
1

Fixed-Point Arithmetic

2

Fixed-Point Notation

 A K-bit fixed-point number can be
interpreted as either:
 an integer (i.e., 20645)
 a fractional number (i.e., 0.75)

2

3

Integer Fixed-Point Representation

 N-bit fixed point, 2’s complement integer
representation

X = -bN-1 2N-1 + bN-2 2N-2 + … + b020

 Difficult to use due to possible overflow
 In a 16-bit processor, the dynamic range is
 -32,768 to 32,767.

 Example:
 200 × 350 = 70000, which is an overflow!

4

Fractional Fixed-Point Representation

 Also called Q-format
 Fractional representation suitable for DSP

algorithms.
 Fractional number range is between 1 and -1
 Multiplying a fraction by a fraction always

results in a fraction and will not produce an
overflow (e.g., 0.99 x 0.9999 less than 1)

 Successive additions may cause overflow
 Represent numbers between

 -1.0 and 1 − 2−(N-1), when N is number of bits

3

5

Fractional Fixed-Point Representation

 Equivalent to scaling
 Q represents the “Quantity of fractional bits”
 Number following the Q indicates the number of bits that are used

for the fraction.
 Q15 used in 16-bit DSP chip, resolution of the fraction will be 2 –̂15

or 30.518e–6
 Q15 means scaling by 1/215

 Q15 means shifting to the right by 15

 Example: how to represent 0.2625 in memory:
 Method 1 (Truncation): INT[0.2625*215]= INT[8601.6]

= 8601 = 0010000110011001
 Method 2 (Rounding): INT[0.2625*215+0.5]= INT[8602.1]

= 8602 = 0010000110011010

6

Truncating or Rounding?
 Which one is better?
 Truncation

 Magnitude of truncated number always less than or equal to the original value
 Consistent downward bias

 Rounding
 Magnitude of rounded number could be smaller or greater than the

original value
 Error tends to be minimized (positive and negative biases)

 Popular technique: rounding to the nearest integer

 Example:
 INT[251.2] = 251 (Truncate or floor)
 ROUND [251.2] = 252 (Round or ceil)
 ROUNDNEAREST [251.2] = 251

4

7

Q format Multiplication

 Product of two Q15 numbers is Q30.

 So we must remember that the 32-bit product has two bits in front of the
binary point.

 Since NxN multiplication yields 2N-1 result

 Addition MSB sign extension bit

 Typically, only the most significant 15 bits (plus the sign bit) are stored
back into memory, so the write operation requires a left shift by one.

Q15 Q15

X

16-bit memory

15 bits15 bits

Sign bit
Extension sign bit

8

General Fixed-Point Representation

 Qm.n notation
 m bits for integer portion
 n bits for fractional portion
 Total number of bits N = m + n + 1, for signed

numbers
 Example: 16-bit number (N=16) and Q2.13 format

 2 bits for integer portion
 13 bits for fractional portion
 1 signed bit (MSB)

 Special cases:
 16-bit integer number (N=16) => Q15.0 format
 16-bit fractional number (N = 16) => Q0.15 format; also

known as Q.15 or Q15

5

9

General Fixed-Point Representation

 N-bit number in Qm.n format:

 Value of N-bit number in Qm.n format:
n

o

N

N

N

N

N

N
bbbbb 2/)2...222(1

3

3

2

2

1

1 +++++!
!

!

!

!

!

!

n

o

N

N

N

N

N

N
bbbbb

!!

!

!

!

!

! +++++!= 2)2...222(1

3

3

2

2

1

1

nl

N

l

l

m

N
bb

!
!

=

! "+!= 22

2

0

1

{ onnmnmn
bbbbbb

N

111
...... .

1

!!++

!

Fixed Point

10

Some Fractional Examples (16 bits)

Fraction (15 bits)SInteger (15 bits)S
.

Binary pt position

.Q15.0 Q.15 or Q15

Remaining 14 bitsUpper 2 bits
.

Q1.14

Used in DSP

6

11

How to Compute Fractional Number

bn-1bn-2…b0b’sb’m-1…b’0
.

Q m.n Format

-2mb’s+…+21b’1+20b’0+2-1bn-1 + 2-2bn-2…+2-nb0

Examples:

1110 Integer Representation Q3.0: -23 + 22 + 21 = -2

11.10 Fractional Q1.2 Representation: -21 + 20 + 2-1 = -2 + 1 + 0.5 = -0.5

 (Scaling by 1/22)

1.110 Fractional Q3 Representation: -20 + 2-1 + 2-2 = -1 + 0.5 + 0.25 = -
0.25 (Scaling by 1/23)

12

General Fixed-Point Representation

Min and Max Decimal Values of Integer and Fractional 4-Bit Numbers (Kuo & Gan)

7

13

General Fixed-Point Representation

• Dynamic Range
• Ratio between the largest number and the smallest

(positive) number
• It can be expressed in dB (decibels) as follows:
 Dynamic Range (dB) =
• Note: Dynamic Range depends only on N

• N-bit Integer (Q(N-1).0):
 Min = 1; Max = 2N-1 - 1 => Max/Min = 2N-1 - 1
• N-bit fractional number (Q(N-1)):
 Min = 2-(N-1); Max = 1-2-(N-1) => Max/Min = 2N-1 – 1
• General N-bit fixed-point number (Qm.n)
 => Max/Min = 2N-1 – 1

)/(log20 10 MinMax

14

General Fixed-Point Representation

Dynamic Range and Precision of Integer and Fractional 16-Bit Numbers (Kuo & Gan)

8

15

General Fixed-Point Representation

• Precision
• Smallest step (difference) between two consecutive

N-bit numbers.
 Example:
 Q15.0 (integer) format => precision = 1
 Q15 format => precision = 2-15

• Tradeoff between dynamic range and precision
 Example: N = 16 bits
 Q15.0 => widest dynamic range (-32,768 to
 32,767); worst precision (1)
 Q15 => narrowest dynamic range (-1 to +1-); best
 precision (2-15)

16

General Fixed-Point Representation

Dynamic Range and Precision of 16-Bit Numbers for Different Q Formats (Kuo & Gan)

9

17

General Fixed-Point Representation

Scaling Factor and Dynamic Range of 16-Bit Numbers (Kuo & Gan)

18

General Fixed-Point Representation

• Fixed-point DSPs use 2’s complement fixed-
point numbers in different Q formats

• Assembler only recognizes integer values
• Need to know how to convert fixed-point number

from a Q format to an integer value that can be
stored in memory and that can be recognized by the
assembler.

• Programmer must keep track of the position of the
binary point when manipulating fixed-point numbers
in asembly programs.

10

19

How to convert fractional number into integer

• Conversion from fractional to integer value:
• Step 1: normalize the decimal fractional number to the range

determined by the desired Q format
• Step 2: Multiply the normalized fractional number by 2n

• Step 3: Round the product to the nearest integer
• Step 4: Write the decimal integer value in binary using N bits.

• Example:
 Convert the value 3.5 into an integer value that can be

recognized by a DSP assembler using the Q15 format
=> 1) Normalize: 3.5/4 = 0.875;

 2) Scale: 0.875*215= 28,672; 3) Round: 28,672

20

How to convert integer into fractional number

• Numbers and arithmetic results are stored in
the DSP processor in integer form.

• Need to interpret as a fractional value
depending on Q format

• Conversion of integer into a fractional number
for Qm.n format:

• Divide integer by scaling factor of Qm.n => divide
by 2n

• Example:
 Which Q15 value does the integer number 2

represent? 2/215=2*2-15=2-14

11

21

Finite-Wordlength Effects

• Wordlength effects occur when wordlength of memory
(or register) is less than the precision needed to store
the actual values.

• Wordlength effects introduce noise and non-ideal
system responses

• Examples:
• Quantization noise due to limited precision of Analog-to-Digital

(A/D) converter, also called codec
• Limited precision in representing input, filter coefficients,

output and other parameters.
• Overflow or underflow due to limited dynamic range
• Roundoff/truncation errors due to rounding/truncation of

double-precision data to single-precision data for storage in a
register or memory.

• Rounding results in an unbiased error; truncation results in a
biased error => rounding more used in practice.

Multiplication & Division

12

23

Fast Multiplication

 What do we do?
 Let Verilog do it: Write a= b * c

 Design fast multiplier circuit

 Use built-in hardware multipliers

24

Fast Division

 More difficult problem-- no hardware
divider

 Traditional division is slow

 So, what to do?

13

25

Fast Division

 Find alternative solutions:
 Multiply by the reciprocal : A / D = A * 1 / D

 Great for constants
 Use Newton’s method for calculation of the

reciprocal of D

 Pipeline and use a slow algorithm (next
time)

 Speed up the slower algorithms

26

Newton-Raphson division

Newton-Raphson uses Newton's method to converge to
the quotient.

The strategy of Newton-Raphson is to find the reciprocal
of D, and multiply that reciprocal by N to find the final
quotient Q.

14

27

Newton-Raphson division

The steps of Newton-Raphson are:

 1. Calculate an estimate for the reciprocal of the divisor
(D): X0

 2. Compute successively more accurate estimates of the
reciprocal: (X1,…..,Xk)

 3. Compute the quotient by multiplying the dividend by
the reciprocal of the divisor: Q = NXk

28

Newton's method to find reciprocal of D

find a function f(X) which has a zero at X = 1 / D
a function which works is f(X) = 1 / X − D
The Newton-Raphson iteration gives:

which can be calculated from Xi using only
multiplication and subtraction.

Google for more details

15

2929

Division Overview

Grade school algorithm: long division
Subtract shifted divisor from dividend when it “fits”
Quotient bit: 1 or 0

Question: how can hardware tell “when it fits?”

1001010 DividendDivisor 1000
-1000

1001

1010
-1000

10 Remainder

Quotient

Dividend = Quotient X Divisor + Remainder

3030

Division Hardware - 1st Version

Divisor DIVR (64 bits)
Shift R

QUOT
 (32 bits) Shift L

Remainder REM (64 bits)
Write

Control

64-bit ALU

Sign bit (REM<0)

ADD/
SUB

LSB

Shift register moves divisor (DIVR) to right
ALU subtracts DIVR, then restores (adds back)

if REM < 0 (i.e. divisor was “too big”)

16

3131

Division Algorithm - First Version

START: Place Dividend in REM

DONE

REM ≥ 0?

2a. Shift QUOT left 1 bit; LSB=1

2. Shift DIVR right 1 bit

1. REM = REM - DIVR

33nd
Repitition?

REM ≥ 0 REM < 0

No: <33 Repetitions

Yes: 33 Repetitions

2b. REM = REM + DIVR
Shift QUOT left 1 bit; LSB=0

Restore

3232

Divide 1st Version - Observations

We only subtract 32 bits in each iteration
 Idea: Instead of shifting divisor to right,

shift remainder to left
First step cannot produce a 1 in quotient bit

Switch order to shift first, then subtract
Save 1 iteration

17

3333

Divide Hardware - 2nd Version

Divisor Holds Still
Dividend/Remainder Shifts Left
End Result: Remainder in upper half of register

QUOT
(32 bits) Shift L

REM
(64 bits) Write

Control

32-bit ALU

Sign bit (REM<0)

ADD/
SUB

DIVR (32 bits)

Shift L

LSB

3434

Divide Hardware - 3rd Version

Combine quotient with remainder register

REM
(64 bits) Write

Control

32-bit ALU

Sign bit (REM<0)

ADD/
SUB

DIVR (32 bits)

Shift L
LSB

Shift R

18

3535

Divide Algorithm - 3rd Version

START: Place Dividend in REM

DONE (shift LH right 1 bit)

REM ≥ 0?

3a.. Shift REM left 1 bit; LSB=1

1. Shift REM left 1 bit
2. LHREM = LHREM - DIVR

32nd
Repitition?

REM ≥ 0 REM < 0

No: <32 Repetitions

Yes: 32 Repetitions

3b. LHREM = LHREM + DIVR
Shift REM left 1 bit; LSB=0

3636

Dividing Signed Numbers

Check sign of divisor, dividend
Negate quotient if signs of operands are opposite
Make remainder sign match dividend (if nonzero)

19

37

Fast Division - SRT Algorithm
♦2 approaches:

∗ First - conventional - uses add/subtract+shift, number
of operations linearly proportional to word size n

∗ Second - uses multiplication, number of operations
logarithmic in n, but each step more complex

∗ SRT - first approach
♦Most well known division algorithm - named after

Sweeney, Robertson, and Tocher
♦Speed up nonrestoring division (n add/subtracts)

- allows 0 as a quotient digit - no add/subtract:

38

Modified
Nonrestoring

Division

♦Problem: full comparison of 2ri-1 with either D
or -D required

♦Solution: restricting D to normalized fraction 1/2
≤|D|<1

♦Region of 2ri-1 for which qi=0 reduced to

20

39

Modified Nonrestoring → SRT
♦Advantage: Comparing partial remainder 2ri-1 to 1/2

or -1/2, not D or -D
♦Binary fraction in two's complement representation

∗ ≥ 1/2 if and only if it starts with 0.1
∗ ≤ -1/2 if and only if it starts with 1.0

♦Only 2 bits of 2ri-1 examined - not full comparison
between 2ri-1 and D
∗ In some cases (e.g., dividend X>1/2) - shifted partial

remainder needs an integer bit in addition to sign bit - 3 bits
of 2ri-1 examined

♦Selecting
quotient digit:

40

SRT Division
Algorithm

♦Quotient digits
selected so
|ri| ≤ |D| ⇒ final
remainder < |D|

♦Process starts with
normalized divisor - normalizing partial remainder by
shifting over leading 0's/1’s if positive/negative

♦Example:
∗ 2ri-1=0.001xxxx (x - 0/1); 2ri-1<1/2 - set qi=0,

2ri=0.01xxxx and so on
∗ 2ri-1=1.110xxxx; 2ri-1>-1/2 - set qi=0, 2ri=1.10xxxx

♦SRT is nonrestoring division with normalized divisor and
remainder

21

41

Extension
to

Negative
Divisors

♦Example:
Dividend
X=(0.0101)2
=5/16
Divisor
D=(0.1100)2
=3/4

♦Before correction Q=0.1001 - minimal SD repr. of
Q=0.0111 - minimal number of add/subtracts

♦After correction, Q = 0.0111-ulp = 0.01102 = 3/8 ;
final remainder = 1/2 ⋅2 =1/32

_

-4

42

Example
♦X=(0.00111111)2=63/256 D=(0.1001)2=9/16

♦Q =0.01112=7/16 - not a minimal representation
in SD form

♦Conclusion: Number of add/subtracts can be
reduced further

22

43

Properties of SRT

♦Based on simulations and analysis:
♦1.Average “shift”=2.67 - n/2.67 operations for

dividend of length n
∗ 24/2.67 ~ 9 operations on average for n=24

♦2.Actual number of operations depends on
divisor D - smallest when 17/28 ≤ D ≤ 3/4 -
average shift of 3

♦If D out of range (3/5 ≤ D ≤ 3/4) - SRT can
be modified to reduce number of add/subtracts

♦2 ways to modify SRT

44

Two Modifications of SRT
♦Scheme 1: In some steps during division -

∗ If D too small - use a multiple of D like 2D
∗ If D too large - use D/2
∗ Subtracting 2D (D/2) instead of D - equivalent to

performing subtraction one position earlier (later)
♦Motivation for Scheme 1:

∗ Small D may generate a sequence of 1's in quotient one
bit at a time, with subtract operation per each bit

∗ Subtracting 2D instead of D (equivalent to subtracting D
in previous step) may generate negative partial remainder,
generating sequence of 0's as quotient bits while
normalizing partial remainder

♦Scheme 2: Change comparison constant K=1/2 if D
outside optimal range - allowed because ratio D/K
matters - partial remainder compared to K not D

23

45

Example - Scheme 1 (Using 2D)
♦Same as previous example -
♦X=(0.00111111)2=63/256 D=(0.1001)2=9/16

♦Q =0.10012=7/16 - minimal SD representation
_

46

Scheme 1 (Using D/2)

♦ Large D - one 0 in sequence of 1's in quotient may
result in 2 consecutive add/subtracts instead of one

♦ Adding D/2 instead of D for last 1 before the single 0
- equivalent to performing addition one position later -
may generate negative partial remainder

♦ Allows properly handling single 0
♦ Then continue normalizing partial remainder until end of

sequence of 1's

24

47

Example
♦X=(0.01100)2=3/8 ; D=(0.11101)2=29/32
♦Correct 5-bit quotient - Q=(0.01101)2=13/32
♦Applying basic SRT algorithm - Q=0.10111 - single

0 not handled efficiently
♦Using

multiple
D/2 -

♦Q =(0.10011)2=13/32 - single 0 handled properly

- -

_ _

48

Implementing Scheme 1

♦Two adders needed
∗One to add or subtract D
∗Second to add/subtract 2D if D too small
(starts with 0.10 in its true form) or
add/subtract D/2 if D too large (starts with
0.11)

♦Output of primary adder used, unless output of
alternate adder has larger normalizing shift

♦Additional multiples of D possible - 3D/2 or 3D/4
♦Provide higher overall average shift - about 3.7

- but more complex implementation

25

49

Modifying SRT - Scheme 2

♦For K=1/2, ratio D/K in optimal range 3/5≤D≤
3/4 is

♦6/5 ≤ D/K = D/(1/2) ≤ 3/2 or
(6/5)K ≤ D ≤ (3/2)K

♦If D not in optimal range for K=1/2 - choose a
different comparison constant K

♦Region 1/2 ≤ |D|<1 can be divided into 5 (not
equally sized) sub-regions

♦Each has a different comparison constant Ki

50

Division into Sub-regions

♦4 bits of divisor examined for selecting
comparison constant

♦It has only 4 bits compared to 4 most significant
bits of remainder

♦Determination of sub-regions for divisor and
comparison constants - numerical search

♦Reason: Both are binary fractions with small
number of bits to simplify division algorithm

26

51

Example
♦X=(0.00111111)2=63/256 ; D=(0.1001)2=9/16
♦Appropriate comparison constant - K2=7/16=0.01112

♦If remainder negative - compare to two's
complement of K2 =1.10012

♦Q=0.1001=0.01112=7/16 - minimal SD form_

