Fixed-Point Arithmetic

Fixed-Point Notation

- A K-bit fixed-point number can be
interpreted as either:
» an integer (i.e., 20645)
» a fractional number (i.e., 0.75)

Integer Fixed-Point Representation

- N-bit fixed point, 2's complement integer
representation

X = 'bN_l 2N-1 + bN'Z 2N-2 + + bozo

- Difficult to use due to possible overflow

> In a 16-bit processor, the dynamic range is
-32,768 to 32,767.
» Example:
200 x 350 = 70000, which is an overflow!

Fractional Fixed-Point Representation

- Also called Q-format

- Fractional representation suitable for DSP
algorithms.

- Fractional number range is between 1 and -1

- Multiplying a fraction by a fraction always
results in a fraction and will not produce an
overflow (e.g., 0.99 x 0.9999 less than 1)

- Successive additions may cause overflow

- Represent numbers between
> -1.0and 1 - 2-(-1), when N is number of bits

Fractional Fixed-Point Representation

Equivalent to scaling
Q represents the "Quantity of fractional bits”

Number following the Q indicates the number of bits that are used
for the fraction.

Q15 used in 16-bit DSP chip, resolution of the fraction will be 27~-15
or 30.518e-6

> Q15 means scaling by 1/215

» Q15 means shifting to the right by 15

Example: how to represent 0.2625 in memory:

. Method 1 (Truncation): INT[0.2625%2!5]= INT[8601.6]
= 8601 = 0010000110011001

- Method 2 (Rounding): INT[0.2625*215+0.5]= INT[8602.1]
= 8602 = 0010000110011010

Truncating or Rounding?

Which one is better?
Truncation
» Magnitude of truncated number always less than or equal to the original value
.~ Consistent downward bias
Rounding
» Magnitude of rounded number could be smaller or greater than the
original value
-~ Error tends to be minimized (positive and negative biases)
» Popular technique: rounding to the nearest integer
Example:
» INT[251.2] = 251 (Truncate or floor)
> ROUND [251.2] = 252 (Round or ceil)
> ROUNDNEAREST [251.2] = 251

Q format Multiplication

Product of two Q15 numbers is Q30.

So we must remember that the 32-bit product has two bits in front of the
binary point.

> Since NxN multiplication yields 2N-1 result

» Addition MSB sign extension bit

Typically, only the most significant 15 bits (plus the sign bit) are stored

back into memory, so the write operation requires a left shift by one.

L Q1

[] Q15 | 16-bit memory

5 |
Sign bitj\‘ X / >
J

Extension sign bit

ﬂ 15 bits l 15 bits

-

General Fixed-Point Representation

- Qm.n notation
> m bits for integer portion
> n bits for fractional portion

» Total number of bits N = m + n + 1, for signed
numbers
Example: 16-bit number (N=16) and Q2.13 format
+ 2 bits for integer portion
13 bits for fractional portion
+ 1 signed bit (MSB)
Special cases:
» 16-bit integer number (N=16) => Q15.0 format

» 16-bit fractional number (N = 16) => Q0.15 format; also
known as Q.15 or Q15

v

v

General Fixed-Point Representation

- N-bit number in Qm.n format:
b b b _.bb

Fixed Point

n+m-"n+m-1°
——

N-1

- Value of N-bit number in Qm.n format:
(=by_ 2" +b, 2" +b, 2" +..+b2+D)/2"

=(=by 2" b, 2" +b, 2" . b 2+b)27
N=-2
=—b, 2" + 2[;,2’-"

Some Fractional Examples (16 bits)

S | Integer (15 bits) S |Fraction (15 bits)
s - -
\/ Used in DSP

Binary pt position

Q14 [Upper 2 bits |Remaining 14 bits

10

How to Compute Fractional Number

Q m.n Format

b'b' .0 b b ,..b,

-2mb’ +...+21b";+2%’+21b, , , 27?b,,...+2 b,
Examples:
=1110 Integer Representation Q3.0: -23 + 22 + 21 = -2
=11.10 Fractional Q1.2 Representation: -21 + 20+ 21 =-2 + 1+ 0.5 =-0.5
(Scaling by 1/22)

=1.110 Fractional Q3 Representation: -20 + 21 + 22 = -1 + 0.5+ 0.25 = -
0.25 (Scaling by 1/23)

11

General Fixed-Point Representation

Min and Max Decimal Values of Integer and Fractional 4-Bit Numbers (Kuo & Gan)

Unsigned integer Signed integer
Smallest value: 0000 = (0) Most positive value: 0111 = (+7)
Largest value: 1111 = (15) Least negative value: 1000 = (—8)
Unsigned fractional Signed fractional
Smallest value: .0000 = (0) Most positive value: 0.111 = (+0.875)
Largest value: . 1111 = (0.9375) Least negative value: 1.000 = (—1)

12

General Fixed-Point Representation

- Dynamic Range
Ratio between the largest number and the smallest
(positive) number
. It can be expressed in dB (decibels) as follows:
Dynamic Range (dB) = 20log,,(Max/ Min)
Note: Dynamic Range depends only on N
. N-bit Integer (Q(N-1).0):
Min = 1; Max = 2¥1- 1 => Max/Min = 2V1- 1
- N-bit fractional number (Q(N-1)):
Min = 22-(N-D: Max = 1-2-N1) => Max/Min = 2V1 -1
. General N-bit fixed-point number (Qm.n)
=> Max/Min = 2N1—-1

13

General Fixed-Point Representation

Dynamic Range and Precision of Integer and Fractional 16-Bit Numbers (Kuo & Gan)

Dynamic range Dynamic range in dB Precision
Unsigned integer 0 to 65,536 2010g(2) = 96 dB 1
Signed integer —32,768 to 32,767 20 log,,(2"7) = 90 dB 1
Unsigned fractional 0 10 0.99998474 96 dB 271
Signed fractional —1 10 0.99996948 90 dB 2715

14

General Fixed-Point Representation

. Precision

- Smallest step (difference) between two consecutive
N-bit numbers.

Example:

Q15.0 (integer) format => precision = 1

Q15 format => precision = 215

. Tradeoff between dynamic range and precision

Example: N = 16 bits

Q15.0 => widest dynamic range (-32,768 to
32,767); worst precision (1)

Q15 => narrowest dynamic range (-1 to +1°); best

precision (2°1°)

15

General Fixed-Point Representation

Dynamic Range and Precision of 16-Bit Numbers for Different Q Formats (Kuo & Gan)

Format Largest positive value Least negative value Precision
Q0.15 0.999969482421875 -1 0.00003051757813
Ql.14 1.99993896484375 -2 0.00006103515625
Q2.13 3.9998779296875 -4 0.00012207031250
Q3.12 7.999755859375 -8 0.00024414062500
Q4.11 1599951171875 —-16 0.00048828125000
Q5.10 31.9990234375 =32 0.00097656250000

Q6.9 63.998046875 —64 0.00195312500000
Q7.8 127.99609375 -128 0.00390625000000
Q8.7 255.9921875 —256 0.00781250000000
Q9.6 511.984375 =512 0.01562500000000
Q105 1023.96875 —1,024 0.03125000000000
Q11.4 2047.9375 —2,048 0.06250000000000
Q123 4095.875 —4,096 0.12500000000000
Q132 8191.75 -8,192 0.25000000000000
Q14.1 16383.5 —16,384 0.50000000000000
Q15.0 32,767 —32,768 1.00000000000000

16

General Fixed-Point Representation

Scaling Factor and Dynamic Range of 16-Bit Numbers (Kuo & Gan)

Format Scaling factor (2”) Range in Hex (Decimal value)
Q0.15 2% = 32768 7FFFh (0.99) — 8000h (—1)
Q1.14 2 = 16,384 7FFFh (1.99) — 8000h (—2)
02.13 213 = 8.192 7FFFh (3.99) — 8000h (—4)
Q3.12 2'2 = 4,096 7FFFh (7.99) — 8000h (—8)
Q4.11 2 = 2048 7FFFh (15.99) — 8000h (—16)
Q5.10 20 = 1,024 7FFFh (31.99) — 8000h (—32)
Q6.9 2% = 512 7FFFh (63.99) — 8000h (—64)
Q7.8 25 = 256 7FFFh (127.99) — 8000h (—128)
Q8.7 27 = 128 TFFFh (511.99) — 8000h (—512)
09.6 2° = 64 7FFFh (1023.99) — 8000h (—1,024)
Q10.5 2% =32 7FFFh (2047.99) — 8000h (—2.048)
Ql1.4 21 =16 7FFFh (4095.99) — 8000h (—4.096)
Q123 28 =38 7FFFh (4095.99) — 8000h (—4,096)
Q132 22 =4 7FFFh (8191.99) — 8000h (—8,192)
Ql4.1 2! =2 7FFFh (16383.99) — 8000h (—16,384)
Q15.0 2% = 1(Integer) 7FFFh (32.767) — 8000h (—32,768)

17

General Fixed-Point Representation

. Fixed-point DSPs use 2's complement fixed-
point numbers in different Q formats

. Assembler only recognizes integer values

- Need to know how to convert fixed-point number
from a Q format to an integer value that can be
stored in memory and that can be recognized by the
assembler.

. Programmer must keep track of the position of the
binary point when manipulating fixed-point numbers
in asembly programs.

18

How to convert fractional number into integer

. Conversion from fractional to integer value:

. Step 1: normalize the decimal fractional number to the range
determined by the desired Q format

. Step 2: Multiply the normalized fractional number by 2
. Step 3: Round the product to the nearest integer
. Step 4: Write the decimal integer value in binary using N bits.

Example:

Convert the value 3.5 into an integer value that can be
recognized by a DSP assembler using the Q15 format
=> 1) Normalize: 3.5/4 = 0.875;

2) Scale: 0.875*215= 28,672; 3) Round: 28,672

19

How to convert integer into fractional number

- Numbers and arithmetic results are stored in
the DSP processor in integer form.

- Need to interpret as a fractional value
depending on Q format

. Conversion of integer into a fractional number
for Qm.n format:
- Divide integer by scaling factor of Qm.n => divide

by 2n

. Example:
Which Q15 value does the integer number 2
represent? 2/215=2%2-15=2-14

20

10

Finite-Wordlength Effects

Wordlength effects occur when wordlength of memory
(or register) is less than the precision needed to store
the actual values.

Wordlength effects introduce noise and non-ideal
system responses
Examples:

- Quantization noise due to limited precision of Analog-to-Digital
(A/D) converter, also called codec
Limited precision in representing input, filter coefficients,
output and other parameters.

. Overflow or underflow due to limited dynamic range
Roundoff/truncation errors due to rounding/truncation of
double-precision data to single-precision data for storage in a
register or memory.

- Rounding results in an unbiased error; truncation results in a
biased error => rounding more used in practice.

21

Multiplication & Division

11

Fast Multiplication

- What do we do?
» Let Verilog do it: Writea=b * ¢

» Design fast multiplier circuit

> Use built-in hardware multipliers

23

Fast Division

- More difficult problem-- no hardware
divider
- Traditional division is slow

- So, what to do?

24

12

Fast Division

- Find alternative solutions:
~ Multiply by the reciprocal : A/D=A*1/D
» Great for constants

. Use Newton’s method for calculation of the
reciprocal of D

~ Pipeline and use a slow algorithm (next
time)
» Speed up the slower algorithms

25

Newton-Raphson division

Newton-Raphson uses Newton's method to converge to
the quotient.

The strategy of Newton-Raphson is to find the reciprocal
of D, and multiply that reciprocal by N to find the final
quotient Q.

26

13

Newton-Raphson division

The steps of Newton-Raphson are:

1. Calculate an estimate for the reciprocal of the divisor
(D): X,

2. Compute successively more accurate estimates of the
reciprocal: (X;,.....,X})

3. Compute the quotient by multiplying the dividend by
the reciprocal of the divisor: Q = NX,

27

Newton's method to find reciprocal of D

» find a function f(X) which hasazeroat X=1/D
» a function which works is f(X) =1/X - D
» The Newton-Raphson iteration gives:

. . f(X5) . 1/X;—-D
As+1=)\s——=)\s—W

. = X; + (X, — DX?) = X;(2 — DX,
7(X) .)= X2 = Dbx)

» which can be calculated from Xi using only
multiplication and subtraction.

» Google for more details

28

14

Division Overview

» Grade school algorithm: long division
» Subtract shifted divisor from dividend when it “fits”
» Quotient bit: 1 or 0
» Question: how can hardware tell “when it fits?”
1001 Quotient

Divisor 1000 |1001010 Dividend
-1000

1010
-1000

10 Remainder

Dividend = Quotient X Divisor + Remainder

29

Division Hardware - 1st Version

» Shift register moves divisor (DIVR) to right

» ALU subtracts DIVR, then restores (adds back)
if REM < 0 (i.e. divisor was “too big”)

—_—

Sign bit (REM<0)

30

15

Division Algorithm - First Version

Restore

No: <33 Repetitions

Yes: 33 Repetitions

31

Divide 1st Version - Observations

» We only subtract 32 bits in each iteration

» Idea: Instead of shifting divisor to right,
shift remainder to left

» First step cannot produce a 1 in quotient bit
» Switch order to shift first, then subtract
» Save 1 iteration

32

16

Divide Hardware - 2nd Version

» Divisor Holds Still
» Dividend/Remainder Shifts Left
» End Result: Remainder in upper half of register

«—

[v

Sign bit (REM<0)

33

Divide Hardware - 3rd Version

» Combine quotient with remainder register

D —

A ShiftR

Sign bit (REM<0)

34

Divide Algorithm - 3rd Version

No: <32 Repetitions

Yes: 32 Repetitions

35

Dividing Signed Numbers

» Check sign of divisor, dividend
» Negate quotient if signs of operands are opposite
» Make remainder sign match dividend (if nonzero)

36

18

Fast Division - SRT Algorithm
4 2 approaches:

* First - conventional - uses add/subtract+shift, number
of operations linearly proportional to word size n

*« Second - uses multiplication, number of operations
logarithmic in n, but each step more complex

* SRT - first approach

¢ Most well known division algorithm - named after
Sweeney, Robertson, and Tocher

4 Speed up nonrestoring division (n add/subtracts)
- allows O as a quotient digit - no add/subtract:

1 if 2Ti—1 Z D

g = 0 if -D < 2r,_y < D
1 if 2r,_1 < —D
ri = 2rio1 — ¢ - D
37
MOdlfled : g =1 =0 =1 :
Nonrestoring | B
Division ~2D D = 2
| I
! 1
S RELEnrt SEEEEEEEE

#Problem: full comparison of 2ri-1 with either D
or -D required

OSlquIﬁon: restricting D to normalized fraction 1/2
<|D|<«1

#Region of 2ri-1 for which qi=0 reduced to

1 1
D<—=<2; ,<=<D
< 2_7°1<2_

38

19

Modified Nonrestoring — SRT

¢ Advantage: Comparing partial remainder 2ri-1 to 1/2
or -1/2, not D or -D
¢ Binary fraction in two's complement representation
* = 1/2 if and only if it starts with 0.1
* < -1/2 if and only if it starts with 1.0

4 Only 2 bits of 2ri-1 examined - not full comparison
between 2ri-1 and D

** In some cases (e.g., dividend X>1/2) - shifted partial
remainder needs an integer bit in addition to sign bit - 3 bits
of 2ri-1 examined

¢ Selecting
quotient digit:

1 if 27’2'_1 > 1/2
qi = 0 if *1/2 < 2r;q < 1/2
1 if 2r,_1 < — 1/2
39
SRT Division Y
Algorithm Do o Do
! i
¢ Quotient digits ! | | N
selected so 11 /D Tip 3 D T i
Iril = [D| = final :
remainder < |D| | |

#Process starts with ~1/2
normalized divisor - normalizing partial remainder by
shifting over leading 0's/1's if positive/negative

¢ Example:

% 2ri-1=0.001xxxx (x - 0/1); 2ri-1<1/2 - set qi-0,
2ri=0.01xxxx and so on
* 2Pi-1=1.110xxxx; 2ri-1>-1/2 - set Qi=0, 2ri=1.10xxxx

€ SRT is nonrestoring division with normalized divisor and
remainder
40

20

Extension 0 if |2r| < 12
1'0 @G = 1 if |2r—4] > 1/2 & 7;—; and D have the same sign
Nega-l-ive 1 if |2r;_4] > 1/2 & r;_1 and D have opposite signs
Divisors
ro =X 00 1 0 1
2ro 0 1 0 1 0 >1/2 setqr=1
Add-D + 1 0 1 0 O
¢ Example: m T 1 1 10
Dividend 21 = 1 1 1 1 0 0 >-1/2 setq=0
X=(0.0101)2 2r:=rs 1 1 0 0 0 >-1/2 setqs=0
=5/16 2rs 1 .0 0 0 0 <-1/2 setq=1
I AdldD + 0 1 1 0 0
Divisor T4 1 .1 1 0 0 negative remainder & positive X
D:(O_ 1 100)2 Add D + 0 .1 1 0 0 correction
=3/4 T4 0 .1 0 0 0 -corrected final remainder

4 Before correction Q=0.1001 - minimal SD repr. of
Q=0.0111 - minimal number of add/subtracts

¢ After correction, Q = O.Qlll—ulp = 0.01102= 3/8 ;
final remainder = 1/2 -:2° =1/32

41
Example
4X=(0.00111111)2=63/256 D=(0.1001)2=9/16
rg =X o 0 0 1 1 1 1 1 1
2rg 001 1 1 1 1 1 0 <1/2setqu=0
2rq 0 .1 1 1 1 1 1 0 0 21/2 set go =1
Add-D + 1 0 1 1 1
To o 0 1 1 0 1 1 0 O
2r9 0.1 1.0 1 1 0 0 0 >1/2 setgs=1
Add-D + 1 0 1 1 1
T3 o .0 1 0 O 1 0 0 O
2rs o .1 0 0 1 0 0 0 O 21/2 set g4 =1
Add-D 4+ 1 0 1 1 1
T4 0 0O 0 0 O O 0 O 0 zerofinal remainder

4Q =0.01112=7/16 - not a minimal representation
in SD form

¢ Conclusion: Number of add/subtracts can be

reduced further
42

21

Properties of SRT

4 Based on simulations and analysis:
¢ 1_Average “shift"=2.67 - n/2.67 operations for
dividend of length n
* 24/2.67 ~ 9 operations on average for n=24

4 2. Actual number of operations depends on
divisor D - smallest when 17/28 < D < 3/4 -
average shift of 3

¢If D out of range (3/5 < D =< 3/4) - SRT can
be modified to reduce number of add/subtracts

42 ways to modify SRT

43

Two Modifications of SRT

¢ Scheme 1: In some steps during division -
* If D too small - use a multiple of D like 2D
 If D too large - use D/2
* Subtracting 2D (D/2) instead of D - equivalent to
performing subtraction one position earlier (later)
¢ Motivation for Scheme 1:

* Small D may generate a sequence of 1's in quotient one
bit at a time, with subtract operation per each bit

* Subtracting 2D instead of D (equivalent to subtracting D
in previous step) may ?enerafe negative partial remainder,
generating sequence of O's as quotient bits while
normalizing partial remainder

¢ Scheme 2: Change comparison constant K=1/2 if D
outside optimal range - allowed because ratio D/K
matters - partial remainder compared to K not D

44

22

Example - Scheme 1 (Using 2D)

4 Same as previous example -

4X=(0.00111111)2=63/256

D=(0.1001)2=9/16

ro =X o 0 o0 1 1 1 1 1 1

219 0 0 1 1 1 1 1 1 0 <1/2 setqg =0

2r1 0O 0 1 1 1 1 1 1 0 0 subtract2D
Add-2D + 1 0 1 1 1 instead of D

T9 1 1 1 1 0 1 1 1 0 0 setqggz=1landg=0
279 1 1 0 1 1 1 0 0 0 setg3z=0

2r3 1 0 1 1 1 0 0 0 0 <-1/2setqa=1
Add D + 0 .1 0 0 1

T4 0 .0 0 0 0O 0 O O O zerofinal remainder

4Q =0.10012=7/16 - minimal SD representation

45

Scheme 1 (Using D/2)

Large D - one O in sequence of 1's in quotient may
result in 2 consecutive add/subtracts instead of one

4 Adding D/2 instead of D for last 1 before the single O
- equivalent to performing addition one position later -

may generate negative partial remainder
¢ Allows properly handling single O

¢ Then continue normalizing partial remainder until end of

sequence of 1's

46

23

Example
4X=(0.01100)2=3/8 ; D=(0.11101)2=29/32
4 Correct 5-bit quotient - Q=(0.01101)2=13/32
¢ Applying basic SRT algorithm - Q=0.10111 - single
0 not handled efficiently

®Using r=x 0.0 1 100
mul-l-iple 2ro 0o .1 1 0 0 0 >1/2 setq1 =1
D/z _ Add-D + 1 0 0 0 1 1
" T 1 1 0 1 1
2r1 1 .1 0 1 1 0 set g2 =0
2y 1 0 1 1 0 0 0 addD/2gs=1)
AddD/2 + 0 0 1 1 1 0 1 instead of D
r3 1 .1 1 0 1 0 1 setgz=0and
273 1 .1 0 1 0 1 g =1
27y 1 .0 1 0 1 0 < —1/2 set g5 =1
Add D + 0 .1 1 1 0 1
5 0O .0 0 1 1 1 final remainder = 7/32-27°

4Q =(0.10011)2=13/32 - single O handled properly

47

Implementing Scheme 1

4 Two adders needed
*One to add or subtract D

» Second to add/subtract 2D if D too small
(starts with 0.10 in its true form) or
add/subtract D/2 if D too large (starts with
0.11)

4 Output of primary adder used, unless output of
alternate adder has larger normalizing shift

¢ Additional multiples of D possible - 3D/2 or 3D/4

#Provide higher overall average shift - about 3.7
- but more complex implementation

48

24

Modifying SRT - Scheme 2

®For K=1/2, ratio D/K in optimal range 3/5<D=<
3/4 is

6/5 < D/K = D/(1/2) < 3/2 or
(6/5) < D =< (3/2)

¢If D not in optimal range for K=1/2 - choose a
different comparison constant K

#Region 1/2 < |D|<1 can be divided into 5 (not
equally sized) sub-regions

®Each has a different comparison constant Ki

49
Division into Sub-regions
1/2 9/16 5/8 3/4 15/16 1
.1000 .1001 .1010 .1100 1111 1.0
| | | | | |
K1=3/8 Ko=7/16 K3=1/2 K,=5/8 Ks=3/4
.0110 0111 .1000 .1010 .1100

4 4 bits of divisor examined for selecting
comparison constant

¢ It has only 4 bits compared to 4 most significant
bits of remainder

¢ Determination of sub-regions for divisor and
comparison constants - numerical search

#Reason: Both are binary fractions with small
number of bits to simplify division algorithm

50

25

Example

4X=(0.00111111)2=63/256 :

D=(0.1001)2=9/16

¢ Appropriate comparison constant - K2=7/16=0.01112
¢ If remainder nelga'rive - compare to two's

complement of K2 =1.10012

ro =X 0 0 0 1 1 1 1 1 1

270 0 0 1 1 1 1 1 1 0 >0.0111 setq =1
Add-D + 1 0 1 1 1

1 1 111 0 1 1 1 0

21 =19 1 1 1 0 1 1 1 0 0 >1.1001 setqgo=0
2y = 13 1 1 0 1 1 1 0 0 0 >1.1001 setqgs3=0
2rs 1 0 1 1 1 0 0 0 0 <1.1001 setqs=1
AddD + 0 .1 0 0 1

T4 0O 0O 0 0 0 O O 0 0 zerofinal remainder

#Q=0.1001=0.01112=7/16 - minimal SD form

51

26

