the JFET will limit the current into the
input pins, the ESD cells cannot be used as additional over-
voltage protection.

 Analog Dialogue Volume 49 Number 4 9

No ESD Clamps

Some devices do not include ESD devices on the front end.
While it is obvious that a designer cannot use ESD diodes for
clamping if they are not there, this architecture is mentioned
as a situation to look out for when investigating overvoltage
protection (OVP) options. Figure 6 shows a device that uses
only large value resistors to protect the amplifier.

–IN

+IN

+VS

1 MΩ

1 MΩ

–VS

OUT

AD8479

Figure 6. Input protection scheme of AD8479.

ESD Cells as Clamps

In addition to understanding how the ESD cells are imple-
mented, it is important to understand how to utilize the
structures for protection. In a typical application, a series resis-
tor is used to limit the current over a specified voltage range.

When amplifiers are configured as shown in Figure 7 or where
the inputs are protected by a diode to the supply, input cur-
rent is limited using the equation in the following formula.

VSTRESS – (VSUPPLY + 0.7 V) IDIODE =
RPROTECTION 	

(1)

–IN

+IN

+VS

+VS

RPROTECTION1

IDIODE1VSTRESS

IDIODE2

RPROTECTION2 –VS

–VS

400 Ω

400 Ω

–VS

OUT

AD8221

D1

D3

+VS D2

D4

Figure 7. Using ESD cells as clamps.

An assumption used for Equation 1 is that VSTRESS > VSUPPLY.
If this is not the case, a more precise diode voltage should
be measured and used for the calculation instead of the
0.7 V approximation.

An example calculation follows for protecting an amplifier
using ±15 V supplies, from input stresses up to ±120 V, while
limiting the input current to 1 mA. Using Equation 1, we can
use these inputs to calculate the following.

VSTRESS – (VSUPPLY + 0.7 V) IDIODE =
RPROTECTION 	

(1)

120 V – (15 V + 0.7 V) 1 mA =
RPROTECTION 	

(2)

		
 = 104,300 Ω RPROTECTION 	 (3)

Given these requirements, an RPROTECTION > 105 kΩ would limit
the diode current to <1 mA.

Understanding the Current Limitations

Maximum values for IDIODE will vary from part to part, and
also be dependent on the particular application scenarios

Where voltage protection up to 40 V is required, this device’s
JFET protection offers a well controlled, reliable, fully spec-
ified option for protection. This is often in contrast to using
ESD diodes for protection, where information on diode
current limits are often specified as typical, or possibly not
specified at all.

–IN

+IN

+VS

–VS

OUT

AD8226

JFET
Protection

JFET
Protection

Figure 3. Input protection scheme of AD8226.

Diode Stacks

In applications where the input voltage is allowed to exceed
the power supply voltage or ground, a stack of diodes may be
used to protect the input from ESD events. Figure 4 shows an
amplifier that implements a stacked diode protection scheme.
In this configuration, the diode string is used to protect from
negative transients. The string of diodes are used to limit the
leakage current in a usable input range, but provide protection
when the negative common-mode range is exceeded. Keep in
mind the only current limiting will be the equivalent series
resistance of the diode string. An external series resistance can
be used to decrease the input current for a given voltage level.

D1

–IN

+IN

+VS

GND

GND

OUT

AD8417

D2

D3

D4

D5

Figure 4. Low-side input protection scheme of AD8417.

Back to Back Diodes

Back to back diodes are also used when the input voltage
range is allowed to exceed the power supply. Figure 4 shows
an amplifier that implements back to back diodes to provide
ESD protection on a device that allows voltages up to 70 V
using a 3.3 V supply. D4 and D5 are high voltage diodes used
to standoff the high voltages that could be present on the
input pins and D1 and D2 are used to prevent leakage cur-
rents while the input voltages are within the normal operating
range. In this configuration, using these ESD cells for overvolt-
age protection would not be recommended because exceeding
the maximum reverse bias of the high voltage diode can easily
lead to situations that cause permanent damage.

D1

–IN

+IN

+VS

GND

GND

OUT

AD8418

Note: D4 and D5 Are High Voltage Devices

D2

D3

D4

D5

Figure 5. High-side input protection scheme of AD8418.

 Analog Dialogue Volume 49 Number 410

in which the stress is applied. The maximum current will
be different for a one-time event lasting milliseconds vs. if
the current was constantly applied over the entire 20 or more
year mission profile life of the application. Guidance on the
particular values may be found in amplifier data sheets in the
absolute max section or application notes and are usually in
the range of 1 mA to 10 mA.

Failure Modes

The maximum current rating for a given protection scheme
will ultimately be limited by two factors: the thermal implica-
tion of the power dissipated in the diode and the maximum
current rating for the current path. The power dissipation
should be kept below a threshold that maintains the operating
temperature in a valid range and the current should be chosen
to be within the specified maximum to avoid reliability issues
due to electromigration.

Thermal Implications

When current flows into the ESD diodes, there will be a tem-
perature increase due to the power dissipated in the diodes.
Most amplifier data sheets specify a thermal resistance (usually
specified as ӨJA) that will indicate how junction temperatures
will increase as a function of power dissipation. Considering
the worst-case application temperature, along with the worst-
case temperature increase due to power dissipation, will give
an indication of the viability of a protection circuit.

Electromigration

Even when the current does not cause thermal problems, the
diode current could still create a reliability problem. There is
a maximum lifetime current rating for any electrical signal

path due to electromigration. The electromigration current
limit for the diode current path is typically limited by thick-
ness of the internal traces in series with the diodes. This
information is not always published for amplifiers, but needs
to be considered if the diodes are active for long portions of
time, as opposed to transient events.

An example where electromigration can be a problem is when
an amplifier is monitoring, and therefore connected to, a volt-
age rail that is independent of its own supply rail. When there
are multiple power domains, there can be instances where
power supply sequencing can cause voltages to temporarily
exceed absolute maximum conditions. By considering the
worst-case current path, the duration over life that this current
could be active, and understanding the maximum allowable
current for electromigration, reliability issues due to electromi-
gration can be avoided.

Conclusion

Understanding how an amplifier’s internal ESD diodes are
activated during electrical overstress events can enable simple
improvements to the robustness of a design. Examining both
the thermal and electromigration implications of a protection
circuit can highlight potential problems and indicate where
additional protection may be warranted. Considering the con-
ditions outlined here enables designers to make smart choices
and avoid potential robustness issues in the field.

Paul Blanchard [paul.blanchard@analog.com] is an applications engineer at
Analog Devices in the Instrumentation, Aerospace, and Defense business
unit, located in Wilmington, MA. Paul started with ADI in 2002 in the
Advanced Linear Products (ALP) Group covering instrumentation amplifiers
and variable gain amplifiers. In 2009, as part of the Linear Products Group
(LPG), he was primarily responsible for automotive radar, current sensing,
and AMR related applications. Currently, as part of the Linear and Precision
Technology (LPT) Group, he is working on precision input signal conditioning
(PISC) signal chain technologies. Paul earned his bachelor’s and master’s
degree in electrical engineering from Worcester Polytechnic Institute.

Brian Pelletier [brian.pelletier@analog.com] is a product development
engineer in the Linear Product Technologies division of Analog Devices.
He joined ADI in 2003 after obtaining a bachelor’s degree in electrical
engineering from the University of Massachusetts. Brian specializes in
precision amplifiers, including instrumentation amplifiers and current
sense amplifiers.

Paul Blanchard

Brian Pelletier

https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-10/esd-diodes.html&title=Using ESD Diodes as Voltage Clamps&source=Analog Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Using ESD Diodes as Voltage Clamps&p[summary]=Using ESD Diodes as Voltage Clamps&p[url]=http://www.analog.com/library/analogdialogue/archives/49-10/esd-diodes.html
https://twitter.com/intent/tweet?text=Using ESD Diodes as Voltage Clamps http://www.analog.com/library/analogdialogue/archives/49-10/esd-diodes.html&source=webclient
mailto:paul.blanchard%40analog.com?subject=
mailto:brian.pelletier%40analog.com?subject=

 Analog Dialogue Volume 49 Number 4 11

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 3—Mode S Signals Decoding Algorithm Validation Using Hardware in the Loop

By Di Pu and Andrei Cozma

Introduction

After implementing any signal processing algorithm in
MATLAB or Simulink, the next natural step is to verify the
algorithm’s functionality using real data acquired from the
actual SDR hardware system that it is going to run on. As a
first step, the verification of the algorithm is done using dif-
ferent sets of input data captured from the system. This helps
validate the algorithm’s functionality, but does not guarantee
that the algorithm will perform as expected in environmental
conditions other than the ones used to make the data captures,
or what the behavior and performance will be for different
settings of the analog front end and digital blocks of the
SDR system. In order to verify all of these aspects, it is very
beneficial if the algorithm can be run online to receive live
data as input and to tune the settings of the SDR system for
optimal performance. This part of the article series1 discusses
the software tools provided by Analog Devices to allow direct
interaction between MATLAB and Simulink models with the
FMCOMMSx SDR platforms and shows how these tools can
be used to verify the ADS-B models presented in Part 2 of the
article series.2

MATLAB and Simulink IIO System Object

Analog Devices provides a complete software infrastructure
that enables MATLAB and Simulink models to interact in real
time with FMCOMMSx SDR platforms that are connected to
FPGA/SoC systems running Linux. This is possible due to an
IIO System Object3 that is designed to exchange data over
TCP/IP with the hardware system in order to stream data to
and from a target, control the settings of a target and monitor
different target parameters such as the RSSI. Figure 1 presents
the high level architecture of the software infrastructure and
the data flow between the components in the system.

Analog Devices
FMCOMMSx SDR

Zynq All Programmable SoC Windows/Linux Host

Programmable Logic

ARM CORTEX A9 Processing System

Linux

Kernel
Drivers

libIIOlibIIO
TCP/IP
Client

TCP/IP
Server

MATLAB/Simulink Model

FMCOMMSx
HDL Interface

IIO
System
Object

Figure 1. Software infrastructure block diagram.

The IIO System Object is based on the MathWorks System
Objects specification4 and exposes data and control interfaces
through which the MATLAB/Simulink models communicate
to IIO-based platforms. These interfaces are specified in a

configuration file that links the System Object interface to IIO
data channels or to IIO attributes. This makes the implemen-
tation of the IIO System Object generic, allowing it to work
with any IIO platform just by modifying the configuration
file. Some of the platforms for which configuration files and
examples are available on the ADI GitHub repository5 include
the AD-FMCOMMS2-EBZ/AD-FMCOMMS3-EBZ/AD-FM-
COMMS4-EBZ/AD-FMCOMMS5-EBZ SDR boards and the
high speed data acquisition AD-FMCDAQ2-EBZ board. The
communication between the IIO System Object and the target
is accomplished through the libiio server/client infrastructure.
The server runs on an embedded target under Linux and man-
ages real-time data exchange between the target and both local
and remote clients. The libiio library abstracts the low level
details of the hardware and provides a simple yet complete
programming interface that can be used for advanced projects
with a variety of language bindings (C, C++, C#, Python).

The next sections of the article provide real life examples on
how the IIO System Object can be used for validating the
ADS-B MATLAB and Simulink models. An AD-FMCOM-
MS3-EBZ SDR platform6 connected to a ZedBoard7 running
the Analog Devices Linux distribution were used as the SDR
hardware system for verifying the operation of the ADS-B sig-
nals detection and decoding algorithm, as shown in Figure 2.

Figure 2. Hardware setup for ADS-B algorithm validation.

 Analog Dialogue Volume 49 Number 412

The RF bandwidth control sets the AD9361’s RX analog
baseband low-pass filter’s bandwidth to provide antialias-
ing and out-of-band signal rejection. In order to successfully
demodulate the received signals, the system must maximize
the signal-to-noise ratio (SNR). In order to do this, the RF
bandwidth needs to be set as narrow as possible while meet-
ing flatness and the out-of-band rejection specification to
minimize in-band noise and spurious signal levels. If the RF
bandwidth is set wider than it needs to be, the ADC’s linear
dynamic range will be reduced due to the extra noise. Simi-
larly, ADC’s spurious-free dynamic range will be reduced due
to the lower out-of-band signal rejection resulting in overall
receiver dynamic range reduction. Therefore, setting the RF
bandwidth at an optimal value is critical to receive desired
in-band signals and reject out-of-band signals. By observing
the spectrum of received signals, we find 4 MHz is a proper
value for the RF bandwidth.

Besides setting up the analog filters of AD9361 via RF
bandwidth attribute, we can also improve the decoding
performance by enabling the digital FIR filters on AD9361
via the IIO System Object, as shown in Figure 5. According
to the spectrum characteristics of the ADS-B signal, we design
an FIR filter with data rate of 12.5 MSPS, pass band frequency
of 3.25 MHz and stop band frequency of 4 MHz. In this way,
we can further focus on the bandwidth of interest.

Figure 5. Enable the proper FIR filter on AD9361 via libiio.

Adsb.ftr is a file containing the coefficients of an FIR filter
designed using the Analog Devices AD9361 Filter Wizard
MATLAB application.8 This tool provides not only a
general-purpose low-pass filter design, but it also provides
magnitude and phase equalization for other stages in the
signal path.

Figure 6. FIR filter designed for ADS-B signals using the MATLAB
AD9361 Filter Wizard.

The versatile and highly configurable AD9361 transceiver
has several gain control modes that enable its use in a vari-
ety of applications. The Gain Mode parameter of the IIO
System Object selects one of the available modes: manual,
slow_attack, hybrid, and fast_attack. The most frequently used
modes are manual, slow_attack, and fast_attack. Manual gain

MATLAB ADS-B Algorithm Validation Using the IIO
System Object

To validate the MATLAB ADS-B decoding algorithm operation
with real-time data acquired from the AD-FMCOMMS3-EBZ
SDR platform, a MATLAB script has been developed to per-
form the following operations:
• Calculate the earth zone according to user input
• Create and configure the IIO System Object
• Configure the AD-FMCOMMS3-EBZ analog front end and 	
 digital blocks through the IIO System Object

• Receive data frames from the SDR platform using the
 IIO System Object

• Detect and decode the ADS-B data
• Display the decoded ADS-B information

After an IIO System Object is constructed it must be configured
with the IP address of the SDR system, the target device name
and input/output channels sizes and numbers. Figure 3 pres-
ents an example on how to create and configure the MATLAB
IIO System Object.

Figure 3. MATLAB IIO System Object creation and configuration.

The IIO System Object is then used to set the attributes of
AD9361 and to receive the ADS-B signals. The attributes of
AD9361 is set up based upon the following considerations:

Figure 4. MATLAB libiio sets the attributes of AD9361.

The sampling rate is quite straightforward with the AD9361-
based platforms. The transmit data rate normally equals
the RX data rate, and ultimately depends on the baseband
algorithm. In this example, since the decoding algorithm is
designed to work with the sampling rate of 12.5 MSPS, the
data rate of AD9361 is set accordingly. By doing this, the
received samples can be applied directly to the decoding
algorithm, without any additional decimation or interp-
olation operations.

 Analog Dialogue Volume 49 Number 4 13

control mode allows the baseband processor (BBP) to control
the gain. Slow_attack mode is intended for slowly changing
signals, while fast_attack mode is intended for waveforms that

“burst” on and off. Gain mode highly depends on the strength
of received signals. If the signal is too strong or too weak, it
is suggested to use manual mode or slow_attack. Otherwise,
fast_attack is a good option. In the case of ADS-B the fast_
attack gain mode provides the best results due to the bursty
nature of these signals. Fast_attack mode is a requirement for
this waveform since there is preamble, and the AGC needs to
react fast enough so that the first bit is captured. There is a dif-
ference between attack time—the time it takes to ramp down
gain—and decay time—how long it takes to increase gain—in
the absence of a signal. The goal is to quickly turn down the
gain, so that a valid “1” can be seen on the first bit, but not
increase the gain between bit times.

In the end, depending on how you set up the TX_LO_FREQ
and RX_LO_FREQ, there are two ways of using this model:
using precaptured data (RF loopback) and using live data off
the air.

Precaptured Data

In this case, we are transmitting and receiving some precap-
tured ADS-B signals using AD-FMCOMMS3-EBZ . These
signals are saved in a variable called “newModeS.”

Figure 7. Define input using precaptured ADS-B signals.

The requirement for this case is to make TX_LO_FREQ =
RX_LO_FREQ, and it can be any LO frequency value that
AD-FMCOMMS3-EBZ supports. Due to the nature of precap-
tured data, there is plenty of ADS-B valid data in there, so it is a
good way to verify whether the hardware setup is appropriate.

Live Data

In this case, we are receiving the real-time ADS-B signals over
the air, instead of the signals transmitted by AD-FMCOM-
MS3-EBZ. According to ADS-B specification, it is transmitted
at the center frequency of 1090 MHz, so the requirements for
this case are:
• RX_LO_FREQ=1090 MHz, TX_LO_FREQ far away from
 1090 MHz in order to avoid interference.

• Use a proper antenna on the receiver side, which is capable
 of covering the 1090 MHz band, such as an ADS-B Double 	
	 1/2 Wave Mobile Antenna9; using a poorly tuned or poorly 	
	 made antenna will result in a lack of range for your air radar.

With everything set up properly, in order to run the MATLAB
model, simply use the following command:
 [rssi1,rssi2]=ad9361_ModeS(‘ip’,’data source’,channel);

where ip is the IP address of the FPGA board, and data source
specifies the data source of the received signal. Currently,
this model supports data sources of “precaptured” and “live.”

Channel specifies whether signals are received using Channel 1
or Channel 2 of the AD-FMCOMMS3-EBZ.

For example, the following command receives the precaptured
data on Channel 2:
 [rssi1,rssi2]=ad9361_ModeS(‘192.168.10.2’,’pre-captured’,2);

At the end of the simulation, you will get the RSSI values on
both channels, as well as the result tables shown below:

Figure 8. Result table shown at the end of the simulation.

This result table shows the information of aircrafts appearing
during the simulation. With a proper antenna, this model is
able to capture and decode the aircraft signals in an 80 mile
range with AD-FMCOMMS3-EBZ. Since there are two types
of Mode S messages (56 μs or 112 μs), some messages contain
more information than the other.

When trying out this model with the real-world ADS-B signals,
the signal strength is very important for successful decoding,
so make sure to put the antenna in a good line of sight loca-
tion with the aircraft. The received signal strength can be seen
by looking at the RSSI values on both channels. For example,
if receiving the signals on Channel 2, the RSSI of Channel 2
should be significantly higher than that of Channel 1. You can
tell whether there is any useful data by looking at the spec-
trum analyzer.

RF Signal Quality

For any RF signal, there needs to be a quality metric. For
example, for signals like QPSK, we have error vector magni-
tude (EVM). For ADS-B signals, it isn’t enough to look at the
output of a slicer for correct messages, as shown in Figure 8.
We need a metric to define the quality of ADS-B/pulse position
modulation, so that we can tell whether one setting is better
than the other.

In ModeS_BitDecode4.m function, there is a variable
diffVals, which can be used as such a metric. This variable
is a 112 × 1 vector. It shows for each decoded bit in one
Mode S message, how far is it away from the threshold. In other
words, how much margin each decoded bit has with respect to
a correct decision. It is obvious the more margin a bit has, the
more confident the decoded result is. On the other hand, if the
margin is low, it means the decision is in the border area, so it is
very likely that the decoded bit is wrong.

 Analog Dialogue Volume 49 Number 414

The following two figures compare the diffVals values obtained
from the ADS-B receivers with and without the FIR filter. By
looking at the y-axis, we find with the FIR filter, diffVals is larger
regardless of whether it is at the highest point, lowest point, or
average. However, when there is no FIR filter, the diffVals of
several bits are very close to 0, which means the decoded results
could be wrong. Therefore, we are able to verify that using a
proper FIR filter improves the signal quality for decoding.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9. diffVals values obtained from the ADS-B receiver with an
FIR filter.

0 20 40 60 80 100 120
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Figure 10. diffVals values obtained from the ADS-B receiver without
FIR filter.

The MATLAB ADS-B algorithm using the IIO System Object
can be downloaded from the ADI GitHub repository.10

Simulink ADS-B Algorithm Validation Using the IIO
System Object

The Simulink model is based upon the model introduced in
Part 2 of the article series.2 The detector and decoding piece
comes directly from that model, and we add the Simulink IIO
System Object to conduct the signal reception and hardware
in the loop simulation.

The original model works with sample time = 1 and frame
size = 1. However, the Simulink IIO System Object works in
a buffer mode—it accumulates a number of samples and then
processes them. In order to make the original model work
with the System Object, we added two blocks between them:
unbuffer to make frame size = 1 and rate transition to make
sample time = 1. By doing this, we can keep the original
model intact.

The Simulink IIO System Object is set up as following. Simi-
lar to the MATLAB one, it creates a System Object, and then
defines the IP address, device name, and input/output chan-
nels number and sizes related to this System Object.

Figure 12. Simulink IIO System Object.

Figure 11. Simulink model to capture and decode ADS-B signals.

 Analog Dialogue Volume 49 Number 4 15

The input and output ports of this Simulink block correspond-
ing to an IIO System Object are defined through the properties
dialog of the object’s block as well as through a configuration
file that is specific to the targeted ADI SDR platform. The
input and output ports are categorized as data and control
ports. The data ports are used to receive/transmit buffers of
continuous data from/to the target system in a frame-based
processing mode, while the control ports are used to configure
and monitor different target system parameters. The number
and size of the data ports are configured from the block’s
configuration dialog while the control ports are defined in the
configuration file. The attributes of AD9361 are set up accord-
ing to the same factors as introduced in MATLAB model. All
the theories and methods employed in the MATLAB model
can be applied here.

Depending on how you set up the TX_LO_FREQ and
RX_LO_FREQ, this Simulink model can be run in two modes:
using precaptured data “DataIn” and using live data. Taking
the precaptured data, for example, at the end of the simulation,
we can see the following results in command window.

Figure 13. Results in command window at the end of simulation using
precaptured data.

Instead of the result table shown in the MATLAB model, the
results here are displayed in the text format.

The Simulink ADS-B model using the IIO System Object can
be downloaded from the ADI GitHub repository.11

Conclusion

This article talked about hardware in the loop simulation
using the libiio infrastructure provided by Analog Devices.
Using this infrastructure, the MATLAB and Simulink algo-
rithms for ADS-B signals detection and decoding can be
validated with the real-world signals and real hardware.
Since the attribute setting is very application and waveform
dependent, what works for one waveform will not work for a
different one. This is a critical step to ensure that the analog
front end and the digital blocks of the SDR system are prop-
erly tuned for the algorithm and waveform of interest and

that the algorithm is robust enough and works as expected
with real life data acquired in varying environmental condi-
tions. Having a verified algorithm, it is now time to move to
the next step, which consists of translating the algorithm to
HDL and C code using the automatic code generation tools
from MathWorks and integrating this code into the program-
mable logic and software of the actual SDR system. The next
part of the article series will show how to generate code and
deploy it in the production hardware and will talk about the
results obtained by operating the platform with real-world
ADS-B signals at an airport. This will complete the steps
required to take an SDR system from prototyping all the way
to production.

References
1 Andrei Cozma, Di Pu, and Tom Hill. “Four Quick Steps

to Production: Using Model-Based Design for Software-
Defined Radio—Part 1.” Analog Dialogue, Volume 49,
Number 3, 2015.

2 Mike Donovan, Andrei Cozma, and Di Pu. “Four Quick
Steps to Production: Using Model-Based Design for
Software-Defined Radio—Part 2.” Analog Dialogue, Volume
49, Number 4, 2015.

3 Analog Devices. “IIO System Object.”
4 MathWorks. “What Are System Objects?”
5 Analog Devices, “Mathworks_tools.” GitHub repository.
6 Analog Devices. AD-FMCOMMS3-EBZ User Guide.
7 ZedBoard.
8 Analog Devices. MATLAB AD9361 Filter Design Wizard.
9 ADS-B Double 1/2 Wave Mobile Antenna.
10 MATLAB ADS-B Algorithm Using The IIO System Object

Source Code.
11 Simulink ADS-B Model Using The IIO System Object

Source Code.

Acknowledgements

The authors would like to thank Mike Donovan from
MathWorks, who contributed to the development of the
MATLAB and Simulink ADS-B signal detection and
decoding algorithms used in this article.

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/MATLAB_simulink
http://www.mathworks.com/help/comm/gs/what-are-system-objects.html
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz
http://zedboard.org/
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/filters
http://www.dpdproductions.com/page_vhf_air.html#adsmobilehalf
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_MATLAB
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_MATLAB
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink_libiio
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink_libiio
mailto:di.pu%40analog.com?subject=
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-De-fined%20Radio,%20Part%203&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203&p[url]=http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203%20http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html&source=webclient
mailto:andrei.cozma%40analog.com?subject=
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html

 Analog Dialogue Volume 49 Number 416

Versatile, Precision Single-Ended-to-
Differential Signal Conversion Circuit
with Adjustable Output Common Mode
Boosts System Dynamic Range
By Darwin Tolentino and Sandro Herrera

Differential signaling finds useful application in circuits where
a large signal-to-noise ratio, high immunity to noise, and lower
second harmonic distortion are desired, such as in driving high
performance ADCs and high fidelity audio signal conditioning.
A related previous article in Analog Dialogue, “Versatile, Low
Power, Precision Single-Ended-to-Differential Converter,”1
offers a greatly improved single-ended-to-differential circuit
that has very high input impedance, 2 nA maximum input bias
current, 60 μV maximum offset (RTI), and 0.7 μV/°C maximum
offset drift. The improved performance is achieved by cascad-
ing an OP1177 in the feedback loop with the AD8476 that has a
differential gain of 1.

VOP

VON
VIN

VREF

VOCM

A1

A2

OP1177

AD8476

10 kΩ

10 kΩ

10 kΩ

10 kΩ

–5 V

+5 V
+5 V

–5 V

Figure 1. Improved single-ended-to-differential converter.

It is desirable, however, in many applications to have a greater
output dynamic range, such as in signal conditioning of sensor
outputs—for example, temperature and pressure. Being able
to also adjust the common mode makes the circuit very con-
venient in interfacing to many ADCs where the reference
determines full-scale range.

Configuring the differential amplifier inside the loop to a gain
greater than 1 increases the output dynamic range of the cir-
cuit (Figure 2). The output is given by the following equation:

VOUT, DIFF = VOP – VON = 2 (VIN (1 +
RF

RG
) – VREF)

When RG is left open the circuit has an overall gain of 2. The
output of A1, OP1177, is given by the following:

VOUT, OP1177 =
VOUT, DIFF

GDIFF, A2
+ VREF

Notice that the VREF is always added to the output of the
OP1177 limiting its output headroom. In most applications
the VREF (the output common mode) is set at the center of the
supplies for maximum output dynamic range. A differential
amplifier inside the loop configured at a gain greater than 1,
such as the ADA4940 in Figure 2 (gain of 2), reduces the output
voltage of A1 by a factor of A2’s differential gain and helps
avoid saturating the output of A1. Because the OP1177 has a
typical output swing of 4.1 V at ±5 V supplies, the differential
output voltage swing of the circuit in Figure 2 is about ±8 V at
VREF set at 0. Configuring A2 to a gain of 3 further improves
the output dynamic range and achieves the maximum output
swing of the circuit. Another amplifier, the ADA4950 with
available gains of 1, 2, and 3, may also be suitable for A2.

VOP

VON

VREF

VOCM

A1
A2

ADA4940
OP1177

10 kΩ

20 kΩ

20 kΩ

10 kΩ

VIN

RG

RF

–5 V

+5 V
+5 V

–5 V

Figure 2. Single-ended-to-differential converter with improved dynamic range.

www.analog.com/OP1177
www.analog.com/AD8476
www.analog.com/ada4940-1

 Analog Dialogue Volume 49 Number 4 17

half of the reference or the midscale of the converter. The
VOCM basically acts as another input along with VIN. The

values of the resistors should be chosen such that

R2

RF
=

R1

RG
.

By superposition, when VIN is 0, the output is forced at the
same value as VOCM. And since VOCM is the value that sets the
output common mode, the differential output is zero. If
R1 = RG and R2 = RF, the output voltages are given by:

VOP = (
RF

RG
) VIN + VOCM

VON = – (
RF

RG
) VIN + VOCM

VOUT, DIFF = 2 (
RF

RG
) VIN

Adjustable Output Common Mode

The circuit can be modified to make the output common mode
adjustable and independent of the common mode of the input
signal. This adds great flexibility and convenience for single-
supply applications where the input is referred to ground and
is needed to be converted to a differential signal with an ele-
vated common mode for ADC interfacing.
This can be accomplished by adding two resistors at the input
R1 and R2, where R2 is tied to VOCM. If desired, using a dual
version of the input amplifier A1, the OP2177, allows for the
second amplifier to be used as a buffer to the input for very
low input bias current.
In the circuit in Figure 1, the input is referred to VREF. Referring
to the circuit in Figure 3, the input is referred to ground taken
directly and converted to differential output. The VOCM can
now be adjusted to shift the common-mode output while the
input remains referenced to ground. The VOCM can be tied to

VOP

VON

To ADC

VREF

VOCM

A2

ADA4940

A1

OP1177

20 kΩ

20 kΩ

10 kΩ

10 kΩ

VIN R1

R2

CF

RG

–5 V

+5 V
+5 V

–5 VRF

(a) Improved single-ended-to-differential converter with adjustable common mode.

1

3

VON

VOP

VIN

CH1: A B D1
2.00 V/div
0.0 mV ofst
265 #

CH2: A B D1
2.00 V/div
50.00 mV
265 #

CH2: DC1M
2.00 V/div
s2.0000 V

Timebase 26 µs
50.0 µs/div
62.5 kS 125 MS/s

Trigger C3 DC
Stop 0.00 V
Edge Positive

CH1: A B D1
2.00 V/div
0.0 mV ofst
2.626 #

CH2: A B D1
2.00 V/div
50.00 mV
2.626 #

CH2: DC1M
2.00 V/div
–2.0000 V

Timebase 26 µs
50.0 µs/div
62.5 kS 125 MS/s

Trigger C3 DC
Stop 0.00 V
Edge Positive

1

3

VON

VOP

VIN

(b) Input and output plots, VOP in red, VON in yellow, and input
in blue. Common mode is at 0 V.

Figure 3.

(c) Input and output plots, VOP in red, VON in yellow, and input
in blue. Common mode is at 2.5 V.

 Analog Dialogue Volume 49 Number 418

Bandwidth and Stability

The two amplifiers form a composite differential output op
amp in a servo-loop configuration. The OP1177/OP2177’s
open-loop gain and the differential gain of the ADA4940 com-
bine for the total open-loop gain of the circuit that defines the
overall bandwidth of the circuit. Their poles combine for addi-
tional phase shift in the loop. A higher gain for A2 reduces its
bandwidth and may affect the stability of the overall circuit.
The circuit designer must check the overall circuit frequency
response and assess the need for compensation. A rule of
thumb is that the combined open-loop gain over frequency
must cross the unity gain at –20 dB/decade roll-off in order to
ensure the stability of the feedback system. This is particularly
more important in applications with the minimum gain (gain
of 2) where the loop gain is at maximum and has the worst
phase margin. A higher overall gain also improves stability by
decreasing the bandwidth and increasing the phase margin
of the feedback loop. Because the loop gain is decreased, it
crosses the unity gain at a lower frequency. The loop gain is
given by:

Loop Gain = (AOL, 1st Amp)(ADiff, 2nd Amp)β

β =
1
2

(
RG

RG + RF
)

The feedback factor β has 1
2 in the term because the output

is differential and the feedback is taken only from one of the
differential outputs. The ADA4940 has a bandwidth of 50 MHz
at a gain of 2, while the OP1177 has a unity-gain bandwidth of
about 4 MHz. The circuit in Figure 3 is stable with a bandwidth
of about 1 MHz, limited by the OP1177 and the closed-loop
gain. As pointed out in the previous article, when the stability
condition cannot be met using different amplifiers, a bandwidth
limiting capacitor can be used as shown in Figure 3(a). The
capacitor forms an integrator with RF inside the feedback loop
and limits the bandwidth of the overall circuit to

1
2

×
1

2πRFCF

The capacitor and feedback resistor can be chosen such that
the overall bandwidth is limited by the equation above.

Reference:
1 Herrera, Sandro and Moshe Gerstenhaber. “Versatile, Low
Power, Precision Single-Ended-to-Differential Converter.”
Analog Dialogue, Volume 46, Number 4.

Darwin Tolentino [darwin.tolentino@analog.com] is a staff test development
engineer in the Linear Precisions Technology Group at ADI Philippines. He has
worked in the Product and Test Engineering Group and has developed test
solutions for amplifiers and linear products, including converters. He joined
ADI in 2000 and has 17 years of experience in the semiconductor industry.
His interests include history and designing analog circuits.

Darwin Tolentino

Sandro Herrera [sandro.herrera@analog.com] is a circuit design engineer in
the Integrated Amplifier Products (IAP) Group in Wilmington, MA. His design
work currently focuses on fully differential amplifiers with either fixed,
variable, or programmable gains. Sandro holds B.S.E.E. and M.S.E.E. degrees
from the Massachusetts Institute of Technology. He joined Analog Devices
in August 2005.

Sandro Herrera

Also by this Author:

Simple Circuit Provides
Adjustable CAN-Level
Differential-Output Signal

Volume 46, Number 2

Also by this Author:

Versatile, Low-Power,
Precision Single-Ended-to-
Differential Converter

Volume 46, Number 4

http://www.analog.com/library/analogDialogue/archives/46-10/single_ended_to_differential.html
http://www.analog.com/library/analogDialogue/archives/46-10/single_ended_to_differential.html
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-11/se-to-diff.html&title=Versatile,%20Precision%20Single-Ended-to-Differential%20Signal%20Conversion%20Circuit%20with%20Adjustable%20Output%20Common%20Mode%20Boosts%20System%20Dynamic%20Range&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Versatile,%20Precision%20Single-Ended-to-Differential%20Signal%20Conversion%20Circuit%20with%20Adjustable%20Output%20Common%20Mode%20Boosts%20System%20Dynamic%20Range&p[summary]=Versatile,%20Precision%20Single-Ended-to-Differential%20Signal%20Conversion%20Circuit%20with%20Adjustable%20Output%20Common%20Mode%20Boosts%20System%20Dynamic%20Range&p[url]=http://www.analog.com/library/analogdialogue/archives/49-11/se-to-diff.html
https://twitter.com/intent/tweet?text=Versatile,%20Precision%20Single-Ended-to-Differential%20Signal%20Conversion%20Circuit%20with%20Adjustable%20Output%20Common%20Mode%20Boosts%20System%20Dynamic%20Range%20http://www.analog.com/library/analogdialogue/archives/49-11/se-to-diff.html&source=webclient
mailto:darwin.tolentino%40analog.com?subject=
mailto:sandro.herrera%40analog.com?subject=
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19

 Analog Dialogue Volume 49 Number 4 19

Also by this Author:

Simple Circuit Provides
Adjustable CAN-Level
Differential-Output Signal

Volume 46, Number 2

Also by this Author:

Versatile, Low-Power,
Precision Single-Ended-to-
Differential Converter

Volume 46, Number 4

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 4—Rapid Prototyping Using the Zynq SDR Kit and Simulink Code
Generation Workflow

By Mike Donovan, Andrei Cozma, and Di Pu

Introduction

The previous parts of this article series introduced the Zynq
SDR rapid prototyping platform,1 presented the steps of
using MATLAB and Simulink to develop an algorithm that
can successfully process and decode ADS-B transmissions,2
and showed how to verify the algorithm both in simulation
and with live data acquired from the SDR platform.3 The ulti-
mate goal of all stages is to create a verified model that can be
translated into C and HDL code and is ready to be integrated
in the SDR platform’s software and hardware infrastructure.

The Simulink model discussed in Part 2 of the series (“Mode
S Detection and Decoding Using MATLAB and Simulink”)2 is
a simulation model with enough hardware specific fidelity
to verify that the design will successfully decode ADS-B
messages. Using that model as a starting point, the final steps
required to produce a working receiver design that runs on
the Zynq SDR Rapid Prototyping Platform will be discussed.
As in the previous articles in this series, the skills needed to
develop this working design include: proficiency in MATLAB
and Simulink, knowledge of the Zynq radio hardware, and
software/hardware integration skills.

The steps to follow in this article include:
• Partition the Simulink model into functions that will target

the FPGA fabric and the ARM® processing system on the
Zynq SoC.

• Introduce design changes to the Simulink model to improve
the performance of the generated HDL code.

• Generate the source HDL and C code for the ADS-B
receiver algorithm.

• Integrate the generated source code in the Zynq radio
platform design.

• Test the embedded design on the target hardware with
live aircraft signals.

At the end of this process, a fully verified SDR system will be
produced, running C and HDL code automatically generated
from a Simulink ADS-B model and receiving and decoding
live commercial aircraft signals in real time.

Partitioning a Model into Hardware and Software
Components

The first step in the process of generating the implementation
code is to partition the design into the functionality that will
run on the programmable logic and the ARM processing
system of the Zynq SoC.

Partitioning usually begins by identifying the processing
requirements of the different components of the design and
the required execution rates and times. Components (such as
data modulation/demodulation algorithms) that are compu-
tationally intensive and need to run in real time at the sample
rate are best suited to be implemented in the programmable
logic. Less intensive processing tasks (such as data decod-
ing and rendering, and system monitoring and diagnosis),
are better suited for software implementation. Some other
aspects to consider are: the data types and complexity of the
operations and the precision of the input and output data. All
the operations that target the programmable logic work on
fixed-point, integer, or Boolean data types. In the case of more
complex operations such as trigonometric functions or square
roots, approximations are used to implement them efficiently
using the available hardware resources. All these constraints
result in precision loss that can adversely affect system func-
tionality if not properly assessed and implemented. However,
the components that target the processing system can work on
floating-point numbers and implement operations of any com-
plexity with the highest degree of fidelity, but usually at the
expense of slower execution speed.

Using those constraints as a guideline, the partitioning of the
ADS-B decoding algorithm is fairly obvious. The functionality
in the Detector block in the ModeS_Simulink_Decode.slx model,
which includes the front-end processing of the I/Q samples all
the way through to the checksum computation, is well suited
for implementation on the programmable logic of the Zynq SoC
(Figure 1). The decoding of the message bits, which is imple-
mented in the Modified Buffer and Decode and Display blocks,
is easily implemented in the processing system.

Figure 1. ModeS_Simulink_Decode.slx: FPGA and ARM
processor partition.

http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19

 Analog Dialogue Volume 49 Number 420

• The block names, port names, signal names, data types,
and complexity used in the model are preserved in the
generated code.

Links between the model and source code allow a designer
to click on a block in the Simulink model and automatically
navigate to the generated HDL code. Similarly, there are
hyperlinks in the generated code that will open the Simulink
model and highlight the block associated with that segment
of code.

Figure 3. Source HDL code for ModeS_ADI_CodeGen.slx.

Optimizing the ADS-B Model to Produce HDL Code
with a Higher Clock Speed

Although the ModeS_ADI_CodeGen.slx model successfully
generates HDL code, it is rare that a designer will not want to
improve the initial results. Designers typically need to meet
speed and area constraints, which usually involves optimizing
the initial Simulink model to achieve the desired results. A
major advantage of Simulink and code generation is that the
designer can make those optimizations in the model, run a
simulation to ensure the changes do not break the algorithm,
and then re-generate the HDL code. This is usually much
simpler and less error prone than making changes in the HDL
source code and potentially breaking the algorithm.

In the case of this design, the HDL code generated by the
model easily fit on the available FPGA fabric, but ran at a rel-
atively low clock rate. This is common in many initial designs.
A built-in analysis tool in HDL Coder shows that the critical
path in the model extended from the I/Q sample input to the
first register in the CalcCRC subsystem. Inserting pipeline
registers in the design is one common method to increase the
clock speed (Figure 4). Pipelining shortens the path between
signal operations at the expense of adding delay to the overall
processing. This trade-off is usually acceptable since a slight
delay is typically a small price to pay for higher clock rates.

Figure 4. Pipeline registers inserted into detector design.

Readers interested in following along with the Simulink model
can find the files on the Analog Devices GitHub repository.4

Generating HDL Code from a Simulink Model

The Detector block in the Mode S Decoder model (Figure 2)
is comprised of several subsystems: CalcSyncCorr, CalcNF,
SyncAndControl, BitProcess, CalcCRC, and FameDetect. HDL
Coder from MathWorks5 is used to produce the source HDL
code for this design.

Figure 2. Detector block used for HDL code generation.

A Simulink model must satisfy several conditions to success-
fully generate HDL code using HDL Coder. A few of the most
significant requirements are:
• Use blocks that support HDL code generation. HDL Coder

supports code generation for approximately 200 Simulink
blocks.6 In the detector design, all the blocks, including
the Stateflow diagram and the Digital Filter blocks, support
HDL code generation.

• Use fixed-point data types. In the detector design, the
signals use 12-bit, 24-bit, and Boolean data types. The 12-bit
data type matches the bit width of the analog-to-digital
converters on the Analog Devices AD9361 transceiver.

• Use scalar or vector signals. Vector signals can be used
for multichannel signals or resource sharing.

• Avoid algebraic loops in the model. The HDL Coder
software does not support HDL code generation for models
in which algebraic loop conditions exist.

The ModeS_Simulink_Decode.slx model did not satisfy all
these conditions, so the part of the CalcCRC block that com-
pares the received bits to the computed checksum was moved
outside the Detector block and ultimately implemented in
C. The resulting model, ModeS_ADI_CodeGen.slx, was used
to generate the HDL code. In contrast to a manual coding
process, it only takes a couple minutes to generate several
thousand lines of HDL code. The source code produced by
HDL Coder is a bit true, cycle accurate version of the Simulink
model. This is one of the major productivity gains in using
model-based design; the generated code is an accurate transla-
tion of the Simulink model.

In addition, the code is designed to be readable and traceable
so engineers can easily map the generated code to their design
model. This is achieved in several ways (Figure 3):

• The hierarchy of the model is preserved in the HDL code
files that get generated. In this example, the top level block
is named Detector.vhd, and the subsystems at the next level
of hierarchy are named CalcNF.vhd, Bit_Process.vhd, and
so on.

http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html

 Analog Dialogue Volume 49 Number 4 21

The pipeline registers in between the subsystems help improve
the clock rate of the design, but better clock rates can be
achieved by making favorable architecture choices for the Digi-
tal Filter blocks. Many of the Simulink blocks have architecture
choices that enable a designer to optimize the design for speed
or area. In the case of the digital filters used for the calculation
of the noise floor and the preamble correlation (Figure 5),
pipelining the output multipliers can shorten the critical path
within the digital filter and improve the design clock rate.

Figure 5. HDL block choices for the Digital Filter block.

After making these two simple pipeline changes, the clock
rate of the generated HDL code exceeded 140 MHz. This is
a useful lesson for engineers using code generation tools:
applying a little knowledge of hardware design principles to
the code generation models can have a significant impact on
the results of the generated code. Further optimization of this
design was possible, but deemed unnecessary, as the HDL
code easily met the relatively simple timing and resource
objectives for this design.

In a traditional radio design process, a large percentage of
the development time is spent testing and debugging the
HDL code. In the model-based design approach, used in this
example, more time was spent on developing the simulation
and code generation models. However, there was a signif-
icant savings in development time because the generated
source code identically matched the validated behavior of the
simulation; only a minimal amount of debugging had to be
performed on the embedded hardware.

Generating C Code with MATLAB Coder7

Similar to HDL code generation, there are several conditions
that must be satisfied in order to generate C code for the
decoding functionality of this design. The two most important
requirements are:

• Use functions supported by MATLAB Coder. MATLAB
Coder supports most of the MATLAB language and a wide
range of toolboxes,8 but you may unknowingly use functions
that are not supported for code generation. MATLAB Coder
provides tools, such as the Code Readiness Tool,9 to help
find any unsupported functions.

• Ensure that once a MATLAB variable is declared, its size
and type do not change. This is necessary to make sure that
memory allocations are made correctly in the generated code.

The easiest way to generate C code from MATLAB is to open
a new MATLAB Coder Project, which can be accessed from
the Apps tab on the MATLAB Toolstrip. The final output of
the MATLAB Coder Project can be seen in Figure 6.

Figure 6. MATLAB Coder project for DecodeBits_ADI.m.

In this project, the top level MATLAB function is DecodeBits_
ADI.m. The user needs to specify the data types and sizes
required by this function as input arguments. Figure 6 shows
that the input arguments of this function are 112 Boolean
data bits and two double precision values (to provide the
user’s current latitude and longitude). The output sizes and
data types for DecodeBits_ADI.m (such as *nV for North
Velocity, *eV for East Velocity, and *alt for altitude) are auto-
matically determined by MATLAB Coder. MATLAB Coder
finds all other functions called by the top level entry point
file DecodeBits_ADI.m, including AltVelCalc_ADI.m and
LatLongCalc_ADI.m, and then generates the source C code
for the entire decoding algorithm.

The C code generated by MATLAB Coder is a fairly straight-
forward translation of the MATLAB functionality to the
C language. As in the case of HDL code generation, the source
code produced by MATLAB Coder is readable and traceable,
so engineers can easily identify the relationship between the
original MATLAB code and the generated C code. The C code
from this example can be produced from the MATLAB
command prompt and compiled by any ANSI C compiler.

HDL Code Platform Deployment

After partitioning the design into the functionalities that will
run on the programmable logic and processing system of the
Zynq, optimizing the design for HDL and C code generation,
and verifying in simulation that the optimized design is func-
tional and meets the performance criteria, it is now time to
deploy the design on to the actual SDR hardware platform and
verify the system’s functionality under real-world conditions.

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

 Analog Dialogue Volume 49 Number 422

For this purpose, an Analog Devices AD-FMCOMMS3-EBZ
SDR platform10 connected to a Xilinx ZC706 board11 running
the Analog Devices Linux distribution is used.

The AD-FMCOMMS3-EBZ board is accompanied by an
open-source Vivado HDL reference design provided by
Analog Devices.12 This reference design contains all the IP
blocks needed to configure and transfer data to and from
the AD9361 transceiver on the AD-FMCOMMS3-EBZ board.
Figure 7 presents a block diagram of the HDL reference design.

The AD9361 IP core implements the LVDS receive and trans-
mit data interfaces between the AD9361 transceiver chip and
the Zynq device, as well as the data interfaces to the rest of
the design. DMA blocks are used for high speed data trans-
fer between the AD9361 IP and the DDR memory. The data
interface to the AD9361 IP block consists of four data lines for
receive and four data lines for transmit, corresponding to the
I&Q data for the two receive and two transmit channels of the
AD9361. Each data line is 16 bits wide. To make the data trans-
fers inside the system more efficient, the receive and transmit
data is packed into 64-bit wide buses that are managed by the
DMA blocks. Pack and unpack blocks are used to connect the
16-bit parallel data lines of the AD9361 IP to the DMAs.

Deploying the HDL code of the ADS-B model into the existing
HDL infrastructure of the SDR platform requires creating an
IP core that can be inserted into the data path; this is done to
process the received data in real time and pass the processed
data to the software layer. The deployment process can prove
to be a difficult and time consuming task because it requires
deep understanding of the HDL design’s functionality and also
adequate HDL programming skills. To simplify these steps,
MathWorks includes a utility in HDL Coder called HDL Work-

flow Advisor, and Analog Devices provides a board support
package (BSP) for the AD-FMCOMMS2-EBZ/AD-FMCOM-
MS3-EBZ SDR platform and Xilinx ZC706 board.13

The HDL Workflow Advisor guides the user through the steps
needed to generate HDL code from a Simulink model. The
user can choose from a selection of several different Target
Workflows, including “ASIC/FPGA,” “FPGA-in-the-Loop,”
and “IP Core Generation.” Target Platform selections include
Xilinx Evaluation Boards, Altera Evaluation Boards, or the
FMCOMMS2/3 ZC706 SDR Platform. The rest of the code
generation and target integration process can then be auto-
mated by the HDL Workflow Advisor.

The BSP provided by Analog Devices is a collection of board
definitions and reference designs14 that provide the HDL
Workflow Advisor the required information and tools to
generate an IP block compatible with the existing HDL
reference design, and also insert the generated IP into the
HDL reference design. Figure 8 shows how to configure
the Workflow Advisor to generate the IP core for the ADS-B
model. Please note that the IP Core Generation workflow
must be selected, targeting the Analog Devices AD-FMCOM-
MS3-EBZ SDR platform and the Xilinx ZC706 board.

Figure 8. Workflow Advisor configuration.

Figure 7. HDL reference design block diagram.

FIFO

AD9361 IP

Programmable Logic

ARM Cortex A9 Processing System

Linux

Zynq All Programmable SoC

16-Bit 16-Bit

64-Bit

64-BitData
Pack

FIFO

FIFO

Rx

LV
D

S
 In

te
rf

ac
e

Tx

DMA

DMA

HDMI

I2C

Data CLK
245.6 MHz

Data
Unpack

U
se

r
S

p
ac

e
K

er
ne

l

Kernel Drivers

Kernel
Drivers

libIIO User Space
Apps

 DDR Controller
Ethernet

 Intr. Controller
I2C
SPI

Timer

AXI4-Stream

AXI4-Lite

16-Bit 16-Bit

http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD-FMCOMMS3-EBZ.html

 Analog Dialogue Volume 49 Number 4 23

The next step is to configure the interfaces between the IP and
the reference design. On the input side, the model accepts raw
I&Q samples; this connects the model’s input ports directly
to the AD9361 receiver data ports. Of all the model’s output
signals, the only ones of interest at this stage are the data,
frame_valid, and bit_clk signals. The data and frame_valid
are 16 bits wide and are clocked by the bit_clk signal. These
signals can be connected to the “DUT Data x Out” interfaces
of the BSP, which means they will receive direct access to
the DMA blocks; data can then be transferred into the DDR,
which is accessible by the software layer. The bit_clk signal
is connected to the “DUT Data Valid Out” BSP interface and
controls the DMA sampling rate. Figure 9 shows how the HDL
interface must be configured.

Figure 9. HDL interface configuration.

Once the target interface has been defined, Step 2 and Step 3
of the HDL Workflow Advisor can be left in their default
state and the project generation process can be started by
running Step 4.1 (Create Project). The result of this step is a
Vivado project that has the ADS-B IP core integrated into the
Analog Devices HDL reference design. Figure 10 depicts the
connections between the ADS-B IP core and the rest of the
blocks in the design.

FIFO

AD9361 IP 16-Bit
16-Bit 16-Bit 64-BitData

Pack

ADS-B IPFIFORx DMA

Data CLK
245.6 MHz

Clock Divider
Data CLK/4

Figure 10. ADS-B IP connections in the HDL reference design.

Generating the bitstream from the Vivado project concludes
the HDL integration process, but the final goal is to have
Linux running on the system. For this purpose, after generat-
ing the bitstream, a Linux boot file can be created by following
the standard Xilinx SDK first stage boot loader (fsbl) and
Linux boot file creation process. The Linux device tree and
image files corresponding to the newly created HDL design
are distributed with the AD-FMCOMMS3-EBZ BSP. All files
must be copied together with the Linux boot file on the boot
partition of the SD card; this is used to store all files needed
to run the Analog Devices Linux Distribution on the Xilinx
ZC706 board.

C Code Platform Deployment

Now that the ADS-B HDL IP has been integrated into the SDR
platform’s HDL design, and the Linux SD card is created, it is
time to implement the software application that decodes the
ADS-B data. This application is based on the C code generated
in Section 5 and performs the following tasks:

• Configures the AD9361 for ADS-B signals reception.

• Reads the data from the ADS-B IP core.

• Detects the valid ADS-B frames in the read data.

• Decodes and displays the ADS-B information.

The easiest way to implement Task 1 and Task 2 is to use the
functionality provided by the libiio library.15 This library
provides interface functions that enable users to easily con-
figure the AD9361 as well as receive and transmit data. The
configuration sequence sets the following system parameters:

• LO frequency—1.09 GHz

• Sampling rate—12.5 MHz

• Analog bandwidth—4.0 MHz

• AGC—fast attack mode

Besides the parameters mentioned above, a digital FIR filter
with data rate of 12.5 MSPS, a pass band frequency of
3.25 MHz, and a stop band frequency of 4 MHz is loaded into
the AD9361 to ensure that the received data contains only
the band of interest. The system parameters and the design
methodology of this FIR filter are described in Part 3 of this
article series.3

The output data of the ADS-B IP is transferred into the
system’s DDR memory by the DMA block. The libiio library
provides the following functions: position the data acquired
from the ADS-B IP into a memory buffer with a specified size;
wait for the buffer to be filled; gain access the buffer through
pointers. Once the buffer is filled, the ADS-B decoding algo-
rithm can process the data. The ADS-B IP core has two output
channels: one channel corresponding to the ADS-B bitstream,
and the other channel indicating where a valid data frame
ends in the bitstream. Both channels contain the same data
rate and are synchronized with each other. A sample equal
to “1” in the valid channel denotes the last bit of a valid frame
in the data channel. By parsing both channels, the software
can extract the valid ADS-B data frames from the bitstream
and pass the data to the decoding function generated by
MATLAB Coder. The decoding function uses the ADS-B data
frame and the latitude and longitude of the current location as
input when computing the aircraft’s coordinates. The current
latitude and longitude are specified as parameters of the appli-
cation. The decoded ADS-B data is displayed similarly to the
Simulink model.

The ADS-B data decoding application is built under Linux using
a makefile. The source code of the application and the makefile
can be found on the Analog Devices GitHub repository.16

This completes the platform deployment steps for both the
HDL and C code generated from the ADS-B model using HDL
Coder and MATLAB Coder from MathWorks. The next step is
to verify the system’s functionality and evaluate the results.

System Validation

To validate the system’s functionality, begin by creating a
loopback connection between one receive and one transmit
port of the AD-FMCOMMS3-EBZ board and transmit the
same ADS-B signal that was used during simulation. By
receiving and decoding this data, it can be verified that the
output of the algorithm running on the SDR platform matches

 Analog Dialogue Volume 49 Number 424

the simulation results. Figure 11 displays the output of the
ADS-B data decoding application; the results are identical to
those shown in Part 3 of the article series for HIL simulation
using precaptured data. This provides confidence that the
system is running as expected and is ready to be used with
real-world data.

Figure 11. Loopback results.

For the actual field test, the SDR receiver was placed
outside the MathWorks headquarters in Natick, MA, and
compared against ADS-B information decoded by the system
with the data provided by airplane live tracking websites
(such as flightradar24.com). It was observed that the system
was able to decode data received from the airplanes within
the antenna’s line of sight. Figure 12 shows a comparison
between the aircraft information detected by the system and
the online airplane tracking data; the decoding algorithm
displays the correct aircraft ID, altitude, speed, and latitude/
longitude coordinates.

Figure. 12 Live data results.

Conclusion
This article concludes the four part article series demonstrat-
ing how model-based design can be used to take an SDR
system all the way from simulation to production. The series
addressed all the stages of developing a “hardware ready”
ADS-B Simulink model. We designed a simulation model
to prove we could decode recorded ADS-B messages, and
then validated the model with live data acquired from the
SDR hardware platform. This validated not only the model
but also the SDR platform’s settings for the analog front end
and digital receiver chain; it also gave us confidence that the
platform was properly tuned for receiving ADS-B signals.
Afterward, we partitioned the model into the functionalities
that run on the Zynq processing system and programmable
logic, and optimized the model for automatic C and HDL code
generation. Finally, we integrated the C and HDL code into
the SDR design and validated the system’s functionality with
live commercial air traffic. The end result is a design process
that uses modeling and code generation tools from Math-
Works, together with the Zynq SDR platform, to create a fully
functional SDR system.

This example system shows that the model-based design
workflow in combination with the Analog Devices AD9361/
AD9364 integrated RF Agile Transceiver programmable radio
hardware can help design teams develop working radio proto-
types more quickly and less expensively than using traditional
design methodologies. This prototype was built by the authors
in a relatively short time with minimal obstacles, drawing on
the following resources:

• The ability to build a model of an ADS-B receiver in
MATLAB and Simulink that can generate usable C and
HDL source code.

• Functions within HDL Workflow Advisor to automate
many of the hardware/software integration steps.

• Libraries (such as libiio) that assist in the remaining
integration steps to deploy the SDR prototype.

• Product help and technical support that are available
from MathWorks and Analog Devices.

ADS-B is a relatively simple standard and provides a good test
case to demonstrate this approach to building an SDR proto-
type. Engineers who adopt model-based design and the
Zynq SDR platform should be able to follow the workflow
presented in this series of articles to develop much more com-
plex and powerful QPSK-, QAM-, and LTE-based SDR systems.

http://www.flightradar24.com/
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html

 Analog Dialogue Volume 49 Number 4 25

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Mike Donovan [mike.donovan@mathworks.com] is a manager in the Application Engineering
Group at MathWorks. He has a B.S.E.E. from Bucknell University and an M.S.E.E. from the
University of Connecticut. Prior to joining MathWorks, Mike worked on radar and satellite
communications systems and in the broadband telecommunications industry.

Mike Donovan

References
1	 Di Pu, Andrei Cozma, and Tom Hill. “Four Quick Steps to

Production: Using Model-Based Design for Software-De-
fined Radio. Part 1—the Analog Devices/Xilinx SDR Rapid
Prototyping Platform: Its Capabilities, Benefits, and Tools.”
Analog Dialogue, Volume 49, Number 3.

2	 Mike Donovan, Andrei Cozma, and Di Pu. “Four Quick
Steps to Production Using Model-Based Design for
Software-Defined Radio. Part 2—Mode S Detection and
Decoding Using MATLAB and Simulink.” Analog Dialogue,
Volume 49, Number 4.

3	 Di Pu, Andrei Cozma. “Four Quick Steps to Production
Using Model-Based Design for Software-Defined Radio.
Part 3—Mode S Signals Decoding Algorithm Validation
Using Hardware in the Loop.” Analog Dialogue, Volume 49,
Number 4.

4	 Analog Devices GitHub repository.

5	 HDL Coder.

6	 HDL Coder Block Support.

7	 MATLAB Coder.

8	 MATLAB Toolboxes.

9	 MATLAB Code Generation Readiness Tool.

10	AD-FMCOMMS3-EBZ User Guide.

11	Xilinx Zynq-7000 All Programmable SoC ZC706
Evaluation Kit.

12	AD-FMCOMMS2-EBZ/AD-FMCOMMS3-EBZ/
AD-FMCOMMS4-EBZ HDL/AD-FMCOMMS5-EBZ HDL
Reference Design.

13	Analog Devices BSP for MathWorks HDL Workflow Advisor.

14	Board and Reference Design Registration System.

15	What Is Libiio?

16	MathWorks Targeting Models—ADSB.

mailto:andrei.cozma%40analog.com?subject=
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
mailto:di.pu%40analog.com?subject=
mailto:mike.donovan%40mathworks.com?subject=
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/help/hdlcoder/block-support.html
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/simulink/ug/code-generation-readiness-tool.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz/
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/matlab_bsp
http://www.mathworks.com/help/hdlcoder/ug/board-and-reference-design-system.html
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/targeting_models/ADSB
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&p[url]=http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204%20http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html&source=webclient

 Analog Dialogue Volume 49 Number 426

New Complete, High Resolution,
and Multifunctional Bipolar DACs:
an Easy to Use, Universal Solution
By Estibaliz Sanz Obaldia and Junifer Frenila

With current market dynamics constantly driving toward
shorter design cycles, enhanced system functionality, and
more portable end systems, the need for new methodology
to simplify these challenges without adding design com-
plexity is a must. This article will address some key system
challenges for control and measurement that are topical across
a multitude of applications, including data acquisition systems,
industrial automations, programmable logic controllers, and
motor controls. It will explore the latest advances in bipolar
digital-to-analog converter (DAC) architectures and how
these topologies can address end system challenges, such
as by adding even more functionality and intelligence within
the same or reduced space. This article will explore discrete
and more functionally complete solutions. Finally it will
outline a number of alternatives to traditional design topol-
ogy that support higher flexibility in design reuse and
system modularity.

It should be noted that the following figures are not the actual
schematics, but illustrations on how applications could be
achieved with multifunctional DACs and other components.
While it does not include aspects such as circuits for power

supplies, bypassing, and other passive components, these
diagrams illustrate how applications can be implemented
in general.

Data Acquisition Systems

Data acquisition systems (DAQs) are used to measure an
electrical or physical singularity such as voltage, current, or
pressure with a microcontroller or microprocessor (MPU) for
data processing capability. DAQs consist of sensors, amplifiers,
data converters, and a controller with embedded software that
controls the acquisition process.

In a process control application, it is critical that the sensor
is sensitive enough to preserve the quality of the signal to
be measured. But even if the sensor is sensitive enough, the
signal chain errors such as gain and offset could still interfere
with the signal quality. High performance applications employ
DACs in automatic calibration of the conditioning circuits in
data acquisition systems. Figure 1 shows the block diagram
of a pressure sensing system. It illustrates how bipolar DACs
such as AD5761R and its product family can be used in an
automated gain and offset calibration scheme.

Figure 1. Automated calibration of a pressure sensing system.

DVCC

VREF

RG

DGND

AGND VSS

VOUT 2

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R_2

+V+V

–V

Excitation
Signal

Precision
Bridge

Transducer
ADC

+VVREF

MCU/
MPU/
FPGA/

Computer

SDI

SDO

SCLK

–V

IA

–IN

+IN

+V

–V

Gain
Adjustment

Offset
Adjustment

SW

SW

*

*

*

*Can All Be Tied Together

Eight Software-Programmable Output
Ranges: 0 V to 5 V, 0 V to 10 V,

0 V to 16 V, 0 V to 20 V, ±3 V, ±5 V,
±10 V, and −2.5 V to +7.5 V;

5% Overrange
DVCC

VREF

DGND

AGND VSS

VOUT 1

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R_1

+V+V

–V

RG IA

+N

–IN

+V

–V

RG IA

–N

+IN

+V

–V

SYNC

http://www.analog.com/en/products/digital-to-analog-converters/da-converters/ad5761r.html

 Analog Dialogue Volume 49 Number 4 27

measure the temperature of industrial equipment such as a
laser machine or heavy duty motor. The voltage is gained
up, filtered, and sent to an integrated analog front-end (AFE)
IC for conversion and the digital data is passed into the pro-
cessor for analysis. Based on the processed data, the processor
sends signal to a control DAC, which is also fully isolated, to
drive an industrial fan, activate a cooling apparatus such as a
Peltier, or open the valve of a water cooling system. Addition-
ally, the user can input an override command via a control
interface device.

The same system can be adopted for pressure and vibration
measurement and control. A pressure sensor system can typ-
ically be used for oil and chemical tank monitoring, while a
gyroscope system can typically be used for vibration monitor-
ing of fast moving machine heads. These applications share the
same AFE that is fully isolated from the external environment.

The AD5761R, a high voltage, high resolution, bipolar DAC
with a low drift internal reference and software-selectable
output range is a practical replacement for multiple DACs or
a single multiplexed DAC. It provides unipolar and bipolar
voltages while maintaining the same accuracy with an option
of overrange output. This bipolar DAC supports the different
needs that actuators require, including the adjustment of the
control unit through software avoiding hardware modifications.

AD5761R and its product family come in small packages—
a 3 mm × 3 mm, lead frame chip scale package (LFCSP) and
16-lead thin shrink outline package (TSSOP)—and support a
wide operating temperature range of –55°C to +125°C. This
new industrial control approach essentially helps to minimize
board space and reduce cost.

The precision bridge transducer receives an excitation signal
from a pressure sensor and produces an output voltage.
Due to the low amplitude of the transducer’s signal, an
instrumentation amplifier is typically used as a signal multi-
plier. This low amplitude signal is susceptible to errors. Such
errors are usually contributed by drift due to changes in tem-
perature, parasitic errors across circuit boards, and tolerances
of passive components.

With the use of AD5761R, gain and offset calibrations can be
implemented into the system to dynamically correct the errors
as the system operates over time. Depending on the level of
adjustment and the polarity required, a complete, high reso-
lution, and multifunctional bipolar DAC can greatly simplify
the calibration process. The AD5761R can be programmed
through a high speed, 4-wire SPI interface with a serial data
output (SDO) line available to facilitate daisy-chain and read-
back operation.

Industrial Automation

The applications for industrial automation are diverse. But
regardless of what applications there may be, the function-
ality and performance of such automated systems lie in their
signal acquisition and control units. On the acquisition side,
the sensitivity of the sensors, adaptability of the conditioning
circuits, and the speed of acquiring correct information from
low level signals is very important. On the control side, the
flexibility to adapt to the requirement of various actuators
and drivers is vital.

Figure 2 shows an example of an industrial automated system.
A thermocouple with cold-junction compensation is used to

Digital
Isolation

psi

P

0

25

50

75

GYRO

+

–

Filtering

Highly Integrated AFE

Control
Interface

Valve/Switch
Controls

Motor/Actuator
Controls

LED Drivers

Peltier Drivers

ADC

Digital
Isolation

Lo
ad

Amp

Ref and Buf

Multiple
Range
Output

DVCC

VREF

DGND

AGND VSS

OUT

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R

+V+V

–V

MCU/
MPU/
FPGA/

Computer

AmpMux

Filtering

Filtering

No Gain

Gain

No Gain

Gain

No Gain

Gain

Figure 2. Simplified diagram of an industrial automated system.

 Analog Dialogue Volume 49 Number 428

Programmable Logic Controllers

Programmable logic controllers (PLCs) incorporate power sup-
plies, central processing units, and several analog and digital
I/O modules in order to control, actuate, and monitor complex
machine variables. PLCs are widely used across industries and
they offer extended temperature ranges, immunity to electrical
noise, and resistance to vibration and impact. A fundamental
process control system building block is shown in Figure 3. An
input signal reporting on the status of a process variable is mon-
itored via the input module and transferred to the MCU to be
analyzed. Based on the results of this analysis, a response con-
taining the necessary arrangements is managed by the output
module to control the devices in the system.

Analog Input
Modules

Analog Output
Modules

Controls,
Drivers,

Actuators

Various Sensors
and Input Signals

MCU

Digital
Output

Digital
Input

Figure 3. Process control system building block.

Figure 4 shows a more complete industrial PLC system
including an embedded controller/processor as the main
system controller interfacing to the fully isolated input and
output modules. Excluding the power supply module, the
system is divided into four subsystems that differentiate the
analog input, analog output, digital input, and analog output

modules. Several types of sensors are deployed to acquire
analog signals of different amplitudes and frequencies. These
signals need to be preprocessed and converted into digital
form for further analysis. Programmable gain amplifiers con-
dition the small input signals such that they can be accurately
measured and converted into their digital representation by
analog-to-digital converters (ADCs). Isolation is required to
protect the controller or processor from possible unexpected
overvoltage coming from the field, for which optical or inte-
grated isolators are placed among the processor and the input
and output modules.

The accuracy and resolution requirements for the input and
output modules are considerably distinct. While the input mod-
ules are required to monitor highly precise and accurate data
acquisitions from the process, the output modules essentially
adjust the output with a 16-bit resolution and accuracy in high
end applications. As a result of these conditions, Σ-Δ ADCs
are commonly used for input modules in PLC systems from
which a wide range of isolated, single-channel/multichannel,
and simultaneous sampling ADCs are available in the market.

Output modules may offer precision voltage DACs, precision
current DACs, or a combination of both. Several methods
allow current and voltage levels to be generated for the PLC’s
analog output. The evolution of precision bipolar DACs such
as the AD5761R, providing extra functionality and a high level
of integration, significantly benefit PLC systems from reduc-
tion of system complexity, board size, and cost.

Figure 4. Block diagram of a complete PLC system.

Amp

Analog Input

Analog Output

Precision Ref and Buffer

Precision Ref and Buffer

Digital Input Digital Output

User
Interface

Wired (Ethernet, CAN) and
Wireless (Bluetooth, ZigBee) Interfaces

>1010 ...
01010 ... 0011 >

Unipolar,
Single/Multiple Channel

Voltage Driver

Bipolar,
Single/Multiple Channel

Voltage Driver

Current or Voltage
Driver

Current and Voltage
Driver

Current Driver
0 mA to 20 mA,
4 mA to 20 mA,

or 0 mA to 24 mA

IOUT

VOUT

DC-to-DC Converter

Isolated Power

Low Noise Power

24 V Power Bus (Common Power for PLC Module)

1
0
1
0

0
1
0
1
0
...

Single-Channel,
16-/12-Bit DACs
Low Drift 2.5 V

Reference: ±2 ppm/°C

Embedded
Controller/
Processor

Digital
Isolation

Digital
Isolation

Precision
ADC

Precision
ADC

Precision
ADC

Current
Input ADC

Isolated
ADC

PGA

PGA

PGA

Pressure
Sensor

Acceleration/
Vibration

Low Current
Input

Temperature
Sensor

Low Voltage
Input

Amp

Mux Amp

Debouncing,
Level Shifter,

Parallel to Serial
Digital

Isolation
Digital

Isolation

Level Shifter,
Serial to Parallel

LDO Regulator

Clock Source DAC

DAC

DAC

DAC

DAC

DVCC

DGND

AGNDVSS

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R OUT

+V+V

–V

VREF

Multiple
Range
Output

http://en.wikipedia.org/wiki/Noise_(electronics)
http://en.wikipedia.org/wiki/Noise_(electronics)

 Analog Dialogue Volume 49 Number 4 29

Motor Controls

DACs perform an integral function in motor control loops;
for example, in infusion pump systems. Infusion pumps are
widely used in human healthcare to provide medical treat-
ment to patients of all ages. The role of an infusion pump is to
deliver fluids, medication, or supplements to the patient’s car-
diovascular system in an intermittent or continuous procedure.

Although infusion pumps require a qualified user to program
the specific parameters for the treatment, the implicated
advantages over manual administration influence increas-
ing user confidence. The capability of these instruments to
accurately deliver tiny dosages at scheduled intervals in a
self-operated mode negates the need for a nurse or doctor to
manually control the flow of fluid to the patient. Doctors and
medical administrators can depend on the safety of infusion
pump systems to display real-time system information on
dosage limitations for titration safety, to prevent overdose,
as well as the physical delivery mechanism itself to be reliable
and accurate.

During operation, the microcontroller receives the monitored
speed and direction signals from the dc motor, which are
analyzed and adjusted (if required) to meet the setpoint. The
DAC in the feedforward path provides the adjustments to the
system while the ADC in the feedback path monitors the effect
of each adjustment. The desired setpoint voltage set by the
DAC is amplified through the driver network to provide the
required drive current to the dc motor.

ADI offers high performance analog and mixed-signal process-
ing solutions for detecting, measuring, and controlling sensors
and actuators used in chemistry analyzers, flow cytometers,
infusion pumps, dialysis equipment, ventilators, catheters, and
many more medical instruments. In particular, the AD5761R,
a high resolution, bipolar DAC with eight available software
selectable output ranges while maintaining a common accu-
racy is an ideal part for motor control applications, supporting
the different voltage swings needed by motors.

Optical Detector

Amp
Amp

Amp

Temp Sensor

DC-to-DC Converter

Isolated Power

LDO Regulator Low Noise Power

LED
Driver

Isolated Interface

RF Transceiver

Capacitive/
Resistive Driver

Backlight Driver

Battery
Management

To Patient
Intravenous (IV)

Air Detector

Stepper/
DC

Motor

DC Power Main Source

Supervisory and
Watchdog

Gears
and

Shafts

P

Embedded
Controller/
Processor

DVCC

VREF

DGND

AGND VSS

VOUT 1

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R_1

+V+V

–V

DVCC

VREF

DGND

AGND VSS

VOUT 2

VDD

SDI

SDO

SCLK

ALERT

SYNC

RESET

CLEAR

LDAC

AD5761R_2

+V+V

–V

ADC

ADC

ADC

FilteringNo Gain

Gain

Highly Integrated AFE

ADC

Ref and Buf

AmpMux

Audio Codec/
Audio DAC

Amp

AmpP

MOSFET/
IGBT Driver

Infusion Bag/
Bottle

Digital
Isolation

Figure 5. Large volume infusion pump system.

 Analog Dialogue Volume 49 Number 430

Conclusion

DACs play a key role in determining the performance and
accuracy of many control systems and simple conversion
circuits, as well as other complex applications. The AD5761R
and its product family, which is a complete 16-bit resolution
precision bipolar DAC with multiple programmable output
ranges, are suitable for the above applications. The highly
configurable ranges of the AD5761R family of DACs (0 V to
5 V, 0 V to 10 V, 0 V to 16 V, 0 V to 20 V, ±3 V, ±5 V, ±10 V,
and −2.5 V to +7.5 V; 5% overrange), make this family of
DACs a one size fits all solution for data acquisition systems,

industrial automation, programmable logic controllers, and
motor controllers. The integration offered within the AD5761R
product family, including output buffer and a buffered
2 ppm/°C internal reference, significantly simplifies board
design, reduces board size, and minimizes power consump-
tion and cost.

Estibaliz Sanz Obaldia [Estibaliz.Sanz@analog.com] received her bachelor’s
degree in electronic engineering and automation from University of Deusto.
Estibaliz joined ADI in 2010 and works as an applications engineer in the
Precision Converter Group in Limerick, Ireland.

Estibaliz Sanz Obaldia

Junifer Frenila [Junifer.Frenila@analog.com] received his bachelor’s degree
in electronics and communications engineering from WVCST in 2005. He
joined ADI in 2006 and works as a design evaluation engineer in the Precision
Converter Group in ADI Philippines. Junifer is currently working on his
doctoral degree in electronics engineering at Mapúa Institute of Technology.

Junifer Frenila

https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-12/bipolar-dacs.html&title=New%20Complete,%20High%20Resolution,%20and%20Multifunctional%20Bipolar%20DACs:%20an%20Easy%20to%20Use,%20Universal%20Solution&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=New%20Complete,%20High%20Resolution,%20and%20Multifunctional%20Bipolar%20DACs:%20an%20Easy%20to%20Use,%20Universal%20Solution&p[summary]=New%20Complete,%20High%20Resolution,%20and%20Multifunctional%20Bipolar%20DACs:%20an%20Easy%20to%20Use,%20Universal%20Solution&p[url]=http://www.analog.com/library/analogdialogue/archives/49-12/bipolar-dacs.html
https://twitter.com/intent/tweet?text=New%20Complete,%20High%20Resolution,%20and%20Multifunctional%20Bipolar%20DACs:%20an%20Easy%20to%20Use,%20Universal%20Solution%20http://www.analog.com/library/analogdialogue/archives/49-12/bipolar-dacs.html&source=webclient
mailto:Estibaliz.Sanz%40analog.com?subject=
mailto:Junifer.Frenila%40analog.com?subject=

 Analog Dialogue Volume 49 Number 4 31

Notes

analog.com/analogdialogue

Analog Devices, Inc.
Worldwide Headquarters
Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
U.S.A.
Tel: 781.329.4700
(800.262.5643,
U.S.A. only)
Fax: 781.461.3113

Analog Devices, Inc.
Europe Headquarters
Analog Devices, Inc.
Wilhelm-Wagenfeld-Str. 6
80807 Munich
Germany
Tel: 49.89.76903.0
Fax: 49.89.76903.157

Analog Devices, Inc.
Japan Headquarters
Analog Devices, KK
New Pier Takeshiba
South Tower Building
1-16-1 Kaigan, Minato-ku,
Tokyo, 105-6891
Japan
Tel: 813.5402.8200
Fax: 813.5402.1064

Analog Devices, Inc.
Asia Pacific Headquarters
Analog Devices
5F, Sandhill Plaza
2290 Zuchongzhi Road
Zhangjiang Hi-Tech Park
Pudong New District
Shanghai, China 201203
Tel: 86.21.2320.8000
Fax: 86.21.2320.8222©2016 Analog Devices, Inc. All rights reserved.

Trademarks and registered trademarks are the
property of their respective owners.

Ahead of What’s Possible is a trademark of
Analog Devices.

M02000494-0-3/16

http://www.analog.com/library/analogDialogue/index.html
http://www.analog.com/en/index.html

	Editor’s Notes
	Product Introductions: Volume 49, Number 4
	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Part 2-Mode S Detection and Decoding Using MATLAB and Simulink
	Automatic Dependent Surveillance Broadcast Waveforms
	Receiver Design Challenges
	Modeling and Verifying Mode S Receiver Algorithms in MATLAB
	Path to Implementation
	Conclusion
	References

	Using ESD Diodes as Voltage Clamps
	Abstract
	Introduction
	ESD Diode Configurations
	Diodes Connected to the Power Supply
	Current-Limiting JFETs
	Diode Stacks
	Back to Back Diodes
	No ESD Clamps
	ESD Cells as Clamps
	Failure Modes
	Thermal Implications
	Electromigration
	Conclusion

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Part 3-Mode S Signals Decoding Algorithm Validation Using Hardware in the Loop
	Introduction
	MATLAB and Simulink IIO System Object
	MATLAB ADS-B Algorithm Validation Using the IIO System Object
	Precaptured Data
	Live Data
	RF Signal Quality
	Simulink ADS-B Algorithm Validation Using the IIO System Object
	References
	Acknowledgements

	Versatile, Precision Single-Ended-to-Differential Signal Conversion Circuit with Adjustable Output
	Adjustable Output Common Mode
	Bandwidth and Stability
	Reference

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Part 4-Rapid Prototyping Using the Zynq SDR Kit and Simulink Code Generation Workflow
	Introduction
	Partitioning a Model into Hardware and Software Components
	Generating HDL Code from a Simulink Model
	Optimizing the ADS-B Model to Produce HDL Code with a Higher Clock Speed
	Generating C Code with MATLAB Coder7
	HDL Code Platform Deployment
	C Code Platform Deployment
	System Validation
	Conclusion
	References

	New Complete, High Resolution, and Multifunctional Bipolar DACs: an Easy to Use, Universal Solutio
	Data Acquisition Systems
	Industrial Automation
	Programmable Logic Controllers
	Motor Controls
	Conclusion

