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Editor’s Notes
IN THIS ISSUE

Four Quick Steps to Production: Using Model-Based 
Design for Software-Defined Radio

Part 2—Mode S Detection and Decoding Using MATLAB 
and Simulink
The series on model-based software-defined radio system design 
continues toward the ultimate objective of building a platform 
that will receive and decode the automatic dependent surveil-
lance broadcast (ADS-B) transmissions from commercial aircraft. 
This month our designers analyze the Mode S extended squitter 
format used in ADS-B signal transmissions and demonstrate 
how to capture these Mode S signals with a receiver platform 
based on the AD9361 RF Agile Transceiver™ IC. (Page 3)

Using ESD Diodes as Voltage Clamps
When external overvoltage conditions are applied to an ampli-
fier’s input, ESD diodes are the last line of defense between 
the amplifier and the catastrophic damage that can result from 
electrical overstress. In this article our expert shows us how ESD 
cells are implemented in an amplifier device, discusses their 
characteristics, and explains how they can be used to improve 
the robustness of a design. (Page 8)

Four Quick Steps to Production: Using Model-Based 
Design for Software-Defined Radio

Part 3—Mode S Signals Decoding Algorithm Validation 
Using Hardware in the Loop
Part 3 of our ongoing series on software-defined radio, 
covering validation of the system algorithm using live data as 
input and some powerful software and system development 
tools provided by ADI, MathWorks, and Avnet. If you’ve read 
Parts 1 and 2, you’ve seen this SDR system steadily progress 
from initial prototyping toward a production design. (Page 11)

Versatile, Precision Single-Ended-to-Differential Signal 
Conversion Circuit with Adjustable Output Common Mode 
Boosts System Dynamic Range
This article revisits an earlier design of a versatile, low power 
single-ended-to-differential converter circuit. This time around, 
this useful converter circuit is made even more versatile. The 
authors have addressed using the circuit in applications that 
require greater output dynamic range, such as in signal condi-
tioning of temperature and pressure sensor outputs. (Page 16)

Four Quick Steps to Production: Using Model-Based 
Design for Software-Defined Radio

Part 4—Rapid Prototyping Using the Zynq SDR Kit and 
Simulink Code Generation Workflow
This article concludes the four-part series on software-defined 
radio design. The authors bring the algorithm and hardware 
together and take their radio for a real-world test drive. This is 
the culmination of a journey that has taken us from simulation 
to prototyping to production-worthy design, and now we see it 
in action. (Page 19)

New Complete, High Resolution, and Multifunctional 
Bipolar DACs: an Easy to Use, Universal Solution
This article focuses on the critical role that precision bipolar 
DACs serve in calibration and control functions in a multitude of 
applications from motor control to industrial automation. Several 
system block diagrams are explored with a focus on the design 
considerations for the DAC functions involved therein. (Page 26)

Jim Surber [jim.surber@analog.com]

Product Introductions: Volume 49, Number 4
Data sheets for all ADI products can be found by entering the part 
number in the search box at analog.com.
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Rail-to-rail input/output low noise amplifier....................................... ADA4807-4
Low power, multimode, rail-to-rail amplifier for driving SAR ADCs....... ADA4806-1
Multifunction video interface IC with (MIPI®/DSI) input port and 
	 (HDMI®) output...................................................................................... ADV7535
3.75 kV rms quad digital isolator family:
	 Quad-channel isolator with input disable and 0 reverse channels.... ADuM140D
	 Quad-channel isolator with input disable and 1 reverse channel...... ADuM141D
	 Quad-channel isolator with input disable and 2 reverse channels.... ADuM142D
Ultralow power step-down buck regulator.............................................. ADP5300
Complete, 1.25 GHz, dual integrated dcl with PPMU......................... ADATE320
Blackfin+ DSP family combines dual 16-bit MAC, 32-bit MAC, and 16-bit 
complex MAC with L2 SRAM and DDR2/LPDDR interface:
	 400 MHz, 1 MB................................................................................. ADSP-BF707
	 400 MHz, 512 kB............................................................................... ADSP-BF705
	 400 MHz, 256 kB............................................................................... ADSP-BF703
	 200 MHz, 128 kB............................................................................... ADSP-BF701
Triple-channel OOK (on-off-keying) isolated coupler family:
	 Input disable, 3/0 channel directionality........................................ ADuM230D
	 Output enable, 3/0 channel directionality...................................... ADuM230E
	 Output enable, 2/1 channel directionality...................................... ADuM231E
	 Input disable, 2/1 channel directionality........................................ ADuM231D
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Synchronous, pulse-width modulation (PWM) controller..................... ADP1974
2.5 GHz to 7 GHz, wideband, double balanced passive mixer............ HMC557A
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JESD204B-compatible high performance dual-loop integer  
	 N jitter attenuator.................................................................................. HMC7044
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Operational amplifier with a femtoampere level input  
	 bias current.......................................................................................... ADA4530-1
High isolation, nonreflective, 0.1 GHz to 6 GHz silicon  
	 SPDT switch........................................................................................... HMC8038
Low power, complete 3-axis accelerometer with signal conditioned  
	 voltage outputs....................................................................................... ADXL316
Ultralow noise, low power current amplifier........................................ ADPD2210
High quality, low power, single-input HDMI to LVDS display bridge..... ADV7613
Highly efficient, ultralow quiescent current step-down regulator............ ADP5304
High performance, dc-to-dc inverting regulator generates regulated  
	 negative rails........................................................................................... ADP5073
1.2 A dc-to-dc switching inverting regulator............................................ ADP5074
High isolation, silicon SPDT, nonreflective switch, covers  
	 9 GHz to 13.0 GHz range...................................................................... HMC1118
Triple SPDT switch with user-defined fault protection  
	 and detection........................................................................................ ADG5243F
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Zero-drift amplifier with wide operating voltage and  
	 temperature ranges............................................................................ ADA4522-4
Single-channel digital isolator................................................................ ADuM110N
MMIC VCO with half frequency output 11.07 GHz to 11.62 GHz.......... HMC1165
GaAs, pHEMT, MMIC power amplifier provides 19 dB of gain............. HMC1144
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Four Quick Steps to Production:  
Using Model-Based Design for  
Software-Defined Radio 
Part 2—Mode S Detection and Decoding Using MATLAB and Simulink

By Mike Donovan, Andrei Cozma, and Di Pu

Automatic Dependent Surveillance Broadcast 
Waveforms

Wireless signals that can be detected and decoded are 
everywhere, and they are easily accessible with today’s software-
defined radio (SDR) hardware like the Analog Devices 
AD9361/AD9364 integrated RF Agile Transceivers.™1,2 
The automatic dependent surveillance broadcast (ADS-B) 
transmissions from commercial aircraft provide a readily 
available wireless signal that can be used to demonstrate a 
rapid prototyping flow based on the AD9361 connected to 
a Xilinx® Zynq®-7000 All Programmable SoC. Commercial 
aircraft use ADS-B transmitters to report their position, 
velocity, altitude, and aircraft ID to air traffic controllers.3 
The flight data format is defined in the International Civil 
Aviation Organization’s (ICAO) Mode S Extended Squitter 
specification.4 ADS-B is being introduced throughout the 
world to modernize air traffic control and collision avoidance 
systems. It has already been adopted in Europe and is being 
gradually introduced in the United States.

The Mode S Extended Squitter standard provides details of 
the RF transmission format and encoded data fields. The tran-
sponder transmission has the following properties:
• Transmit frequency: 1090 MHz
• Modulation: pulse position modulation (PPM)
• Data rate: 1 Mbps
• Message length: 56 μs or 112 μs
• 24-bit CRC checksum

The tuning frequency and bandwidth are well within the 
capabilities of the AD9361 RF transceiver, and the received  
I/Q samples can be detected and decoded with a variety of 
software or embedded platform options. 

In this article we will discuss how to capture these Mode S  
signals with a receiver platform based on the AD9361, and 
then use MATLAB and Simulink® to develop an algorithm that 
can decode the messages. The algorithm will be developed 
with the ultimate goal of deploying the solution onto a Zynq 
SoC platform, such as Avnet’s PicoZed™ SDR System on 
Module (SOM).

Receiver Design Challenges

Mode S messages are either short (56 μs) or long (112 μs). 
Short messages contain the message type, aircraft identifica-
tion number, and a cyclic redundancy check (CRC) checksum. 
Long messages also contain the altitude, position, velocity, 
and flight status. In either case, the Mode S transmission 
begins with an 8 μs preamble. This preamble pattern is used 
by receivers to establish that a valid message is being transmit-
ted and helps the receivers determine when the message bits 
start. See Figure 1 for details.5
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Figure 1. Structure of a Mode S message.

The Mode S waveform is fairly simple, but there are still 
several challenges involved in successfully receiving and 
decoding the transmitted messages. 

1. The receive environment typically contains very short mes-
sages interspersed with long idle periods, and the received 
signals can be very weak when the transmitting aircraft is 
a long distance from the receiver. Legacy waveforms are 
also transmitted at 1090 MHz. The receiver needs to use the 
preamble to identify both high and low amplitude Mode S 
transmissions in a congested frequency band. 

2. Bits have one of two possible patterns within the 1 μs bit 
interval. A Logic 1 is ON for the first ½ μs and OFF for the 
second ½ μs. A Logic 0 is OFF for the first ½ μs and ON for 
the second ½ μs. Since the bit decisions are made based on 
time-based patterns, the receiver needs to use the preamble to 
accurately find the I/Q sample where the message bits start.

3. The Mode S message is composed of 88 information bits and 
24 checksum bits. The receiver needs to be able to clear reg-
isters, make bit decisions, compute the checksum, and read 
the checksum registers at the correct times. Timing control 
is required for the receiver to function properly.

4. For an embedded design, the decoding process has to work 
on a sample by sample basis. Storing large amounts of data 
for batch processing is not a realistic receiver design for an 
embedded system.

The combination of a powerful RF front end like the AD9361 
and a technical computing language like MATLAB® greatly 
simplifies the problems associated with detecting and decod-
ing these transmissions. Functions from MATLAB and Signal 
Processing Toolbox can be used to identify the sync pattern, 
calculate the noise floor, make bit decisions, and calculate the 
checksum. The conditional and execution control functions 
in MATLAB simplify the control logic. Accessing test data is 
easy, both from binary or text files, or streamed directly into 
MATLAB using the AD9361 SDR platforms. Finally, the inter-
preted nature of MATLAB makes it easy to interact with data, 
try different approaches, and interactively develop a solution.

http://www.analog.com/ad9361
http://www.analog.com/ad9364
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We used some code based on these commands to capture  
several data sets at a sample rate of 12.5 MHz. The 12.5 MHz 
rate was chosen to provide enough samples to fine tune the 
alignment of the preamble to the first message bit and average 
out some of the noise in the samples used to make bit deci-
sions. The results of a one million sample capture are shown  
in Figure 5. 

© 1984-2015 The MathWorks, Inc. 

Figure 5. Sample data capture at 1090 MHz.

In this short data set there are 14 signals that stand out above 
the noise floor. Of those 14 signals, two are Mode S messages. 
The rest are legacy or spurious signals that should be rejected. 
Zooming in to the region near sample number 604000 shows 
one of the valid messages (see Figure 6).

© 1984-2015 The MathWorks, Inc. 

Figure 6. Single Mode S message.

In this plot the preamble can clearly be seen, and the bit  
transitions due to the PPM modulation are apparent. Even 
with a clean signal like this, decoding the bits by inspection 
would require good eyesight and a lot of patience. Clearly 
an automated program is required to decode these messages. 
MATLAB is a good solution for developing this program.

The MATLAB code that can receive and decode Mode S  
messages can be summarized as follows:

1. Calculate the noise floor and preamble correlation with the 
filter() function over a short time window. In our solution 
we use 75 samples, which is equivalent to 6 μs.

Modeling and Verifying Mode S Receiver Algorithms 
in MATLAB

Readers who are interested in following along with the MATLAB 
source code can find the files on the Analog Devices GitHub 
repository. The entry level function is ad9361_ModeS.m, and 
the files called by this function are also provided.

The first step in designing a receiver algorithm is to access 
some source data. Since many aircraft are now equipped with 
Mode S transponders it’s possible to just tune a receiver to the 
broadcast frequency of 1090 MHz and capture local transmis-
sions. In our case we can use the Zynq SDR Rapid Prototyping 
Platform. Analog Devices provides a MATLAB System 
Object™ that is capable of receiving data from the FMCOMMS 
platform over Ethernet.6 The System Object allows a user to 
select a tuning frequency and sampling rate, collect receive 
samples using the radio hardware, and bring the receive 
samples directly into the MATLAB workspace as a MATLAB 
variable. The required code is very short; a few lines of code to 
set up the MATLAB System Object, a few more to set up the 
FMCOMMS3, and a few lines of code to capture I/Q samples 
and write them to a MATLAB variable. A sample of the code  
is shown in Figure 2, Figure 3, and Figure 4. 

© 1984-2015 The MathWorks, Inc. 

Figure 2. Sample MATLAB code to set up MATLAB System object.

© 1984-2015 The MathWorks, Inc. 

Figure 3. Sample MATLAB code to configure FMCOMMS3 board.

© 1984-2015 The MathWorks, Inc. 

Figure 4. Sample MATLAB code to capture I/Q samples and write 
them to the Rx variable.

https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
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2. When the preamble correlation exceeds the noise floor by a 
significant factor, launch logic to find the first message bit 
sample. 
a. The choice of this threshold is subjective. It should be 

small enough to detect weak signals but large enough to 
prevent a lot of false positives. We chose a value of 10× 
above the noise floor as a reasonable threshold that cap-
tures most decodable messages.

b. The preamble pattern produces several peaks. Since the 
best match is over the first 6 μs, store the first peak, start 
the search for the first message bit, and see if another 
larger peak occurs in the next 3 μs. If it does occur, store 
the new peak and reset the search for the start of the first 
message bit.

c. When the max peak occurs, start the message bit decod-
ing 2 μs later.

d. Figure 7 shows the noise floor in green and the result  
of correlating an ideal preamble to the incoming data. 
There are several peaks above the noise floor, but the  
one of interest is the one with the maximum amplitude. 
The sample for the first message bit occurs 2 μs after  
that peak.
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Figure 7. Calculation of noise floor and preamble correlation.

3. For each individual bit, sum the amplitude of the samples 
for the first ½ μs and second ½ μs. Whichever sum is larger 
determines whether the bit is Logic 1 or Logic 0.

4. Compute the checksum as the bit decisions are made. This 
requires some control logic for resetting the CRC registers 
when the first bit arrives, calculating the checksum for  
88 bits, and then emptying the CRC registers for the final  
24 bits. The ADS-B message is valid when the receive bits 
match the checksum.

5. Parse the message bits according to the Mode S standard 
(see Figure 8).

© 1984-2015 The MathWorks, Inc. 

Figure 8. Decoded Mode S messages.

The above figure from the MATLAB command window shows 
the two messages that were successfully decoded from the one 
million sample data set. The hex characters that make up the 
88-bit message and 24-bit checksum are displayed, and the 

results of the decoding process show the aircraft ID, message 
type, and aircraft velocity, altitude, and position.

MATLAB provides a powerful mathematical and signal pro-
cessing language to make it possible to solve this problem 
relatively easily. The MATLAB code needed to process the 
data samples and ultimately decode the messages is short— 
only 200 lines of MATLAB code. In addition, the interpreted 
nature of MATLAB makes it easy to interactively try out 
design ideas and quickly settle on a viable solution. Several 
timing mechanisms, thresholds, and noise levels were tested 
on various data sets to produce a satisfactory program. 

This MATLAB code has been tested on signals from aircraft 
flying in the local airspace and the decoded messages have 
been checked against sources like airframes.org and flight-
aware.com. The hardware and the code perform very well; 
we’ve been able to decode transmissions from planes at a  
distance of 50 miles.

Path to Implementation

Readers who are interested in following along with the  
Simulink model can find the files on the Analog Devices 
GitHub repository:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

MATLAB is a great environment for testing design ideas 
and running algorithms on a PC, but if the ultimate goal is 
to produce software or HDL to be used on an embedded 
platform, particularly one like a Zynq SoC, then Simulink 
is a good solution. Simulink is well suited to modeling the 
hardware specific elaborations needed to target the program-
mable device. A good workflow is to use MATLAB to develop 
and verify an algorithm, and then translate the design into 
Simulink and continue down the development path to a final 
hardware implementation. 

Fortunately, the MATLAB code for this algorithm processes 
data on a sample by sample basis, so the conversion to Sim-
ulink is fairly straightforward. In contrast to the 200 lines of 
MATLAB code, the Simulink model is simple to display and 
describe (see Figure 9).

© 1984-2015 The MathWorks, Inc. 

Figure 9. Simulink model of Mode S detection and decoding algorithm.

In Figure 9, you can see the first step in the decoding is to 
calculate the noise floor and the correlation to the preamble. 
Digital filter blocks are used for these calculations. The timing 
control block is implemented using Stateflow,® which is a 
state machine tool that is used to generate the timing, reset, 
and control signals for the rest of the decoding algorithm. 
Stateflow is very useful for models where you want to sepa-
rate the control logic from the data flow. Once the timing  
and triggers are activated, the block named BitProcess takes 

http://www.airframes.org/
http://flightaware.com/
http://flightaware.com/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
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the input I/Q samples and calculates the data bits, and the 
CRC_Check block computes the checksum. The message 
parsing still takes place in a MATLAB script driven by this 
Simulink model.

Digging deeper into the model you can see a few features that 
make Simulink suitable for embedded development, especially 
for partitioning the design into functions targeted at a Zynq 
SoC and for generating HDL code and C code.

1. Simulink has excellent fixed-point support, so you can build 
and test a bit-true version of your design. The individual 
blocks allow you to set the word length and fractional length 
for the mathematical operations in your model. The digital 
filter block that is used to calculate the preamble correla-
tion is a good example (Figure 10). You can set the rounding 
mode and the overflow behavior for the calculations (Floor 
and Wrap are the simplest choices for math being done in 
HDL). In addition, you can specify different word lengths 
and fractional precisions for the product and accumulator 
operations for the filter (Figure 11). You can use word length 
choices that map to the receiver ADC and take advantage 
of hardware multipliers like the 18 bit × 25-bit multipliers 
within the DSP48 slices of the Zynq SoC.

© 1984-2015 The MathWorks, Inc. 

Figure 10. Simulink digital filter block used for preamble correlation, 
12-bit data types.

© 1984-2015 The MathWorks, Inc. 

Figure 11. Fixed-point data type settings.

2. Embedded designs often have many of modes of operation 
and conditionally executed algorithms. Stateflow is partic-
ularly good at managing these control signals. Stateflow 
gives you a visual representation of the control logic needed 
to detect and decode the Mode S messages. In Figure 12 
below, you can see the states in the logic are:
a. SyncSearch: look for the preamble in the captured samples
b. WaitForT0: look for the start of the first message bit
c. BitProcess: enable the bit processing 
d. EmptyReg: empty the checksum register and compare 

the bits to the output of the bit processing

As the detection and decoding algorithm progresses through 
the different states, the Stateflow block generates the signals 
that enable the bit processing, reset the bit decision counters 
and checksum registers, and read out the checksum bits at the 
end of the Mode S messages.

© 1984-2015 The MathWorks, Inc. 

Figure 12. Stateflow chart for decoding Mode S messages.

3. The Simulink block libraries give engineers options to 
work at a very high level or at a very fine level of detail. 
Simulink has high level blocks like Digital Filter, FFT, and 
Numerically Controlled Oscillator to make it easy to build 
signal processing designs. If more precise control of the 
design is required, possibly for speed or area optimizations, 
engineers can use low level blocks like Unit Delays, Logic 
Operators (XOR for example), and Switches. The 24-bit 
checksum in this model is a feedback shift register built 
using those low level blocks (Figure 13).

© 1984-2015 The MathWorks, Inc. 

Figure 13. Feedback shift register for Mode S checksum computation.
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This Simulink model is a hardware specific version of the 
MATLAB algorithm that detects and decodes Mode S mes-
sages. Simulink is a useful tool for bridging the gap between a 
behavioral algorithm written in MATLAB and implementation 
code for embedded hardware. You can introduce hardware 
specific elaborations into the Simulink model, run the model, 
and verify that the changes you’ve made don’t break the 
decoding algorithm. 

Conclusion

The combination of a Zynq SDR Rapid Prototyping Platform 
and MathWorks software gives communication engineers a 
new and flexible way to quickly prototype design ideas for 
wireless receivers. The high degree of programmability and 
performance provided by the AD9361/AD9364 agile wide-
band RF transceiver and the simple connectivity between the 
hardware and MATLAB environment makes a wide variety 
of interesting wireless signals available to the engineer. Engi-
neers who use MATLAB can quickly try a multitude of design 
ideas and settle on a promising solution. If the ultimate target 
of the design is an embedded processor, Simulink is a tool that 
engineers can use to refine the design with hardware specific 
ideas and ultimately produce the code used to program the 
processor. This workflow reduces the number of skills needed 
to design a wireless receiver and shortens the development 
cycle from concept to working prototype.

In the next article in this series, we will show how to use  
hardware in the loop (HIL) to validate a receiver design,  
capturing signals with the target transceiver while executing  
a model of the signal processing system on the host in  
Simulink for verification.
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Using ESD Diodes as Voltage Clamps 
By Paul Blanchard and Brian Pelletier

Abstract

When external overvoltage conditions are applied to an amplifier, 
ESD diodes are the last line of defense between your amplifier and 
electrical over stress. With proper understanding of how an ESD 
cell is implemented in a device, a designer can greatly extend the 
survival range of an amplifier with the appropriate circuit design. 
This article aims to introduce readers to the various types of ESD 
implementations, discuss the characteristics of each implementation, 
and provide guidance on how to utilize these cells to improve the 
robustness of a design.

Introduction

In many applications where the input is not under system 
control but rather connects to the outside world, such as test 
equipment, instrumentation, and some sensing equipment, it 
is possible for input voltages to exceed the maximum rated 
voltage of a front-end amplifier. In these applications, protec-
tion schemes must be implemented to preserve the survival 
range and robustness of the design. The front-end amplifier’s 
internal ESD diodes are sometimes used for clamping over-
voltage conditions, but many factors need to be considered to 
ensure these clamps will provide sufficient and robust protec-
tion. Understanding the various ESD diode architectures that 
are inside of front-end amplifiers, along with understanding 
the thermal and electromigration implications of a given pro-
tection circuit, can help a designer avoid problems with their 
protection circuits and improve the longevity of their applica-
tions in the field.

ESD Diode Configurations

It is important to understand that not all ESD diodes are 
simple diode clamps to the power supplies and ground. There 
are many possible implementations that can be used, such as 
multiple diodes in series, diodes and resistors, and back to 
back diodes. Some of the more common implementations are 
detailed below. 

Diodes Connected to the Power Supply 

Figure 1 shows an example of an amplifier with diodes con-
nected between the input pins and the supplies. The diodes 
are reverse-biased under normal operating conditions, but 
become forward-biased as the inputs rise above the positive 
supply voltage or below the negative power supply voltage. 
As the diodes become forward-biased, current flows through 
the amplifier’s inputs to the respective supply. 

In the case of the circuit in Figure 1, the input current is not 
inherently limited by the amplifier itself when the overvoltage 
goes above +Vs, and will require external current limiting in 
the form of a series resistor. When the voltage goes below –Vs 
the 400 Ω resistor provides some current limiting, which 
should be factored into any design considerations.

–IN

+IN

+VS

+VS

–VS

–VS

400 Ω

400 Ω

–VS

OUT

AD8221

D1

D3

+VS D2

D4

Figure 1. Input ESD topology of AD8221.

Figure 2 shows an amplifier with a similar diode configuration, 
but in this case the current is limited by the internal 2.2 kΩ 
series resistor. This differs from the circuit shown in Figure 1  
by not only the value of the limiting R but also the 2.2 kΩ 
protects from voltages above +Vs. This is an example of the 
intricacies that must be fully understood to optimize protec-
tion when using ESD diodes.

–IN

+IN

+VS

+VS

–VS

–VS

2.2 kΩ

2.2 kΩ

–VS

OUT

AD8250

D1

D3

+VS D2

D4

Figure 2. Input ESD topology of AD8250.

Current-Limiting JFETs 

In contrast to the implementation in Figure 1 and Figure 2, 
current-limiting JFETs may be used in IC designs as an alter-
native to diode clamps. Figure 3 shows an example where 
JFETs are used to protect a device when the input voltages 
exceed the specified operating range of the device. This device 
is inherently protected up to 40 V from the opposite rail by the 
JFET inputs. Because the JFET will limit the current into the 
input pins, the ESD cells cannot be used as additional over-
voltage protection. 
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No ESD Clamps

Some devices do not include ESD devices on the front end. 
While it is obvious that a designer cannot use ESD diodes for 
clamping if they are not there, this architecture is mentioned 
as a situation to look out for when investigating overvoltage 
protection (OVP) options. Figure 6 shows a device that uses 
only large value resistors to protect the amplifier. 

–IN

+IN

+VS

1 MΩ

1 MΩ

–VS

OUT

AD8479

Figure 6. Input protection scheme of AD8479.

ESD Cells as Clamps

In addition to understanding how the ESD cells are imple-
mented, it is important to understand how to utilize the 
structures for protection. In a typical application, a series resis-
tor is used to limit the current over a specified voltage range.

When amplifiers are configured as shown in Figure 7 or where 
the inputs are protected by a diode to the supply, input cur-
rent is limited using the equation in the following formula.

                         

VSTRESS – (VSUPPLY  + 0.7 V) IDIODE = 
RPROTECTION  	

(1)

–IN

+IN

+VS

+VS

RPROTECTION1

IDIODE1VSTRESS

IDIODE2

RPROTECTION2 –VS

–VS

400 Ω

400 Ω

–VS

OUT

AD8221

D1

D3

+VS D2

D4

 
Figure 7. Using ESD cells as clamps.

An assumption used for Equation 1 is that VSTRESS > VSUPPLY.  
If this is not the case, a more precise diode voltage should  
be measured and used for the calculation instead of the  
0.7 V approximation.

An example calculation follows for protecting an amplifier 
using ±15 V supplies, from input stresses up to ±120 V, while 
limiting the input current to 1 mA. Using Equation 1, we can 
use these inputs to calculate the following.

                         

VSTRESS – (VSUPPLY  + 0.7 V) IDIODE = 
RPROTECTION 	

(1)

                         

120 V – (15 V + 0.7 V) 1 mA = 
RPROTECTION  	

(2)

		
                               = 104,300 Ω RPROTECTION       	 (3)

Given these requirements, an RPROTECTION > 105 kΩ would limit 
the diode current to <1 mA.

Understanding the Current Limitations

Maximum values for IDIODE will vary from part to part, and 
also be dependent on the particular application scenarios 

Where voltage protection up to 40 V is required, this device’s 
JFET protection offers a well controlled, reliable, fully spec-
ified option for protection. This is often in contrast to using 
ESD diodes for protection, where information on diode 
current limits are often specified as typical, or possibly not 
specified at all.

–IN

+IN

+VS

–VS

OUT

AD8226

JFET
Protection

JFET
Protection

Figure 3. Input protection scheme of AD8226.

Diode Stacks

In applications where the input voltage is allowed to exceed 
the power supply voltage or ground, a stack of diodes may be 
used to protect the input from ESD events. Figure 4 shows an 
amplifier that implements a stacked diode protection scheme. 
In this configuration, the diode string is used to protect from 
negative transients. The string of diodes are used to limit the 
leakage current in a usable input range, but provide protection 
when the negative common-mode range is exceeded. Keep in 
mind the only current limiting will be the equivalent series 
resistance of the diode string. An external series resistance can 
be used to decrease the input current for a given voltage level.

D1

–IN

+IN

+VS

GND

GND

OUT

AD8417

D2

D3

D4

D5

Figure 4. Low-side input protection scheme of AD8417.

Back to Back Diodes

Back to back diodes are also used when the input voltage 
range is allowed to exceed the power supply. Figure 4 shows 
an amplifier that implements back to back diodes to provide 
ESD protection on a device that allows voltages up to 70 V 
using a 3.3 V supply. D4 and D5 are high voltage diodes used 
to standoff the high voltages that could be present on the 
input pins and D1 and D2 are used to prevent leakage cur-
rents while the input voltages are within the normal operating 
range. In this configuration, using these ESD cells for overvolt-
age protection would not be recommended because exceeding 
the maximum reverse bias of the high voltage diode can easily 
lead to situations that cause permanent damage. 

D1

–IN

+IN

+VS

GND

GND

OUT

AD8418

Note: D4 and D5 Are High Voltage Devices

D2

D3

D4

D5

Figure 5. High-side input protection scheme of AD8418.
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in which the stress is applied. The maximum current will 
be different for a one-time event lasting milliseconds vs. if 
the current was constantly applied over the entire 20 or more 
year mission profile life of the application. Guidance on the 
particular values may be found in amplifier data sheets in the 
absolute max section or application notes and are usually in 
the range of 1 mA to 10 mA. 

Failure Modes

The maximum current rating for a given protection scheme 
will ultimately be limited by two factors: the thermal implica-
tion of the power dissipated in the diode and the maximum 
current rating for the current path. The power dissipation 
should be kept below a threshold that maintains the operating 
temperature in a valid range and the current should be chosen 
to be within the specified maximum to avoid reliability issues 
due to electromigration.

Thermal Implications 

When current flows into the ESD diodes, there will be a tem-
perature increase due to the power dissipated in the diodes. 
Most amplifier data sheets specify a thermal resistance (usually 
specified as ӨJA) that will indicate how junction temperatures 
will increase as a function of power dissipation. Considering  
the worst-case application temperature, along with the worst-
case temperature increase due to power dissipation, will give  
an indication of the viability of a protection circuit.

Electromigration

Even when the current does not cause thermal problems, the 
diode current could still create a reliability problem. There is  
a maximum lifetime current rating for any electrical signal 

path due to electromigration. The electromigration current 
limit for the diode current path is typically limited by thick-
ness of the internal traces in series with the diodes. This 
information is not always published for amplifiers, but needs 
to be considered if the diodes are active for long portions of 
time, as opposed to transient events. 

An example where electromigration can be a problem is when 
an amplifier is monitoring, and therefore connected to, a volt-
age rail that is independent of its own supply rail. When there 
are multiple power domains, there can be instances where 
power supply sequencing can cause voltages to temporarily 
exceed absolute maximum conditions. By considering the 
worst-case current path, the duration over life that this current 
could be active, and understanding the maximum allowable 
current for electromigration, reliability issues due to electromi-
gration can be avoided.

Conclusion

Understanding how an amplifier’s internal ESD diodes are 
activated during electrical overstress events can enable simple 
improvements to the robustness of a design. Examining both 
the thermal and electromigration implications of a protection 
circuit can highlight potential problems and indicate where 
additional protection may be warranted. Considering the con-
ditions outlined here enables designers to make smart choices 
and avoid potential robustness issues in the field. 
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Four Quick Steps to Production:  
Using Model-Based Design for  
Software-Defined Radio 
Part 3—Mode S Signals Decoding Algorithm Validation Using Hardware in the Loop

By Di Pu and Andrei Cozma

Introduction

After implementing any signal processing algorithm in 
MATLAB or Simulink, the next natural step is to verify the 
algorithm’s functionality using real data acquired from the 
actual SDR hardware system that it is going to run on. As a 
first step, the verification of the algorithm is done using dif-
ferent sets of input data captured from the system. This helps 
validate the algorithm’s functionality, but does not guarantee 
that the algorithm will perform as expected in environmental 
conditions other than the ones used to make the data captures, 
or what the behavior and performance will be for different 
settings of the analog front end and digital blocks of the 
SDR system. In order to verify all of these aspects, it is very 
beneficial if the algorithm can be run online to receive live 
data as input and to tune the settings of the SDR system for 
optimal performance. This part of the article series1 discusses 
the software tools provided by Analog Devices to allow direct 
interaction between MATLAB and Simulink models with the 
FMCOMMSx SDR platforms and shows how these tools can 
be used to verify the ADS-B models presented in Part 2 of the 
article series.2

MATLAB and Simulink IIO System Object

Analog Devices provides a complete software infrastructure 
that enables MATLAB and Simulink models to interact in real 
time with FMCOMMSx SDR platforms that are connected to 
FPGA/SoC systems running Linux. This is possible due to an 
IIO System Object3 that is designed to exchange data over 
TCP/IP with the hardware system in order to stream data to 
and from a target, control the settings of a target and monitor 
different target parameters such as the RSSI. Figure 1 presents 
the high level architecture of the software infrastructure and 
the data flow between the components in the system.

Analog Devices
FMCOMMSx SDR

Zynq All Programmable SoC Windows/Linux Host 

Programmable Logic

ARM CORTEX A9 Processing System

Linux

Kernel
Drivers

libIIOlibIIO
TCP/IP
Client

TCP/IP
Server

MATLAB/Simulink Model 

FMCOMMSx
HDL Interface

IIO
System
Object

Figure 1. Software infrastructure block diagram. 

The IIO System Object is based on the MathWorks System 
Objects specification4 and exposes data and control interfaces 
through which the MATLAB/Simulink models communicate 
to IIO-based platforms. These interfaces are specified in a  

configuration file that links the System Object interface to IIO 
data channels or to IIO attributes. This makes the implemen-
tation of the IIO System Object generic, allowing it to work 
with any IIO platform just by modifying the configuration 
file. Some of the platforms for which configuration files and 
examples are available on the ADI GitHub repository5 include 
the AD-FMCOMMS2-EBZ/AD-FMCOMMS3-EBZ/AD-FM-
COMMS4-EBZ/AD-FMCOMMS5-EBZ SDR boards and the 
high speed data acquisition AD-FMCDAQ2-EBZ board. The 
communication between the IIO System Object and the target 
is accomplished through the libiio server/client infrastructure. 
The server runs on an embedded target under Linux and man-
ages real-time data exchange between the target and both local 
and remote clients. The libiio library abstracts the low level 
details of the hardware and provides a simple yet complete 
programming interface that can be used for advanced projects 
with a variety of language bindings (C, C++, C#, Python).

The next sections of the article provide real life examples on 
how the IIO System Object can be used for validating the 
ADS-B MATLAB and Simulink models. An AD-FMCOM-
MS3-EBZ SDR platform6 connected to a ZedBoard7 running 
the Analog Devices Linux distribution were used as the SDR 
hardware system for verifying the operation of the ADS-B sig-
nals detection and decoding algorithm, as shown in Figure 2.

Figure 2. Hardware setup for ADS-B algorithm validation.
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The RF bandwidth control sets the AD9361’s RX analog 
baseband low-pass filter’s bandwidth to provide antialias-
ing and out-of-band signal rejection. In order to successfully 
demodulate the received signals, the system must maximize 
the signal-to-noise ratio (SNR). In order to do this, the RF 
bandwidth needs to be set as narrow as possible while meet-
ing flatness and the out-of-band rejection specification to 
minimize in-band noise and spurious signal levels. If the RF 
bandwidth is set wider than it needs to be, the ADC’s linear 
dynamic range will be reduced due to the extra noise. Simi-
larly, ADC’s spurious-free dynamic range will be reduced due 
to the lower out-of-band signal rejection resulting in overall 
receiver dynamic range reduction. Therefore, setting the RF 
bandwidth at an optimal value is critical to receive desired 
in-band signals and reject out-of-band signals. By observing 
the spectrum of received signals, we find 4 MHz is a proper 
value for the RF bandwidth.

Besides setting up the analog filters of AD9361 via RF  
bandwidth attribute, we can also improve the decoding  
performance by enabling the digital FIR filters on AD9361  
via the IIO System Object, as shown in Figure 5. According  
to the spectrum characteristics of the ADS-B signal, we design 
an FIR filter with data rate of 12.5 MSPS, pass band frequency  
of 3.25 MHz and stop band frequency of 4 MHz. In this way,  
we can further focus on the bandwidth of interest. 

Figure 5. Enable the proper FIR filter on AD9361 via libiio.

Adsb.ftr is a file containing the coefficients of an FIR filter 
designed using the Analog Devices AD9361 Filter Wizard 
MATLAB application.8 This tool provides not only a  
general-purpose low-pass filter design, but it also provides 
magnitude and phase equalization for other stages in the 
signal path.

Figure 6. FIR filter designed for ADS-B signals using the MATLAB 
AD9361 Filter Wizard.

The versatile and highly configurable AD9361 transceiver 
has several gain control modes that enable its use in a vari-
ety of applications. The Gain Mode parameter of the IIO 
System Object selects one of the available modes: manual, 
slow_attack, hybrid, and fast_attack. The most frequently used 
modes are manual, slow_attack, and fast_attack. Manual gain 

MATLAB ADS-B Algorithm Validation Using the IIO 
System Object

To validate the MATLAB ADS-B decoding algorithm operation 
with real-time data acquired from the AD-FMCOMMS3-EBZ 
SDR platform, a MATLAB script has been developed to per-
form the following operations:
• Calculate the earth zone according to user input
• Create and configure the IIO System Object
• Configure the AD-FMCOMMS3-EBZ analog front end and 	
  digital blocks through the IIO System Object

• Receive data frames from the SDR platform using the  
  IIO System Object 

• Detect and decode the ADS-B data
• Display the decoded ADS-B information

After an IIO System Object is constructed it must be configured 
with the IP address of the SDR system, the target device name 
and input/output channels sizes and numbers. Figure 3 pres-
ents an example on how to create and configure the MATLAB 
IIO System Object.

Figure 3. MATLAB IIO System Object creation and configuration.

The IIO System Object is then used to set the attributes of 
AD9361 and to receive the ADS-B signals. The attributes of 
AD9361 is set up based upon the following considerations:

Figure 4. MATLAB libiio sets the attributes of AD9361.

The sampling rate is quite straightforward with the AD9361-
based platforms. The transmit data rate normally equals 
the RX data rate, and ultimately depends on the baseband 
algorithm. In this example, since the decoding algorithm is 
designed to work with the sampling rate of 12.5 MSPS, the 
data rate of AD9361 is set accordingly. By doing this, the 
received samples can be applied directly to the decoding 
algorithm, without any additional decimation or interp- 
olation operations.
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control mode allows the baseband processor (BBP) to control 
the gain. Slow_attack mode is intended for slowly changing 
signals, while fast_attack mode is intended for waveforms that 

“burst” on and off. Gain mode highly depends on the strength 
of received signals. If the signal is too strong or too weak, it 
is suggested to use manual mode or slow_attack. Otherwise, 
fast_attack is a good option. In the case of ADS-B the fast_
attack gain mode provides the best results due to the bursty 
nature of these signals. Fast_attack mode is a requirement for 
this waveform since there is preamble, and the AGC needs to 
react fast enough so that the first bit is captured. There is a dif-
ference between attack time—the time it takes to ramp down 
gain—and decay time—how long it takes to increase gain—in 
the absence of a signal. The goal is to quickly turn down the 
gain, so that a valid “1” can be seen on the first bit, but not 
increase the gain between bit times. 

In the end, depending on how you set up the TX_LO_FREQ 
and RX_LO_FREQ, there are two ways of using this model: 
using precaptured data (RF loopback) and using live data off 
the air. 

Precaptured Data

In this case, we are transmitting and receiving some precap-
tured ADS-B signals using AD-FMCOMMS3-EBZ . These 
signals are saved in a variable called “newModeS.” 

Figure 7. Define input using precaptured ADS-B signals.

The requirement for this case is to make TX_LO_FREQ = 
RX_LO_FREQ, and it can be any LO frequency value that 
AD-FMCOMMS3-EBZ supports. Due to the nature of precap-
tured data, there is plenty of ADS-B valid data in there, so it is a 
good way to verify whether the hardware setup is appropriate. 

Live Data

In this case, we are receiving the real-time ADS-B signals over 
the air, instead of the signals transmitted by AD-FMCOM-
MS3-EBZ. According to ADS-B specification, it is transmitted 
at the center frequency of 1090 MHz, so the requirements for 
this case are: 
• RX_LO_FREQ=1090 MHz, TX_LO_FREQ far away from  
  1090 MHz in order to avoid interference.

• Use a proper antenna on the receiver side, which is capable    
  of covering the 1090 MHz band, such as an ADS-B Double 	
	 1/2 Wave Mobile Antenna9; using a poorly tuned or poorly 	
	 made antenna will result in a lack of range for your air radar.

With everything set up properly, in order to run the MATLAB 
model, simply use the following command: 
 [rssi1,rssi2]=ad9361_ModeS(‘ip’,’data source’,channel); 

where ip is the IP address of the FPGA board, and data source 
specifies the data source of the received signal. Currently,  
this model supports data sources of “precaptured” and “live.” 

Channel specifies whether signals are received using Channel 1 
or Channel 2 of the AD-FMCOMMS3-EBZ. 

For example, the following command receives the precaptured 
data on Channel 2: 
 [rssi1,rssi2]=ad9361_ModeS(‘192.168.10.2’,’pre-captured’,2); 

At the end of the simulation, you will get the RSSI values on 
both channels, as well as the result tables shown below:

 
Figure 8. Result table shown at the end of the simulation.

This result table shows the information of aircrafts appearing 
during the simulation. With a proper antenna, this model is 
able to capture and decode the aircraft signals in an 80 mile 
range with AD-FMCOMMS3-EBZ. Since there are two types 
of Mode S messages (56 μs or 112 μs), some messages contain 
more information than the other. 

When trying out this model with the real-world ADS-B signals, 
the signal strength is very important for successful decoding, 
so make sure to put the antenna in a good line of sight loca-
tion with the aircraft. The received signal strength can be seen 
by looking at the RSSI values on both channels. For example, 
if receiving the signals on Channel 2, the RSSI of Channel 2 
should be significantly higher than that of Channel 1. You can 
tell whether there is any useful data by looking at the spec-
trum analyzer. 

RF Signal Quality

For any RF signal, there needs to be a quality metric. For 
example, for signals like QPSK, we have error vector magni-
tude (EVM). For ADS-B signals, it isn’t enough to look at the 
output of a slicer for correct messages, as shown in Figure 8. 
We need a metric to define the quality of ADS-B/pulse position 
modulation, so that we can tell whether one setting is better 
than the other.

In ModeS_BitDecode4.m function, there is a variable 
diffVals, which can be used as such a metric. This variable 
is a 112 × 1 vector. It shows for each decoded bit in one 
Mode S message, how far is it away from the threshold. In other 
words, how much margin each decoded bit has with respect to 
a correct decision. It is obvious the more margin a bit has, the 
more confident the decoded result is. On the other hand, if the 
margin is low, it means the decision is in the border area, so it is 
very likely that the decoded bit is wrong.
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The following two figures compare the diffVals values obtained 
from the ADS-B receivers with and without the FIR filter. By 
looking at the y-axis, we find with the FIR filter, diffVals is larger 
regardless of whether it is at the highest point, lowest point, or 
average. However, when there is no FIR filter, the diffVals of 
several bits are very close to 0, which means the decoded results 
could be wrong. Therefore, we are able to verify that using a 
proper FIR filter improves the signal quality for decoding. 
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Figure 9. diffVals values obtained from the ADS-B receiver with an  
FIR filter.
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Figure 10. diffVals values obtained from the ADS-B receiver without 
FIR filter.

The MATLAB ADS-B algorithm using the IIO System Object 
can be downloaded from the ADI GitHub repository.10

Simulink ADS-B Algorithm Validation Using the IIO 
System Object

The Simulink model is based upon the model introduced in 
Part 2 of the article series.2 The detector and decoding piece 
comes directly from that model, and we add the Simulink IIO 
System Object to conduct the signal reception and hardware  
in the loop simulation. 

The original model works with sample time = 1 and frame  
size = 1. However, the Simulink IIO System Object works in  
a buffer mode—it accumulates a number of samples and then 
processes them. In order to make the original model work 
with the System Object, we added two blocks between them: 
unbuffer to make frame size = 1 and rate transition to make 
sample time = 1. By doing this, we can keep the original  
model intact.

The Simulink IIO System Object is set up as following. Simi-
lar to the MATLAB one, it creates a System Object, and then 
defines the IP address, device name, and input/output chan-
nels number and sizes related to this System Object.

Figure 12. Simulink IIO System Object.

Figure 11. Simulink model to capture and decode ADS-B signals.
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The input and output ports of this Simulink block correspond-
ing to an IIO System Object are defined through the properties 
dialog of the object’s block as well as through a configuration 
file that is specific to the targeted ADI SDR platform. The 
input and output ports are categorized as data and control 
ports. The data ports are used to receive/transmit buffers of 
continuous data from/to the target system in a frame-based 
processing mode, while the control ports are used to configure 
and monitor different target system parameters. The number 
and size of the data ports are configured from the block’s 
configuration dialog while the control ports are defined in the 
configuration file. The attributes of AD9361 are set up accord-
ing to the same factors as introduced in MATLAB model. All 
the theories and methods employed in the MATLAB model 
can be applied here.

Depending on how you set up the TX_LO_FREQ and  
RX_LO_FREQ, this Simulink model can be run in two modes: 
using precaptured data “DataIn” and using live data. Taking 
the precaptured data, for example, at the end of the simulation, 
we can see the following results in command window.

Figure 13. Results in command window at the end of simulation using 
precaptured data.

Instead of the result table shown in the MATLAB model, the 
results here are displayed in the text format.

The Simulink ADS-B model using the IIO System Object can  
be downloaded from the ADI GitHub repository.11 

Conclusion

This article talked about hardware in the loop simulation 
using the libiio infrastructure provided by Analog Devices. 
Using this infrastructure, the MATLAB and Simulink algo-
rithms for ADS-B signals detection and decoding can be 
validated with the real-world signals and real hardware. 
Since the attribute setting is very application and waveform 
dependent, what works for one waveform will not work for a 
different one. This is a critical step to ensure that the analog 
front end and the digital blocks of the SDR system are prop-
erly tuned for the algorithm and waveform of interest and 

that the algorithm is robust enough and works as expected 
with real life data acquired in varying environmental condi-
tions. Having a verified algorithm, it is now time to move to 
the next step, which consists of translating the algorithm to 
HDL and C code using the automatic code generation tools 
from MathWorks and integrating this code into the program-
mable logic and software of the actual SDR system. The next 
part of the article series will show how to generate code and 
deploy it in the production hardware and will talk about the 
results obtained by operating the platform with real-world 
ADS-B signals at an airport. This will complete the steps 
required to take an SDR system from prototyping all the way  
to production. 
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Versatile, Precision Single-Ended-to-
Differential Signal Conversion Circuit  
with Adjustable Output Common Mode 
Boosts System Dynamic Range
By Darwin Tolentino and Sandro Herrera

Differential signaling finds useful application in circuits where 
a large signal-to-noise ratio, high immunity to noise, and lower 
second harmonic distortion are desired, such as in driving high 
performance ADCs and high fidelity audio signal conditioning. 
A related previous article in Analog Dialogue, “Versatile, Low 
Power, Precision Single-Ended-to-Differential Converter,”1 
offers a greatly improved single-ended-to-differential circuit 
that has very high input impedance, 2 nA maximum input bias 
current, 60 μV maximum offset (RTI), and 0.7 μV/°C maximum 
offset drift. The improved performance is achieved by cascad-
ing an OP1177 in the feedback loop with the AD8476 that has a 
differential gain of 1. 
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A2

OP1177
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Figure 1. Improved single-ended-to-differential converter.

It is desirable, however, in many applications to have a greater 
output dynamic range, such as in signal conditioning of sensor 
outputs—for example, temperature and pressure. Being able 
to also adjust the common mode makes the circuit very con-
venient in interfacing to many ADCs where the reference 
determines full-scale range. 

Configuring the differential amplifier inside the loop to a gain 
greater than 1 increases the output dynamic range of the cir-
cuit (Figure 2). The output is given by the following equation:

VOUT, DIFF = VOP – VON = 2 (VIN ( 1 +
RF

RG
) – VREF)

When RG is left open the circuit has an overall gain of 2. The 
output of A1, OP1177, is given by the following:

VOUT, OP1177 =
VOUT, DIFF

GDIFF, A2
+ VREF

Notice that the VREF is always added to the output of the 
OP1177 limiting its output headroom. In most applications 
the VREF (the output common mode) is set at the center of the 
supplies for maximum output dynamic range. A differential 
amplifier inside the loop configured at a gain greater than 1, 
such as the ADA4940 in Figure 2 (gain of 2), reduces the output 
voltage of A1 by a factor of A2’s differential gain and helps 
avoid saturating the output of A1. Because the OP1177 has a 
typical output swing of 4.1 V at ±5 V supplies, the differential 
output voltage swing of the circuit in Figure 2 is about ±8 V at 
VREF set at 0. Configuring A2 to a gain of 3 further improves 
the output dynamic range and achieves the maximum output 
swing of the circuit. Another amplifier, the ADA4950 with 
available gains of 1, 2, and 3, may also be suitable for A2.
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Figure 2. Single-ended-to-differential converter with improved dynamic range.
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half of the reference or the midscale of the converter. The 
VOCM basically acts as another input along with VIN. The

values of the resistors should be chosen such that
 

R2

RF
=

R1

RG
. 

By superposition, when VIN is 0, the output is forced at the  
same value as VOCM. And since VOCM is the value that sets the 
output common mode, the differential output is zero. If  
R1 = RG and R2 = RF, the output voltages are given by:

VOP = (
RF

RG
) VIN + VOCM

VON = – (
RF

RG
) VIN + VOCM

VOUT, DIFF = 2 (
RF

RG
) VIN

Adjustable Output Common Mode

The circuit can be modified to make the output common mode 
adjustable and independent of the common mode of the input 
signal. This adds great flexibility and convenience for single- 
supply applications where the input is referred to ground and 
is needed to be converted to a differential signal with an ele-
vated common mode for ADC interfacing. 
This can be accomplished by adding two resistors at the input 
R1 and R2, where R2 is tied to VOCM. If desired, using a dual 
version of the input amplifier A1, the OP2177, allows for the 
second amplifier to be used as a buffer to the input for very 
low input bias current.
In the circuit in Figure 1, the input is referred to VREF. Referring 
to the circuit in Figure 3, the input is referred to ground taken 
directly and converted to differential output. The VOCM can 
now be adjusted to shift the common-mode output while the 
input remains referenced to ground. The VOCM can be tied to 
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(a) Improved single-ended-to-differential converter with adjustable common mode.
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(b) Input and output plots, VOP in red, VON in yellow, and input 
in blue. Common mode is at 0 V.

Figure 3.

(c) Input and output plots, VOP in red, VON in yellow, and input 
in blue. Common mode is at 2.5 V.
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Bandwidth and Stability

The two amplifiers form a composite differential output op 
amp in a servo-loop configuration. The OP1177/OP2177’s 
open-loop gain and the differential gain of the ADA4940 com-
bine for the total open-loop gain of the circuit that defines the 
overall bandwidth of the circuit. Their poles combine for addi-
tional phase shift in the loop. A higher gain for A2 reduces its 
bandwidth and may affect the stability of the overall circuit. 
The circuit designer must check the overall circuit frequency 
response and assess the need for compensation. A rule of 
thumb is that the combined open-loop gain over frequency 
must cross the unity gain at –20 dB/decade roll-off in order to 
ensure the stability of the feedback system. This is particularly 
more important in applications with the minimum gain (gain 
of 2) where the loop gain is at maximum and has the worst 
phase margin. A higher overall gain also improves stability by 
decreasing the bandwidth and increasing the phase margin 
of the feedback loop. Because the loop gain is decreased, it 
crosses the unity gain at a lower frequency. The loop gain is 
given by:

Loop Gain = (AOL, 1st Amp )(ADiff, 2nd Amp )β

β =
1
2

(
RG

RG + RF
)

The feedback factor β has 1
2 in the term because the output

is differential and the feedback is taken only from one of the 
differential outputs. The ADA4940 has a bandwidth of 50 MHz 
at a gain of 2, while the OP1177 has a unity-gain bandwidth of 
about 4 MHz. The circuit in Figure 3 is stable with a bandwidth 
of about 1 MHz, limited by the OP1177 and the closed-loop 
gain. As pointed out in the previous article, when the stability 
condition cannot be met using different amplifiers, a bandwidth 
limiting capacitor can be used as shown in Figure 3(a). The 
capacitor forms an integrator with RF inside the feedback loop 
and limits the bandwidth of the overall circuit to

1
2

×
1

2πRFCF

The capacitor and feedback resistor can be chosen such that 
the overall bandwidth is limited by the equation above.
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Four Quick Steps to Production:  
Using Model-Based Design for  
Software-Defined Radio 
Part 4—Rapid Prototyping Using the Zynq SDR Kit and Simulink Code  
Generation Workflow

By Mike Donovan, Andrei Cozma, and Di Pu

Introduction

The previous parts of this article series introduced the Zynq 
SDR rapid prototyping platform,1 presented the steps of 
using MATLAB and Simulink to develop an algorithm that 
can successfully process and decode ADS-B transmissions,2 
and showed how to verify the algorithm both in simulation 
and with live data acquired from the SDR platform.3 The ulti-
mate goal of all stages is to create a verified model that can be 
translated into C and HDL code and is ready to be integrated 
in the SDR platform’s software and hardware infrastructure. 

The Simulink model discussed in Part 2 of the series (“Mode 
S Detection and Decoding Using MATLAB and Simulink”)2 is 
a simulation model with enough hardware specific fidelity 
to verify that the design will successfully decode ADS-B 
messages. Using that model as a starting point, the final steps 
required to produce a working receiver design that runs on 
the Zynq SDR Rapid Prototyping Platform will be discussed. 
As in the previous articles in this series, the skills needed to 
develop this working design include: proficiency in MATLAB 
and Simulink, knowledge of the Zynq radio hardware, and 
software/hardware integration skills.

The steps to follow in this article include:
• Partition the Simulink model into functions that will target 

the FPGA fabric and the ARM® processing system on the 
Zynq SoC.

• Introduce design changes to the Simulink model to improve 
the performance of the generated HDL code.

• Generate the source HDL and C code for the ADS-B  
receiver algorithm.

• Integrate the generated source code in the Zynq radio  
platform design.

• Test the embedded design on the target hardware with  
live aircraft signals. 

At the end of this process, a fully verified SDR system will be 
produced, running C and HDL code automatically generated 
from a Simulink ADS-B model and receiving and decoding 
live commercial aircraft signals in real time.

Partitioning a Model into Hardware and Software 
Components

The first step in the process of generating the implementation 
code is to partition the design into the functionality that will 
run on the programmable logic and the ARM processing 
system of the Zynq SoC.

Partitioning usually begins by identifying the processing 
requirements of the different components of the design and 
the required execution rates and times. Components (such as 
data modulation/demodulation algorithms) that are compu-
tationally intensive and need to run in real time at the sample 
rate are best suited to be implemented in the programmable 
logic. Less intensive processing tasks (such as data decod-
ing and rendering, and system monitoring and diagnosis), 
are better suited for software implementation. Some other 
aspects to consider are: the data types and complexity of the 
operations and the precision of the input and output data. All 
the operations that target the programmable logic work on 
fixed-point, integer, or Boolean data types. In the case of more 
complex operations such as trigonometric functions or square 
roots, approximations are used to implement them efficiently 
using the available hardware resources. All these constraints 
result in precision loss that can adversely affect system func-
tionality if not properly assessed and implemented. However, 
the components that target the processing system can work on 
floating-point numbers and implement operations of any com-
plexity with the highest degree of fidelity, but usually at the 
expense of slower execution speed.

Using those constraints as a guideline, the partitioning of the 
ADS-B decoding algorithm is fairly obvious. The functionality 
in the Detector block in the ModeS_Simulink_Decode.slx model, 
which includes the front-end processing of the I/Q samples all 
the way through to the checksum computation, is well suited 
for implementation on the programmable logic of the Zynq SoC 
(Figure 1). The decoding of the message bits, which is imple-
mented in the Modified Buffer and Decode and Display blocks, 
is easily implemented in the processing system. 

Figure 1. ModeS_Simulink_Decode.slx: FPGA and ARM  
processor partition.

http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogdialogue/cd/vol46n2.pdf#page=10
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19
http://www.analog.com/library/analogDialogue/cd/vol46n4.pdf#page=19


 Analog Dialogue Volume 49 Number 420

• The block names, port names, signal names, data types,  
and complexity used in the model are preserved in the  
generated code. 

Links between the model and source code allow a designer 
to click on a block in the Simulink model and automatically 
navigate to the generated HDL code. Similarly, there are 
hyperlinks in the generated code that will open the Simulink 
model and highlight the block associated with that segment 
of code.

Figure 3. Source HDL code for ModeS_ADI_CodeGen.slx.

Optimizing the ADS-B Model to Produce HDL Code 
with a Higher Clock Speed

Although the ModeS_ADI_CodeGen.slx model successfully 
generates HDL code, it is rare that a designer will not want to 
improve the initial results. Designers typically need to meet 
speed and area constraints, which usually involves optimizing 
the initial Simulink model to achieve the desired results. A 
major advantage of Simulink and code generation is that the 
designer can make those optimizations in the model, run a 
simulation to ensure the changes do not break the algorithm, 
and then re-generate the HDL code. This is usually much 
simpler and less error prone than making changes in the HDL 
source code and potentially breaking the algorithm.

In the case of this design, the HDL code generated by the 
model easily fit on the available FPGA fabric, but ran at a rel-
atively low clock rate. This is common in many initial designs. 
A built-in analysis tool in HDL Coder shows that the critical 
path in the model extended from the I/Q sample input to the 
first register in the CalcCRC subsystem. Inserting pipeline 
registers in the design is one common method to increase the 
clock speed (Figure 4). Pipelining shortens the path between 
signal operations at the expense of adding delay to the overall 
processing. This trade-off is usually acceptable since a slight 
delay is typically a small price to pay for higher clock rates. 

Figure 4. Pipeline registers inserted into detector design.

Readers interested in following along with the Simulink model 
can find the files on the Analog Devices GitHub repository.4

Generating HDL Code from a Simulink Model

The Detector block in the Mode S Decoder model (Figure 2) 
is comprised of several subsystems: CalcSyncCorr, CalcNF, 
SyncAndControl, BitProcess, CalcCRC, and FameDetect. HDL 
Coder from MathWorks5 is used to produce the source HDL 
code for this design.

Figure 2. Detector block used for HDL code generation.

A Simulink model must satisfy several conditions to success-
fully generate HDL code using HDL Coder. A few of the most 
significant requirements are:
• Use blocks that support HDL code generation. HDL Coder 

supports code generation for approximately 200 Simulink 
blocks.6 In the detector design, all the blocks, including  
the Stateflow diagram and the Digital Filter blocks, support 
HDL code generation.

• Use fixed-point data types. In the detector design, the  
signals use 12-bit, 24-bit, and Boolean data types. The 12-bit 
data type matches the bit width of the analog-to-digital  
converters on the Analog Devices AD9361 transceiver.

• Use scalar or vector signals. Vector signals can be used  
for multichannel signals or resource sharing.

• Avoid algebraic loops in the model. The HDL Coder  
software does not support HDL code generation for models 
in which algebraic loop conditions exist. 

The ModeS_Simulink_Decode.slx model did not satisfy all 
these conditions, so the part of the CalcCRC block that com-
pares the received bits to the computed checksum was moved 
outside the Detector block and ultimately implemented in 
C. The resulting model, ModeS_ADI_CodeGen.slx, was used 
to generate the HDL code. In contrast to a manual coding 
process, it only takes a couple minutes to generate several 
thousand lines of HDL code. The source code produced by 
HDL Coder is a bit true, cycle accurate version of the Simulink 
model. This is one of the major productivity gains in using 
model-based design; the generated code is an accurate transla-
tion of the Simulink model. 

In addition, the code is designed to be readable and traceable 
so engineers can easily map the generated code to their design 
model. This is achieved in several ways (Figure 3):

• The hierarchy of the model is preserved in the HDL code 
files that get generated. In this example, the top level block 
is named Detector.vhd, and the subsystems at the next level 
of hierarchy are named CalcNF.vhd, Bit_Process.vhd, and 
so on. 

http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html
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The pipeline registers in between the subsystems help improve 
the clock rate of the design, but better clock rates can be 
achieved by making favorable architecture choices for the Digi-
tal Filter blocks. Many of the Simulink blocks have architecture 
choices that enable a designer to optimize the design for speed 
or area. In the case of the digital filters used for the calculation 
of the noise floor and the preamble correlation (Figure 5), 
pipelining the output multipliers can shorten the critical path 
within the digital filter and improve the design clock rate.

Figure 5. HDL block choices for the Digital Filter block.

After making these two simple pipeline changes, the clock 
rate of the generated HDL code exceeded 140 MHz. This is 
a useful lesson for engineers using code generation tools: 
applying a little knowledge of hardware design principles to 
the code generation models can have a significant impact on 
the results of the generated code. Further optimization of this 
design was possible, but deemed unnecessary, as the HDL 
code easily met the relatively simple timing and resource 
objectives for this design.

In a traditional radio design process, a large percentage of 
the development time is spent testing and debugging the 
HDL code. In the model-based design approach, used in this 
example, more time was spent on developing the simulation 
and code generation models. However, there was a signif-
icant savings in development time because the generated 
source code identically matched the validated behavior of the 
simulation; only a minimal amount of debugging had to be 
performed on the embedded hardware.

Generating C Code with MATLAB Coder7

Similar to HDL code generation, there are several conditions 
that must be satisfied in order to generate C code for the 
decoding functionality of this design. The two most important 
requirements are:

• Use functions supported by MATLAB Coder. MATLAB 
Coder supports most of the MATLAB language and a wide 
range of toolboxes,8 but you may unknowingly use functions 
that are not supported for code generation. MATLAB Coder 
provides tools, such as the Code Readiness Tool,9 to help 
find any unsupported functions.

• Ensure that once a MATLAB variable is declared, its size 
and type do not change. This is necessary to make sure that 
memory allocations are made correctly in the generated code.

The easiest way to generate C code from MATLAB is to open  
a new MATLAB Coder Project, which can be accessed from  
the Apps tab on the MATLAB Toolstrip. The final output of  
the MATLAB Coder Project can be seen in Figure 6.

Figure 6. MATLAB Coder project for DecodeBits_ADI.m.

In this project, the top level MATLAB function is DecodeBits_ 
ADI.m. The user needs to specify the data types and sizes 
required by this function as input arguments. Figure 6 shows 
that the input arguments of this function are 112 Boolean  
data bits and two double precision values (to provide the 
user’s current latitude and longitude). The output sizes and 
data types for DecodeBits_ADI.m (such as *nV for North  
Velocity, *eV for East Velocity, and *alt for altitude) are auto-
matically determined by MATLAB Coder. MATLAB Coder 
finds all other functions called by the top level entry point 
file DecodeBits_ADI.m, including AltVelCalc_ADI.m and  
LatLongCalc_ADI.m, and then generates the source C code  
for the entire decoding algorithm.

The C code generated by MATLAB Coder is a fairly straight-
forward translation of the MATLAB functionality to the  
C language. As in the case of HDL code generation, the source 
code produced by MATLAB Coder is readable and traceable, 
so engineers can easily identify the relationship between the 
original MATLAB code and the generated C code. The C code 
from this example can be produced from the MATLAB  
command prompt and compiled by any ANSI C compiler. 

HDL Code Platform Deployment

After partitioning the design into the functionalities that will 
run on the programmable logic and processing system of the 
Zynq, optimizing the design for HDL and C code generation, 
and verifying in simulation that the optimized design is func-
tional and meets the performance criteria, it is now time to 
deploy the design on to the actual SDR hardware platform and 
verify the system’s functionality under real-world conditions. 

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html
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For this purpose, an Analog Devices AD-FMCOMMS3-EBZ 
SDR platform10 connected to a Xilinx ZC706 board11 running  
the Analog Devices Linux distribution is used.

The AD-FMCOMMS3-EBZ board is accompanied by an  
open-source Vivado HDL reference design provided by 
Analog Devices.12 This reference design contains all the IP 
blocks needed to configure and transfer data to and from  
the AD9361 transceiver on the AD-FMCOMMS3-EBZ board. 
Figure 7 presents a block diagram of the HDL reference design. 

The AD9361 IP core implements the LVDS receive and trans-
mit data interfaces between the AD9361 transceiver chip and 
the Zynq device, as well as the data interfaces to the rest of 
the design. DMA blocks are used for high speed data trans-
fer between the AD9361 IP and the DDR memory. The data 
interface to the AD9361 IP block consists of four data lines for 
receive and four data lines for transmit, corresponding to the 
I&Q data for the two receive and two transmit channels of the 
AD9361. Each data line is 16 bits wide. To make the data trans-
fers inside the system more efficient, the receive and transmit 
data is packed into 64-bit wide buses that are managed by the 
DMA blocks. Pack and unpack blocks are used to connect the 
16-bit parallel data lines of the AD9361 IP to the DMAs.

Deploying the HDL code of the ADS-B model into the existing 
HDL infrastructure of the SDR platform requires creating an 
IP core that can be inserted into the data path; this is done to 
process the received data in real time and pass the processed 
data to the software layer. The deployment process can prove 
to be a difficult and time consuming task because it requires 
deep understanding of the HDL design’s functionality and also 
adequate HDL programming skills. To simplify these steps, 
MathWorks includes a utility in HDL Coder called HDL Work-

flow Advisor, and Analog Devices provides a board support 
package (BSP) for the AD-FMCOMMS2-EBZ/AD-FMCOM-
MS3-EBZ SDR platform and Xilinx ZC706 board.13

The HDL Workflow Advisor guides the user through the steps 
needed to generate HDL code from a Simulink model. The 
user can choose from a selection of several different Target 
Workflows, including “ASIC/FPGA,” “FPGA-in-the-Loop,” 
and “IP Core Generation.” Target Platform selections include 
Xilinx Evaluation Boards, Altera Evaluation Boards, or the 
FMCOMMS2/3 ZC706 SDR Platform. The rest of the code  
generation and target integration process can then be auto-
mated by the HDL Workflow Advisor.

The BSP provided by Analog Devices is a collection of board 
definitions and reference designs14 that provide the HDL 
Workflow Advisor the required information and tools to  
generate an IP block compatible with the existing HDL  
reference design, and also insert the generated IP into the  
HDL reference design. Figure 8 shows how to configure  
the Workflow Advisor to generate the IP core for the ADS-B 
model. Please note that the IP Core Generation workflow 
must be selected, targeting the Analog Devices AD-FMCOM-
MS3-EBZ SDR platform and the Xilinx ZC706 board.

Figure 8. Workflow Advisor configuration.

Figure 7. HDL reference design block diagram.
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The next step is to configure the interfaces between the IP and 
the reference design. On the input side, the model accepts raw 
I&Q samples; this connects the model’s input ports directly 
to the AD9361 receiver data ports. Of all the model’s output 
signals, the only ones of interest at this stage are the data, 
frame_valid, and bit_clk signals. The data and frame_valid 
are 16 bits wide and are clocked by the bit_clk signal. These 
signals can be connected to the “DUT Data x Out” interfaces 
of the BSP, which means they will receive direct access to 
the DMA blocks; data can then be transferred into the DDR, 
which is accessible by the software layer. The bit_clk signal 
is connected to the “DUT Data Valid Out” BSP interface and 
controls the DMA sampling rate. Figure 9 shows how the HDL 
interface must be configured. 

Figure 9. HDL interface configuration.

Once the target interface has been defined, Step 2 and Step 3 
of the HDL Workflow Advisor can be left in their default 
state and the project generation process can be started by 
running Step 4.1 (Create Project). The result of this step is a 
Vivado project that has the ADS-B IP core integrated into the 
Analog Devices HDL reference design. Figure 10 depicts the 
connections between the ADS-B IP core and the rest of the 
blocks in the design. 
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Figure 10. ADS-B IP connections in the HDL reference design.

Generating the bitstream from the Vivado project concludes 
the HDL integration process, but the final goal is to have 
Linux running on the system. For this purpose, after generat-
ing the bitstream, a Linux boot file can be created by following 
the standard Xilinx SDK first stage boot loader (fsbl) and 
Linux boot file creation process. The Linux device tree and 
image files corresponding to the newly created HDL design 
are distributed with the AD-FMCOMMS3-EBZ BSP. All files 
must be copied together with the Linux boot file on the boot 
partition of the SD card; this is used to store all files needed 
to run the Analog Devices Linux Distribution on the Xilinx 
ZC706 board.

C Code Platform Deployment

Now that the ADS-B HDL IP has been integrated into the SDR 
platform’s HDL design, and the Linux SD card is created, it is 
time to implement the software application that decodes the 
ADS-B data. This application is based on the C code generated 
in Section 5 and performs the following tasks:

• Configures the AD9361 for ADS-B signals reception.

• Reads the data from the ADS-B IP core.

• Detects the valid ADS-B frames in the read data.

• Decodes and displays the ADS-B information.

The easiest way to implement Task 1 and Task 2 is to use the 
functionality provided by the libiio library.15 This library  
provides interface functions that enable users to easily con-
figure the AD9361 as well as receive and transmit data. The 
configuration sequence sets the following system parameters:

• LO frequency—1.09 GHz

• Sampling rate—12.5 MHz

• Analog bandwidth—4.0 MHz

• AGC—fast attack mode

Besides the parameters mentioned above, a digital FIR filter 
with data rate of 12.5 MSPS, a pass band frequency of  
3.25 MHz, and a stop band frequency of 4 MHz is loaded into 
the AD9361 to ensure that the received data contains only  
the band of interest. The system parameters and the design  
methodology of this FIR filter are described in Part 3 of this 
article series.3

The output data of the ADS-B IP is transferred into the  
system’s DDR memory by the DMA block. The libiio library 
provides the following functions: position the data acquired 
from the ADS-B IP into a memory buffer with a specified size; 
wait for the buffer to be filled; gain access the buffer through 
pointers. Once the buffer is filled, the ADS-B decoding algo-
rithm can process the data. The ADS-B IP core has two output 
channels: one channel corresponding to the ADS-B bitstream, 
and the other channel indicating where a valid data frame 
ends in the bitstream. Both channels contain the same data 
rate and are synchronized with each other. A sample equal 
to “1” in the valid channel denotes the last bit of a valid frame 
in the data channel. By parsing both channels, the software 
can extract the valid ADS-B data frames from the bitstream 
and pass the data to the decoding function generated by 
MATLAB Coder. The decoding function uses the ADS-B data 
frame and the latitude and longitude of the current location as 
input when computing the aircraft’s coordinates. The current 
latitude and longitude are specified as parameters of the appli-
cation. The decoded ADS-B data is displayed similarly to the 
Simulink model. 

The ADS-B data decoding application is built under Linux using 
a makefile. The source code of the application and the makefile 
can be found on the Analog Devices GitHub repository.16

This completes the platform deployment steps for both the 
HDL and C code generated from the ADS-B model using HDL 
Coder and MATLAB Coder from MathWorks. The next step is 
to verify the system’s functionality and evaluate the results.

System Validation

To validate the system’s functionality, begin by creating a 
loopback connection between one receive and one transmit 
port of the AD-FMCOMMS3-EBZ board and transmit the 
same ADS-B signal that was used during simulation. By 
receiving and decoding this data, it can be verified that the 
output of the algorithm running on the SDR platform matches 
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the simulation results. Figure 11 displays the output of the 
ADS-B data decoding application; the results are identical to 
those shown in Part 3 of the article series for HIL simulation 
using precaptured data. This provides confidence that the 
system is running as expected and is ready to be used with 
real-world data.

Figure 11. Loopback results.

For the actual field test, the SDR receiver was placed  
outside the MathWorks headquarters in Natick, MA, and  
compared against ADS-B information decoded by the system 
with the data provided by airplane live tracking websites 
(such as flightradar24.com). It was observed that the system 
was able to decode data received from the airplanes within 
the antenna’s line of sight. Figure 12 shows a comparison 
between the aircraft information detected by the system and 
the online airplane tracking data; the decoding algorithm 
displays the correct aircraft ID, altitude, speed, and latitude/
longitude coordinates.

Figure. 12 Live data results.

Conclusion
This article concludes the four part article series demonstrat-
ing how model-based design can be used to take an SDR 
system all the way from simulation to production. The series 
addressed all the stages of developing a “hardware ready” 
ADS-B Simulink model. We designed a simulation model 
to prove we could decode recorded ADS-B messages, and 
then validated the model with live data acquired from the 
SDR hardware platform. This validated not only the model 
but also the SDR platform’s settings for the analog front end 
and digital receiver chain; it also gave us confidence that the 
platform was properly tuned for receiving ADS-B signals. 
Afterward, we partitioned the model into the functionalities 
that run on the Zynq processing system and programmable 
logic, and optimized the model for automatic C and HDL code 
generation. Finally, we integrated the C and HDL code into 
the SDR design and validated the system’s functionality with 
live commercial air traffic. The end result is a design process 
that uses modeling and code generation tools from Math-
Works, together with the Zynq SDR platform, to create a fully 
functional SDR system.

This example system shows that the model-based design 
workflow in combination with the Analog Devices AD9361/
AD9364 integrated RF Agile Transceiver programmable radio 
hardware can help design teams develop working radio proto-
types more quickly and less expensively than using traditional 
design methodologies. This prototype was built by the authors 
in a relatively short time with minimal obstacles, drawing on 
the following resources:

• The ability to build a model of an ADS-B receiver in 
MATLAB and Simulink that can generate usable C and 
HDL source code. 

• Functions within HDL Workflow Advisor to automate 
many of the hardware/software integration steps. 

• Libraries (such as libiio) that assist in the remaining  
integration steps to deploy the SDR prototype.

• Product help and technical support that are available  
from MathWorks and Analog Devices.

ADS-B is a relatively simple standard and provides a good test 
case to demonstrate this approach to building an SDR proto-
type. Engineers who adopt model-based design and the  
Zynq SDR platform should be able to follow the workflow 
presented in this series of articles to develop much more com-
plex and powerful QPSK-, QAM-, and LTE-based SDR systems.

http://www.flightradar24.com/
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html
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New Complete, High Resolution,  
and Multifunctional Bipolar DACs:  
an Easy to Use, Universal Solution
By Estibaliz Sanz Obaldia and Junifer Frenila

With current market dynamics constantly driving toward 
shorter design cycles, enhanced system functionality, and 
more portable end systems, the need for new methodology  
to simplify these challenges without adding design com-
plexity is a must. This article will address some key system 
challenges for control and measurement that are topical across 
a multitude of applications, including data acquisition systems, 
industrial automations, programmable logic controllers, and 
motor controls. It will explore the latest advances in bipolar 
digital-to-analog converter (DAC) architectures and how  
these topologies can address end system challenges, such  
as by adding even more functionality and intelligence within 
the same or reduced space. This article will explore discrete 
and more functionally complete solutions. Finally it will  
outline a number of alternatives to traditional design topol-
ogy that support higher flexibility in design reuse and 
system modularity.

It should be noted that the following figures are not the actual 
schematics, but illustrations on how applications could be 
achieved with multifunctional DACs and other components. 
While it does not include aspects such as circuits for power 

supplies, bypassing, and other passive components, these  
diagrams illustrate how applications can be implemented  
in general.

Data Acquisition Systems

Data acquisition systems (DAQs) are used to measure an 
electrical or physical singularity such as voltage, current, or 
pressure with a microcontroller or microprocessor (MPU) for 
data processing capability. DAQs consist of sensors, amplifiers, 
data converters, and a controller with embedded software that 
controls the acquisition process.

In a process control application, it is critical that the sensor 
is sensitive enough to preserve the quality of the signal to 
be measured. But even if the sensor is sensitive enough, the 
signal chain errors such as gain and offset could still interfere 
with the signal quality. High performance applications employ 
DACs in automatic calibration of the conditioning circuits in 
data acquisition systems. Figure 1 shows the block diagram 
of a pressure sensing system. It illustrates how bipolar DACs 
such as AD5761R and its product family can be used in an 
automated gain and offset calibration scheme. 

Figure 1. Automated calibration of a pressure sensing system.
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measure the temperature of industrial equipment such as a 
laser machine or heavy duty motor. The voltage is gained  
up, filtered, and sent to an integrated analog front-end (AFE) 
IC for conversion and the digital data is passed into the pro-
cessor for analysis. Based on the processed data, the processor 
sends signal to a control DAC, which is also fully isolated, to 
drive an industrial fan, activate a cooling apparatus such as a 
Peltier, or open the valve of a water cooling system. Addition-
ally, the user can input an override command via a control 
interface device.

The same system can be adopted for pressure and vibration 
measurement and control. A pressure sensor system can typ-
ically be used for oil and chemical tank monitoring, while a 
gyroscope system can typically be used for vibration monitor-
ing of fast moving machine heads. These applications share the 
same AFE that is fully isolated from the external environment.

The AD5761R, a high voltage, high resolution, bipolar DAC 
with a low drift internal reference and software-selectable 
output range is a practical replacement for multiple DACs or 
a single multiplexed DAC. It provides unipolar and bipolar 
voltages while maintaining the same accuracy with an option 
of overrange output. This bipolar DAC supports the different 
needs that actuators require, including the adjustment of the 
control unit through software avoiding hardware modifications. 

AD5761R and its product family come in small packages—  
a 3 mm × 3 mm, lead frame chip scale package (LFCSP) and 
16-lead thin shrink outline package (TSSOP)—and support a 
wide operating temperature range of –55°C to +125°C. This 
new industrial control approach essentially helps to minimize 
board space and reduce cost.

The precision bridge transducer receives an excitation signal 
from a pressure sensor and produces an output voltage.  
Due to the low amplitude of the transducer’s signal, an  
instrumentation amplifier is typically used as a signal multi-
plier. This low amplitude signal is susceptible to errors. Such 
errors are usually contributed by drift due to changes in tem-
perature, parasitic errors across circuit boards, and tolerances  
of passive components. 

With the use of AD5761R, gain and offset calibrations can be 
implemented into the system to dynamically correct the errors 
as the system operates over time. Depending on the level of 
adjustment and the polarity required, a complete, high reso-
lution, and multifunctional bipolar DAC can greatly simplify 
the calibration process. The AD5761R can be programmed 
through a high speed, 4-wire SPI interface with a serial data 
output (SDO) line available to facilitate daisy-chain and read-
back operation. 

Industrial Automation

The applications for industrial automation are diverse. But 
regardless of what applications there may be, the function-
ality and performance of such automated systems lie in their 
signal acquisition and control units. On the acquisition side, 
the sensitivity of the sensors, adaptability of the conditioning 
circuits, and the speed of acquiring correct information from 
low level signals is very important. On the control side, the 
flexibility to adapt to the requirement of various actuators  
and drivers is vital. 

Figure 2 shows an example of an industrial automated system. 
A thermocouple with cold-junction compensation is used to 
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Programmable Logic Controllers 

Programmable logic controllers (PLCs) incorporate power sup-
plies, central processing units, and several analog and digital 
I/O modules in order to control, actuate, and monitor complex 
machine variables. PLCs are widely used across industries and 
they offer extended temperature ranges, immunity to electrical 
noise, and resistance to vibration and impact. A fundamental 
process control system building block is shown in Figure 3. An 
input signal reporting on the status of a process variable is mon-
itored via the input module and transferred to the MCU to be 
analyzed. Based on the results of this analysis, a response con-
taining the necessary arrangements is managed by the output 
module to control the devices in the system.  

Analog Input
Modules 

Analog Output
Modules 

Controls,
Drivers,

Actuators

Various Sensors
and Input Signals 

MCU

Digital
Output

Digital
Input

Figure 3. Process control system building block.

Figure 4 shows a more complete industrial PLC system 
including an embedded controller/processor as the main 
system controller interfacing to the fully isolated input and 
output modules. Excluding the power supply module, the 
system is divided into four subsystems that differentiate the 
analog input, analog output, digital input, and analog output 

modules. Several types of sensors are deployed to acquire 
analog signals of different amplitudes and frequencies. These 
signals need to be preprocessed and converted into digital 
form for further analysis. Programmable gain amplifiers con-
dition the small input signals such that they can be accurately 
measured and converted into their digital representation by 
analog-to-digital converters (ADCs). Isolation is required to 
protect the controller or processor from possible unexpected 
overvoltage coming from the field, for which optical or inte-
grated isolators are placed among the processor and the input 
and output modules.

The accuracy and resolution requirements for the input and 
output modules are considerably distinct. While the input mod-
ules are required to monitor highly precise and accurate data 
acquisitions from the process, the output modules essentially 
adjust the output with a 16-bit resolution and accuracy in high 
end applications. As a result of these conditions, Σ-Δ ADCs 
are commonly used for input modules in PLC systems from 
which a wide range of isolated, single-channel/multichannel, 
and simultaneous sampling ADCs are available in the market. 

Output modules may offer precision voltage DACs, precision 
current DACs, or a combination of both. Several methods 
allow current and voltage levels to be generated for the PLC’s 
analog output. The evolution of precision bipolar DACs such  
as the AD5761R, providing extra functionality and a high level 
of integration, significantly benefit PLC systems from reduc-
tion of system complexity, board size, and cost.

Figure 4. Block diagram of a complete PLC system.
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Motor Controls 

DACs perform an integral function in motor control loops; 
for example, in infusion pump systems. Infusion pumps are 
widely used in human healthcare to provide medical treat-
ment to patients of all ages. The role of an infusion pump is to 
deliver fluids, medication, or supplements to the patient’s car-
diovascular system in an intermittent or continuous procedure.

Although infusion pumps require a qualified user to program 
the specific parameters for the treatment, the implicated 
advantages over manual administration influence increas-
ing user confidence. The capability of these instruments to 
accurately deliver tiny dosages at scheduled intervals in a 
self-operated mode negates the need for a nurse or doctor to 
manually control the flow of fluid to the patient. Doctors and 
medical administrators can depend on the safety of infusion 
pump systems to display real-time system information on 
dosage limitations for titration safety, to prevent overdose,  
as well as the physical delivery mechanism itself to be reliable 
and accurate.

During operation, the microcontroller receives the monitored 
speed and direction signals from the dc motor, which are 
analyzed and adjusted (if required) to meet the setpoint. The 
DAC in the feedforward path provides the adjustments to the 
system while the ADC in the feedback path monitors the effect 
of each adjustment. The desired setpoint voltage set by the 
DAC is amplified through the driver network to provide the 
required drive current to the dc motor.

ADI offers high performance analog and mixed-signal process-
ing solutions for detecting, measuring, and controlling sensors 
and actuators used in chemistry analyzers, flow cytometers, 
infusion pumps, dialysis equipment, ventilators, catheters, and 
many more medical instruments. In particular, the AD5761R,  
a high resolution, bipolar DAC with eight available software 
selectable output ranges while maintaining a common accu-
racy is an ideal part for motor control applications, supporting 
the different voltage swings needed by motors.
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Conclusion

DACs play a key role in determining the performance and 
accuracy of many control systems and simple conversion  
circuits, as well as other complex applications. The AD5761R 
and its product family, which is a complete 16-bit resolution 
precision bipolar DAC with multiple programmable output 
ranges, are suitable for the above applications. The highly  
configurable ranges of the AD5761R family of DACs (0 V to  
5 V, 0 V to 10 V, 0 V to 16 V, 0 V to 20 V, ±3 V, ±5 V, ±10 V,  
and −2.5 V to +7.5 V; 5% overrange), make this family of  
DACs a one size fits all solution for data acquisition systems, 

industrial automation, programmable logic controllers, and 
motor controllers. The integration offered within the AD5761R 
product family, including output buffer and a buffered  
2 ppm/°C internal reference, significantly simplifies board 
design, reduces board size, and minimizes power consump-
tion and cost. 
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