

Final Report - AFRIMETS.EM-S1

Supplementary comparison of Resistance Standards at 1 $\Omega,$ 10 $\Omega,$ 100 $\Omega,$ 1 k Ω and 10 k Ω

Authors Michael Khoza,¹ Hala M. Abdel Mageed²

¹National Metrology Institute of South Africa (NMISA), South Africa ²National institute of Standards (NIS), Egypt mkhoza@nmisa.org, halaabdelmegeed@yahoo.com

Contents

1	Intr	Introduction						
2	Org	Organisation of the comparison2						
	2.1	Participants2						
	2.2	Measurement schedule						
	2.3	Reported incidents						
3	Tra	velling standards and required measurements4						
	3.1	Description of travelling standards						
	3.2	Measurement instructions						
	3.3	Participants measurement methods						
	3.4	Deviation from the protocol						
	3.5	Drift of the travelling standards7						
4	Dis	cussion of the comparison results						
	4.1	Drift, current, temperature and atmospheric pressure corrections						
	4.2	NMISA Measurements over the comparison period11						
	4.3	Participants Measurements11						
	4.4	Stability check of the travelling standards11						
	4.5	Comparison reference values						
	4.6	Normalised error (E_n)						
	4.7	Deviation from <i>R_{CRV}</i>						
	4.8	Participants reported results						
5	Sur	nmary and conclusions						
6	Ref	Perences						
7	Ap	pendix A: Technical protocol						
8	Appendix B: NMISA uncertainty Budgets							
9	Appendix C: LPEE/LNM Results							
1(0 Appendix D: DEF-NAT results							
1	Appendix E: KEBS Results							
12	2 App	pendix F: NIS results64						
13	3 Ap	pendix G: UNBS results75						
14	4 Ap	Appendix H: NMIE Results						

1 Introduction

The AFRIMETS TC-EM meeting of 17^{th} June 2014 held in Addis Ababa, Ethiopia, approved a supplementary comparison [1] [2] [3] on resistance standards at 1 Ω , 10 Ω , 100 Ω , 1 k Ω and 10 k Ω . The National Metrology Institute of South Africa (NMISA) piloted the comparison and seven AFRIMETS national metrology designated institutes participated. The comparison commenced November 2015 and completed June 2018. This report describes the behaviour of the comparison standards, participants corrected results and calculated comparison reference values associated with uncertainties of measurements at 95% confidence level, normalized errors and degrees of equivalence.

2 Organisation of the comparison

2.1 Participants

The pilot laboratory is the National Metrology Institute of South Africa (NMISA). The list of participants in the comparison are shown in Table 1.

Country	Institute	Acronym	Contact person	e-mail	Shipping address
South Africa	National Metrology Institute of South Africa (pilot laboratory)	NMISA	Michael Khoza	mkhoza@nmisa.org	Building 5, CSIR Scientia campus, Meiring Naude Road, Pretoria, 0001, South Africa
Tunisia	Designated National Institute DEFNAT	DEF-NAT	Abdelkarim MALLAT Zouaoui Jihén	metrologie@defense.tn	Direction Générale des Transmissions et de l'Informatique, Base Militaire Bab Saadoun EL Omrane 1005 Tunis TUNISIE
Egypt	National Institute of Standards	NIS	NIS Rasha Sayed Attiya Mohammed		National Institute of Standards (NIS) Tersa Street, El Haram, Giza P.O. Box: 136 Giza Code 12211 Giza – EGYPT
KenyaKenyaPaKenyaBureau ofKEBSMatendStandardsGibson		Paul Matendechere Gibson Aguko	matendecherep@kebs.org gibsonaguko@yahoo. com	Popo Road, Off Mombasa Road, Nairobi, Kenya	

Table 1: List of participants

Могоссо	Laboratoire Public d'Essais et d'Etudes / Laboratoire National de Métrologie	LPEE/ LNM	Abdellah ZITI	ziti@LPEE.MA	Km 7, Route d' El Jadida-Oasis, Casablanca, Morocco
Uganda	Uganda National Bureau of Standards	UNBS	Patrick Kizito Musaazi	patrickmusazi@yahoo.co.uk Patrick.kizito@unbs.go.ug	Plot M217 Nakawa Industrial Area, Kampala, Uganda
Ethiopia	National Metrology Institute (NMI) of Ethiopia	NMIE	Nesredin Nezir	nesredin03@gmail. com	Bole sub city, Woreda 06, Megenagna to Bole Ring Road, next to A.M.C.E.

2.2 Measurement schedule

The travelling standards were circulated to the participating laboratories in a loop configuration in the order listed in Table 2.

Loop	National Metrology Institute	Measurement date
	NMISA	01 November 2015
	LPEE/LNM	08 January 2016
А	DEF-NAT	16 March 2016
	NMISA	20 April 2016
	NMISA	20 April 2016
В	KEBS	12 July 2016
	NMISA	10 January 2017
	NMISA	10 January 2017
С	NIS	18 June 2017
	NMISA	18 September 2017
	NMISA	18 September 2017
D	UNBS	16 January 2018
D	NMIE	20 March 2018
	NMISA	21 June 2018

Table 2: Comparison schedule

2.3 Reported incidents

No incidents involving the travelling standards were reported. However, the travelling standards were adversely affected by the adverse environmental conditions and transportation. The effects were determined, evaluated and the results were compensated.

3 Travelling standards and required measurements

3.1 Description of travelling standards

The travelling standards are described in Table 3.

Model	Serial no.	Nominal value	Test current	Temperature coefficient (α) (23 °C)	Temperature coefficient (β) (23 °C)	Pressure coefficient (γ) (870 hPa)	Current coefficient (Rc)
Fluke 742A- 1	4935018	1Ω	100 mA	- 0.08 E-6/K	- 0.044 E-6/K ²	-0.17E-9/hPa	-0.0131 ppm / 10 mA
Fluke 742A- 10	4920006	10 Ω	10 mA	- 0.02 E-6/K	- 0.036 E-6/K ²	-0.178E-9/hPa	0.0027 ppm / 1 mA
Fluke 742A- 100	5485007	100 Ω	1 mA	- 0.009 E-6/K	- 0.044 E-6/K ²	-0.185E-9/hPa	0.0013 ppm / 0,1 mA
Fluke 742A- 1k	7733002	1 kΩ	1 mA	0.05 E-6/K	- 0.022 E-6/K ²	0.185E-9/hPa	0.0012 ppm / 0.1 mA
Fluke 742A- 10k	5065038	10 kΩ	0.1 mA	0.04 E-6/K	- 0.020 E-6/K ²	0.148E-9/hPa	-0.0647 ррт / 10 µА

Table 3: Description of the travelling standards

Note:

- 1) Temperature coefficients α and β are obtained from the technical specification of the travelling standards.
- 2) Pressure coefficients γ for 1 Ω , 100 Ω and 10 k Ω are obtained from the BIPM calibration data of similar models and the data is used to interpolate pressure coefficients γ for 10 Ω and 1 k Ω .
- 3) The pilot laboratory performed measurements at various test currents and the resistance change per change in test current was determined.

3.2 Measurement instructions

The required measurements as per protocol are described in Table 4.

Table 4: Measurement	instructions
----------------------	--------------

Nominal value	Test current	Environmental Conditions					
1 Ω	100 mA						
10 Ω	10 mA						
100 Ω	1 mA	(23 ± 2) °C	(50% ± 10%) RH	Laboratory Atmospheric Program			
1 kΩ	1 mA			riessure			
10 kΩ	0.1 mA						

3.3 Participants measurement methods

The participants provided a brief overview of their measurement methods, setups used and source of traceability. These are summarised below.

NMISA

The 4-terminal resistance of the comparison standards were measured using Measurement International Limited 6010C an automated resistance measurement system. The reference resistance standards were calibrated by BIPM, France. The latest calibration was performed February 2015. Traceability is transferred from reference standards to other standards in a ratio build-up method. The measurements are performed at ambient temperature of 23,08 °C, relative humidity of 47,6 % RH and atmospheric pressure of 870 hPa.

LPEE/LNM

Substitution method using the function "Ohm-meter" of a 8 ½ digit multimeter. The reference standard resistor and the travelling standard resistor have the same nominal value. All the reference resistance standards were calibrated by LNE, France. The latest calibration was performed in August 2015. The measurements are performed at ambient temperature of 23,5 °C, relative humidity of 48 % RH and atmospheric pressure of 1013 hPa.

DEFNAT

The value of the unknown resistor R_x is obtained by comparison to a standard resistor R_s via Resistance Bridge GUILDLINE 9975. The equation used to determine R_x is as follow: $R_x = R_s * K_e = R_{s0} * [1 + (\alpha * \Delta T) + (\beta * \Delta T_2)] * (k_x + c)$

Where:

 R_x : the value of the unknown (Artifact) resistance at T_x .

 R_{s} : the value of the standard resistance at $T_{\text{e}}.$

 R_{s0} : the value of the standard resistance at T_0 .

 K_x : the Ratio displayed on the DCC-RES bridge

C : the correction of the Ratio K_x

 α and β : Temperature coefficient of the standard resistance.

 $\Delta T:(T_e - T_0)$

The reference resistance standards are calibrated annually by LNE, France. The latest calibration was performed December 2015. Traceability is transferred from reference standards to the Resistors under test (Artifacts) using a resistance Bridge GUILDLINE 9975. The measurements are performed at ambient temperature of 23,94 °C, relative humidity of 50 % RH and atmospheric pressure of 996 hPa.

KEBS

The substitution method used, and digital multimeter/ null detector used as transfer standard between reference standard resistor and travelling standard. The 1 Ω and 10 k Ω reference standards are calibrated by National Institute of Turkey (UME), latest calibration performed March 2016. Traceability is transferred from reference standards using transfer standard and a measuring system through a build-up method. The measurements are performed at ambient temperature of 23,78 °C, relative humidity of 48,7 % RH and atmospheric pressure of 836 hPa.

NIS

The 4-terminal resistance of the comparison standards were measured using Measurement International Limited 6010C an automated resistance measurement system. The reference resistance standards were calibrated by BIPM, France. The latest calibration was performed November 2016. Traceability is transferred from reference standards to other standards in a ratio build-up method. The measurements are performed at ambient temperature of 23,1 °C, relative humidity of 48,2 % RH and atmospheric pressure of 1 008,5 hPa.

UNBS

The comparison standards were measured directly using digital multimeter. The multimeter was traceable calibrated at NMISA, and latest calibration performed May 2013. The measurements are performed at ambient temperature of 23,12 °C, relative humidity of 58,5 % RH and atmospheric pressure of 881 hPa.

NMIE

The reference resistance standards 1 Ω , 1 k Ω and 10 k Ω were traceable calibrated by NMISA, South Africa. The latest calibration was performed June 2015. Traceability is transferred from reference standards to other standards in a 1:10 and 1:100 ratio using a 8 ½ DMM and a calibrator by connected the resistor in series using voltage drop method. The measurements are performed at ambient temperature of 23,0 °C, relative humidity of 50,0 % RH and atmospheric pressure of 769 hPa.

3.4 Deviation from the protocol

Some participants measured the travelling standards at test currents and environmental conditions other than mentioned in the comparison protocol however the results have been corrected.

3.5 Drift of the travelling standards

NMISA repeated the measurements according to the schedule order shown in Table 2 from November 2015 to June 2018. The linear fit Equation (1) is used to calculate the drifts of the travelling standards.

$$(y - y_0) = m(x - x_0)$$
(1)

Where:

x is a selected NMISA measurement date.

 x_o is the average of the NMISA measurement dates.

y is the resistance value given by the linear fit on a selected date.

 y_o is the average of the NMISA measurements.

m is the drift of the resistance value per day.

The behaviour of the travelling standards is given in Table 5.

 Table 5: Behaviour of travelling standards

Nominal values (Ω)	x_o	y ₀ (Ω)	$m (\Omega/day)$
1		1.0000503	5.294 E-09
10	25/1/2017	10.000506	5.959 E-08
100		100.00726	9.224 E-07
1000		1000.0068	1.322 E-06
10000		10000.137	5.569 E-06

The behaviour of the travelling standards according to NMISA measurements over the comparison period are illustrated in Figure 1 to 5.

Figure 1: Behaviour of 1 Ω travelling standard: S/N 4935018

Figure 2: Behaviour of 10 Ω travelling standard: S/N 4920006

Figure 3: Behaviour of 100 Ω travelling standard: S/N 5485007

Figure 4: Behaviour of 1 000 Ω travelling standard: S/N 7733002 Page 8 of 85

Figure 5: Behaviour of 10 000 Ω travelling standard: S/N 5065038

4 Discussion of the comparison results

4.1 Drift, current, temperature and atmospheric pressure corrections

The participants reported values are drifted corrected to initial NMISA measurement dated 01/November/2015 using Equation (2).

$$R_x = R_r - (m * D_y) \tag{2}$$

Where:

- R_x is the corrected reported resistance value of the participant.
- R_{t} is the reported resistance value by participant.
- *m* is the estimated resistance drift per day of the travelling standard since initial NMISA measurement.
- D_{v}
- is the period lapsed in days since initial NMISA measurement, 01/November/2015

The participants reported values were current corrected using Equation (3).

$$R_{x} = R_{r} + R_{c} * (C_{x} - C_{r})$$
(3)

Where:

 R_x is the resistance at required test current C_x

 C_x is the test current as per technical protocol at resistance R_x

 R_r is the participant reported resistance value at test current C_r

 C_r is the test current at which the participant performed R_r measurement

 R_c is current coefficient of R_x listed in Table 3

The participants reported values were corrected to reference temperature which the pilot performed the measurements using Equation (4) [4].

$$R = R(T) \times [1 - \alpha_{23}(T - T_0) - \beta(T - T_0)^2]$$
(4)

Where:

R is the required resistance at the reference temperature $T_0 = 23 \text{ }^{\circ}\text{C}$

R(T) is the participant reported resistance at temperature T

T is the temperature at which participant measured the resistance R(T)

 α and β are temperature coefficients of R(T) listed in Table 3.

The participants reported values were corrected to reference atmospheric pressure which pilot performed the measurements using Equation (5) [4].

$$R_x = R_r (1 - \gamma (P_x - P_r)) \tag{5}$$

Where:

 R_x is the required resistance at reference atmospheric pressure $P_r = 870$ hPa

 R_r is the participated reported resistance at atmospheric pressure P_x

 P_x is the atmospheric pressure at which participant measured the resistance R_r

 γ is pressure coefficient of R_r listed in Table 3.

4.2 NMISA Measurements over the comparison period

The NMISA corrected measurements associated with their uncertainties at 95% confidence level over the comparison period are listed in Table 6.

					-					
Travelling	1 st Measurements (1/11/2015)		2 nd Measurements (20/4/2016)		3 rd Measurements (10/1/2017)		4 th Measurements (18/9/2017)		5 th Measurements (21/6/2018)	
Standard	Value (Ω)	U _{exp} μΩ/Ω								
1Ω	1.0000478	2.0	1.0000477	2.0	1.0000483	2.0	1.0000478	2.0	1.0000480	2.0
10 Ω	10.000478	2.0	10.000478	2.0	10.000483	2.0	10.000479	2.0	10.000480	2.0
100 Ω	100.00684	2.0	100.00684	2.0	100.00690	2.0	100.00680	2.0	100.00685	2.0
1000 Ω	1000.0057	3.0	1000.0066	3.0	1000.0067	3.0	1000.0061	3.0	1000.0062	3.0
10000 Ω	10000.132	2.0	10000.132	2.0	10000.135	2.0	10000.138	2.0	10000.134	2.0

 Table 6: NMISA corrected measurements associated with their uncertainties for the travelling standards

4.3 Participants Measurements

Participants corrected measurements associated with their uncertainties at 95% confidence level are listed in Table 7.

	LPEE/L	.NM	DEFNAT	Г	KEB	S	NIS		UNB	S	NMIE	E
Travelling												
Standard	Value (Ω)	Uexp										
		μΩ/Ω										
1Ω	1.0000466	4.0	1.0000481	3.0	1.0000366	5.2	1.0000467	0.6	0.9999917	50.2	1.0000506	13.0
10 Ω	10.000456	4.0	10.000482	3.8	9.999945	8.4	10.000470	0.3	9.999943	50.0	10.000362	13.9
100 Ω	100.00674	3.0	100.00687	3.7	100.00701	8.4	100.00682	0.4	100.00635	50.0	100.00657	13.1
1000 Ω	1000.0059	3.0	1000.0038	3.2	1000.0257	6.2	1000.006	0.7	1000.0073	50.0	1000.0062	11.2
10000 Ω	10000.13	2.0	10000.137	1.4	10000.117	4.2	10000.134	0.3	10000.496	50.1	9999.793	10.0

Table 7: Participants corrected measurements associated with their uncertainties

4.4 Stability check of the travelling standards

The stability check has been performed using the five NMISA corrected measurements (over the comparison period). To prove that the travelling standards are stable, their drift values over time (m) should fulfil the following stability criterion in accordance with ISO 13528:2015 [5] using the Equation 6.

$$m \le 0.9 \sqrt{U_{X_{min}}^2 + U_{X_{NMISA}}^2} \tag{6}$$

Where

 $U_{x_{min}}$ is the minimum uncertainty reported by the participating NMIs.

 $U_{X_{NMISA}}$ is the uncertainty reported by NMISA.

In this case, the comparison reference value (CRV) will be the arithmetic mean of the five NMISA measurements, \bar{X} and their uncertainty will be the reference uncertainty, $U_{\bar{X}}$

The results of the stability check are presented in Table 8.

Travelling Standards	$m\left(\Omega/\mathrm{day} ight)$	$0.9 \sqrt{U_{X_{min}}^2 + U_{X_{NMISA}}^2}$ (Ω)	Status
1 Ω	5.294 E-09	1.88 E-06	Fulfil
10 Ω	5.959 E-08	1.82 E-05	Fulfil
100 Ω	9.224 E-07	1.84 E-04	Fulfil
1 000 Ω	1.322 E-06	2.77 E-03	Fulfil
10 000 Ω	5.569 E-06	1.82 E-02	Fulfil

 Table 8: Results of Stability Criterion

4.5 Comparison reference values

Accordingly, the comparison reference value R_{CRV} is determined by arithmetic mean of the NMISA measurements (\bar{X}) , using Equation (7) and the uncertainty of the reference value U_{RCV} is the uncertainty of \bar{X} [6] [7].

$$\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N} \tag{7}$$

Where:

 \overline{X} is the (R_{CRV}) arithmetic mean of (NMISA) measurements

 X_i is the measurements performed by NMISA

N is the number of measurements performed by NMISA

The R_{CRV} values and their associated uncertainties (k = 2) are as shown in Table 9.

Travelling Standards	Comparison Reference Value (Ω)	Uncertainty (k=2)
1 Ω	1.0000479	2.0 μΩ/Ω
10 Ω	10.000480	2.0 μΩ/Ω
100 Ω	100.00685	2.0 μΩ/Ω
1000 Ω	1 000.0063	3.0 μΩ/Ω
10000 Ω	10 000.134	2.0 μΩ/Ω

 Table 9: Comparison Reference values (R_{CRV})

4.6 Normalised error (E_n)

The normalised errors of the corrected reported values have been calculated using Equation (8),

$$E_{N} = \frac{R_{x} - R_{CRV}}{\sqrt{(U_{CRV})^{2} + (U_{Rx})^{2}}}$$
(8)

where:

 E_n is the normalised error. R_X is the corrected value reported by participant. R_{CRV} is the comparison reference value. U_{RX} is the uncertainty reported by participant. U_{CRV} is the uncertainty of the reference value.

4.7 **Deviation from** R_{CRV}

The deviation from R_{CRV} , D_i (in relative, $\mu\Omega/\Omega$) is determined the using the Equation (9) [6] [7].

 $D_i = R_X - R_{\rm CRV} \tag{9}$

Where R_X is the corrected reported value by participant and R_{CRV} is the comparison reference value.

4.8 Participants reported results

Table 10 to 14 presents the corrected measurement results associated with their uncertainties, R_{CRV} , U_{CRV} , E_n values and the deviation from R_{CRV} for the travelling standards from 1 Ω to 10 k Ω respectively. Graphical representations of the comparison results in the ranges from 1 Ω to 10 k Ω are shown in Figure 6 to 10.

Participating NMIs	Corrected values (Ω)	Uncertainty (μΩ/Ω)	$R_{CRV}(\Omega)$	Ucrv (μΩ/Ω)	En	$D_i \left(\mu \Omega / \Omega \right)$
NMISA	1.0000478	2.0			-0.04	-0.10
LPEE/LNM	1.0000466	4.0			-0.29	-1.30
DEFNAT	1.0000481	3.0			0.06	0.20
NMISA	1.0000477	2.0			-0.07	-0.20
KEBS	1.0000366	5.2			-2.03	-11.30
NMISA	1.0000483	2.0	1.0000479	2	0.14	0.40
NIS	1.0000467	0.6			-0.57	-1.20
NMISA	1.0000478	2.0			-0.04	-0.10
UNBS	0.9999917	50.2			-1.12	-56.20
NMIE	1.0000506	13.0			0.21	2.70
NMISA	1.0000480	2.0			0.04	0.10

Table 10: Results for 1 Ω travelling standard: S/N 4935018

Table 11: Results for 10 Ω travelling standard: S/N 4920006

Participating NMIs	Corrected values (Ω)	Uncertainty (μΩ/Ω)	RCRV (Q)	U _{CRV} (μΩ/Ω)	En	<i>D</i> _i (μΩ/Ω)
NMISA	10.000478	2.0			-0.07	-0.20
LPEE/LNM	10.000456	4.0			-0.54	-2.40
DEFNAT	10.000482	3.8			0.05	0.20
NMISA	10.000478	2.0			-0.07	-0.20
KEBS	9.999945	8.4			-6.20	-53.50
NMISA	10.000483	2.0	10.000480 2	0.11	0.30	
NIS	10.000470	0.3			-0.49	-1.00
NMISA	10.000479	2.0			-0.04	-0.10
UNBS	9.999943	50.0		-1.07	-53.70	
NMIE	10.000362	13.9			-0.84	-11.80
NMISA	10.000480	2.0			0.00	0.00

Participating NMIs	Corrected values (Ω)	Uncertainty (μΩ/Ω)	RCRV (Q)	U _{CRV} (μΩ/Ω)	En	$D_i \left(\mu \Omega / \Omega \right)$
NMISA	100.00684	2.0			-0.04	-0.10
LPEE/LNM	100.00674	3.0			-0.31	-1.10
DEFNAT	100.00687	3.7			0.05	0.20
NMISA	100.00684	2.0			-0.04	-0.10
KEBS	100.00701	8.4			0.19	1.60
NMISA	100.00690	2.0	100.00685 2	2	0.18	0.50
NIS	100.00682	0.4			-0.15	-0.30
NMISA	100.00680	2.0			-0.18	-0.50
UNBS	100.00635	50.0			-0.10	-5.00
NMIE	100.00657	13.1			-0.21	-2.80
NMISA	100.00685	2.0			0.00	0.00

Table 12: Results for 100 Ω travelling standard: S/N 5485007

Table 13: Results for 1000 Ω travelling standard: S/N 7733002

Participating NMIs	Corrected values (Ω)	Uncertainty (μΩ/Ω)	$\mathbf{R}_{\mathrm{CRV}}(\Omega)$	Ucrv (μΩ/Ω)	En	$D_i (\mu \Omega / \Omega)$
NMISA	1000.0057	3.0			-0.14	-0.60
LPEE/LNM	1000.0059	3.0			-0.09	-0.40
DEFNAT	1000.0038	3.2			-0.57	-2.50
NMISA	1000.0066	3.0			0.07	0.30
KEBS	1000.0257	6.2			2.82	19.40
NMISA	1000.0067	3.0	1000.0063	3	0.09	0.40
NIS	1000.0060	0.7			-0.10	-0.30
NMISA	1000.0061	3.0			-0.05	-0.20
UNBS	1000.0073	50.0			0.02	1.00
NMIE	1000.0062	11.2			-0.01	-0.10
NMISA	1000.0062	3.0			-0.02	-0.10

Participating NMIs	Corrected values (Ω)	Uncertainty (μΩ/Ω)	$R_{CRV}(\Omega)$	Ucrv (μΩ/Ω)	En	$D_i \left(\mu \Omega / \Omega \right)$
NMISA	10000.132	2.0			-0.07	-0.20
LPEE/LNM	10000.130	2.0			-0.14	-0.40
DEFNAT	10000.137	1.4			0.12	0.30
NMISA	10000.132	2.0			-0.07	-0.20
KEBS	10000.117	4.2			-0.37	-1.70
NMISA	10000.135	2.0	10000.134	2	0.04	0.10
NIS	10000.134	0.3			0.00	0.00
NMISA	10000.138	2.0			0.14	0.40
UNBS	10000.496	50.1		0.72	36.20	
NMIE	9999.793	10.0			-3.34	-34.10
NMISA	10000.134	2.0			0.00	0.00

Table 14: Results for 10 k Ω travelling standard: S/N 5065038

Figure 6: Results for 1 Ω travelling standard: S/N 4935018

Figure 7: Results for 10 Ω travelling standard: S/N 4920006

Figure 8: Results for 100 Ω travelling standard: S/N 5485007

Figure 9: Results for 1 000 Ω travelling standard: S/N 7733002

Figure 10: Results for 10 000 Ω travelling standard: S/N 5065038.

5 Summary and conclusions

NMISA has provided the 1 Ω , 10 Ω , 100 Ω , 1 k Ω and 10 k Ω travelling resistance standards and piloted the comparison. The comparison commenced November 2015 and completed June 2018. Stability criterion according to ISO 13528:2015 has been performed to assess the travelling standards behaviour during the period of comparison. It is proved that the insignificant drift of the travelling standards did not affect their stability. Different methods used by participants were tested and results proved equivalent between participants. The National metrology institutes are encouraged to implement root cause analysis and corrective actions on values not in good agreement with other participants.

6 References

[1] Technical Protocol, AFRIMETS Supplementary Comparison, AFRIMETS.EM-S1,

1 Ω , 10 Ω , 100 Ω , 1 k Ω and 10 k Ω resistance standards.

[2] CCEM Guidelines for Planning, Organizing, Conducting and Reporting Key, Supplementary and Pilot Comparisons, version 2.1, 2017.

http://www.bipm.org/utils/common/pdf/ccem_guidelines.pdf.

[3] Measurement comparisons in the CIPM MRA, CIPM MRA-D-05 Version 1.6.

[4] Characteristics of precision 1Ω standard resistors influencing transport behaviour

and the uncertainty of key comparisons. G R Jones, B J Pritchard and R E Elmquist Metrologia 46 (2009) 503–511

[5] ISO - ISO 13528:2015 - Statistical methods for use in proficiency testing by interlaboratory comparison

[6] CCQM Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence, version 10, 2013.

[7] Update to proposal for KCRV & degree of equivalence for GTRF key comparisons,

J. Randa, NIST, February 2005

7 Appendix A: Technical protocol

RMO Supplementary Comparison AFRIMETS.EM-S1 Comparison of Resistance Standards at 1 Ω , 10 Ω , 100 Ω , 1 k Ω and 10 k Ω

Technical Protocol

Coordinator: Mr Michael Khoza mkhoza@nmisa.org

Pilot laboratory: National Metrology Institute of South Africa Private Bag X34 Lynnwood Ridge Pretoria 0040 South Africa

TABLE OF CONTENTS

1	Intr	oduction	2
2	Org	anisation of the comparison	2
	2.1	Participants	2
	2.2	Measurement schedule	3
	2.3	Reported incidents	3
3	Tra	velling standards and required measurements	4
	3.1	Description of travelling standards	4
	3.2	Measurement instructions	4
	3.3	Participants measurement methods	5
	3.4	Deviation from the protocol	6
	3.5	Drift of the travelling standards	7
4	Dis	cussion of the comparison results	9
	4.1	Drift, current, temperature and atmospheric pressure corrections	9
	4.2	NMISA Measurements over the comparison period	11
	4.3	Participants Measurements	11
	4.4	Stability check of the travelling standards	11
	4.5	Comparison reference values	12
	4.6	Normalised error (E_n)	13
	4.7	Deviation from <i>R</i> _{CRV}	13
	4.8	Participants reported results	13
5	Sun	nmary and conclusions	19
6	Ref	erences	19
7	App	pendix A: Technical protocol	20
8	App	pendix B: NMISA uncertainty Budgets	
9	App	pendix C: LPEE/LNM Results	
10	App	pendix D: DEF-NAT results	49
11	App	pendix E: KEBS Results	59
12	App	pendix F: NIS results	65
13	App	pendix G: UNBS results	76
14	App	pendix H: NMIE Results	80
27	Fravel	ling standards	

- 3 Organisation
- 4 Measurement instructions
- 5 Uncertainty of measurement
- 6 Laboratory reports

7 Comparison report

8 References

9 Annexes

1 Introduction

The Mutual Recognition Arrangement states that it is the responsibility of a Regional Metrology Organisation to carry out supplementary comparisons and other actions designed to support mutual confidence in the validity of calibration and measurement certificates issued by participating institutes. As part of this process, AFRIMETS initiated a comparison of resistance standards at 1 Ω , 10 Ω , 100 Ω , 1 k Ω and 10 k Ω (AFRIMETS.EM-S1).

The protocol was documented following the CCEM guidelines for planning, organizing, conducting and reporting Key and Supplementary comparisons. [1]

2 Travelling standards

2.1 Description of standards

1 Ω standard, Fluke 742A-1, SN 4935018, ($\alpha = -0,080 \text{ E-6}$, $\beta = -0,044 \text{ E-6}$) 10 Ω standard, Fluke 742A-10, SN 4920006, ($\alpha = -0,020 \text{ E-6}$, $\beta = -0,036 \text{ E-6}$) 100 Ω standard, Fluke 742A-100, SN 5485007, ($\alpha = -0,009 \text{ E-6}$, $\beta = -0,044 \text{ E-6}$) 1 kΩ standard, Fluke 742A-1k, SN 7733002, ($\alpha = 0,050 \text{ E-6}$, $\beta = -0,022 \text{ E-6}$) 10 kΩ standard, Fluke 742A-10k, SN 5065038, ($\alpha = 0,040 \text{ E-6}$, $\beta = -0,020 \text{ E-6}$)

The resistors are housed in shielded enclosures.

2.2 Quantities to be measured

Four terminal resistance of the 1 Ω standard under the following conditions: Test current: 100 mA Ambient temperature: 23 °C ± 2 °C Relative humidity 50 %rh ± 10 %rh Atmospheric pressure: Participant laboratory atmospheric pressure

Four terminal resistance of the 10 Ω standard under the following conditions: Test current: 10 mA Ambient temperature: 23 °C ± 2 °C Relative humidity 50 % rh ± 10 % rh Atmospheric pressure: Participant laboratory atmospheric pressure

Four terminal resistance of the 100 Ω standard under the following conditions: Test current: 1 mA Ambient temperature: 23 °C ± 2 °C Relative humidity 50 %rh ± 10 %rh Atmospheric pressure: Participant laboratory atmospheric pressure

Four terminal resistance of the 1 k Ω standard under the following conditions: Test current: 1 mA Ambient temperature: 23 °C ± 2 °C Relative humidity 50 % rh ± 10 % rh Atmospheric pressure: Participant laboratory atmospheric pressure Four terminal resistance of the 10 k Ω standard under the following conditions: Test current: 100 μ A Ambient temperature: 23 °C \pm 2 °C Relative humidity 50 % rh \pm 10 % rh Atmospheric pressure: Participant laboratory atmospheric pressure

2.3 Method of computation of reference value

The comparison reference values (CRV) of the travelling standards will be computed using the arithmetic mean of the NMISA results.

Drift of standards during the comparison period will be established using measurement results of NMISA and the participants reported results will be corrected to the initial date of NMISA measurements.

3. Organisation

3.1 Coordinator

The pilot laboratory for the comparison is the National Metrology Institute of South Africa (NMISA), South Africa

Coordinator and contact person for technical questions: Mr Michael Khoza Tel: +27 12 841 2408 Mobile: +27 73 290 3540 e-mail: mkhoza@nmisa.org

3.2 Participants

No	Country	Institute	Acronym
1	South Africa	National Metrology Institute of South Africa	NMISA
2	Morocco	Laboratoire Public d'Essais et d'Etudes / Laboratoire National de Métrologie	LPEE/LNM
3	Tunisia	Designated National Institute DEFNAT/ANM	DEFNAT/ ANM
4	Kenya	Kenya Bureau of Standards	KEBS
5	Egypt	National Institute for Standards	NIS
6	Uganda	Uganda National Bureau of Standards	UNBS
7	Ethiopia	National Metrology Institute of Ethiopia	NMIE

3.3 Time schedule

A period of four weeks is allowed for the measurements in each laboratory, including time for transportation. See A2.

NMIs who confirmed participation will be bound by the limited period allocated in the time schedule. In case a participant is not ready to perform measurements during a scheduled time period, the laboratory is required to contact the coordinator in the pilot laboratory. Arrangements will then be made that the laboratory performs measurement at the end of the comparison

In case of unforeseen delays, the pilot laboratory shall inform affected participants and if required revise the measurements schedule

3.4 Transportation

Each participant is responsible for transporting the travelling standards to next scheduled laboratory at own cost. Laboratories should resolve any possible custom problems that can delay circulation of the travelling standards. In an ATA Carnet is used, please familiarize yourself with its proper use.

A courier service provider used should be informed that a warning note should be attached to the transport case to avoid exposure to mechanical shock, the carry case not be exposed to extreme temperature conditions, and should under normal circumstances only be opened by laboratory personnel.

Before dispatching the package, please inform the next scheduled laboratory and provide transport details like tracking number etc.

Countries will be grouped in such a way that those that recognize use of an ATA perform comparison measurements in a loop format. Example: (pilot, participant 1, participant 2, participant 3, pilot) and those that do not recognize use of an ATA Carnet perform comparison measurements in a star format. Example: (pilot, participant 4, pilot, participant 5, pilot, participant 6, pilot).

For allowed measurement period and transport period see A2.

3.5 Unpacking, handling, packing

The carry case contains the following items:

One 1 Ω standard resistor, Fluke 742A-1, SN 4935018 One 10 Ω standard resistor, Fluke 742A-10, SN 4920006 One 100 Ω standard resistor, Fluke 742A-100, SN 5485007 One 1 k Ω standard resistor, Fluke 742A-1k, SN 7733002 One 10 k Ω standard resistor, Fluke 742A-10k, SN 5065038 Copy of comparison technical protocol On receipt of shipment, unpack carefully and inspect for damage and completeness according to packaging list. Any damage to standards or missing standards should be reported to the coordinator immediately.

For countries using the ATA Carnet, make sure that you keep the ATA Carnet safely because loss of the ATA Carnet will result in serious clearance problems with custom officials. Before sending the standards to next scheduled participant, check contents of carry case against packaging list.

For countries using the ATA Carnet, make sure you hand the ATA Carnet together with carry case to your courier. Do not put ATA Carnet inside the carry case in order to ensure easy access by customs officials.

3.6 Failure of the travelling standards

In case that one or more of the travelling standards is damaged during the comparison, the pilot laboratory must be informed immediately.

3.7 Financial aspects and insurance

Each participating laboratory is responsible for cost related to measurements, damage that may occur within its country and transportation to next scheduled laboratory. Other comparison cost will be covered by the pilot laboratory.

4. Measurement instructions

4.1 Tests before measurements

The standards should be allowed to stabilise in a controlled laboratory for a minimum of 24 hours before measurements.

4.2 Measurement performance

Measurand: Four terminal, DC resistance of the travelling standards

Test current: 1Ω : 100 mA 10Ω : 10 mA 100Ω : 1 mA $1 \text{ k}\Omega$: 1 mA $10 \text{ k}\Omega$: $100 \mu\text{ A}$

Temperature: 23 °C \pm 2 °C

Relative humidity: $50 \% rh \pm 15 \% rh$

4.3 Method of measurement

Participants will perform measurements according to methods used in their laboratories. Note: The method used and traceability must be described in measurement report.

5. Uncertainty of measurement

A detailed uncertainty budget in accordance with the ISO Guide to the Expression of Uncertainty in Measurement shall be reported for each resistance value.

To have a comparable uncertainty evaluation, main uncertainty contributors are listed below, and depending on the method used, this list may be vary from one participant to another. Reference standard (calibration, drift, temperature, power coefficient)

Measuring system (stability, gain, offset effects)

Standard Deviation or Experimental Standard Deviation of the Mean in case the reported mean was calculated from more than one set of measurement results. An uncertainty budget template is given in annex A3

6. Laboratory reports

Each participant is required to submit a signed report by mail within 6 weeks after completing the measurements. A copy can be sent by e-mail. In case of a difference between the electronic and a signed hard copy version of the report, the signed hard copy of the report will be considered a correct and valid version. Reports from participating laboratories should contain at least the following information:

Description of measurement setup/ connection

Traceability chain (Note: Traceability must be from an NMI that is a signatory of the Metre convention. Otherwise comparison results cannot be used to support CMC claims)

Brief description of measurement procedure

Measurement results: Mean resistance value, including uncertainty for each standard, and corresponding mean date of measurement

Test current for each measurement

Temperature and relative humidity including limits of variation

Complete uncertainty budget in accordance with the principles of the ISO Guide to the Expression of Uncertainty in Measurement, including degrees of freedom for every component and calculation of coverage factor. Such an analysis is an important part of the final report which will be published in the BIPM Key Comparison Database in support of your Measurement Capabilities.

7. Comparison report

The pilot laboratory will prepare a Draft A report within three months after completion of circulation of the travelling standards. The report will be sent to all participants for comments. Comments from participants will be incorporated in a draft B report.

8. References

[1] CCEM Guidelines for Planning, Organizing, Conducting and Reporting Key, Supplementary and Pilot Comparisons, Annex 2, The BIPM Key Comparison Database, March 2007.

[2] ISO/IEC Guide 98-3:2008, Uncertainty of measurement-Par 3: Guide to the expression of uncertainty in measurement (GUM: 1995), 2008.

9. Annexes

A1 Detailed list of participants

Institute	Contact	e-mail	Shipping
	person		address
NMISA	Michael Khoza	mkhoza@nmisa.org Tel: +27 12 841 4343 Mobile: +27 82 802 2408	Building 5, CSIR Scientia campus, Meiring Naude Road, Pretoria, 0001, South Africa
LPEE/LNM	Abdellah ZITI	ziti@LPEE.MA Tel: +212 5 22 48 87 29	Km 7, Route d' El Jadida- Oasis, Casablanca, Morocco
DEFNAT/ANM	Abdelkarim MALLAT	metrologie@defense.tn Tel: +216 71 560 488 extension 14241	Direction Générale des Transmissions et de l'Informatique, Base militaire Bab Sâadoun- 1005-El Omrane- Tunis
KEBS	Paul Matendechere	matendecherep@kebs.org Tel: +254(0)206948274 Mobile: +254 722 979 632	Popo Road, Off Mombasa Road, Nairobi, Kenya

NIS	Rasha Sayed	Rasha_sama79@hotmail.com	Tersa Street, El-
	Attiya	Tel:	Haram, Giza,
	Mohammed	Mobile:	12211, Egypt
UNBS	Patrick Kizito	patrickmusazi@yahoo.co.uk	Plot M217
	Musaazi	Patrick.kizito@unbs.go.ug	Nakawa
		Tel: +256 712 570 472	Industrial Area,
		Mobile: +256 704 899 154	Kampala,
			Uganda
NMIE	Nesredin	nesredin03@gmail.com	Bole sub city,
	Nezir		Woreda 06,
			Megenagna to
			Bole Ring
			Road, next to
			A.M.C.E.

A2 Schedule of the measurements

Institute	Country	Start date	Period	for
			measurements	and
			transport	
Pilot (NMISA)	South Africa	November 2015	4 weeks	
LPEE/LNM	Morocco	November 2015	4 weeks	
DEFNAT/ANM	Tunisia	January 2016	4 weeks	
Pilot (NMISA)	South Africa	February 2016	4 weeks	
Pilot (NMISA)	South Africa	April 2016	4 weeks	
KEBS	Kenya	May 2016	4 weeks	
Pilot (NMISA)	South Africa	June 2016	4 weeks	
NIS	Egypt	May 2017	4 weeks	
Pilot (NMISA)	South Africa	June 2017	4 weeks	
NMIE	Ethiopia	March 2018	4 weeks	
Pilot (NMISA)	South Africa	June 2018	4 weeks	

A3 Typical scheme for an uncertainty budget [2]

Quantity X _i	Estimate <i>x_i</i>	Standard uncertainty $u(x_i)$	Probability distribution/ method of evaluation (A, B)	Sensitivity coefficient c _i	Uncertainty contribution $u(R_i)$	Degrees of freedom v_i
		Combined standard uncertainty Effective degrees of freedom Expanded uncertainty (95 % coverage factor)				

A4 Layout of measurement report

Nominal resistance Measurement setup Traceability chain Measurement procedure Detailed measurement results Standard serial number:

Date	Measured Atmospheric	Measured Temperature	Measured Relative	Test current	Measurement result
	Pressure		Humidity		

Detailed uncertainty budget Standard serial number:

Quantity	Estimate	Standard	Probability	Sensitivity	Uncertainty	Degrees
v	r	uncertainty	distribution/	coefficient	contribution	of
$\boldsymbol{\Lambda}_{i}$	λ_{i}	()	mothod of	••••		fraadom
		$u(x_i)$		C_i	$u(R_i)$	meedom
			evaluation	r	· <i>i</i> /	V.
			(A, B)			- 1
		Expanded un				
		(95 % covera	age factor)			

Summary of results Mean temperature and uncertainty Mean relative humidity and uncertainty Test current Mean date of measurement

Mean resistance value and expanded uncertainty

A5 Confirmation note of receipt

Please send copy to shipment sender and coordinator

Name of receiving Institute	
Date of receipt	
Condition of carry case	
Condition of standards	
Total number of standards	
Nominal values	
Serial numbers	
ATA Carnet for countries using ATA Carnet for custom clearance	

A6 Confirmation note of dispatch

Please send copy to next scheduled laboratory and coordinator

Name of dispatching institute	
Name of receiving institute	
Date of dispatch	
Tracking number	
Condition of carry case	
Condition of standards	
Total number of standards	
Nominal values	
Serial numbers	
ATA Carnet for countries using ATA Carnet	
for custom clearance	

8 Appendix B: NMISA uncertainty Budgets

	UNCERTAINTY BUDGET MATRIX													AFRIMETS.EM-S1	
	(UBM)												lure No	DCLF\R-0008	
Description:	Standard		Type &		7424 / 4025019						10			Metrologist	
Description.	resistor		Serial Number		74277433301	3010			Range.		1 12			M Khoza	
Symbol	Input Quantity (Source of Uncertainty) (X _i)	Estimated Input Quantity (x i)	Estimate Uncertair	d nty Unit	Probabilit y Distributio n(N, R, T,	k= ▼	Divisor factor	Standard Uncertaint y U(Xi)	Sensiti Coeffic <i>Ci</i>	vity ient Unit	Standard Uncertainty Contribution Ui (y)	Reliability %	Degrees of Freedo m	Remark S	
	▼ Standards and Reference Equipment (I	ncorrelated)	▼		U)			C(AI)			u0/0		,		
Std	Rstd calibration		2.000E- 01	μΩ/Ω	Normal k = 2		2.00	1.000E-01	1.0		1.000E- 01	100	infinite	UoM of the reference standard	
	Rstd drift		8.760E-02	μΩ/Ω	$\mathop{\text{Rectangular}}_{\sqrt{3}}$		1.73	5.058E-02	1.0		5.058E- 02	100	infinite	Estimated using previous Calibration data standard	
	6010C Bridge accuracy		5.000E-02	μΩ/Ω	Normal k = 2		2.00	2.500E-02	1.0		2.500E- 02	100	infinite	Obtained from 6010C specification	
	6010C Bridge resolution		1.000E-03	μΩ/Ω	Rectangular √12		3.46	2.887E-04	1.0		2.887E- 04	100	infinite	Obtained from 6010C specification	
	6010C linearity		1.000E- 02	μΩ/Ω	Normal k = 2		2.00	5.000E-03	1.0		5.000E- 03	100	infinite	Obtained from 6010C specification	
	6010C Ratio error		1.400E-02	μΩ/Ω	Normal k = 1		1.00	1.400E-02	1.0		1.400E- 02	100	infinite	Obtained from NMISA experimental data	
Data	Type "B" Evaluation Range of the results (Rectangular)											100			
	Type "A" Evaluation Exp Std Dev of the Mean (ESDM)		6.291E-01	μΩ/Ω	Normal K = 7	1	1.00	6.291E-01	1.0		6.291E- 01		4	No of Readings 5	
	▼ Unit Under Test / Calibration (C	orrelated) ▼		NOTE! ONLY CHANGE BLUE CELLS									S - All OTHER CELLS (WHITE) ARE PROTECTED		
<u>A</u> bout UBM			TOTAL CON UNCERTA)						μΩ/Ω				
Best Measurement Capability (Excluding UUT contribution)					Combined Une (Norma	certain I)	ity	▼ Level	of Confidence	ce ▼	1.158E- 01	V _{eff}	infinite	Checked and Approved By:	
			9 Expanded Uncertainty					% K =	2	2.32E-01	k =	2.00			
Uncertainty of Measurement (Including UUT contribution)					Combined Uno (Norma	ity	▼ Level o	▼ Level of Confidence ▼		6.397E- 01	V _{eff}	4.2755 4			
					Expanded Und	certain	ty	95,45	95,45 % K = 2 1.84E+00			k =	2.87		

	UNCERTAINTY BUDGET MATRIX													AFRIMETS.EM-S1		
			(UE	BM)		•						Proce	dure No	DCLF\R-0008		
Description:	Standard	Standard Type &					/		Range:		10	Ω		Metrologi st		
	103300		Number			45200	00							M Khoza		
Symbol	Input Quantity (Source of Uncertainty) (X,	Estimated Input Quantity (x i)	Estimat Uncerta	Estimated Uncertainty Unit		d Probabili nty ty Distributi on (N, R, Unit T, U)		k= ▼	Divisor factor	Standard Uncertaint y U(Xi)	Sensitiv y Coefficie t <i>Ci</i>	vit en Unit	Standard Uncertainty Contributio n Ui (y)	Reliability %	Degrees of Freedo m	Remarks
	▼ Standards and Reference Equipment (Uncorrelated) 🔻								μΩ/Ω					
Std	Rstd calibration		2.000E- 01	μΩ/Ω	Normal k = 2		2.00	1.000E- 01	1.0		1.000E- 01	100	infinit e	UoM of the reference standard		
	Rstd drift		8.760E- 02	μΩ/Ω	Rectangular $\sqrt{3}$		1.73	5.058E- 02	1.0		5.058E- 02	100	infinit e	Estimated using previous Calibration data standard		
	6010C Bridge accuracy		5.000E- 02	μΩ/Ω	Normal k = 2		2.00	2.500E- 02	1.0		2.500E- 02	100	infinit e	Obtained from 6010C specification		
	6010C Bridge resolution		1.000E- 03	μΩ/Ω	Rectangular √12		3.46	2.887E- 04	1.0		2.887E- 04	100	infinit e	Obtained from 6010C specification		
	6010C linearity		1.000E- 02	μΩ/Ω	Normal k = 2		2.00	5.000E- 03	1.0		5.000E- 03	100	infinit e	Obtained from 6010C specification		
	6010C Ratio error		1.400E- 02	μΩ/Ω	Normal k = 1		1.00	1.400E- 02	1.0		1.400E- 02	100	infinit e	Obtained from NMISA experimental data		
Data	Type "B" Evaluation Range of the results (Rectangular)											100				
	Type "A" Evaluation Exp Std Dev of the Mean (ESDM)		6.185E- 01	μΩ/Ω	Normal K =	1	1.00	6.185E- 01	1.000E+0 0		6.185E- 01		4	No of Readings 5		
	▼ Unit Under Test / Calibration (C	orrelated)						NOTE	ONLY CI	HANG	E BLUE CELL	<mark>S</mark> - All O	THER CE	ELLS (WHITE) ARE PROTECTED		
<u>A</u> bout UBM	TOTAL COMBINED UNCERTAINTY										μΩ/Ω]				
Best Measurement Capability (Excluding UUT contribution)					Combined Une (Norma	certain I)	ty	▼ Leve	l of Confidenc	e▼	1.158E- 01	V _{eff}	infinite	Checked and Approved By:		
					Expanded Uncertainty				95,45 % K = 2		2.32E-01	k =	2.00			
Uncertainty of Measurement (Including UUT contribution)				Combined Uncertainty (Normal)				▼ Level o 95,45	▼ Level of Confidence ▼			V _{eff}	4.2852 3			
					Expanded Und	certain	ty	00,40	,,		1.81E+00	k =	2.87			

UNCERTAINTY BUDGET MATRIX													cate No	AFRIMETS.EM-S1		
		UNCERT	(UE	BM)		~						Proce	dure No	DCLF\R-0008		
Description:	Standard	Type &	742A / Range 10										Metrologist			
	resistor		Serial Number	Serial 5485007 Number										M Khoza		
Symbol	Input Quantity (Source of Uncertainty)	Estimated Input Quantity (x _i)	Estimat Uncerta	Estimated Uncertainty		ed Probabili nty ty Distributi on (N, R,		k= ▼	Divisor factor	Standard Uncertaint y U(Xi)	Sensitivit y Coefficien t		Standard Uncertainty Contributio n Ui (y)	Reliability %	Degrees of Freedo m	Remarks
	(X _i)) • Standarda and Pafaranaa Equipment ()	Incorrelator		Unit	1, 0)				Ci Unit							
Std	Rstd calibration	Jincorrelated	2 000E-	u0/0	Normal k = 2		2 00	1 000E-	10		1.000E-	100	infinite	UoM of the reference standard		
			01	μ12/ 12			2.00	01	1.0		01	100				
	Rstd drift		1.440E- 01	μΩ/Ω	Rectangular √3		1.73	8.314E- 02	1.0		8.314E- 02	100	infinite	Estimated using previous Calibration data standard		
	6010C Bridge accuracy		5.000E- 02	μΩ/Ω	Normal k = 2		2.00	2.500E- 02	1.0		2.500E- 02	100	infinite	Obtained from 6010C specification		
	6010C Bridge resolution		1.000E- 03	μΩ/Ω	Rectangular √12		3.46	2.887E- 04	1.0		2.887E- 04	100	infinite	Obtained from 6010C specification		
	6010C linearity		1.000E- 02	μΩ/Ω	Normal k = 2		2.00	5.000E- 03	1.0		5.000E- 03	100	infinite	Obtained from 6010C specification		
	6010C Ratio error		1.400E- 02	μΩ/Ω	Normal k = 1		1.00	1.400E- 02	1.0		1.400E- 02	100	infinite	Obtained from NMISA experimental data		
Data	Type "B" Evaluation Range of the results (Rectangular)											100				
	Type "A" Evaluation Exp Std Dev of the Mean (ESDM)		6.368E- 01	μΩ/Ω	Normal K =	1	1.00	6.368E- 01	1.000E+0 0		6.368E- 01		4	No of Readings 5		
	▼ Unit Under Test / Calibration (C	orrelated)						NOTE	ONLY C	HANGI	E BLUE CELL	. <mark>S</mark> - All O	THER CE	ELLS (WHITE) ARE PROTECTED		
About			TOTAL CO	MBINED)						u0/0	٦				
UBM			UNCERT	AINTY							P32/32					
Best Measurement Capability (<u>Excluding</u> UUT contribution)				Combined Un (Norma	certain I)	ty	▼ Leve	l of Confidence	ce▼	1.333E- 01	V _{eff}	infinite	Checked and Approved By:			
					Expanded Uncertainty				70 n =	2	2.67E-01	k =	2.00	-		
U	ncertainty of Measurement (Including UUT con	Combined Uncertainty V Le					✓ Level of Confidence ▼		6.506E- 01	V _{eff}	4.358					
						certain	ty	95,45	45 % K = 2 1.87E+00		1.87E+00	k =	2.87			

UNCERTAINTY BUDGET MATRIX												Certifi	cate No	AFRIMETS.EM-S1
			(UE	ЗМ)								Proce	dure No	DCLF\R-0008
Decerinti	Standard	7404 / Benery 4000 0										Metrologist		
on:	resistor		Serial Number		7733002				κange: 1000 Ω					M Khoza
Symbol	Input Quantity (Source of Uncertainty) (X	Estimated Input Quantity (x _i)	Estimat Uncerta	inty	Probabili ty Distributi on (N, R, T. U)	k= ▼	Divisor factor	Standard Uncertaint Y U(Xi)	Sensiti y Coeffic t <i>Ci</i>	ien	Standard Uncertainty Contributio n Ui (y)	Reliability %	Degrees of Freedo m	Remarks
	i) ▼ Standards and Reference Equipment (Uncorrelate	d) ▼	0					0.	0	u0/0			
Std	Rstd calibration		3.000E-	μΩ/Ω	Normal k = 2		2.00	1.500E-	1.0		1.500E- 01	100	infinit	UoM of the reference standard
	Rstd drift		3.240E- 01	μΩ/Ω	Rectangular √3		1.73	1.871E- 01	1.0		1.871E- 01	100	infinit e	Estimated using previous Calibration data standard
	6010C Bridge accuracy		5.000E- 02	μΩ/Ω	Normal k = 2		2.00	2.500E- 02	1.0		2.500E- 02	100	infinit e	Obtained from 6010C specification
	6010C Bridge resolution		1.000E- 03	μΩ/Ω	Rectangular $\sqrt{12}$		3.46	2.887E- 04	1.0		2.887E- 04	100	infinit e	Obtained from 6010C specification
	6010C linearity		1.000E- 02	μΩ/Ω	Normal k = 2		2.00	5.000E- 03	1.0		5.000E- 03	100	infinit e	Obtained from 6010C specification
	6010C Ratio error		1.400E- 02	μΩ/Ω	Normal k = 1		1.00	1.400E- 02	1.0		1.400E- 02	100	infinit e	Obtained from NMISA experimental data
Data	Type "B" Evaluation Range of the results (Rectangular)											100		
	Type "A" Evaluation Exp Std Dev of the Mean (ESDM)		7.542E- 01	μΩ/Ω	Normal K =	1	1.00	7.542E- 01	1.000E+ 00		7.542E- 01		4	No of Readings 5
	▼ Unit Under Test / Calibration (0 ▼	Correlated)						NOTE!	ONLYC	HANG	E BLUE CELL	. <mark>S</mark> - All C	THER CL	ELLS (WHITE) ARE PROTECTED
<u>A</u> bout UBM						μΩ/Ω]							
Best Measurement Capability (Excluding UUT contribution)					Combined Un (Norma	certain al)	ity	▼ Leve	of Confiden	ce ▼	2.415E- 01	V _{eff}	infinite	Checked and Approved By:
		Expanded Uncertainty				95,45	% K=	2	4.84E-01	k =	2.00			
												4		
U	Uncertainty of Measurement (Including UUT contribution)				Combined Un (Norma	certain al)	ity	▼ Level o	Level of Confidence ▼		7.919E- 01	V _{eff}	4.8625 6	
					Expanded Un	certain	ty	95,45	95,45 % K = 2			k =	2.87	
	UNCERTAINTY BUDGET MATRIX								Certifi	cate No	AFRIMETS.EM-S1			
--	---	---	--------------------	--------------------------------------	---	----------------	-------------------	--------------------------------------	---	--------------------	---	-------------------------	-----------------------------------	--
		ONOLNI	UE	BM)		~						Proce	dure No	DCLF\R-0008
Description	Standard	Standard Type & 742A /				Range: 10000 0				Metrologist				
	resistor		Serial Number	Serial 5065038 Number							M Khoza			
Symbol	Input Quantity (Source of Uncertainty) (X _i	Estimated Input Quantity (x i)	Estimat Uncerta	ed inty Unit	Probabili ty Distributi on (N, R, T, U)	k= ▼	Divisor factor	Standard Uncertaint y U(Xi)	Sensiti y Coeffic t <i>Ci</i>	vit ien Unit	Standard Uncertainty Contributio n Ui (y)	Reliability %	Degrees of Freedo m ν	Remarks
	✓ Standards and Reference Equipment (Uncorrelated	l) ▼								μΩ/Ω			
Std	Rstd calibration		4.000E- 01	μΩ/Ω	Normal k = 2		2.00	2.000E- 01	1.0		2.000E- 01	100	infinit e	UoM of the reference standard
	Rstd drift		1.734E- 01	μΩ/Ω	Rectangular $\sqrt{3}$		1.73	1.001E- 01	1.0		1.001E- 01	100	infinit e	Estimated using previous Calibration data standard
	6010C Bridge accuracy		5.000E- 02	μΩ/Ω	Normal k = 2		2.00	2.500E- 02	1.0		2.500E- 02	100	infinit e	Obtained from 6010C specification
	6010C Bridge resolution		1.000E- 03	μΩ/Ω	Rectangular √12		3.46	2.887E- 04	1.0		2.887E- 04	100	infinit e	Obtained from 6010C specification
	6010C linearity		1.000E- 02	μΩ/Ω	Normal k = 2		2.00	5.000E- 03	1.0		5.000E- 03	100	infinit e	Obtained from 6010C specification
	6010C Ratio error		1.400E- 02	μΩ/Ω	Normal k = 1		1.00	1.400E- 02	1.0		1.400E- 02	100	infinit e	Obtained from NMISA experimental data
Data	Type "B" Evaluation Range of the results (Rectangular)											100		
	Type "A" Evaluation Exp Std Dev of the Mean (ESDM)		5.491E- 01	μΩ/Ω	Normal K =	1	1.00	5.491E- 01	1.000E+0 0		5.491E- 01		4	No of Readings 5
	▼ Unit Under Test / Calibration (0	correlated)						NOTE!	ONLYC	HANG	BLUE CELL	<mark>.S</mark> - All O	THER CE	LLS (WHITE) ARE PROTECTED
<u>A</u> bout UBM	TOTAL COMBINED UNCERTAINTY							μΩ/Ω]					
Best Measurement Capability (Excluding UUT contribution)				Combined Un (Norma	certain I)	ty	▼ Leve	of Confiden	ce ▼	2.255E- 01	V _{eff}	infinite	Checked and Approved By:	
				Expanded Un	certain	ty	95,45	% K=	2	4.52E-01	k =	2.00		
Uncertainty of Measurement (Including UUT contribution)				Combined Uncertainty Vertex (Normal)			▼ Level c	f Confiden	ce ▼	5.936E- 01	V _{eff}	5.4635 5	-	
					Expanded Un	certain	ty	90,45	/0 N =	2	1.57E+00	k =	2.65	

9 Appendix C: LPEE/LNM Results

Date	Nominal value of traveling standard	Measued Temperature and uncertainty	Measued Relative Humidity and uncertainty	Test current	Measurement result	Expanded uncertainty (95% coverage factor)
08/01/2016	1 Ω	(23,6 ± 0,3)°C	$(48 \pm 2)\%$	100 mA	1,000047 Ω	4 μΩ
08/01/2016	10 Ω	(23,8 ± 0,3)°C	$(48 \pm 2)\%$	10 mA	10,00046 Ω	0,04 mΩ
08/01/2016	100 Ω	(23,7 ± 0,3)°C	$(48 \pm 2)\%$	1 mA	100,0068 Ω	0,3 mΩ
08/01/2016	1 kΩ	(22,9 ± 0,3)°C	$(49 \pm 2)\%$	1 mA	1,000006 kΩ	3 mΩ
08/01/2016	10 kΩ	(23,5 ± 0,3)°C	(49 ± 2)%	100 μΑ	10,00013 kΩ	0,02 Ω

Summary of results:

For the informations below, the following notations are used :

Re : Standard resistance value from the last calibration certificate.

Rx : Unknown resistance value (Artificat to be calibrated).

L1 : Reading value on multimeter when unknown resistance is connected.

L2 : Reading value on multimeter when standard resistance is connected.

e : error of the multimeter.

N.B : Re and Rx have the same nominal value.

Detailed measurement results and Detailed uncertainty budget for 1 Ω :

Configuration of the multimeter "F8505A"					
RANGE	2 Ω				
FAST	OFF				
4-WIRE	ON				
DIGIT	7				
FILT	ON (Low pass Filter)				
CURRENT	100 mA (Lol OFF)				

Re		Coefficient temperature value of Re in °C ⁻¹
1.00002841	Ω	-4.00E-08

$$L2 = \operatorname{Re} + \varepsilon$$
$$L1 = Rx + \varepsilon$$

 $Rx = L1 - L2 + \mathrm{Re}$

$$Rx = L1 - L2 + \text{Re} + \alpha_{\text{Re}} \cdot \text{Re}(T_{Etal} - T_0)$$

L1 (Ω)	Stability on L1	L2 (Ω)	Stability on L2	Rx (Ω)
1.000041	stable	1.000022	stable	1.000047

Rx nominal value	1	Ω
Rx measured value (calculated)	1.000047	Ω
Expanded Uncertainty (k=2)	0.000004	Ω

Uncertainty Budget

Rx

1 Ω

	Quantity	Standard u	incertainty (1σ)	Ser	sitivity coefficient	Uncertainty co	ontribution (1ơ)	
B1	Calibration of Re	1.50E-07	Ω	1		1.50E-07	Ω	
B2	Drift of Re	1.53E-06	Ω	1		1.53E-06	Ω	
B3	Calibration temperature of Re	0.14	°C	-4.00E-08	Ω.°C ⁻¹	-5.66E-09	Ω	
B4	Stability of the L2 Reading	2.89E-07	Ω	1		2.89E-07	Ω	
B5	Temperature coeff of Re	0E+00				0.00E+00	Ω	
B6	Power coeff of Re	0E+00				0.00E+00	Ω	
B7	Stability of the L1 Reading	2.89E-07	Ω	1		2.89E-07	Ω	
B8	Resolution of L1	2.89E-07	Ω	1		2.89E-07	Ω	
B9	Linearity error of the multimeter	0E+00				0.00E+00	Ω	
B10	Resolution of L2	2.89E-07	Ω	1		2.89E-07	Ω	
B11	Temperature effect on Re	0.71	°C	-4.00E-08	Ω.°C ⁻¹	-2.83E-08	Ω	
B12	Leakage resistance of Re	0E+00				0.00E+00	Ω	
B13	Leakage resistance of Rx	0E+00				0.00E+00	Ω	
B14	Contact resistance of Re	0E+00				0.00E+00	Ω	
B15	Contact resistance of Rx	0E+00				0.00E+00	Ω	
B16	Fem parasites	0E+00				0.00E+00	Ω	
B17	Variation of temperature during measurement	0E+00				0.00E+00	Ω	
	Combined standard uncertainty							
	Expanded uncerta	inty calculate	ed (95% coverag	e factor)		3.3E-06	Ω	
	Expanded uncertainty proposed (95% coverage factor)							

Detailed measurement results and Detailed uncertainty budget for 10 Ω :

Configuration of the multimeter "F8505A"					
RANGE	20 Ω				
FAST	OFF				
4-WIRE	ON				
DIGIT	7				
FILT	ON (Low pass Filter)				
CURRENT	10 mA (Lol OFF)				

Re		Coefficient temperature value of Re in °C ⁻¹
10.0001029	Ω	-1.00E-07
$L2 = \operatorname{Re} + \varepsilon$		
$L1 = Rx + \varepsilon$	•	

Rx = L1 - L2 + Re

$$Rx = L1 - L2 + Re + \alpha_{Re} \cdot Re \cdot (T_{Etal} - T_0)$$

L1 (Ω)	Stability on L1	L2 (Ω)	Stability on L2	Rx (Ω)
10.00045	+ 0,01 mΩ	10.00009	- 0,01 mΩ	10.00046

Rx nominal value	10	Ω
Rx measured value (calculated)	10.00046	Ω
Expanded Uncertainty (k=2)	0.00004	Ω

Uncertainty Budget

Rx

10 Ω

	Quantity	Standard uncertainty (1σ)	Sensitivity coefficient	Uncertainty contribution (1 σ)
B1	Calibration of Re	1.50E-06 Ω	1	1.50E-06 Ω
B2	Drift of Re	8.95E-06 Ω	1	8.95E-06 Ω
B3	Calibration temperature of Re	0.14 °C	-0.000001 Ω.°C ⁻¹	-1.41E-07 Ω
B4	Stability of the L2 Reading	2.89E-06 Ω	1	2.89E-06 Ω
B5	Temperature coeff of Re	0E+00		0.00E+00 Ω
B6	Power coeff of Re	0E+00		0.00E+00 Ω
B7	Stability of the L1 Reading	2.89E-06 Ω	1	2.89E-06 Ω
B8	Resolution of L1	2.89E-06 Ω	1	2.89E-06 Ω
B9	Linearity error of the multimeter	0E+00		0.00E+00 Ω
B10	Resolution of L2	2.89E-06 Ω	1	2.89E-06 Ω
B11	Temperature effect on Re	0.71 °C	-0.000001 Ω.°C ⁻¹	-7.07E-07 Ω
B12	Leakage resistance of Re	0E+00		0.00E+00 Ω
B13	Leakage resistance of Rx	0E+00		0.00E+00 Ω
B14	Contact resistance of Re	0E+00		0.00E+00 Ω
B15	Contact resistance of Rx	0E+00		0.00E+00 Ω
B16	Fem parasites	0E+00		0.00E+00 Ω
B17	Variation of temperature during measurement	0E+00		0.00E+00 Ω
	Combined	1.1E-05 Ω		
	Expanded uncertainty	2.2Ε-05 Ω		
	Expanded uncertainty	4.0Ε-05 Ω		

Detailed measurement results and Detailed uncertainty budget for 100 Ω :

Page 41 of 85

Configuration of the multimeter "F8505A"			
RANGE	200 Ω		
FAST	OFF		
4-WIRE	ON		
DIGIT	7		
FILT	ON (Low pass Filter)		
CURRENT	1 mA (LoI ON)		

Re		Coefficient temperature value of Re in °C ⁻
100.000944	Ω	4.00E-08

$$L2 = \operatorname{Re} + \varepsilon$$

 $L1 = Rx + \varepsilon$

Rx = L1 - L2 + Re

$$Rx = L1 - L2 + Re + \alpha_{Re} \cdot Re \cdot (T_{Etal} - T_0)$$

L1 (Ω)	Stability on L1	L2 (Ω)	Stability on L2	Rx (Ω)
100.0068	stable	100.0009	stable	100.0068

Rx nominal value	100	Ω
Rx measured value (calculated)	100.0068	Ω
Expanded Uncertainty (k=2)	0.0003	Ω

Uncertainty Budg	get
-------------------------	-----

Page 42 of 85

Rx

100 Ω

	Quantity	Standard uncertainty (1ơ)	Sensitivity coefficient	Uncertainty contribution (1σ)
B1	Calibration of Re	2.00Ε-05 Ω	1	2.00E-05 Ω
B2	Drift of Re	3.46Ε-05 Ω	1	3.46Ε-05 Ω
B3	Calibration temperature of Re	0.14 °C	0.000004 Ω.°C ⁻¹	5.66E-07 Ω
B4	Stability of the L2 Reading	2.89Ε-05 Ω	1	2.89E-05 Ω
B5	Temperature coeff of Re	0E+00		0.00E+00 Ω
B6	Power coeff of Re	0E+00		0.00E+00 Ω
B7	Stability of the L1 Reading	2.89Ε-05 Ω	1	2.89E-05 Ω
B8	Resolution of L1	2.89E-05 Ω	1	2.89E-05 Ω
B9	Linearity error of the multimeter	0E+00		0.00E+00 Ω
B10	Resolution of L2	2.89E-05 Ω	1	2.89E-05 Ω
B11	Temperature effect on Re	0.71 °C	0.000004 Ω.°C ⁻¹	2.83E-06 Ω
B12	Leakage resistance of Re	0E+00		0.00E+00 Ω
B13	Leakage resistance of Rx	0E+00		0.00E+00 Ω
B14	Contact resistance of Re	0E+00		0.00E+00 Ω
B15	Contact resistance of Rx	0E+00		0.00E+00 Ω
B16	Fem parasites	0E+00		0.00E+00 Ω
B17	Variation of temperature during measurement	0E+00		0.00E+00 Ω
	Combined	7.0Ε-05 Ω		
	Expanded uncertainty	or)	1.4E-04 Ω	
	Expanded uncertaint	3.0E-04 Ω		

Detailed measurement results and Detailed uncertainty budget for 1 k Ω :

Configuration of the multimeter "F8505A"			
RANGE	2 kΩ		
FAST	OFF		
4-WIRE	ON		
DIGIT	7		
FILT	ON (Low pass Filter)		
CURRENT	1 mA (LoI OFF)		

Re		Coefficient temperature value of Re in °C ⁻ 1
1.00000518	kΩ	2.00E-08
$I_2 = P_2 + c$		

 $L1 = Rx + \varepsilon$

Rx = L1 - L2 + Re

$$Rx = L1 - L2 + \text{Re} + \alpha_{\text{Re}} \cdot \text{Re} \cdot (T_{Etal} - T_0)$$

L1 (kΩ)	Stability on L1	L2 (kΩ)	Stability on L2	Rx (kΩ)
1.000005	stable	1.000004	stable	1.000006

Rx nominal value	1	kΩ
Rx measured value (calculated)	1.000006	kΩ
Expanded Uncertainty (k=2)	0.000003	kΩ

Uncertainty Budget	

Rx

1000 Ω

	Quantity	Standard uncertainty (1o)	Sensitivity coefficient	Uncertainty contribution (1 σ)
B1	Calibration of Re	2.00Ε-04 Ω	1	2.00E-04 Ω
B2	Drift of Re	2.60Ε-04 Ω	1	2.60E-04 Ω
B3	Calibration temperature of Re	0.14 °C	0.00002 Ω.°C ⁻¹	2.83E-06 Ω
B4	Stability of the L2 Reading	2.89Ε-04 Ω	1	2.89E-04 Ω
B5	Temperature coeff of Re	0E+00		0.00E+00 Ω
B6	Power coeff of Re	0E+00		0.00E+00 Ω
B7	Stability of the L1 Reading	2.89E-04 Ω	1	2.89E-04 Ω
B8	Resolution of L1	2.89E-04 Ω	1	2.89E-04 Ω
B9	Linearity error of the multimeter	0E+00		0.00E+00 Ω
B10	Resolution of L2	2.89E-04 Ω	1	2.89E-04 Ω
B11	Temperature effect on Re	0.71 °C	0.00002 Ω.°C ⁻¹	1.41E-05 Ω
B12	Leakage resistance of Re	0E+00		0.00E+00 Ω
B13	Leakage resistance of Rx	0E+00		0.00E+00 Ω
B14	Contact resistance of Re	0E+00		0.00E+00 Ω
B15	Contact resistance of Rx	0E+00		0.00E+00 Ω
B16	Fem parasites	0E+00		0.00E+00 Ω
B17	Variation of temperature during measurement	0E+00		0.00E+00 Ω
Combined standard uncertainty				6.6E-04 Ω
Expanded uncertainty calculated (95% coverage factor)				1.3E-03 Ω
Expanded uncertainty proposed (95% coverage factor)				3.0Ε-03 Ω

Detailed measurement results and Detailed uncertainty budget for 10 k Ω :

Configuration of the multimeter "F8505A"				
RANGE	20 kΩ			
FAST	OFF			
4-WIRE	ON			
DIGIT	7			
FILT	ON (Low pass Filter)			
CURRENT	100 µA (LoI OFF)			

Re		Coefficient temperature value of Re in °C ⁻¹
10.0001065	kΩ	-3.00E-08
$L2 = \operatorname{Re} + \varepsilon$ $L1 = Rx + \varepsilon$		
Rr - I1 - I2	+ Re	

$$Rx = L1 - L2 + \text{Re} + \alpha_{\text{Re}} \cdot \text{Re} \cdot (T_{Etal} - T_0)$$

	L1 (kΩ)	Stability on L1	L2 (kΩ)	Stability on L2	Rx (kΩ)
1	10.000130 $\pm 2 \text{ m}\Omega$		10.000103	\pm 2 m Ω	10.00013
			_		_
		Rx nominal value	10	kΩ	
	Rx m	easured value (calculated)	10.00013	kΩ	
	Expanded Uncertainty (k=2)		0.00002	kΩ	

Page 46 of 85

Uncertainty Budget

Rx

10000 Ω

Quantity		Standard uncertainty (1σ)	Sensitivity coefficient	Uncertainty contribution (1σ)
B1	Calibration of Re	2.00E-03 Ω	1	2.00Ε-03 Ω
B2	Drift of Re	3.20Ε-03 Ω	1	3.20Ε-03 Ω
B3	Calibration temperature of Re	0.14 °C	-0.0003 Ω.°C ⁻¹	-4.24E-05 Ω
B4	Stability of the L2 Reading	1.15E-03 Ω	1	1.15E-03 Ω
B5	Temperature coeff of Re	0E+00		0.00E+00 Ω
B6	Power coeff of Re	0E+00		0.00E+00 Ω
B7	Stability of the L1 Reading	1.15E-03 Ω	1	1.15E-03 Ω
B8	Resolution of L1	2.89E-04 Ω	1	2.89Ε-04 Ω
B9	Linearity error of the multimeter	0E+00		0.00E+00 Ω
B10	Resolution of L2	2.89E-04 Ω	1	2.89Ε-04 Ω
B11	Temperature effect on Re	0.71 °C	-0.0003 Ω.°C ⁻¹	-2.12E-04 Ω
B12	Leakage resistance of Re	0E+00		0.00E+00 Ω
B13	Leakage resistance of Rx	0E+00		0.00E+00 Ω
B14	Contact resistance of Re	0E+00		0.00E+00 Ω
B15	Contact resistance of Rx	0E+00		0.00Ε+00 Ω
B16	Fem parasites	0E+00		0.00E+00 Ω
B17	Variation of temperature during measurement	0E+00		0.00Ε+00 Ω
	Combine	ed standard uncertainty		4.1Ε-03 Ω
	Expanded uncertain	ty calculated (95% coverage facted	or)	8.3Ε-03 Ω
	Expanded uncertain	<mark>2.0Ε-02</mark> Ω		

Comments :

B5 : The temperature coefficient of Re was determined with very low uncertainty, thus B5 is negligible compared to B11.

B6 : The loss power through Re is lower than 10 mW, thus there is no significant effect on the measurement.

B9 : Due to low errors between the readings L1 and L2, and due to manufacturer's specifications of the multimeter, B9 is negligible.

B11 : We have considered that the measurements were done with conditions $23^{\circ}C \pm 1^{\circ}C$

B12 to B15 : Re and Rx have 4-wire terminals and was connected to the multimeter with 4-wire configuration.

The Ground terminal of the resistance was connected to the Guard terminal of the multimeter.

These quantities have a negligible effect on the measurements.

B16 : The fem parasites are the same either with Re or Rx. Thus, because of the substitution method principle, B16 is considered negligible.

B17 : This effect is already considered in the B4 and B7 quantities.

10 Appendix D: DEF-NAT results

Measurement report

Measurement results:

The resistance RX of the unknown resistor is obtained from the relationship:

Rx= Rs*Ke = Rs0*[1 + (α * Δ T) + (β * Δ T2)] * (kx+c) Where: Rx : the value of the unknown (Artifact) resistance at Tx. Rs : the value of the standard resistance at Te. Rs0 : the value of the standard resistance at T0. Kx : the Ratio displayed on the DCC-RES bridge C : the correction of the Ratio Kx α and β : Temperature coefficient of the standard resistance. Δ T : (Te - T0)

Resistor Fluke 742A-1 :

Artifact serial number: 4935018

Date	Measured Temperature Tx	Measured Relative Humidity	Test current	Measurement result
11/03/2016	23,8°C			1,000049 Ω
14/03/2016	23,9°C	Between 20 and		1,000050 Ω
15/03/2016	23,9°C		30 mA	1,000050 Ω
16/03/2016	03/2016 24°C Between 30	50%		1,000049 Ω
17/03/2016	24°C	30%		1,000050 Ω
18/03/2016	24°C			1,000049 Ω
22/03/2016	23.8°C			1,000049 Ω

Detailed uncertainty budget

Ue $(R_x) = k * U_c(R_x)$; k = 2 and *Uc* $(R_x) = \sqrt{A^2 + B^2}$

Where:

Ue : the expanded uncertainty Uc : the combined uncertainty K : the coverage factor A : uncertainty type A evaluation Arep = $\frac{STD.DEV}{\sqrt{N}}$ Where: Arep is the uncertainty of repeated measurement

N : number of repeated measurement

B : uncertainty type B evaluation

$$B = \sqrt{B_s^2 + B_r^2 + B_{ds}^2 + B_{dr}^2 + B_{dx}^2 + B_T^2 + B_{res}^2}$$

Where:

Bs is the uncertainty of the standard resistance LN4210 (1 Ω) $B_s = \frac{Ue}{2}$ in 1 σ ; "Ue" is the expanded uncertainty of the standard Resistance Br = is the uncertainty of the Ratio (1,0) of the bridge Guildline 9975 $B_r = \frac{Ue}{2}$; in 1σ "Ue" is the expanded calibration uncertainty of the ratio (1,0)Bds= is the uncertainty due to the drift of the standard resistance $B_{ds} = \frac{driftof the standard resistance}{-}$ in 1σ : $2\sqrt{3}$ Bdr = is the uncertainty of the bridge Guildline 9975 ratio (1,0) $B_{dr} = \frac{drift of the ratio since its last calibration}{2}$; in 1σ $B_{dr} = \frac{1}{2\sqrt{3}}$, in To Bdx = is the short time drift of the unknown resistance (the artifact) $maximum drift between concecutifmeasurements of the artifactat 23^\circ C$ $B_{dx} =$ $: in 1\sigma$ $2\sqrt{3}$ BT = is the uncertainty of the temperature variation of the standard Resistance $B_T = \alpha_e \times \Delta T + \beta_e \times \Delta T^2$;

 ΔT is the difference of temperature between standard calibration and in process calibration (Te - T0)

Bres = is the uncertainty due to the resolution of the Bridge Guildline 9975 $B_{res} = \frac{measurementresolution}{2\sqrt{3}}$; in 1 σ

Uncertainty budget

			Probability		
Quantity	Estimato	Standard	distribution/	Sensitivity	Uncertainty
v		uncertainty	method of	coefficient	contribution
Λ_{i}	X _i	$u(x_i)$	evaluation	Ci	$u(R_i) (\Omega)$
			(A, B)		
Arep	4,3.10 ⁻⁷	1,6.10 ⁻⁷	А	1	1,6.10 ⁻⁷
Bs	1,5.10 ⁻⁶	7,6.10 ⁻⁷	В	1	7,6.10 ⁻⁷
Br	4,5.10 ⁻⁷	2,3.10 ⁻⁷	В	1 Ω	2,3.10 ⁻⁷
Bds	1,52.10 ⁻⁶	4,38.10 ⁻⁷	В	1	4,38.10 ⁻⁷
Bdr	2,3.10 ⁻⁷	6,6.10 ⁻⁸	В	1 Ω	6,6.10 ⁻⁸
B _{dx}	1,03.10 ⁻⁶	3,0.10 ⁻⁷	В	1	3,0.10 ⁻⁷
Bres	1.10 ⁻⁷	2,9.10 ⁻⁸	В	1	2,9.10 ⁻⁸
Β _T	1,1.10 ⁻⁶	1,1.10 ⁻⁶	В	1 Ω	1,1.10 ⁻⁶
		Combined standard uncertainty			1,5.10 ⁻⁶

Expanded unce	rtainty
(95 % coverage	factor) 3.10 ⁻⁶

Summary of results Mean temperature and uncertainty $(23,9\pm0,3)^{\circ}$ C Mean relative humidity and uncertainty between 30 and 50% Test current 30 mA Mean date of measurement 16/03/2016 Mean resistance value and expanded uncertainty :1,000049 $\Omega \pm 3.10$ -6 Ω

Resistor Fluke 742A-10:

Artifact serial number: 4920006

Date	Measured Temperature	Measured Relative Humidity	Test current	Measurement result
11/03/2016	23,8°C	Between 30 and 50%	10 mA	10,00050 Ω
14/03/2016	23,9°C	Between 30 and 50%	10 mA	10,00050 Ω
15/03/2016	23,9°C	Between 30 and 50%	10 mA	10,00049 Ω
16/03/2016	24,1°C	Between 30 and 50%	10 mA	10,00049 Ω
17/03/2016	23,9°C	Between 30 and 50%	10 mA	10,00049 Ω
18/03/2016	23,9°C	Between 30 and 50%	10 mA	10,00049 Ω
22/03/2016	23.9°C	Between 30 and 50%	10 mA	10,00048 Ω

Detailed uncertainty budget

Ue $(R_x) = k * U_c(R_x)$; k = 2 and *Uc* $(R_x) = \sqrt{A^2 + B^2}$

Where:

Ue : the expanded uncertainty Uc : the combined uncertainty K : the coverage factor A : uncertainty type A evaluation

Arep = $\frac{STD.DEV}{\sqrt{N}}$

Where:

Arep is the uncertainty of repeated measurement N : number of repeated measurement

B: uncertainty type B evaluation

$$B = \sqrt{B_s^2 + B_r^2 + B_{ds}^2 + B_{dr}^2 + B_{dx}^2 + B_T^2 + B_{res}^2}$$

Where:

Bs is the uncertainty of the standard resistance L&N 4030B - 100 Ω $B_s = \frac{Ue}{2}$ in 1 σ ;

"Ue" is the expanded uncertainty of the standard Resistance

Page 51 of 85

Br = is the uncertainty of the Ratio (0,1) of the bridge Guildline 9975 $B_r = \frac{Ue}{2}$; in 1 σ

"Ue" is the expanded calibration uncertainty of the ratio (0,1) Bds= is the uncertainty due to the drift of the standard resistance $B_{ds} = \frac{driftof the standard resistance}{2\sqrt{3}}$ in 1 σ ; Bdr = is the uncertainty of the bridge Guildline 9975 ratio (0,1)

$$B_{dr} = \frac{driftof the ratio since its last calibration}{2\sqrt{3}} ; \text{ in } 1\sigma$$

Bdx = is the short time drift of the unknown resistance (the artifact)

 $B_{dx} = \frac{maximum drift between concecutif measurements of the artifactat 23°C}{2\sqrt{3}}$; in 1σ BT = is the uncertainty of the temperature variation of the standard Resistance

 $B_T = \alpha_e \times \Delta T + \beta_e \times \Delta T^2$;

 ΔT is the difference of temperature between standard calibration and in process calibration (Te - T0)

Bres = is the uncertainty due to the resolution of the Bridge Guildline 9975

$$B_{res} = \frac{measurement resolution}{2\sqrt{3}}$$

Uncertainty budget

Quantity X_i	Estimate x_i	Standard uncertainty $u(x_i)$	Probability distribution/ method of evaluation (A B)	Sensitivity coefficient	Uncertainty contribution $u(B_{i})(\Omega)$
Aren	8.1.10-6	$3.1.10^{-6}$	A	1	$3.1.10^{-6}$
Bs	2,2.10-5	1,1.10-5	В	1	1,1.10 ⁻⁵
Br	9,3.10-7	4,7.10-7	В	10 Ω	4,7.10-6
B _{ds}	1,6.10-4	4,5.10-6	В	1	4,5.10-6
B _{dr}	1,1.10-7	3,2.10-7	В	10 Ω	3,2.10-6
B _{dx}	1,7.10-5	4,9.10-6	В	1	4,9.10-6
B _{res}	1.10-5	2,9.10-6	В	1	2,9.10-6
B _T	1,2.10-6	1,2.10-6	В	10 Ω	1,2.10-5
		(Combined standard uncertainty		1,9.10-5
		Expanded uncertainty			3,8.10-5
			(95 % coverage factor)		

Summary of results

Mean temperature and uncertainty (23,9±0,3)°C

Mean relative humidity and uncertainty between 30 and 50%

Test current 10 mA

Mean date of measurement 16/03/2016

Mean resistance value and expanded uncertainty :10,00049 $\Omega\pm3,8.10\mathchar`-5\Omega$

Resistance Fluke 742A-100:

Date	Measured Temperature	Measured Relative Humidity	Test current	Measurement result
11/03/2016	23,9°C	Between 30 and 50%	1 mA	100,0071 Ω
14/03/2016	24,0°C	Between 30 and 50%	1 mA	100,0071 Ω
15/03/2016	23,9°C	Between 30 and 50%	1 mA	100,0071 Ω
16/03/2016	24,0°C	Between 30 and 50%	1 mA	100,0071 Ω
17/03/2016	23,9°C	Between 30 and 50%	1 mA	100,0071 Ω
18/03/2016	24,0°C	Between 30 and 50%	1 mA	100,0069 Ω
22/03/2016	23.8°C	Between 30 and 50%	1 mA	100,0069 Ω

Artifact serial number: 5485007

6. Detailed uncertainty budget

Ue $(R_x) = k * U_c(R_x)$; k = 2 and *Uc* $(R_x) = \sqrt{A^2 + B^2}$

Where:

Ue : the expanded uncertainty

Uc : the combined uncertainty

K : the coverage factor

A: uncertainty type A evaluation

Arep = $\frac{STD.DEV}{\sqrt{N}}$

Where:

Arep is the uncertainty of repeated measurement N : number of repeated measurement

B: uncertainty type B evaluation

$$B = \sqrt{B_s^2 + B_r^2 + B_{ds}^2 + B_{dr}^2 + B_{dx}^2 + B_T^2 + B_{res}^2}$$

Where:

Bs is the uncertainty of the standard resistance L&N 4030B - 100 Ω $B_s = \frac{Ue}{2}$ in 1 σ ;

"Ue" is the expanded uncertainty of the standard Resistance Br = is the uncertainty of the Ratio(1,0) of the bridge Guildline 9975 $B_r = \frac{Ue}{2}$; in 1 σ "Ue" is the expanded calibration uncertainty of the ratio (1,0)

Bds= is the uncertainty due to the drift of the standard resistance $B_{ds} = \frac{driftof the standard resistance}{2\sqrt{3}} \quad \text{in } 1\sigma;$

Bdr = is the uncertainty of the bridge Guildline 9975 ratio (1,0)

$$B_{dr} = \frac{driftof theratios inceits last calibration}{2\sqrt{3}}$$
; in 1σ

Bdx = is the short time drift of the unknown resistance (the artifact)

Page 53 of 85

 $B_{dx} = \frac{maximum drift between concecutif measurements of the artifactat 23°C}{2\sqrt{3}}$; in 1σ BT = is the uncertainty of the temperature variation of the standard Resistance

 $B_T = \alpha_e \times \Delta T + \beta_e \times \Delta T^2$; ΔT is the difference of temperature between standard calibration and in process calibration (Te - T0)

Bres = is the uncertainty due to the resolution of the Bridge Guildline 9975

$$B_{res} = \frac{measurement resolution}{2\sqrt{3}}$$

Uncertainty budget

Quantity X _i	Estimate <i>x_i</i>	Standard uncertainty $u(x_i)$	Probability distribution/ method of evaluation (A, B)	Sensitivity coefficient	Uncertainty contribution $u(R_i)(\Omega)$
A _{rep}	9,4.10-5	3,6.10-5	A	1	3,6.10-5
Bs	2,2.10-4	1,1.10 ⁻⁴	В	1	1,1.10 ⁻⁴
Br	4,5.10 ⁻⁷	2,3.10 ⁻⁷	В	100 Ω	2,3.10 ⁻⁵
B _{ds}	1,6.10 ⁻⁴	4,5.10 ⁻⁵	В	1	4,5.10 ⁻⁵
B _{dr}	2,3.10 ⁻⁷	6,6.10 ⁻⁸	В	100 Ω	6,6.10 ⁻⁶
B _{dx}	1,9.10 ⁻⁴	5,4.10 ⁻⁵	В	1	5,4.10 ⁻⁵
B _{res}	1.10 ⁻⁵	2,9.10 ⁻⁶	В	1	2,9.10 ⁻⁶
B _T	1,2.10 ⁻⁶	1,2.10 ⁻⁶	В	100 Ω	1,2.10-4
		(Combined standard uncertainty		1,8.10-4
			Expanded uncertainty		3,7.10-4
			(95 % coverage factor)		

Summary of results Mean temperature and uncertainty $(23,9\pm0,3)^{\circ}$ C Mean relative humidity and uncertainty between 30 and 50% Test current 1 mA Mean date of measurement 16/03/2016 Mean resistance value and expanded uncertainty :100,0070 $\Omega \pm 3,7.10-4\Omega$

Resistance Fluke 742A-1k:

Artifact serial number: 7733002

Date	Measured Temperature	Measured Relative Humidity	Test current	Measurement result
11/03/2016	23,9°C	Between 30 and 50%	1 mA	1,000005 kΩ
14/03/2016	24,2°C	Between 30 and 50%	1 mA	1,000004 kΩ
15/03/2016	23,8°C	Between 30 and 50%	1 mA	1,000004 kΩ
16/03/2016	23,8 °C	Between 30 and 50%	1 mA	1,000005 kΩ
17/03/2016	24,1°C	Between 30 and 50%	1 mA	1,000004 kΩ
18/03/2016	24,1°C	Between 30 and 50%	1 mA	1,000004 kΩ
22/03/2016	24.1°C	Between 30 and 50%	1 mA	1,000004 kΩ

Detailed uncertainty budget

 $Ue (R_x) = k * U_c(R_x) ; k = 2$ and Uc $(R_r) = \sqrt{A^2 + B^2}$

Where:

Ue : the expanded uncertainty Uc : the combined uncertainty K : the coverage factor A: uncertainty type A evaluation Arep = $\frac{STD.DEV}{\sqrt{N}}$

Where:

Arep is the uncertainty of repeated measurement N : number of repeated measurement

B: uncertainty type B evaluation

$$B = \sqrt{B_s^2 + B_r^2 + B_{ds}^2 + B_{dr}^2 + B_{dx}^2 + B_T^2 + B_{res}^2}$$

Where:

Bs is the uncertainty of the standard resistance SR1010 – $10 \text{ k}\Omega$ S¥N:917006 (10 parallel steps)

 $B_s = \frac{Ue}{2}$ in 1 σ ; "Ue" is the expanded uncertainty of the standard Resistance Br = is the uncertainty of the Ratio(1,0) of the bridge Guildline 9975 $B_r = \frac{Ue}{2}$; in 1σ "Ue" is the expanded calibration uncertainty of the ratio (1,0)Bds= is the uncertainty due to the drift of the standard resistance

 $B_{ds} = \frac{driftof the standard resistance}{\overline{}}$ in 1σ ; $2\sqrt{3}$

Bdr = is the uncertainty of the bridge Guildline 9975 ratio (1,0)

$$B_{dr} = \frac{driftof the ratio since its last calibration}{2\sqrt{3}}$$
; in 1σ

Bdx = is the short time drift of the unknown resistance (the artifact)

$$B_{dx} = \frac{maximumdriftbetweenconcecutifmeasurementsoftheartifactat23^{\circ}C}{2\sqrt{3}}$$
; in 10

BT = is the uncertainty of the temperature variation of the standard Resistance

 $B_T = \alpha_e \times \Delta T + \beta_e \times \Delta T^2 \; ;$

 ΔT is the difference of temperature between standard calibration and in process calibration (Te - T0)

Bres = is the uncertainty due to the resolution of the Bridge Guildline 9975

$$B_{res} = \frac{measurement resolution}{2\sqrt{3}}$$

Bsp = is the uncertainty of the serial parallel coupling between the steps of our transfert resistance SR1010 (1k Ω /step)

 $B_{sp} = cst/(2 \times \sqrt{3})$; cst = $(R \times 1.10^{-6} + 1\mu\Omega)$

The equation of "cst" is taked from the manufacturer data sheet of the transfert resistance.

Uncertainty budget

Quantity X _i	Estimate x_i	Standard uncertainty $u(x_i)$	Probability distribution/ method of evaluation (A, B)	Sensitivity coefficient C _i	Uncertainty contribution $u(R_i)(\Omega)$
A _{rep}	1,6.10-7	6,1.10-8	А	1	6,1.10 ⁻⁸
Bs	1,0.10-6	5,0.10-7	В	1	5,0.10-7
Br	4,5.10-7	2,3.10-7	В	1 kΩ	2,3.10-7
B _{ds}	5,0.10-6	1,4.10-6	В	1	1,4.10-6
B _{dr}	2,3.10-7	6,6.10 ⁻⁸	В	1 kΩ	6,6.10 ⁻⁸
B _{dx}	2,6.10-7	7,4.10-8	В	1	7,4.10-8
B _{res}	2.10-4	5,8.10-8	В	1	5,8.10-8
B _T	-1,1.10-7	-1,1.10 ⁻⁷	В	1 kΩ	-1,1.10 ⁻⁷
B _{sp}	1.10-3	2,9.10-7	В	1	2,9.10-7
		(1,6.10 ⁻⁶		
			3,2.10 ⁻⁶		
			(95 % coverage factor)		

Summary of results

Mean temperature and uncertainty (24±0,3)°C

Mean relative humidity and uncertainty between 30 and 50%

Test current 1 mA

Mean date of measurement 16/03/2016

Mean resistance value and expanded uncertainty:1,000004 $k\Omega\pm3,2.10\text{-}6~k\Omega$

Resistance Fluke 742A-10k:

Date	Measured Temperature	Measured Relative Humidity	Test current	Measurement result
11/03/2016	24,0°C	Between 30 and 50%	0.1 mA	10,000118 kΩ
14/03/2016	23,8°C	Between 30 and 50%	0.1 mA	10,000119 kΩ
15/03/2016	24,1°C	Between 30 and 50%	0.1 mA	10,000119 kΩ
16/03/2016	24,0 °C	Between 30 and 50%	0.1 mA	10,000119 kΩ
17/03/2016	24,1°C	Between 30 and 50%	0.1 mA	10,000115 kΩ
18/03/2016	23,9°C	Between 30 and 50%	0.1 mA	10,000119 kΩ
22/03/2016	23.9°C	Between 30 and 50%	0.1 mA	10,000117 kΩ

Artifact serial number: 5065038

Detailed uncertainty budget

Ue $(R_x) = k * U_c(R_x)$; k = 2 and *Uc* $(R_x) = \sqrt{A^2 + B^2}$

Where:

Ue : the expanded uncertainty Uc : the combined uncertainty K : the coverage factor A : uncertainty type A evaluation Arep = $\frac{STD.DEV}{\sqrt{N}}$ Where:

Where:

Arep is the uncertainty of repeated measurement N : number of repeated measurement

B: uncertainty type B evaluation

$$B = \sqrt{B_s^2 + B_r^2 + B_{ds}^2 + B_{dr}^2 + B_{dx}^2 + B_T^2 + B_{res}^2}$$

Where:

Bs is the uncertainty of the standard resistance SR104 – 10 kΩ $B_s = \frac{Ue}{2}$ in 1 σ ; "Ue" is the expanded uncertainty of the standard Resistance Br = is the uncertainty of the Ratio(1,0) of the bridge Guildline 9975 $B_r = \frac{Ue}{2}$; in 1 σ "Ue" is the expanded calibration uncertainty of the ratio (1,0)

"Ue" is the expanded calibration uncertainty of the ratio (1,0) Bds= is the uncertainty due to the drift of the standard resistance $B_{ds} = \frac{driftof the standard resistance}{2\sqrt{3}}$ in 1 σ ; Bdr = is the uncertainty of the bridge Guildline 9975 ratio (1,0)

$$B_{dr} = \frac{driftof the ratio since its last calibration}{2\sqrt{3}}$$
; in 1σ
Bdx = is the short time drift of the unknown resistance (the artifact)

 $B_{dx} = \frac{maximum drift between concecutif measurements of the artifactat 23°C}{2\sqrt{3}}$; in 1σ BT = is the uncertainty of the temperature variation of the standard Resistance

 $B_T = \alpha_e \times \Delta T + \beta_e \times \Delta T^2 \ ;$

 ΔT is the difference of temperature between standard calibration and in process calibration (Te - T0)

Bres = is the uncertainty due to the resolution of the Bridge Guildline 9975

$$B_{res} = \frac{measurement resolution}{2\sqrt{3}}$$

Uncertainty budget

Quantity X _i	Estimate x_i	Standard uncertainty $u(x_i)$	Probability distribution/ method of evaluation (A, B)	Sensitivity coefficient C _i	Uncertainty contribution $u(R_i)(\Omega)$
A _{rep}	1,6.10 ⁻⁶	6,1.10 ⁻⁷	А	1	6,1.10 ⁻⁷
Bs	4,0.10 ⁻⁶	2,0.10 ⁻⁶	В	1	2,0.10 ⁻⁶
Br	4,5.10 ⁻⁷	2,3.10 ⁻⁷	В	10 kΩ	2,3.10 ⁻⁶
Bds	6,8.10 ⁻⁶	2,0.10 ⁻⁶	В	1	2,0.10 ⁻⁶
B _{dr}	2,3.10 ⁻⁷	6,6.10 ⁻⁸	В	10 kΩ	6,6.10 ⁻⁷
Bdx	4,1.10 ⁻⁶	1,2.10 ⁻⁶	В	1	1,2.10 ⁻⁶
Bres	2.10 ⁻⁶	5,8.10 ⁻⁶	В	1	5,8.10 ⁻⁶
Вт	9,6.10 ⁻⁹	9,6.10 ⁻⁹	В	10 kΩ	9,6.10 ⁻⁸
		(7,0.10 ⁻⁶		
			1,4.10 ⁻⁵		

Summary of results Summary of results Mean temperature and uncertainty $(24\pm0,3)^{\circ}$ C Mean relative humidity and uncertainty between 30 and 50% Test current 0,1 mA Mean date of measurement 16/03/2016 Mean resistance value and expanded uncertainty:10,00012 k $\Omega \pm 1,4.10$ -5 k Ω

Approved Lt-Col Abdelkarim Mallat March 2016

11 Appendix E: KEBS Results

Measurement Results

Date	Nominal Value	(\mathbf{R})	UUT, Fluke 742A
	(R)	Reference standard (\mathbf{n}_{iS})	(R_{iX})
		10.0001935	10.0002116
		10.0002211	10.0001554
		10.0002110	10.0002132
		10.0002233	10.0002270
4th July 2016	10 kΩ	10.0002128	10.0002160
		10.0002258	10.0002292
		10.0002125	10.0002142
		10.0002263	10.0002320
		10.0002118	10.0001962
		10.0002165	10.0002172
Mean Reading		10.0002155 kΩ	10.0002112 kΩ
		1.0000364	1.0000236
		1.0000376	1.0000246
		1.0000376	1.0000238
		1.0000381	1.0000250
6th July 2016	1 kΩ	1.0000380	1.0000246
		1.0000386	1.0000254
		1.0000410	1.0000290
		1.0000412	1.0000286
		1.0000412	1.0000286
		1.0000410	1.0000288
Mean Reading		1.0000391 kΩ	1.0000212 kΩ
		99.9997	100.0048
		99.9978	100.0028
		99.9994	100.0044
		99.9978	100.0032
7th July 2016	$100 \ \Omega$	99.9992	100.0048
		99.9974	100.0028
		99.9997	100.0046
		99.9980	100.0030
		99.9998	100.0050
		99.9980	100.0036
Mean Reading		99.9987 Ω	100.0039 Ω
		9.9962	9.9965
		9.9976	9.9983
		9.9961	9.9966
11th July 2016	$10 \ \Omega$	9.9979	9.9984
		9.9962	9.9966
		9.9980	9.9984
		9.9960	9.9965
		9.9980	9.9983
		9.9960	9.9966

		9.9980	9.9984
Mean reading		9.9970 Ω	9.9975 Ω
		0.99996	1.00001
		0.99994	1.00000
		0.99995	1.00002
	1 Ω	0.99996	1.00000
12th July 2016		0.99996	1.00001
		0.99995	1.00000
		0.99994	1.00001
		0.99995	1.00000
		0.99996	1.00002
		0.99995	1.00001
Mean Reading		0.99996 Ω	1.00001 Ω

The standard uncertainty associated with each measurement is given by the following steps:

Standard deviation,
$$S(R_i) = \sqrt{\frac{1}{n}} \sum_{i=1}^{i=10} \left(R_i - \overline{R} \right)^2$$
 ------ (iv)

Experimental standard deviation of the mean, ESDM, standard uncertainty), $S(\bar{R}) = \frac{1}{\sqrt{n}} S(R_i)$ --(v)

10 k Ω (Using SR1010 transfer standard in parallel configuration- 1 k Ω /step)

 $R_s = 10.000121$ k Ω (certified value from UME-Turkey) $\Rightarrow \Delta R_s = +0.000121$ k Ω

$$\Delta R_{742A} = \bar{R_{iX}} - \bar{R}_{iS} + \Delta R_{S} = (10.000212 - 10.0002155) + 0.000121 = 0.0001175 \text{ k}\Omega$$

$$\therefore R_{742A} = (10.000000 + 0.0001175) = 10.0001175 \text{ k}\Omega$$

From equation (v),

$$S\left(10\bar{k}\Omega\right) = 0.000007 \,\mathrm{k}\Omega$$

Relative standard uncertainty, $u_1 = 0.7 \bullet 10^{-6} = 0.7 \mu \Omega / \Omega$.

Drift of the standard, u₂ = $(10.000121 - 10.000116) \text{ k}\Omega = 0.000005 \text{ k}\Omega = 0.5 \mu\Omega/\Omega$

Standard uncertainty from calibration certificate, $u_3 = \frac{0.5}{2} \quad \mu\Omega/\Omega = 0.3 \,\mu\Omega/\Omega$

Temperature coefficient = 3 ppm/0C = 3 $\mu\Omega \Omega^{-1} \Omega^{-1}$

Uncertainty due to temperature (1°C), u₄ = $\frac{3}{\sqrt{3}} = 1.8 \ \mu\Omega \ \Omega^{-1} \ ^{\circ}C^{-1}$ Page 60 of 85 Combined standard uncertainty, u = $\sqrt{(u_1^2 + u_2^2 + u_3^2 + u_4^2)^2}$

$$= \sqrt{\left(0.7^2 + 0.5^2 + 0.3^2 + 1.8^2\right)} \ \mu\Omega/\Omega$$
$$= 2.1 \ \mu\Omega/\Omega$$

Expanded uncertainty (k = 2), U = 4,2 $\mu\Omega/\Omega$

1 k Ω (Using SR1010 transfer standard in series/parallel configuration- 1 k Ω /step)

SR1010 (1 kΩ/step) for 10 kΩ =10.0002042 kΩ \rightarrow 1 kΩ =1.00002042 kΩ, hence ΔR_S =+0.00002042 kΩ

$$\Delta R_{742A} = \bar{R_{iX}} - \bar{R_{iS}} + \Delta R_{s} = (1.0000212 - 1.0000391) + 0.00002042 = 0.00000252 \text{ k}\Omega$$

 $\therefore R_{742A} = (1.000000 + 0.00000252) = 1.00000252 \text{k}\Omega$

From equation (v),

$$S\left(1\bar{k\Omega}\right) = 0.0000007 \,\mathrm{k\Omega}$$

Relative standard uncertainty, $u_1 = 0.7 \bullet 10^{-6} = 0.7 \mu \Omega / \Omega$.

Drift of the standard, $u_2 = 0.5 \,\mu\Omega/\Omega$

Transfer accuracy (1 ppm), $u_3 = \frac{1}{\sqrt{3}} \quad \mu\Omega/\Omega = 0.6 \ \mu\Omega/\Omega$

Temperature coefficient = 5 ppm/0C = 5 $\mu\Omega \ \Omega^{-1} \ ^0C^{-1}$

Uncertainty due to temperature (1°C), u₄ = $\frac{5}{\sqrt{3}} = 2.9 \ \mu\Omega \ \Omega^{-1} \ ^{\circ}C^{-1}$

Combined standard uncertainty, u = $\sqrt{(u_1^2 + u_2^2 + u_3^2 + u_4^2)^2}$ = $\sqrt{(0.7^2 + 0.5^2 + 0.6^2 + 2.9^2)}$ µQ/Q

$$= \sqrt{(0.7^{2} + 0.5^{2} + 0.6^{2} + 2.9^{2})} \mu\Omega /$$
$$= 3.1 \,\mu\Omega / \Omega$$

Expanded uncertainty (k = 2), U = 6,2 $\mu\Omega/\Omega$

100 Ω (Using SR1010 transfer standard in parallel configuration- 1 k Ω /step)

SR1010 (1 kΩ/step) for 1 kΩ =1.00002042 kΩ → 100 Ω =100.002042 Ω, hence ΔR_S =+0.002042 Ω $\Delta R_S = 0.002042$ Ω

$$\Delta R_{742A} = R_{iX} - R_{iS} + \Delta R_{S} = (100.0039 - 99.9987) + 0.002042 = 0.0072 \ \Omega$$

$$\therefore R_{742A} = (100.0000 + 0.0072) = 100.0072 \ \Omega$$

From equation (v),

$$S\left(100\Omega\right) = 0.0002864\,\Omega$$

Relative standard uncertainty, $u_1 = 2.9 \bullet 10^{-6} = 2.9 \mu \Omega / \Omega$.

Drift of the standard, $u_2 = 0.5 \,\mu\Omega/\Omega$

Transfer accuracy (1 ppm), $u_3 = \frac{1}{\sqrt{3}} \quad \mu\Omega/\Omega = 0.6 \ \mu\Omega/\Omega$

Temperature coefficient = 5 ppm/0C = 5 $\mu\Omega \Omega^{-1} \Omega^{-1}$

Uncertainty due to temperature (1°C), $u_4 = \frac{5}{\sqrt{3}} = 2.9 \ \mu\Omega \ \Omega^{-1} \ ^{\circ}C^{-1}$

Combined standard uncertainty, u = $\sqrt{(u_1^2 + u_2^2 + u_3^2 + u_4^2)^2}$

$$= \sqrt{\left(2.9^2 + 0.5^2 + 0.6^2 + 2.9^2\right)} \quad \mu\Omega/\Omega$$
$$= 4.2 \ \mu\Omega/\Omega$$

Expanded uncertainty (k = 2), U = 8,4 $\mu\Omega/\Omega$

10 Ω (SR1010 transfer standard 10 Ω /step calibrated against 1 k Ω /step-parallel configuration) SR1010 (10 Ω /step) for 100 Ω value = 99.9988 $\Omega \rightarrow \Delta R_{s} = -0.0012 \Omega$ Hence for 10 Ω , $\Delta R_{s} = -0.00012 \Omega$ $\Delta R_{s} = -\overline{R_{s}} - \overline{R_{s}} + \Delta R = (9.9975 - 9.9970) + (-0.00012) = -0.00004 \Omega$

$$\Delta R_{742A} = R_{iX} - R_{iS} + \Delta R_{S} - (9.9973 - 9.9970) + (-0.00012) - -0.00004$$
$$\therefore R_{742A} = (10.0000 - 0.00004) = 9.99996 \,\Omega$$

Page 62 of 85

From equation (v),

$$S\left(10\overline{\Omega}\right) = 0.00003004\,\Omega$$

Relative standard uncertainty, $u_1 = 3.0 \bullet 10^{-6} = 3.0 \mu \Omega / \Omega$.

Drift of the standard, $u_2 = 0.5 \,\mu\Omega/\Omega$

Transfer accuracy (1 ppm), $u_3 = \frac{1}{\sqrt{3}} \mu \Omega / \Omega = 0.6 \mu \Omega / \Omega$

Temperature coefficient = 5 ppm/0C = 5 $\mu\Omega \Omega^{-1} \circ C^{-1}$

Uncertainty due to temperature (1°C), u₄ = $\frac{5}{\sqrt{3}} = 2.9 \ \mu\Omega \ \Omega^{-1} \ ^{\circ}C^{-1}$

Combined standard uncertainty, u = $\sqrt{(u_1^2 + u_2^2 + u_3^2 + u_4^2)^2}$

$$= \sqrt{(3.0^2 + 0.5^2 + 0.6^2 + 2.9^2)} \quad \mu\Omega/\Omega$$
$$= 4.2 \ \mu\Omega/\Omega$$

Expanded uncertainty (k =2), U = 8,4 $\mu\Omega/\Omega$

1 Ω (SR1010 transfer standard 10 Ω /step calibrated against 1 k Ω /step-parallel configuration)

 $R_s = 0.9999883 \ \Omega$ (certified value from UME-Turkey) $\Rightarrow \Delta R_s = -0.00000117 \Omega$

$$\Delta R_{742A} = \bar{R_{iX}} - \bar{R_{iS}} + \Delta R_{s} = (1.00001 - 0.99996) + (-0.00000117) = 0.000003883 \ \Omega$$

$$\therefore R_{742A} = (1.000000 + 0.000004883) = 1.00003883\Omega$$

From equation (v),

$$S\left(\bar{1\Omega}\right) = 0.0000025\,\Omega$$

Relative standard uncertainty, $u_1 = 2.5 \bullet 10^{-6} = 2.5 \mu \Omega / \Omega$.

Drift of the standard, u₂ = 0.9999883 -0.9999880Ω = 0.0000003 Ω = 0.3 $\mu\Omega/\Omega$

Standard uncertainty from calibration certificate, $u_3 = \frac{0.3}{2} \quad \mu\Omega/\Omega = 0.2 \ \mu\Omega/\Omega$

Temperature coefficient = 1 ppm/0C = 3 $\mu\Omega \ \Omega^{-1} \ ^0C^{-1}$

Uncertainty due to temperature (1°C), u₄ = $\frac{1}{\sqrt{3}} = 0.6 \ \mu\Omega \ \Omega^{-1} \ ^{0}C^{-1}$

Combined standard uncertainty, u = $\sqrt{(u_1^2 + u_2^2 + u_3^2 + u_4^2)^2}$

$$=\sqrt{\left(2.5^2+0.3^2+0.2^2+0.6^2\right)} \ \mu\Omega/\Omega$$

= 2,6 μΩ/Ω

Expanded uncertainty (k =2), U = 5,2 $\mu\Omega/\Omega$

Summary of the Measurement Results

Nominal Value	Measured Value	Expanded Relative Uncertainty, U ($k = 2$)
1 Ω	1,000038 Ω	5,2·10 ⁻⁶
10 Ω	9,999960 Ω	8,4·10 ⁻⁶
100Ω	100,00724 Ω	8,4·10 ⁻⁶
1 kΩ	1,000026 kΩ	6,2·10 ⁻⁶
10 kΩ	10,000118 kΩ	4,2·10 ⁻⁶

12 Appendix F: NIS results

Measurement Report

1. Detailed Measurement Results of the 1 Ω Standard:

Date	Measured	Measured	Measured	Test	Measurement
	Atmospheric	Temperature	Relative	Current	Result (Ω)
	Pressure (hpa)	(°C)	Humidity	(mA)	
	_		(%)		
11/06/2017	1007.12	23.1	48.2	50	1.000049994
12/06/2017	1010.08	22.9	46.8	50	1.000050007
13/06/2017	1008.37	22.4	48.0	50	1.000049978
14/06/2017	1007.23	22.4	53.4	50	1.000049922
15/06/2017	1008.46	23.2	50.9	50	1.000049978
18/06/2017	1006.23	23.0	46.2	50	1.000049936
19/06/2017	1006.44	23.0	48.0	50	1.000049925
20/06/2017	1010.02	23.7	42.5	50	1.000050010
21/06/2017	1009.39	23.2	49.8	50	1.000049910
22/06/2017	1011.26	23.4	48.4	50	1.000049882

Table 1 shows the measurement results of the 1 Ω standard

Detailed Uncertainty Budget of the 1 Ω Standard:

Quantity	Estimate	Standard	Probability	Sensitivity	Uncertainty	Degree of	
		uncertainty	distribution	Coefficient	Contribution	Freedom	
Xi	Xi		/method of				
		u(x _i)	evaluation	Ci	u(R _i)	ν_i	
			(A, B)				
Repeatability	$1.0 imes10^{-8}\Omega$	$1.0 imes10^{-8}\Omega$	Normal/A	1	$1.0 imes10^{-8}\Omega$	24	
Calibration of R _s	$3.4 imes10^{-8}\Omega$	$1.7 imes 10^{-8}\Omega$	Normal/B	1	$1.7 imes10^{-8}\Omega$	8	
Drift of R _s	$6.2 imes 10^{-10} \Omega$	$3.6 \times 10^{-10} \Omega$	Rectangular/B	1	$3.6 imes 10^{-10} \Omega$	∞	
Expected Value Error	$2.6 imes 10^{-8} \Omega$	$1.5 imes 10^{-8}\Omega$	Rectangular/B	1	1.5 × 10⁻ ⁸ Ω	∞	
Temp. Coefficient of R _s	$4.7 \times 10^{-7} \Omega$	$2.7 \times 10^{-7} \Omega$	Rectangular/B	1	2.7 × 10 ⁻⁷ Ω	∞	
Power Coefficient of Rs	$5.0 imes 10^{-8} \Omega$	$2.9 \times 10^{-8} \Omega$	Rectangular/B	1	2.9 × 10 ⁻⁸ Ω	∞	
Pressure Coefficient of Rs	$13.7 imes 10^{-9} \Omega$	$7.9 imes 10^{-9} \Omega$	Rectangular/B	1	$7.9 imes10^{-9}\Omega$	∞	
Bridge Calibration	$5.0 imes 10^{-8} \Omega$	$2.5 imes 10^{-8} \Omega$	Normal/B	1	2.5 × 10 ⁻⁸ Ω	∞	
Bridge Resolution	$5.0 imes10^{-10}\Omega$	$2.9 imes 10^{-10} \Omega$	Rectangular/B	1	$2.9 imes 10^{-10} \Omega$	∞	
Bridge offset	$15.9 imes 10^{-9} \Omega$	$9.2 imes 10^{-9} \Omega$	Rectangular/B	1	9.2 × 10 ⁻⁹ Ω	8	
Stability of R _x During The	8.3 × 10 ⁻⁸ Ω	4.8 × 10 ⁻⁸ Ω	Rectangular/B	1	4.8 × 10 ⁻⁸ Ω	8	
Period of Measurement	010 10 11			_			
Temp. Coefficient of R _x	$8.0 imes 10^{-8} \Omega$	$4.6 imes 10^{-8} \Omega$	Rectangular/B	1	$4.6 imes10^{-8}\Omega$	∞	
		Combined standard uncertainty:			2.8 × 10 ⁻	7Ω	
		Effective degree	es of freedom:	∞			
		Expanded und	certainty (95% cove	rage factor):	$5.6 \times 10^{-7} \Omega = 0.56 \mu \Omega / \Omega$		

The uncertainty sources are listed in Table 2

2. Detailed Measurement Results of the 10 Ω Standard:

Date	Measured	Measured	Measured	Test	Measurement
	Atmospheric	Temperature	Relative	Current	Result (Ω)
	Pressure (hpa)	(°C)	Humidity	(mA)	
			(%)		
11/06/2017	1007.12	23.1	48.2	5	10.00050553
12/06/2017	1010.08	22.9	46.8	5	10.00050448
13/06/2017	1008.37	22.4	48.0	5	10.00050496
14/06/2017	1007.23	22.4	53.4	5	10.00050507
15/06/2017	1008.46	23.2	50.9	5	10.00050409
18/06/2017	1006.23	23.0	46.2	5	10.00050485
19/06/2017	1006.44	23.0	48.0	5	10.00050374
20/06/2017	1010.02	23.7	42.5	5	10.00050414
21/06/2017	1009.39	23.2	49.8	5	10.00050325
22/06/2017	1011.26	23.4	48.4	5	10.00050324

Table 3 shows the measurement results of the 10 Ω standard

Detailed Uncertainty Budget of the 10 Ω Standard:

The uncertainty sources are listed in Table 4

Quantity	Estimate	Standard	Probability	Sensitivity Coefficient	Uncertainty Contribution	Degree of
Xi	Xi	uncertainty	/method of	coenteicht	contribution	riccuom
		u(x _i)	evaluation	Ci	u(R _i)	ν_i
			(A, B)			
Repeatability	$1.1 imes 10^{-7} \Omega$	$1.1 imes 10^{-7} \Omega$	Normal/A	1	$1.1 imes 10^{-7} \Omega$	24
Calibration of Rs	$3.4 imes 10^{-8} \Omega$	$1.7 imes10^{-8}\Omega$	Normal/B	1	$1.7 imes10^{-8}\Omega$	∞
Drift of R _s	$6.2 \times 10^{-10} \Omega$	$3.6 imes 10^{-10} \Omega$	Rectangular/B	1	$3.6 imes 10^{-10} \Omega$	∞
Expected Value Error	$2.6 imes 10^{-8} \Omega$	$1.5 imes 10^{-8}\Omega$	Rectangular/B	1	$1.5 imes 10^{-8}\Omega$	∞
Temp. Coefficient of R _s	$4.7 \times 10^{-7} \Omega$	$2.7 \times 10^{-7} \Omega$	Rectangular/B	1	$2.7 imes 10^{-7} \Omega$	∞
Power Coefficient of R _s	$5.0 imes 10^{-8} \Omega$	$2.9 imes 10^{-8} \Omega$	Rectangular/B	1	2.9 × 10 ⁻⁸ Ω	∞
Pressure Coefficient of Rs	$13.7 imes 10^{-9} \Omega$	$7.9 imes 10^{-9} \Omega$	Rectangular/B	1	$7.9 imes10^{-9}\Omega$	∞
Bridge Calibration	$4.0 imes 10^{-7} \Omega$	$2.0 imes 10^{-7} \Omega$	Normal/B	1	$2.0 imes 10^{-7} \Omega$	∞
Bridge Resolution	$5.0 imes 10^{-9} \Omega$	$2.9 imes 10^{-9} \Omega$	Rectangular/B	1	$2.9 imes10^{-9}\Omega$	∞
Bridge offset	$10.0 imes 10^{-9} \Omega$	$5.8 imes 10^{-9} \Omega$	Rectangular/B	1	5.8 × 10 ⁻⁹ Ω	∞
Stability of R _x During The	24.0×10^{-7} O	14×10^{-7} O	Rectangular/B	1	14×10^{-7} O	~
Period of Measurement	24.0 × 10 32	14 × 10 32	Nectangular/D	1	14 × 10 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Temp. Coefficient of R _x	$2.1 imes 10^{-7} \Omega$	$1.2 \times 10^{-7} \Omega$	Rectangular/B	1	1.2 × 10 ⁻⁷ Ω	∞
		Combined standard uncertainty:			1.43 × 10	$^{-4}\Omega$
		Effective degree	es of freedom:	∞		
		Expanded und	certainty (95% cove	rage factor):	$2.9 \times 10^{-6} \Omega = 0$.29 μΩ/Ω

3. Detailed Measurement Results of the 100 Ω Standard:

Date	Measured	Measured	Measured	Test	Measurement
	Atmospheric	Temperature	Relative	Current	Result (Ω)
	Pressure (hpa)	(°C)	Humidity	(mA)	
			(%)		
11/06/2017	1007.12	23.1	48.2	0.5	100.0073688
12/06/2017	1010.08	22.9	46.8	0.5	100.0073752
13/06/2017	1008.37	22.4	48.0	0.5	100.0073712
14/06/2017	1007.23	22.4	53.4	0.5	100.0073720
15/06/2017	1008.46	23.2	50.9	0.5	100.0073632
18/06/2017	1006.23	23.0	46.2	0.5	100.0073666
19/06/2017	1006.44	23.0	48.0	0.5	100.0073691
20/06/2017	1010.02	23.7	42.5	0.5	100.0073748
21/06/2017	1009.39	23.2	49.8	0.5	100.0073728
22/06/2017	1011.26	23.4	48.4	0.5	100.0073732

Table 5 shows the measurement results of the 100 Ω standard

Detailed Uncertainty Budget of the 100 Ω Standard:

The uncertainty sources are listed in Table 6

Quantity	Estimate	Standard uncertainty	Probability distribution	Sensitivity Coefficient	Uncertainty Contribution	Degree of Freedom
Xi	Xi		/method of			
		u(x _i)	evaluation	Ci	u(R _i)	ν
			(A, B)			
Repeatability	$1.1 imes10^{-6}\Omega$	$1.1 imes10^{-6}\Omega$	Normal/A	1	$1.1 imes10^{-6}\Omega$	24
Calibration of R _s	$3.6 imes10^{-6}\Omega$	$1.8 imes10^{-6}\Omega$	Normal/B	1	$1.8 imes10^{-6}\Omega$	∞
Drift of R _s	$2.9 imes 10^{-5} \Omega$	$1.7 imes10^{-5}\Omega$	Rectangular/B	1	$1.7 imes10^{-5}\Omega$	∞
Temp. Coefficient of Rs	$14.0 imes 10^{-8} \Omega$	$8.1 imes 10^{-8} \Omega$	Rectangular/B	1	$8.1 imes10^{-8}\Omega$	∞
Power Coefficient of Rs	$2.4 imes10^{-9}\Omega$	$1.4 imes10^{-9}\Omega$	Rectangular/B	1	$1.4 imes10^{-9}\Omega$	∞
Pressure Coefficient of Rs	$1.9 imes 10^{-7} \Omega$	$1.1 imes 10^{-7} \Omega$	Rectangular/B	1	$1.1 imes 10^{-7} \Omega$	∞
Bridge Calibration	$5.0 imes 10^{-6} \Omega$	$2.5 imes 10^{-6} \Omega$	Normal/B	1	$2.5 imes 10^{-6} \Omega$	∞
Bridge Resolution	$5.0 imes 10^{-8} \Omega$	$2.9 imes 10^{-8} \Omega$	Rectangular/B	1	$2.9 imes10^{-8}\Omega$	∞
Bridge offset	$2.3 imes 10^{-6} \Omega$	$1.3 imes10^{-6}\Omega$	Rectangular/B	1	$1.3 imes10^{-6}\Omega$	∞
Stability of R _x During The Period of Measurement	$2.4 imes 10^{-6} \Omega$	$1.4 imes 10^{-6} \Omega$	Rectangular/B	1	$1.4 imes10^{-6}\Omega$	8
Temp. Coefficient of R _x	$9.0 imes 10^{-7} \Omega$	$5.2 \times 10^{-7} \Omega$	Rectangular/B	1	$5.2 \times 10^{-7} \Omega$	∞
		Combined standard uncertainty:			$1.7 imes 10^{-5} \Omega$	
		Effective degree	es of freedom:	∞		
		Expanded und	certainty (95% cove	rage factor):	$3.5 \times 10^{-5} \Omega = 0$.35 μΩ/Ω

4. Detailed Measurement Results of the 1 k Ω Standard:

	A A A A A A A A A A A A A A A A A A A				
Date	Measured	Measured	Measured	Test	Measurement
	Atmospheric	Temperature	Relative	Current	Result (Ω)
	Pressure (hpa)	(°C)	Humidity	(mA)	
			(%)		
11/06/2017	1007.12	23.1	48.2	1	1000.006793
12/06/2017	1010.08	22.9	46.8	1	1000.006795
13/06/2017	1008.37	22.4	48.0	1	1000.006787
14/06/2017	1007.23	22.4	53.4	1	1000.006581
15/06/2017	1008.46	23.2	50.9	1	1000.006616
18/06/2017	1006.23	23.0	46.2	1	1000.006769
19/06/2017	1006.44	23.0	48.0	1	1000.006561
20/06/2017	1010.02	23.7	42.5	1	1000.006691
21/06/2017	1009.39	23.2	49.8	1	1000.006624
22/06/2017	1011.26	23.4	48.4	1	1000.006717

Table 7 shows the measurement results of the 1 k Ω standard
Detailed Uncertainty Budget of the 1 k Ω Standard:

The uncertainty sources are listed in Table 8

Quantity	Estimate	Standard	Probability	Sensitivity	Uncertainty	Degree of
		uncertainty	distribution	Coefficient	Contribution	Freedom
Xi	Xi		/method of			
		u(x _i)	evaluation	Ci	u(R _i)	ν_i
			(A, B)			
Repeatability	$2.0 imes 10^{-5} \Omega$	$2.0 imes 10^{-5} \Omega$	Normal/A	1	$2.0 imes 10^{-5} \Omega$	24
Calibration of R _s	$3.4 imes10^{-4}\Omega$	$1.7 imes10^{-4}\Omega$	Normal/B	1	$1.7 imes10^{-4}\Omega$	∞
Drift of R _s	$3.5 imes 10^{-4} \Omega$	$2.0 imes 10^{-4} \Omega$	Rectangular/B	1	$2.0 imes10^{-4}\Omega$	∞
Expected Value Error	$4.0 imes 10^{-4} \Omega$	$2.3 imes 10^{-4} \Omega$	Rectangular/B	1	$2.3 imes 10^{-4} \Omega$	∞
Temp. Coefficient of Rs	$5.0 imes10^{-5}\Omega$	$2.9 imes 10^{-5} \Omega$	Rectangular/B	1	2.9 × 10 ⁻⁵ Ω	∞
Power Coefficient of R _s	$10.0 imes 10^{-7} \Omega$	$5.8 imes 10^{-7} \Omega$	Rectangular/B	1	$5.8 imes 10^{-7} \Omega$	∞
Pressure Coefficient of Rs	$15.4 imes10^{-6}\Omega$	$8.9 imes10^{-6}\Omega$	Rectangular/B	1	$8.9 imes10^{-6}\Omega$	∞
Bridge Calibration	$3.5 imes 10^{-5} \Omega$	$2.0 imes 10^{-5} \Omega$	Normal/B	1	$2.0 imes10^{-5}\Omega$	∞
Bridge Resolution	$5.0 imes 10^{-7} \Omega$	$2.9 imes 10^{-7} \Omega$	Rectangular/B	1	$2.9 imes 10^{-7} \Omega$	∞
Bridge offset	$12.0 imes 10^{-6} \Omega$	$6.9 imes10^{-6}\Omega$	Rectangular/B	1	$6.9 imes10^{-6}\Omega$	∞
Stability of R _x During The	10.7×10^{-5} O	6.2 × 10 ⁻⁵ O	Postangular/P	1	6.2 × 10 ⁻⁵ O	
Period of Measurement	10.7 × 10 32	0.2 × 10 52	Rectangular/B	L L	0.2 × 10 52	œ
Temp. Coefficient of R _x	$5.0 imes 10^{-5} \Omega$	$2.9 imes 10^{-5} \Omega$	Rectangular/B	1	$2.9 imes10^{-5}\Omega$	∞
		Combined stand	dard uncertainty:		3.6 × 10	4 Ω
		Effective degree	es of freedom:		∞	
		Expanded und	certainty (95% cove	rage factor):	$7.2 \times 10^{-4} \Omega = 0$.72 μΩ/Ω

5. Detailed Measurement Results of the 10 $k\Omega$ Standard:

Date	Measured	Measured	Measured	Test	Measurement
	Atmospheric	Temperature	Relative	Current	Result (Ω)
	Pressure (hpa)	(°C)	Humidity	(µA)	
			(%)		
11/06/2017	1007.12	23.1	48.2	100	10000.13828
12/06/2017	1010.08	22.9	46.8	100	10000.13745
13/06/2017	1008.37	22.4	48.0	100	10000.13849
14/06/2017	1007.23	22.4	53.4	100	10000.13837
15/06/2017	1008.46	23.2	50.9	100	10000.13892
18/06/2017	1006.23	23.0	46.2	100	10000.13708
19/06/2017	1006.44	23.0	48.0	100	10000.13878
20/06/2017	1010.02	23.7	42.5	100	10000.13688
21/06/2017	1009.39	23.2	49.8	100	10000.13731
22/06/2017	1011.26	23.4	48.4	100	10000.13662

Table 9 shows the measurement results of the 10 k Ω standard

Detailed Uncertainty Budget of the 10 $k\Omega$ Standard:

The uncertainty sources are listed in Table 10

Quantity	Estimate	Standard uncertainty	Probability distribution	Sensitivity Coefficient	Uncertainty Contribution	Degree of
Xi	Xi	uncertainty	/method of	coenteicht	contribution	riccuom
		u(x _i)	evaluation	Ci	u(R _i)	ν_{i}
			(A, B)			
Repeatability	$3.0 imes 10^{-4} \Omega$	$3.0 imes 10^{-4} \Omega$	Normal/A	1	$3.0 imes10^{-4}\Omega$	24
Calibration of R _s	$3.4 imes 10^{-4} \Omega$	$1.7 imes10^{-4}\Omega$	Normal/B	1	$1.7 imes10^{-4}\Omega$	∞
Drift of R _s	$3.5 imes 10^{-4} \Omega$	$2.0 imes 10^{-4} \Omega$	Rectangular/B	1	$2.0 imes 10^{-4} \Omega$	∞
Expected Value Error	$4.0 imes 10^{-4} \Omega$	$2.3 imes 10^{-4} \Omega$	Rectangular/B	1	$2.3 imes 10^{-4} \Omega$	∞
Temp. Coefficient of Rs	$5.0 imes 10^{-5} \Omega$	$2.9 imes 10^{-5} \Omega$	Rectangular/B	1	$2.9 imes10^{-5}\Omega$	∞
Power Coefficient of R _s	$10.0 \times 10^{-7} \Omega$	$5.8 \times 10^{-7} \Omega$	Rectangular/B	1	$5.8 imes 10^{-7} \Omega$	∞
Pressure Coefficient of Rs	$15.4 \times 10^{-6} \Omega$	$8.9 imes 10^{-6} \Omega$	Rectangular/B	1	8.9 × 10 ⁻⁶ Ω	∞
Bridge Calibration	$2.0 imes 10^{-3} \Omega$	$1.0 imes 10^{-3} \Omega$	Normal/B	1	$1.0 imes 10^{-3} \Omega$	∞
Bridge Resolution	$5.0 imes10^{-6}\Omega$	$2.9 imes10^{-6}\Omega$	Rectangular/B	1	2.9 × 10 ⁻⁶ Ω	∞
Bridge offset	$1.9 imes 10^{-4} \Omega$	$1.1 imes 10^{-4} \Omega$	Rectangular/B	1	$1.1 imes 10^{-4} \ \Omega$	∞
Stability of R _x During The	12 x 10 ⁻⁴ O	6 9 x 10 ⁻⁴ O	Rectangular/B	1	6 9 x 10 ⁻⁴ O	~
Period of Measurement	12 × 10 32	0,9 × 10 32	Nectangular/D	1	0.3 × 10 32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Temp. Coefficient of R _x	$4.0 imes 10^{-4} \Omega$	$2.3 imes 10^{-4} \Omega$	Rectangular/B	1	$2.3 imes 10^{-4} \Omega$	∞
		Combined stand	dard uncertainty:		1.3 × 10 ⁻	³ Ω
		Effective degree	es of freedom:		∞	
		Expanded und	certainty (95% cove	rage factor):	$2.7 \times 10^{-3} \Omega = 0$.27 μΩ/Ω

Summary of Results: Mean Date of Measurement: 18th of June, 2017 Mean Resistance Value and Expanded Uncertainty at the mean date:

Nominal Resistance Value	Mean Resistance Value	Expanded Uncertainty, ±
1 Ω	1.000049936 Ω	0.56 μΩ/Ω
10 Ω	10.00050485 Ω	0.29 μΩ/Ω
100 Ω	$100.0073666 \ \Omega$	0.35 μΩ/Ω
1 kΩ	1000.006769 Ω	0.72 μΩ/Ω
10 kΩ	10000.13708 Ω	0.27 μΩ/Ω

13 Appendix G: UNBS results

1.	Nominal Resistance	:	1Ω
	Serial number	:	4935018
	Model	:	742A-1

Date	Measured Atmospheric Pressure	Measured Temperature	Measured Relative Humidity	Test current	Measurement result	
					Certificate value	Mean UUT reading
	(mbar)	(°C)	(%)	(mA)	(Ω)	(Ω)
2018-01-16	881.5	23.2	58.5	100	0.999999	0.999996

UNCERTAINTY COMPUTATION									
Sources of uncertainty	Value	Diviser	Probability	Sensitivity	Uncertainty	Reliability	Degree of		
	(Ω)		distribution	Coeff	Contribution	percentage	freedom		
uncertainty of the Standard	5.00E-05	2	Normal(K=2)	1	2.50000E-05	95	200		
standard uncertainty of the									
mean	2.17E-06	1	Normal(K=1)	1	2.17096E-06	10	9		
Resolution of UUT	5.00E-07	√3	Rectangular	1	2.88675E-07	95	200		
uncertainty due Stability	1.00E-06	√3	Rectangular	1	5.77350E-07	95	200		
Combined Uncertainty 2.51024E-05 203.0399									
Expanded Uncertainty(2*U, k=2	2)				5.021E-05		2		

2.	Nominal Resistance	:	10Ω
	Serial number	:	4920006
	Model	:	742A-10

Date	Measured Atmospheric Pressure	Measured Temperatur e	Measured Relative Humidity	Test current	Measurement result	
					Certificate	Mean UUT
					value	reading
	(mbar)	(°C)	(%)	(mA)	(Ω)	(Ω)
2018-01-11	880.0	23.4	58.5	10mA	9.999992	9.999991

UNCERTAINTY COMPUTATION									
Sources of uncertainty	Value	Diviser	Probability	Sensitivity	Uncertainty	Reliability	Degree of		
	(Ω)		distribution	Coeff	Contribution	percentage	freedom		
uncertainty of the Standard	5.00E-04	2	Normal(K=2)	1	2.50000E-04	95	200		
standard uncertainty of the									
mean	2.69E-06	1	Normal(K=1)	1	2.69485E-06	10	9		
Resolution of UUT	5.00E-07	√3	Rectangular	1	2.88675E-07	95	200		
uncertainty due Stability	1.00E-05	√3	Rectangular	1	5.77350E-06	95	200		
Combined Uncertainty 2.50081E-04 200.2603									
Expanded Uncertainty(2*U, k=2	2)				5.00E-04		2		

3.	Nominal Resistance	:	100Ω
	Serial number	:	5485007
	Model	:	742A-100

Date	Measured Atmospheric Pressure	Measured Temperatur e	Measured Relative Humidity	Test current	Measurement result	
					Certificate	Mean UUT
					value	reading
	(mbar)	(°C)	(%)	(mA)	(Ω)	(Ω)
2018-01-11	881.2	23.3	57.5	1mA	100.00015	100.00709

UNCERTAINTY COMPUTATION										
Sources of uncertainty	Value	Diviser	Probability	Sensitivity	Uncertainty	Reliability	Degree of			
	(Ω)		distribution	Coeff	Contribution	percentage	freedom			
uncertainty of the Standard	5.00E-03	2	Normal(K=2)	1	2.50000E-03	95	200			
standard uncertainty of the										
mean	3.01E-05	1	Normal(K=1)	1	3.0148E-05	10	9			
Resolution of UUT	5.00E-06	√3	Rectangular	1	2.8868E-06	95	200			
uncertainty due Stability	1.00E-04	√3	Rectangular	1	5.77350E-05	95	200			
Combined Uncertainty 0.00250085 200.27197										
xpanded Uncertainty(2*U, k=2)5.00E-032										

4.	Nominal Resistance	:	1kΩ
	Serial number	:	7733002
	Model	:	742A-1k

Date	Measured Atmospheric Pressure	Measured Temperatur e	Measured Relative Humidity	Test current	Measurement	t result
					Certificate	Mean UUT
					value	reading
	(mbar)	(°C)	(%)	(mA)	(k Ω)	(k Ω)
2018-01-12	881.0	22.4	60.0	1mA	0.9999990	1.0000084

UNCERTAINTY COMPUTATION										
Sources of uncertainty	Value	Diviser	Probability	Sensitivity	Uncertainty	Reliability	Degree of			
	(kΩ)		distribution	Coeff	Contribution	percentage	freedom			
uncertainty of the Standard	5.00E-05	2	Normal(K=2)	1	2.50000E-05	95	200			
standard uncertainty of the										
mean	1.44E-07	1	Normal(K=1)	1	1.4391E-07	10	9			
Resolution of UUT	5.00E-08	√3	Rectangular	1	2.8868E-08	95	200			
uncertainty due Stability	1.00E-07	√3	Rectangular	1	5.77350E-08	95	200			
Combined Uncertainty 2.50005E-05 200.0159										
xpanded Uncertainty(2*U, k=2) 5.0001E-05 2										

5.	Nominal Resistance	:	10kΩ
	Serial number	:	5065038
	Model	:	742A-10k

Date	Measured Atmospheric Pressure	Measured Temperatur e	Measured Relative Humidity	Test current	Measurement result	
					Certificate	Mean UUT
					value	reading
	(mbar)	(°C)	(%)	(mA)	(k Ω)	(k Ω)
2018-01-15	881.3	23.3	57.5	1μΑ	9.99996	10.00050

UNCERTAINTY COMPUTATION										
Sources of uncertainty	Value	Diviser	Probability	Sensitivity	Uncertainty	Reliability	Degree of			
	(kΩ)		distribution	Coeff	Contribution	percentage	freedom			
uncertainty of the Standard	5.00E-04	2	Normal(K=2)	1	2.49999E-04	95	200			
standard uncertainty of the										
mean	1.26E-05	1	Normal(K=1)	1	1.25831E-05	10	9			
Resolution of UUT	5.00E-06	√3	Rectangular	1	2.88675E-06	95	200			
uncertainty due Stability	1.00E-05	√3	Rectangular	1	5.77350E-06	95	200			
Combined Uncertainty 2.50399E-04 201.25329										
Expanded Uncertainty(2*U, k=2	xpanded Uncertainty(2*U, k=2) 5.01E-04 2									

14 Appendix H: NMIE Results

Summary of Measurement resu	lts
-----------------------------	-----

Nominal Value	Nominal Test current	Measured Value	Uncertainty
[Ω]		[Ω]	(±)
1	100 mA	1.0000552	13.0 • 10 ⁻⁶ • R
10	10 mA	10.0004136	13.9 • 10 ⁻⁶ • R
100	1 mA	100.007375	13.1 • 10 ⁻⁶ • R
[ΚΩ]		[ΚΩ]	(±)
1	1 mA	1.0000073	11.2 • 10 ⁻⁶ • R
10	100 µA	9.999798	10.0 • 10 ⁻⁶ • R

Uncertainty budget of 1 Ω of reference resistor

				Probablity	sensitivity	Uncertainity	Degree of freedom
Quantity	Estimation	Value	Unit	Distribution	Coefficient	Contribution	
Rs	1.0000242	0.30	μΩ/Ω	Normal	1.00003099	0.15	00
Vs	100.0003	5.80	μV/ν	Rectangular	-0.010000519	3.35	4
Vx	100.0034	5.80	μV/ν	Rectangular	0.010000209	3.35	4
δν _{dmmx}	0.0000	3.90	μV/v	Rectangular	0.010000209	2.25	∞
δν _{DMMs}	0.0000	0.00	μV/v	Rectangular	-0.010000519	0.00	∞
δR _D	0.00000000	5.00	μΩ/Ω	Rectangular	1.00003099	2.89	∞
δ <i>R</i> _{TS}	0.00000000	2.00	μΩ/Ω	Rectangular	1.00003099	1.15	∞
R resolution	0.0000000	0.50	μΩ/Ω	Rectangular	1.00003099	0.29	∞
R instability	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	∞
Rconnection	0.0000000	1.00	μΩ/Ω	Rectangular		0.58	∞
R _x	1.0000552					6.13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				EXPANDED L	JNCRTAINTY	12.26	00

Calibration Result

 $1.0000552 \ \Omega \pm 0.00001226 \ \Omega$

 $1.0000552 \ \Omega \pm 12.26 \ X \ 10^{-6} R$

				Probablity	sensitivity	Uncertainity	Degree of freedom
Quantity	Estimation	Value	Unit	Distribution	Coefficient	Contribution	
Rs	1.0000242	0.30	μΩ/Ω	Normal	10.00017209	0.15	∞
Vs	10.0005	5.80	μV/v	Rectangular	-0.99999541	3.35	4
Vx	100.0063	5.80	μV/v	Rectangular	0.09999782	3.35	4
δVDMMx	0.0000	5.80	μV/V	Rectangular	0.09999782	3.35	∞
δVDMMs	0.0000	3.80	μV/V	Rectangular	-0.99999541	2.19	∞
δR _D	0.00000000	5.00	μΩ/Ω	Rectangular	10.00017209	2.89	∞
δ <i>R</i> _{TS}	0.00000000	2.00	μΩ/Ω	Rectangular	10.00017209	1.15	∞
R resolution	0.0000000	0.50	μΩ/Ω	Rectangular	10.00017209	0.29	∞
R instability	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	∞
Rconnection	0.0000000	1.00	μΩ/Ω	Rectangular		0.58	∞
R _x	10.00041410					6.97	∞
				EXPANDED I	INCRTAINTY	13 94	~

Uncertainty budget of 10 $\boldsymbol{\Omega}$ of reference resistor

Calibration Result

10.00041410 $\Omega \pm 0.00001394 ~\Omega$

 $10.00041410 \ \Omega \pm 13.94 \ X \ 10^{-6} R$

				Probablity	sensitivity	Uncertainity	Degree of freedom
Quantity	Estimation	Value	Unit	Distribution	Coefficient	Contribution	
Rs	999.997	0.80	μΩ/Ω	Normal	0.100007675	0.40	œ
Vs	1.0000	3.80	μV/v	Rectangular	-100.007287	2.19	4
Vx	0.1000	5.80	μV/v	Rectangular	999.99612	3.35	4
δVDMMx	0.0000	5.90	μV/V	Rectangular	999.99612	3.41	œ
δVDMMs	0.0000	3.90	μV/V	Rectangular	-100.007287	2.25	œ
δRD	0.00000000	5.00	μΩ/Ω	Rectangular	0.100007675	2.89	∞
δ <i>R</i> _{TS}	0.00000000	2.00	μΩ/Ω	Rectangular	0.100007675	1.15	00
R resolution	0.0000000	0.50	μΩ/Ω	Rectangular	0.100007675	0.29	00
R instability	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	œ
R connection	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	00
R _x	100.0073750					6.53	œ
				FXPANDED I	INCRTAINTY	13.06	00

Uncertainty budget of 100 $\boldsymbol{\Omega}$ of reference resistor

Calibration Result

 $100.0073750 \ \Omega \pm 0.00001306 \ \Omega$

 $100.0073750 \ \Omega \pm 13.06 \ X \ 10^{-6} R$

				Probablity	sensitivity	Uncertainity	Degree of freedom
Quantity	Estimation	Value	Unit	Distribution	Coefficient	Contribution	
Rs	0.999997	0.80	μΩ/Ω	Normal	1.00000932	0.40	8
Vs	1.0000	3.80	μV/v	Rectangular	-1.00000578	2.19	4
Vx	1.0000	5.80	μV/v	Rectangular	0.99999646	3.35	4
δVDMMx	0.0000	3.90	μV/V	Rectangular	0.99999646	2.25	00
δVDMMs	0.0000	0.00	μV/V	Rectangular	-1.00000578	0.00	×
δRD	0.00000000	5.00	μΩ/Ω	Rectangular	1.00000932	2.89	8
δ <i>R</i> _{TS}	0.00000000	2.00	μΩ/Ω	Rectangular	1.00000932	1.15	8
R resolution	0.0000000	0.50	μΩ/Ω	Rectangular	1.00000932	0.29	8
R instability	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	00
Rconnection	0.0000000	1.00	μΩ/Ω	Rectangular		0.58	8
R _x	1.00000632					5.60	8
				INCRTAINTY	11 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Uncertainty budget of 1 $k\Omega$ of reference resistor

Calibration Result

 $1.00000632 \text{ k}\Omega \pm 0.00001120 \text{ k}\Omega$

 $1.00000632 \text{ k}\Omega \pm 11.2 \text{ X} 10^{-6} \text{R}$

				Probablity	sensitivity	Uncertainity	Degree of freedom
Quantity	Estimation	Value	Unit	Distribution	Coefficient	Contribution	
Rs	10.000002	0.30	μΩ/Ω	Normal	0.999979601	0.15	8 S
Vs	1.0001	3.80	μV/v	Rectangular	-9.999212658	2.19	4
Vx	1.0000	3.80	μV/v	Rectangular	9.999416634	2.19	4
δVDMMx	0.0000	3.90	μV/V	Rectangular	9.999416634	2.25	8
δVDMMs	0.0000	0.00	μV/V	Rectangular	-9.999212658	0.00	8
δR _D	0.00000000	5.00	μΩ/Ω	Rectangular	0.999979601	2.89	8
δ <i>R</i> _{TS}	0.00000000	2.00	μΩ/Ω	Rectangular	0.999979601	1.15	8
R resolution	0.0000000	0.50	μΩ/Ω	Rectangular	0.999979601	0.29	8
R instability	0.0000000	0.00	μΩ/Ω	Rectangular		0.00	8
Rconnection	0.0000000	1.00	μΩ/Ω	Rectangular		0.58	8
R _x	9.99979801					4.98	8
	EXPANDED			UNCRTAINTY	9.96	∞	

Uncertainty budget of 10 $k\Omega$ of reference resistor

Calibration Result

 $9.99979801 \text{ K}\Omega \pm 0.00000996 \text{ k}\Omega$

9.99979801 KΩ ± 9.96 X 10⁻⁶R