Final Report:

APMP.EM-S7

APMP Supplementary Comparison of Capacitance at 100 pF

H. L. Johnson National Measurement Institute, Australia

February 08

Contents

1	Introductio	on	4
2	Participan	ts and organisation of the comparison	5
	2.1	List of participants	5
	2.2	Comparison schedule	5
	2.3	Organisation of the comparison	5
	2.4	Unexpected incidents	6
3	Travelling	standard and measurement instructions	7
	3.1	Description of the standards	7
	3.2	Quantities to be measured and conditions of measurements	
	3.3	Measurement instructions	
	3.4	Deviations from the protocol	
4	Methods of	f measurement	8
5	Measurem	ents of the pilot laboratory	9
	5.1	Sensitivity of the travelling standards	9
	5.2	Stability of the travelling standards	9
	5.3	Calculation of reference values	10
6	Measurem	ent results	12
	6.1	Normalisation of results	
	6.2	Results of the participating institutes	12
	6.3	Calculation of the reference value and its uncertainty	
	6.4	Degrees of equivalence with respect to the comparison value	
7	Withdrawa	als or changes of results	15
8	Requests fo	or follow up bilateral comparisons	15
9	Summary a	and conclusions	15
1() Appendice	s	16
	Appe	ndix A: Methods of measurement	
	A.1		
	A.2	Method of measurement: KIM-LIPI, Indonesia	
	A.3	Method of measurement: KRISS, Korea	17
	A.4	Method of measurement: NIM, China	
	A.5	Method of measurement: NIMT, Thailand	
	A.6	Method of measurement: NMI, Australia	
	A.7	Method of measurement: NMIJ/AIST, Japan	
	A.8	Method of measurement: NMISA, South Africa	
	A.9	Method of measurement: NPL, India	
	A.10	Method of measurement: SCL, Hong Kong	
	A.11	Method of measurement: SIRIM, Malaysia	
	A.12	Method of measurement: SPRING, Singapore	
	A.13	Method of measurement: VNIIM, Russia	
		ndix B: Uncertainty statements	
	B.1	Uncertainty statement: CMS, Taiwan	23

B.2	Uncertainty statement: KIM-LIPI, Indonesia	23
B.3	Uncertainty statement: KRISS, Korea	24
B.4	Uncertainty statement: NIM, China	24
B.5	Uncertainty statement: NIMT, Thailand	25
B.6	Uncertainty statement: NMI, Australia	26
B.7	Uncertainty statement: NMIJ/AIST, Japan	27
B.8	Uncertainty statement: NMISA, South Africa	27
B.9	Uncertainty statement: NPL, India	28
B.10	Uncertainty statement: SCL, Hong Kong	29
B.11	Uncertainty statement: SIRIM, Malaysia	29
B.12	Uncertainty statement: SPRING, Singapore	30
B.13	Uncertainty statement: VNIIM, Russia	30
Appen	dix C: Optional measurements: Dissipation factor	31
Appen	dix D: References	
Appen	dix E: Comparison protocol	

Figures

Figure 5-1 Repeated measurements of the pilot laboratory at a mea	surement frequency of 1592 Hz
and measuring voltage of 10 Vrms.	
Figure 6-1 Degrees of equivalence d_i of the participating institutes reference value.	1 1

Tables

Table 2-1 List of participants.	5
Table 2-2 Comparison schedule	6
Table 4-1 Participants' method of measurement and traceability.	8
Table 5-1 Values required for calculation of reference values.	11
Table 6-1 Summary of results of participating institutes	12
Table 6-2 Degrees of equivalence of the participating institutes relative to the correference value.	-

1 Introduction

A key comparison of capacitance at 10 pF and a supplementary comparison of capacitance at 100 pF have been conducted between participating APMP member laboratories. The aim of these comparisons is to provide participating laboratories with the opportunity to compare national standards of capacitance within the region, and to support participants' entries in Appendix C of the Mutual Recognition Arrangement [1]. Results of the supplementary comparison are reported here. Results of the key comparison are reported separately.

The Andeen-Hagerling AH11A fused-silica capacitance standards used in this comparison were kindly supplied by the National Metrology Institute of Japan, AIST.

The assistance of the support group (Dr. Sze Wey Chua, SPRING Singapore, Dr Rae Duk Lee, KRISS Korea and Mr Andrew Corney, MSL New Zealand) is gratefully acknowledged.

2 Participants and organisation of the comparison

2.1 List of participants

Thirteen laboratories participated in the comparison, as listed in Table 2-1.

	Organisation	Acronym	State or Economy
1	Center for Measurement Standards	CMS	Taiwan
2	Pusat Penelitian Kalibrasi Instrumentasi Metrologi - LIPI	KIM-LIPI	Indonesia
3	Korea Research Institute of Standards and Science	KRISS	Korea
4	National Institute of Metrology	NIM	China
5	National Institute of Metrology (Thailand)	NIMT	Thailand
6	National Measurement Institute of Australia ¹	NMIA	Australia
7	National Metrology Institute of Japan, AIST	NMIJ/AIST	Japan
8	National Metrology Institute of South Africa ²	NMISA	South Africa
9	National Physical Laboratory	NPLI	India
10	Standards and Calibration Laboratory	SCL	Hong Kong
11	Standards and Industrial Research Institute of Malaysia	SIRIM	Malaysia
12	Standards, Productivity and Innovation Board, Singapore	SPRING	Singapore
13	D. I. Mendeleyev Institute for Metrology	VNIIM	Russia

 Table 2-1 List of participants.

2.2 Comparison schedule

The comparison schedule is given in Table 2-2.

2.3 Organisation of the comparison

The comparison schedule was initially organised in four consecutive loops (Loops 1 to 4) with between two and four participants in each loop. The artefacts returned to the pilot laboratory, NMIA, for measurement at the conclusion of each loop. Due to concerns about the behaviour of the 10 pF artefact during Loop 1, an additional loop was organised (Loop 5) to allow Loop 1 participants to repeat their measurements of the 10 pF artefact and, optionally, of the 100 pF artefact. Where participants made two measurements of the 100 pF artefact, they were asked to indicate which results was to be reported in the comparison report.

A total of four weeks was scheduled for each participant. Generally participants had at least two weeks and usually three weeks in which to make their measurements, depending on the time taken to clear the artefacts through the customs service in their country and allow the artefacts to settle in their laboratory.

The artefacts were transported in an aluminium case by air using an ATA Carnet for customs clearance where possible. A shock monitor was attached to the outside of the transport case and to the back panel of the artefact enclosure.

¹ Formerly National Measurement Laboratory, CSIRO (CSIRO-NML)

² Formerly National Measurement Laboratory, CSIR (CSIR-NML)

Loop No.	Participant	Standards in	n laboratory	Mean measurement date(s)	Comments
	From:		То:		
-	NMIA	28 Apr 2003	05 Jan 2004	14 Jun 2003 10 Sep 2003 16 Dec 2003	Initial characterisation of standards.
1	NMIJ/AIST	16 Jan 2004	06 Feb 2004	27 Jan 2004	
1	KRISS	17 Feb 2004	04 Mar 2004	27 Feb 2004 (10 pF) 23 Feb 2004 (100 pF)	Observed step change of 0.2 μ F/F in value of 100 pF on 26 Feb 2006.
1 SPRING		10 Mar 2004	05 Apr 2004	26 Mar 2004(a) 28 Mar 2004(b)	(a) 1000 Hz (b) 1592 Hz
1 CMS (09 Apr 2004	06 May 2004	26 Apr 2004	
1	1 NMIA 10 May 2004		01 Jul 2004	18 May 2004 20 Jun 2004	Second set of measurements taken as change in drift rate of 10 pF capacitor suspected.
2	NPLI	10 Jul 2004	28 Jul 2004	19 Jul 2004	
2	NIMT	10 Aug 2004	23 Aug 2004	16 Aug 2004	
2	NMISA	03 Sep 2004	21 Sep 2004	17 Sep 2004	
2	NMIA	27 Sep 2004	25 Oct 2004	6 Oct 2004	
3	SIRIM	27 Oct 2004	15 Nov 2004	12 Nov 2004	
3	SCL	20 Nov 2004	11 Dec 2004	28 Nov 2004 (10 pF) 27 Nov 2004 (100 pF)	
3	KIM-LIPI	28 Dec 2004	10 Jan 2005	4 Jan 2005	
3	NMIA	20 Jan 2005	7 Mar 2005	03 Feb 2005 26 Feb 2005	
4	NIM	14 Mar 2005	05 Apr 2005	29 Mar 2005	
4	VNIIM	03 Jun 2005	Sep 2005	18 Aug 2005	
4	NMIA	16 Sep 2005	19 Jan 2006	07 Oct 2005 12 Jan 2006	Standards measured at conclusion of Loop 4 and at start of Loop 5.
5	KRISS	02 Feb 2006	21 Feb 2006	11 Feb 2006	
5	SPRING	24 Feb 2006	17 Mar 2006	11 Mar 2006	
5	NMIJ/AIST	26 Mar 2006	14 Apr 2006	4 Apr 2006	
5	CMS	19 Apr 2006	15 May 2006	8 May 2006	
5	NMIA	22 May 2006		27 May 2006	

Table 2-2 Comparison schedule

2.4 Unexpected incidents

A number of unexpected incidents occurred during the course of the comparison:

- Non-steady behaviour of 10 pF artefact necessitating repetition of Loop 1. Note that the 100 pF artefact did not show any significant deviations from a steady linear drift rate during the whole of the comparison.
- A four month delay to the comparison schedule occurred in Loop 4 during the measurement period assigned to VNIIM. This was in addition to the extra four weeks that was allowed for customs clearance in and out of Russia.
- The shock monitor attached to the outside of the transport case was activated during shipment from KRISS to SPRING in Loop 5. The shock monitor attached to the back panel of the artefact enclosure was not activated. No damage to the artefacts or changes in behaviour of the artefacts was noted.

3 Travelling standard and measurement instructions

3.1 Description of the standards

The travelling standard was a 100 pF Andeen-Hagerling AH11A fused silica capacitance standard mounted in a AH1100 capacitance standard frame. A second Andeen-Hagerling AH11A fused silica capacitance standard mounted in the same AH1100 capacitance standard frame was used for the key comparison at 10 pF (reported separately). The AH1100 frame is a standard-width benchtop or rack-mountable frame. The AH11A capacitance standard includes a temperature-controlled oven that is powered via the AH1100 frame. The frame also monitors internal power voltages and temperatures.

The capacitor is fitted with BNC co-axial terminations. Co-axial measuring leads with BNC to MUSA connectors were supplied with the capacitor, together with MUSA-GR874 adapters and MUSA-BNC adapters.

3.2 Quantities to be measured and conditions of measurements

The measured quantity was the capacitance of the capacitor **at the terminals on the AH1100 frame**. The preferred measuring voltage was 100 V(rms). The preferred measurement frequency was 1592 Hz ($\omega = 10^4 \text{ rad} \cdot \text{s}^{-1}$). Measurements at a frequency of 1000 Hz were permitted instead of, or as well as, 1592 Hz. Measurement of the dissipation factor was optional.

The comparison measurand m_n is defined as the *n*th comparison measurement of the fractional difference of the measured capacitance, C_n , from the nominal value of the capacitor, C, calculated as:

$$m_n = \frac{C_n}{C} - 1. \tag{1}$$

The subscript n denoting the measurement number should not be confused with the subscript i, which is introduced in Section 6.4 and denotes the participating laboratory.

Participants were asked to report the drift and chassis temperature readings for each capacitor, and the ambient temperature, for monitoring purposes.

3.3 Measurement instructions

The AH 1100/11A Operation and Maintenance Manual was included with the shipment of the travelling standards. The comparison protocol encouraged participants to leave the standards to stabilise for two to three days before measurement.

3.4 Deviations from the protocol

There were no deviations from the protocol.

4 Methods of measurement

Table 4-1 lists the method of measurement used by each participant and the traceability route to the SI. Further details are given in Appendix A.

Participant	Traceability	Measurement	t Method	
i ui cicipuiic	Traccuonity	Bridge	Technique	Reference standard
CMS	DC QHR	10:1 ratio transformer (4TP)	Comparison	1000 pF
KIM-LIPI	NMIA (Melbourne Branch)	GR1621A	Comparison	100 pF
KRISS	BIPM [†] , CENAM [‡] , NIST [§] , NMIA, VNIIM	10:1 ratio transformer	Comparison	10 pF
NIM	Calculable capacitor	1:1 ratio transformer	Comparison	100 pF
NIMT	PTB ^{**}	GR1620	Comparison	100 pF
NMIA	Calculable capacitor	10:1 ratio transformer	Substitution	100 pF
NMIJ/AIST	DC QHR	Capacitance bridge (2TP)	Substitution	100 pF
NMISA	BIPM [†]	AH2500A	Substitution	100 pF
NPLI	Calculable capacitor	10 V: 10:1 ratio transformer	Comparison	10 pF
INFLI	Calculable capacitor	100 V: IET Labs 1621	Substitution	100 pF
SCL	NPL*	AH2500A	Substitution	100 pF
SIRIM	BIPM [†]	GR1615A	Comparison	100 pF
SPRING	NPL*	GR1621A	Substitution	100 pF
VNIIM	Calculable capacitor	10:1 ratio transformer	Comparison	10 pF

Table 4-1 Participants' method of measurement and traceability.

[†] International Bureau of Weights and Measures

[‡] Centro Nacional de Metrologia, Mexico.

[§] National Institute of Standards and Technology, USA

^{*} National Physical Laboratory, UK.

^{**} Physikalisch Technische Bundesanstalt, Germany

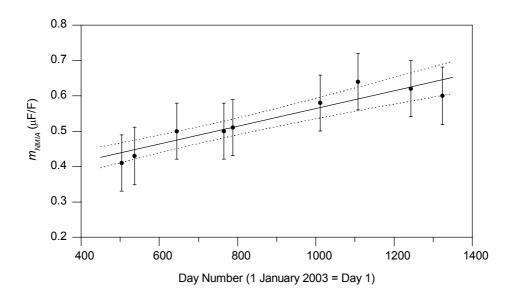
5 Measurements of the pilot laboratory

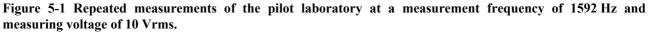
Measurements made by the pilot laboratory were used to assess the stability of the travelling standards during the course of the comparison. Assessment of the sensitivity of the standards to ambient temperature, temperature cycling, measurement voltage, and measurement frequency was based on the manufacturer's specifications as well as pilot laboratory measurements.

5.1 Sensitivity of the travelling standards

AH11A capacitance standards have a low sensitivity to changes in ambient temperature due to an internal temperature-controlled oven. The manufacturer's specification for the temperature coefficient with respect to changes in ambient temperature is $0.01 \,\mu\text{F/F}^{\circ}\text{C}^{-1}$. Pilot laboratory measurements confirm that the temperature coefficient for the travelling standard is no greater than this value. The protocol requested participants not to make corrections for ambient laboratory temperature, but suggested that an uncertainty component for ambient laboratory temperatures differing from 20 °C could be included in the uncertainty statement.

The manufacturer's specification for the sensitivity of the AH11A standards to temperature cycling and to mechanical shock is $0.05 \,\mu\text{F/F}$. Temperature cycling of the travelling standard under laboratory conditions by the pilot laboratory caused changes of this order of magnitude. The travelling standard was shipped un-powered in all cases so that hysteresis due to temperature cycling and to mechanical shock contributes to the scatter in the measurements of the pilot laboratory and need not be separately treated.


The manufacturer's specification for the sensitivity of the AH11A standards to ac measurement voltage is 0.003 μ F/F V⁻¹ at 1 kHz. Pilot laboratory measurements of the travelling standard at 1592 Hz could not detect a sensitivity to measurement voltage. We conclude that the sensitivity of the travelling standard to ac measurement voltage is less than 0.0003 μ F/F V⁻¹ at 1592 Hz. No correction is made to measurements made at voltages other than the 100 V_{rms} specified in the comparison protocol, but an uncertainty component is included where appropriate.


The capacitance change when the frequency is increased from 1000 Hz to 1592 Hz was measured by the pilot laboratory to be -0.033 μ F/F with a standard uncertainty of 0.013 μ F/F.

5.2 Stability of the travelling standards

Measurements by the pilot laboratory were made at 1592 Hz before the start of the comparison and at the conclusion of each measurement loop. Pilot laboratory measurements at 1592 Hz are listed in Table 6-1 and plotted in Figure 5-1. Weighted linear regression using the standard uncertainty of the measurement as weight was performed on each set of data (refer to Table 5-1 for details of the fit parameters). The Birge ratio, R_B , is a measure of self-consistency in a set of measurements (see, for example, [2]). The value computed for the pilot laboratory dataset was $R_B = 0.8$ with $u(R_B) = 0.3$. It is concluded that the criterion for self consistency, $R_B = 1 \pm u(R_B)$, is met, and that the behaviour of the standard can be adequately described by a linear drift with time.

Additional measurements made by the pilot laboratory of the frequency difference are used to derive reference values at 1000 Hz using the drift rate determined at 1592 Hz.

Uncertainty bars represent expanded uncertainty. Solid line: line of best fit (weighted linear regression), dashed lines: prediction bands (expanded uncertainty of predicted values).

5.3 Calculation of reference values

The predicted or reference value, p_n , for each capacitor at the time of the *n*th measurement is calculated as:

$$p_n = a_0 + a_1 t_n + a_2 \left(\frac{1592 - f_n}{1592 - 1000}\right) + a_3 + a_4 \tag{2}$$

where a_0 and a_1 are determined from the weighted linear regression described in Section 5.2, a_2 is related to the frequency coefficient of capacitance, a_3 is the correction to ambient temperature of 20 °C, a_4 is the correction to a measurement voltage of 100 V_{rms}, t_n is the time of the *n*th measurement and f_n is the measurement frequency (in Hz) for the *n*th measurement. Note that a_3 and a_4 are taken to be zero. The uncertainty in the reference value is calculated as:

$$u^{2}(p_{n}) = u^{2}(a_{0}) + u^{2}(a_{1}) \cdot t_{n}^{2} + 2 \cdot \operatorname{cov}(a_{0}, a_{1}) \cdot t_{n} + s^{2} + u^{2}(a_{2}) \cdot \left(\frac{1592 - f_{n}}{1592 - 1000}\right)^{2} + u^{2}(a_{3}) + u^{2}(a_{4}) \cdot \left(\frac{100 - V_{PL}}{100 - 10}\right)^{2}$$
(3)

where $cov(a_0, a_1)$ is the mutual covariance of a_0 and a_1 , s^2 is the unbiased estimate of the population variance σ^2 of the residuals of the weighted linear regression, V_{PL} is the rms measurement voltage of the pilot laboratory and the uncertainties $u(t_n)$ and $u(f_n)$ are assumed to be negligible. Note that the first four terms of (3) are derived from the linear fit to the pilot laboratory measurements and terms five and seven relate to the frequency and voltage coefficients respectively. Term 6 is the uncertainty in realising an ambient temperature of 20 °C in the pilot laboratory measurements.

The number of degrees of freedom for the reference value is calculated as:

$$\nu(p_n) = \frac{u^4(p_n)}{\frac{\left(u^2(a_0) + u^2(a_1) \cdot t_n^2 + 2 \cdot \operatorname{cov}(a_0, a_1) \cdot t_n + s^2\right)^2}{l-2} + \frac{u^4(a_2) \left(\frac{1592 - f_n}{1592 - 1000}\right)^4}{\nu(a_2)} + \frac{u^4(a_3)}{\nu(a_3)} + \frac{u^4(a_4) \left(\frac{100 - V_{PL}}{100 - 10}\right)^4}{\nu(a_4)}}$$
(4)

where l is the number of measurements used to calculate the weighted linear regression. The values of constants required for the calculation of the reference values and their uncertainty are listed in Table 5-1.

Quantity	Value	Standard uncertainty	Degrees of freedom
C_{nom}	100 pF	-	-
V_{PL}	10 V	-	-
a_0	0.313 µF/F	0.024 µF/F	10
a_1	$2.51 \times 10^{-4} \mu\text{F/F}$ per day	$0.29 \times 10^{-4} \mu\text{F/F}$ per day	10
$\operatorname{cov}(a_0, a_1)$	$-0.60 \times 10^{-6} (\mu F/F)^2$ per day	-	-
S	$1.81\times 10^{\text{-3}}\mu\text{F}/\text{F}$	-	-
a_2	0.033 µF/F	0.013 µF/F	19
<i>a</i> ₃	0 µF/F	3.7 × 10-3 µF/F	8
a_4	0.000 µF/F V ⁻¹	0.006 µF/F V ⁻¹	200

 Table 5-1 Values required for calculation of reference values.

6 Measurement results

6.1 Normalisation of results

Participants' measurements were treated to account for the effect of drift and measurement conditions by subtracting the reference value for the artefact at the time of the *n*th measurement from the measured value m_n to give a corrected measurement value x_n , that is

$$x_n = m_n - p_n \tag{5}$$

The uncertainty in the corrected measurement value $u(x_n)$ and the associated number of degrees of freedom $v(x_n)$ are calculated in accordance with the ISO "Guide to the expression of uncertainty in measurement, 1st ed.".

n	Participant	Date	f	V _{rms}	m_n	$u(m_n)$	$v(m_n)$	p_n	$u(p_n)$	$v(p_n)$	x_n	$u(x_n)$	$v(x_n)$
		d d /	(11-)		(E/E)			(E/E)	(E/E)		(E/E)	(
1	NMIA	dd/mm/yy 15/06/03	(Hz) 1592	(V)	, v	$(\mu F/F)$	12	(μF/F) 0.355	v /	12	$(\mu F/F)$		18
		10/09/03	1592	10	0.330	0.038	12		0.020		-0.025	0.043	18
2	NMIA			10	0.360			0.377	0.018	13	-0.017		
3	NMIA	16/12/03	1592	10	0.460	0.037	11	0.401	0.016	13	0.059	0.040	15
4	NMIJ/AIST	27/01/04	1592	100	0.426	0.036	2277	0.412	0.016	14	0.014	0.039	474
5	NMIA	18/05/04	1592	10	0.410	0.036	11	0.440	0.014	15	-0.030	0.039	14
6	NMIA	20/06/04	1592	10	0.430	0.037	11	0.448	0.013	16	-0.018	0.039	14
7	NPLI	19/07/04	1000	100	-1.370	1.100	988	0.489	0.018	35	-1.859	1.100	989
8	NPLI	19/07/04	1592	100	-0.670	1.050	840	0.456	0.013	16	-1.126	1.050	840
9	NPLI	19/07/04	1000	10	-1.320	0.400	514	0.489	0.018	35	-1.809	0.400	516
10	NPLI	19/07/04	1592	10	-0.680	0.400	1028	0.456	0.013	16	-1.136	0.400	1030
11	NIMT	16/08/04	1000	100	1.300	0.860	168	0.496	0.018	35	0.804	0.860	168
12	NMISA	17/09/04	1000	10	0.510	0.053	4.7×10^{9}	0.504	0.018	36	0.006	0.056	3320
13	NMIA	06/10/04	1592	10	0.500	0.035	9	0.475	0.012	17	0.025	0.037	11
14	SIRIM	08/11/04	1000	10	1.500	0.853	139	0.517	0.018	36	0.983	0.853	139
15	SCL	27/11/04	1000	7.5	2.000	2.1	223	0.521	0.018	36	1.479	2.100	223
16	KIM-LIPI	04/01/05	1592	100	0.500	5.99	2.6×10^{7}	0.498	0.012	17	0.002	5.990	2.6×10^{7}
17	NMIA	03/02/05	1592	10	0.500	0.035	9	0.506	0.012	17	-0.006	0.037	11
18	NMIA	26/02/05	1592	10	0.510	0.035	9	0.511	0.012	17	-0.001	0.037	11
19	NIM	29/03/05	1592	10	0.573	0.11	1×10 ⁹	0.519	0.012	17	0.054	0.111	1×10 ⁵
20	VNIIM	18/08/05	1000	9.85	0.370	0.198	39	0.588	0.019	33	-0.218	0.199	40
21	NMIA	07/10/05	1592	10	0.580	0.035	9	0.567	0.014	15	0.013	0.038	12
22	NMIA	12/01/06	1592	10	0.640	0.036	10	0.592	0.016	13	0.048	0.039	14
23	KRISS	11/02/06	1000	10	0.490	0.106	16	0.632	0.021	27	-0.142	0.108	17
24	KRISS	11/02/06	1592	10	0.470	0.109	17	0.599	0.017	13	-0.129	0.110	18
25	SPRING	11/03/06	1000	10	1.100	0.54	1.9×10 ⁸	0.639	0.022	26	0.461	0.540	9.6×10 ⁶
26	SPRING	11/03/06	1592	10	1.100	0.54	1.2×10^{8}	0.606	0.017	13	0.494	0.540	1.1×10 ⁸
27	CMS	08/05/06	1592	60	0.780	0.08	3.9×10 ⁵	0.621	0.019	12	0.159	0.082	4744
28	NMIA	27/05/06	1592	10	0.620	0.035	9	0.626	0.019	12	-0.006	0.040	14
29	NMIA	16/08/06	1592	10	0.600	0.037	11	0.646	0.021	12	-0.046	0.042	17

6.2 Results of the participating institutes

Table 6-1 Summary of results of participating institutes. See text for definition of symbols.

6.3 Calculation of the reference value and its uncertainty

Although a comparison reference value is not required for regional supplementary comparisons, it is useful to define a reference value for transparency of presentation and calculation.

The comparison reference value is taken to be $x_{ref} = 0 \,\mu\text{F/F}$ with standard uncertainty of $u(x_{ref}) = 0 \,\mu\text{F/F}$ with the concurrence of all participants. Note that the choice of reference value does not affect the principal results of this comparison, that is, the pair-wise degrees of equivalence.

Other choices considered for the comparison reference value were:

- 1. Simple weighted mean of all results not previously identified as discrepant,
- 2. Generalised weighted mean (GWM)¹ of all results not previously identified as discrepant,
- 3. GWM of results from laboratories with an independent realisation of the Farad, and
- 4. GWM of pilot laboratory measurements.

In all cases the calculated mean was within a few parts in 10^8 of $x_{ref} = 0 \,\mu\text{F/F}$ with an uncertainty less than 0.05 $\mu\text{F/F}$.

6.4 Degrees of equivalence with respect to the comparison value

Degrees of equivalence with respect to the comparison reference value are reported in this section. Only one value is reported for each participating laboratory. Where laboratories made more than one measurement the following selection criteria are applied:

- 1. If measurements were made at both 1592 Hz and 1000 Hz, degrees of equivalence are reported with respect to the measurement at 1592 Hz.
- 2. If measurements were made at more than one measurement voltage, degrees of equivalence are reported with respect to the measurement made at the measurement voltage closest to $100 V_{rms}$.
- 3. For the pilot laboratory, degrees of equivalence are reported with respect to a generalised weighted mean of all pilot laboratory measurements.

For simplicity of notation, the subscript identifying the measurement number (n) is omitted in this section.

The degree of equivalence of the *i*th participant with respect to the comparison reference value is calculated as

$$d_i = x_i - x_{ref} = x_i \,. \tag{6}$$

The expanded uncertainty associated with this result, $U(d_i)$, is calculated as $U(d_i) = k_i u(x_i)$ where k_i is chosen to give 95 % coverage based on $v(x_i)$. The degrees of equivalence of the participating institutes relative to the comparison reference value are tabulated in Table 6-2 and represented graphically in Figure 6-1.

¹ A weighted mean including treatment of inter- and intra-laboratory correlations.

Participant	d_i	$U(d_i)$
1 ai ticipant	(µF/F)	(µF/F)
CMS	0.159	0.161
KIM-LIPI	0.002	11.740
KRISS	-0.129	0.232
NIM	0.054	0.217
NIMT [*]	0.804	1.698
NMIA	0.002	0.037
NMIJ/AIST	0.014	0.077
NMISA [*]	0.006	0.110
NPLI	-1.126	2.061
SCL [*]	1.479	4.139
SIRIM [*]	0.983	1.687
SPRING	0.494	1.059
VNIIM [*]	-0.218	0.402

Table 6-2 Degrees of equivalence of the participating institutes relative to the comparison reference value. *Measurements made at a frequency of 1000 Hz (all other measurements at 1592 Hz).

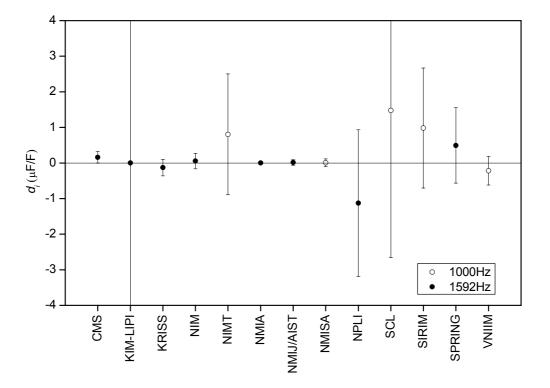


Figure 6-1 Degrees of equivalence d_i of the participating institutes with respect to the comparison reference value.

Uncertainty bars represent the expanded uncertainty $U(d_i)$.

7 Withdrawals or changes of results

The Measurement Standards Laboratory, Industrial Research Limited, New Zealand were unable to measure the capacitance standards due to unexpected circumstances and withdrew from the comparison before their scheduled measurements.

8 Requests for follow up bilateral comparisons

MSL, New Zealand and NPL, India have indicated that they may wish to participate in bilateral comparisons in the future.

9 Summary and conclusions

A supplementary comparison of capacitance at 100 pF has been conducted between participating APMP member laboratories. There is good agreement between participating laboratories in the region for this quantity. It is expected that this comparison will be able to provide support for participants' entries in Appendix C of the Mutual Recognition Arrangement.

10 Appendices

Appendix A: Methods of measurement

Details of the method of measurement and traceability to the SI, as reported by participants, are reproduced below. Note that information relating to the key comparison APMP.EM-K4.1, conducted at the same time as APMP.EM-S7, is included in some cases as the protocol did not require participants to describe their method of measurement separately.

A.1 Method of measurement: CMS, Taiwan

The comparison artefacts, 10 pF and 100 pF capacitors, are compared to 1000 pF reference standards individually by the 10:1 four terminal-pair (4TP) coaxial transformer bridge. The 1000 pF reference standard is GR1404A air standard capacitor which is traceable to DC quantum Hall resistance of CMS through ac resistance standards by using the quadrature bridge.

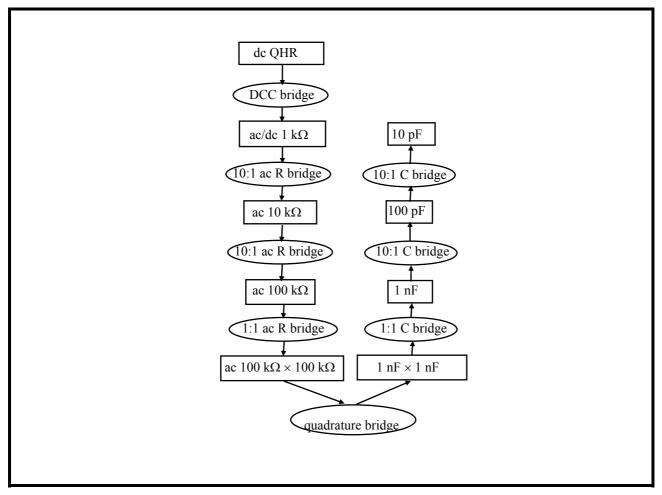


Figure A - 1 CMS Traceability to the SI.

A.2 Method of measurement: KIM-LIPI, Indonesia

Facilities:

-Standard Capacitor GR-1404B (100pF): as reference.

-Capacitance Measurement System GR-1621: as comparator.

-Thermo-Hygrometer Corona GL-89.

Methodology:

-Artefact (10pF & 100pF) was compared to reference capacitor (100pF), and used Capacitance Measurement System GR-1621 with ratio 1:1 and 1:10.

-Measurement or comparison was repeated 10 times.

-Capacitor or room temperature was measured during artefact measurements.

A.3 Method of measurement: KRISS, Korea

For the key and supplementary comparisons, a 10:1 ratio transformer bridge (see Figure A - 2) developed by a joint work between NMIA and KRISS was used.

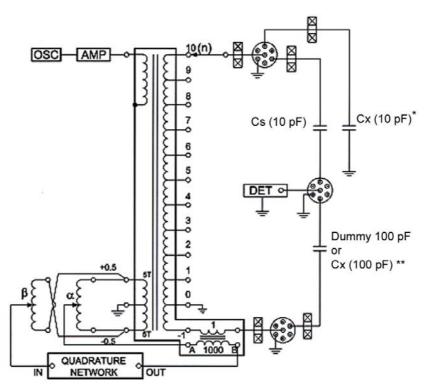


Figure A - 2 KRISS 10:1 ratio transformer bridge

For the 10 pF (*) capacitor, it was measured by a substitution method between a 10 pF Zerodur standard capacitor and the 10 pF A/H capacitor, $Cx(10 \text{ pF})^*$. And for 100 pF A/H capacitor (**), it was measured by 10:1 comparison method after disconnecting the $C_x(10 \text{ pF})^*$.

As a calculable cross capacitor and toroidal cross capacitors have been developed at KRISS and are under analytical evaluation, the KRISS national standard of capacitance has been maintained using a 10 pF Zerodur capacitor developed in 1985 by a joint work between NMIA and KRISS. Since 1987, some of bilateral comparisons between NMIA and KRISS were carried out. In 1996 the value of standard was corrected by an inter-comparison among NMIA, KRISS and VNIIM. Continuously, this standard value has been traced through a comparison between BIPM and KRISS using a KLR standard capacitor developed at KRISS. After that, since 2002, not only a Zerodur capacitor but also a group of KLR capacitors are maintained as capacitance standard of KRISS.

Recently a bilateral comparison between KRISS and CENAM was carried out by using A/H capacitors, and then the results have been re-confirmed through calibration at BIPM for the same capacitors.

The value for the KRISS reference standard is derived from an extrapolation of a quadratic least squares fit to seven data points based on the following measurements:

[1] On May 1987, the 10 pF Zerodur capacitor (s/n S-65146), maintenance standard, was compared with another 10 pF Zerodur capacitor (s/n S-65145) calibrated by NML CSIRO and hand-carried to the KRISS by Greig Small (uncertainty was evaluated to be 0.5 ppm).

[2] On November 1991, the same Zerodur capacitor (s/n S-65146) was hand-carried by Raeduk LEE to NMIA, and compared again with uncertainty 0.5 ppm.

[3] On April 1995, a bilateral comparison between KRISS, NMIA and VNIIM was carried out by using two 10 pF fused silica capacitors (KKC-1, #4 and #8) as a travelling standard (uncertainty was less than 0.1 ppm).

[4] On July 1999, a bilateral comparison between KRISS and VNIIM participated to the CCEM KC was carried out again by using the same fused silica capacitor KKC-1, #8 (uncertainty was less than 0.1 ppm).

[5] On June 2001, a 10 pF KLR capacitor (s/n 12/12) developed by Raeduk LEE was handcarried to BIPM, and re-confirmed the KRISS standard value with uncertainty less than 0.1 ppm.

[6] On July 2003, a bilateral comparison between KRISS, CENAM was carried out by using A/H 11A, then the same A/H capacitor was measured at BIPM (uncertainty was less than 0.1 ppm).

[7] On May 2005, a bilateral comparison between KRISS and NIST was carried out by using the same KLR capacitor, s/n 12/12 (uncertainty was less than 0.1 ppm).

A.4 Method of measurement: NIM, China

The national capacitance standard was established in NIM in 1982. The essential part of this standard is a calculable capacitor of Thompson-Lampard type. The nominal value of the calculable capacitor is 0.5 pF and the uncertainty is 1×10^{-7} . The main source of the uncertainty is from the axial length determination of the capacitor.

A transformer bridge is prepared for the capacitance comparison. The ratio of the bridge is 1:1, 1:2, 1:5 and 1:10. The uncertainty of the comparison is $3x10^{-9}$.

The working capacitance standard is a set of 10 pF and 100 pF fused silica capacitors. The values of the working capacitance standard are determined by the calculable capacitor periodically. The uncertainty of the value of the working standard is 0.11 ppm. The APMP Key comparison of capacitance at 10 pF and the APMP supplementary comparison of capacitance at 100 pF are completed by direct comparison of the travelling standard to the working standard of capacitance.

A.5 Method of measurement: NIMT, Thailand

The fused silica capacitance standard, Capacitor A (B), was measured by using null method with the capacitance bridge, GR 1620 and the NIMT reference standard capacitor GR1404 C

(GR1404 B). At balance, the value of the said capacitance is the value of the reference standard capacitor multiplied by the bridge ratio.

The measurement is traceable to the Physikalisch-Technische Bundesanstalt (PTB), Germany through PTB Certificate No. 2339 PTB 03, 2338 PTB 03 and 2337 PTB 03.

A.6 Method of measurement: NMI, Australia

The NMIA derives its capacitance standard from a Thompson-Lampard calculable capacitor [3-6] traceable to the SI via NMIA's length standard.

The Calculable Capacitor ($\frac{1}{6}$ pF) is used to measure three $\frac{1}{6}$ pF fixed capacitors by substitution on a transformer ratio bridge.

These three measured capacitors are then connected in parallel to constitute a reference capacitor of nominal value 0.5 pF, that is used on the NMIA 10:1 Transformer Ratio Bridge to measure 5 pF, then 50 pF, reference capacitors.

The measurement sequence linking the 50 pF reference capacitor to the Calculable Capacitor was performed at 1592 Hz within 10 days of each of the reported measurements. The history of the reference capacitor was used to interpolate (or in limited cases, extrapolate) its value, to obtain a value at the time of the reported measurements.

At the time of each independent measurement of the comparison artefacts, the 50 pF reference capacitor (50I) is compared with another 50 pF capacitor (50P) to obtain a 100 pF working standard (50I + 50P)

The comparison artefact, a 100 pF A-H capacitor, is compared with the 100 pF working standard on the same NMI 10:1 Transformer Ratio Bridge by substitution. The known frequency coefficient of the reference capacitor 50I is used to calculate a value for the working standard for measurements at 1000 Hz.

A.7 Method of measurement: NMIJ/AIST, Japan

The capacitance is traceable to the QHR, the value of which was determined based on the latest value of the von Klitzing constant having an uncertainty with respect to the SI.

By using the four terminal-pair resistance bridge, the two terminal-pair quadrature bridge, the two terminal-pair capacitance bridge and the ac/dc calculable resistor, the capacitance was derived from the Quantized Hall Resistance (QHR).

A.8 Method of measurement: NMISA, South Africa

The intercomparison artefacts, a 10 pF AH11A Fused Silica Standard and a 100 pF AH11A Fused Silica Standard were compared to standards of the same type and nominal value, as listed in Table A - 1, by direct substitution using an Andeen-Hagerling 2500 A Ultraprecision Capacitance Bridge, at 1 kHz. The voltages applied to the capacitor by this bridge are not specified, but are limited to about 15 V at 10 pF and 7,5 V at 100 pF. The capacitance was evaluated for a measuring voltage of 10 V by including the uncertainty due to the voltage coefficient of the capacitors. The environmental temperature of the laboratory was 24 °C during the comparison measurements. The capacitance was evaluated for a nominal temperature of 20 °C, by including the uncertainty due to the temperature coefficients of the capacitors. For the evaluations at 100 V, corrections for the values of the capacitors cannot be made, since the actual voltage coefficients of the capacitors are

not known. Therefore we included only an extra uncertainty component based on the manufacturer's specifications for the voltage coefficients of the capacitors.

Description	Make & Model	Serial / ID Number
10 pF Fused Silica Standard	Andeen-Hagerling, AH11A	01286
100 pF Fused Silica Standard	Andeen-Hagerling, AH11A	01287
Ultraprecision Capacitance Bridge	Andeen-Hagerling, AH 2500 A	000 640
Low Noise Coaxial Cable	Andeen-Hagerling, DCOAX	CRN-0241/1

Table A - 1 NMISA reference standards and equipment used.

A.9 Method of measurement: NPL, India

The values of two 10 pF capacitors (one GenRad GR1404-C and one Andeen-Hagerling AH-11A) were derived from the calculable capacitor. Two 100 pF capacitors were measured against these two 10 pF capacitors using a 10:1 bridge and a direct comparison method.

The 10 pF comparison artefact was compared against the two 10 pF capacitors in turn using the 10:1 bridge and a 1:1 substitution method.

At 10 V, the 100 pF comparison artefact was measured against one of the 10 pF capacitors using the 10:1 bridge and a direct comparison method.

At 100 V, the 100 pF comparison artefact was measured against one of the 100 pF capacitors using an IET Labs1621 bridge.

A.10 Method of measurement: SCL, Hong Kong

The capacitance of the test capacitors was determined at 1 kHz by substitution method. The laboratory's reference standard capacitors were first measured using an Andeen-Hagerling capacitance bridge model AH 2500A. The test capacitors were then measured using the same bridge. The difference between the two readings was used, together with the known values of the reference standard capacitors, to calculate the values of the test capacitors.

The two reference standard capacitors (10 pF and 100 pF) were calibrated by NPL, UK for traceability to SI.

A.11 Method of measurement: SIRIM, Malaysia

The 10 pF capacitor was measured by comparison against the 10 pF reference capacitor maintained by the National Metrology Laboratory, Malaysia, at a frequency of 1000 Hz and a voltage of 100 V using the GR 1615A capacitance bridge. See **Error! Reference source not found.**

The 100 pF capacitor was measured by comparison against the 100 pF reference capacitor maintained by the National Metrology Laboratory, Malaysia, at a frequency of 1000 Hz and a voltage of 10 V using the GR 1615A capacitance bridge. See Figure A - 3.

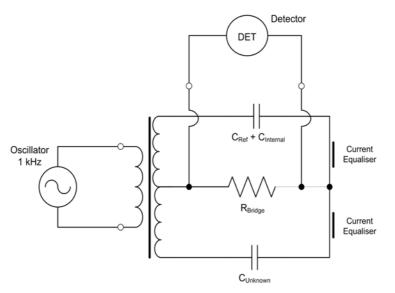


Figure A - 3: SIRIM GR 1615A Bridge configuration for 100 pF measurement at 10 V.

A.12 Method of measurement: SPRING, Singapore

A GenRad (GR) 1621A Precision Capacitance Bridge was used for the measurements of 10 pF and 100 pF travelling capacitance standards at 1 kHz and 1.592 kHz. The GR bridge was used with an external thermostatted fused silica dielectric capacitance standard as a reference capacitor. For the comparison, a substitution method of measurement was used to compare the travelling standards against similar capacitance reference standards, using the GR's external reference capacitor as a 'dummy' standard. The capacitance reference standards have been calibrated with traceability to the unit of capacitance maintained by groups of capacitance standards at 10 pF and 100 pF.

A.13 Method of measurement: VNIIM, Russia

The TO-1 transformer bridge which is a part of the secondary standard of capacitance was used to measure 10 and 100 pF capacitors (simplified circuit diagram is shown in Figure A - 4). Ratio windings of this bridge are executed as copper straps located side by side (the design is similar to that described in [7]) so that the output impedance does not exceed 0.030 Ω at 1 kHz. The bridge can be balanced by adjustment of two six-decade IVDs whose outputs are connected in series with the quadrature circuit and the injection transformer.

The 10 pF AH capacitor is measured by means of substitution method with use of 10 pF capacitors from the group standard that maintains the national unit of capacitance.

The 100 pF capacitor is measured using 1/10 ratio of the bridge and the capacitors that are specified above. The 1/10 ratio is calibrated by comparison with the self-calibrated TMK bridge which is a part of the state primary standard of capacitance [8].

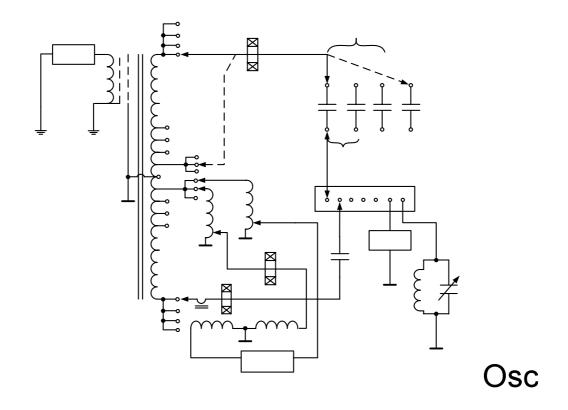


Figure A - 4: VNIIM TO-1 transformer bridge

Traceability to the SI:

Capacitance unit is realized at 1 kHz by means of the vertical TL calculable cross capacitor with 0.2 pF nominal capacitance. In [8] it is fixed that the standard deviation (S₀) does not exceed 0.2 μ F/F, and the estimation of limit of a relative systematic error (θ_0) does not exceed 0.5 μ F/F when capacitance unit is realized at 1 kHz. Capacitance unit is maintained by the10 pF group standard that consists of fused silica capacitors of various types – with fused silica dielectric (three different models) and with gas dielectric (KLR type). Capacitors of the group standard are placed in the oil bath at 20 °C or are kept in their own temperature-regulated enclosures.

Appendix B: Uncertainty statements

B.1 Uncertainty statement: CMS, Taiwan

APMP.EM-S7 (100 pF)								
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)
1. Realisation of SI farad								
Transfer of DC QHR to 100 k Ω	100	kΩ	0.067	μΩ/Ω	00	1		0.067
2. 100 kΩ to 1 nF								
Frequency			0.01	μF/F	00	1		0.010
Bridge resolution			0.03	μF/F	00	0.5		0.015
Repeatability			0.02	μF/F	3	0.5		0.010
Bridge network			0.01	μF/F	00	0.5		0.005
Ratio transformer			0.02	μF/F	00	0.5		0.010
harmonics			0.03	μF/F	00	0.5		0.015
Ratio of two 1 nF			0.031	μF/F	œ	0.5		0.016
3. Measurement of comparison artefact								
Repeatability			0.016	μF/F	5	1		0.016
Temperature correction for 1 nF reference standard			0.005	$\mu F/F$	œ	1		0.005
Drift rate for 1 nF reference standard during comparison			0	$\mu F/F$	œ	1		0
Ratio transformer			0.02	μF/F	œ	1		0.02
Bridge network			0.01	μF/F	œ	1		0.01
Final Values:	100.000078	pF			3056			0.080

B.2 Uncertainty statement: KIM-LIPI, Indonesia

	APMP.EM-S7 (100 pF)											
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)				
Measurement of comparison artefact												
Mean of <i>n</i> independent measurements	0.54	μF/F	0.066	μF/F	9	1		0.066				
Reference Capacitance			0.612	μF/F	>120	1		0.612				
Capacitance Drift			0.577	μF/F	œ	1		0.577				
Bridge Accuracy			5.774	μF/F	x	1		5.774				
Bridge Accuracy (freq)	1592	Hz	0.744	μF/F	x	1		0.744				
Bridge Resolution			0.003	μF/F	x	1		0.003				
Lead Correction			0.214	μF/F	x	1		0.214				
Reference Temperature	23	°C	0.577	°C	x	1.88	μF/F/K	1.085				
Artefact Temperature	23	°C	1.732	°C	x	0.01	μF/F/K	0.017				
Measurement Voltage	100	V	4.388	V	œ	0.003	μF/F/V	0.013				
Measurement Frequency	1592	Hz					•					
Power Line	220	V										
Final Values:	0.54	μF/F			>120			5.99				

B.3 Uncertainty statement: KRISS, Korea

Full uncertainty statements are only given below for measurements at 1592 Hz. Where uncertainty components vary for measurements at 1000 Hz, this is indicated in the footnotes.

		A	PMP.EM-S	57 (100	pF)			
Quantities	Estimate	Unit	Standard uncertainty	Unit	Effective degrees of freedom	Sensitivity coefficient	Unit	Contribution to the relative standard uncertainty (µF/F)
1. Realisation of SI farad:								
reference standard Reference standard (1)	10	μF/F	0.1	μF/F	13	1		0.1
2. Working standard								
Zerodur capacitor (2)	(10)	μF/F	(0.1)	μF/F				
3. Measurement of								
comparison artefact Mean of 6 independent measurements (5)	0.574	μF/F	0.005	μF/F	11	1		0.005
Bridge resolution	0	μF /F	0.029	μF/F	13	1		0.029
Bridge ratio calibration	0	μF/F	0.02	μF/F	13	1		0.02
Lead correction (3), (5)	-0.113	μF/F	0.023	μF/F	13	1		0.023
Temperature	+0.006	μF/F	0.16	°C	11	0.01	$\mu F/F/K$	0.002
$(19.4 \rightarrow 20.0 \ ^{\circ}C)$ (4)								
Final Values:	0.467	μF/F			17			0.109

Notes:

1. A Zerodur capacitor was used as a reference capacitor of KRISS.

2. The Zerodur capacitor was directly used as a working standard capacitor.

3. The leads for our own bridge were used.

4. Type A uncertainty only.

5. Uncertainty components vary slightly for measurements at 1000 Hz.

B.4 Uncertainty statement: NIM, China

Uncertainty statement for APMP.EM-S7 (100 pF):

Item X _i	Sort (A, B)	Uncertainty $u_i(X)$ (×10 ⁻⁶)
Experimental standard uncertainty	A	0.0115 freedom degrees is 7
Uncertainty from working standard	В	0.11
Uncertainty from leads correction	В	0.003
Uncertainty from ambient temperature	В	0.002
Combined Standard Uncert	ainty	0.11

Mathematical model :

Whe

 $C_{x} = \left[C_{s}(1+T_{k}\Delta T)(1+D_{r}\Delta t) \bullet M_{x} \bullet M\right] + C_{d} + \delta_{res} + \delta_{volt} + \delta_{temp} \quad uuc$

ere:	Cx	=	Measured value of unknown capacitor
	Cs	=	Capacitance of standard capacitor
	M _x ·M	÷	Capacitance bridge ratio
	Cd	=	Difference value in between the unknown and the standard capacitor
	T _k	=	Temperature coefficient of standard
	ΔT	=	Difference in temperature between the calibrated temperature of standard
			and the ambient temperature
	D,	=	Secular drift of standard
	Δt	=	Period of time since last calibration to present
	δ_{res}	=	Unknown deviation due to resolution of the capacitance bridge
	$\delta_{_{volt}}$	=	Unknown deviation due to measurement voltage
	8	_	University of the state of the

 $\delta_{temp uuc}$ = Unknown deviation due to ambient laboratory differing from 20 °C

Reference standard capacitors (Cs)

The calibration certificate for the reference standard gives a capacitance value of 10,000127 pF•(1±1•10⁴)(coverage factor k=2.1) at the specified reference temperature of 23,0 °C. The probability distribution is normal then the value of uncertainty taken into account of the uncertainty budget is $u(C_e) = 0.48 \cdot 10^{6}$.

Temperature (T_k , ΔT)

No correction is made for the temperature coefficient of reference standard. During measurement the reference standard must be kept in air bath which is temperature $(23,0 \pm 0,3 \,^{\circ}C)$. The value of T_{k} , ΔT is $5 \cdot 10^{-6}/C^{\circ} \cdot 0,3C^{\circ} = 1,5 \cdot 10^{-6}$. The probability distribution is assumed to be rectangular and then the value of uncertainty taken into account of the uncertainty budget is $u(T_{k}, \Delta T) = 1,5 \cdot 10^{-6}/\sqrt{3} = 0,87 \cdot 10^{-6}$.

Drift of the value of the standard (D_r , Δt)

The drift from the history of reference standard capacitor is $0.8 \cdot 10^{6}$ within $0.7 \cdot 10^{6}$. The probability distribution is normal then the value of uncertainty taken into account of the uncertainty budget is $u(D_r, \Delta t) = 0.7 \cdot 10^{-6}$.

Capacitance Bridge ratio (M, •M)

No correction is made for error due to the bridge transformer ratios. It is typically within $\pm 1 \cdot 10^{-6}$ estimated from specification for a ratio of 1. The probability distribution is assumed to be rectangular then the value of uncertainty taken into account of the uncertainty budget is $u(M_x \bullet M) = 1 \cdot 10^{-6} / \sqrt{3} = 0.58 \cdot 10^{-6}$.

Resolution of the capacitance readout (δ_{res})

No correction is made for rounding due to the resolution of the capacitance readout of the bridge. The last significant digit on the value being calibrated corresponds to $\pm 1 \cdot 10^6$. The probability distribution is assumed to be rectangular then the value of uncertainty taken into account of the uncertainty budget is $u(\delta_{res}) = 1 \cdot 10^{-6} / \sqrt{3} = 0.58 \cdot 10^{-6}$.

Measurement voltage (δ_{vol})

The voltage coefficient of a UUC from the specification to be $0.003 \cdot 10^6 / V$. No correction is made for the measurement voltage. The applied voltage is $(100 \pm 1 \text{ V})$. The value of (δ_{volt}) is $0.003 \cdot 10^{-6} / V^{\circ} \cdot 1V = 0.003 \cdot 10^{-6}$. The probability distribution is assumed to be rectangular and then the value of uncertainty taken into account of the uncertainty budget is $u(\delta_{volt}) = 0.003 \cdot 10^{-6} / \sqrt{3} = 0.0017 \cdot 10^{-6}$.

Ambient laboratory differing from 20 °C ($\delta_{ ext{temp uud}}$)

The temperature coefficient of a UUC from the specification to be $0.01 \cdot 10^6$ / °C . No correction is made for the temperature coefficient. The ambient laboratory is $(23,0 \pm 2,0$ °C). The maximum value of temperature coefficient is $0,01 \cdot 10^{-6}/C^{\circ} \cdot 5C^{\circ} = 0,05 \cdot 10^{-6}$. The probability distribution is assumed to be rectangular and then the value of uncertainty taken into account of the uncertainty budget is $u(\delta_{temp \ unc})=0,05 \cdot 10^{-6}/\sqrt{3}=0,03 \cdot 10^{-6}$.

Measurement (C_d)

The observations are made for the difference between the unknown capacitor and the reference standard from the capacitance bridge readout. The uncertainty due to repeatability, $u(C_d)$ of 5 measurements are calculated and assumed a normal distribution.

Quantity	Estimate	Standard L	Incertainty	Probability	Effective	Sensitivity	Uncertainty (Contribution
		u(x,)	Distribution	degree of	Coefficient	u(y _i)	
X,	x _t	Relative	Absolute		freedom(γ_i)	C _I	Relative	Absolute
C _s	99,998 73 pF	0,48•10 ⁻⁶	-	Normal	18	1	0,48•10 ⁻⁶	-
$T_{k}\Delta T$	0	0,35•10-6	-	Rectangular	8	1	0,35•10 ⁻⁶	-
$D_t\Delta t$	-3,5•10 ⁻⁶	0,25•10 ⁻⁶	-	Normal	13	1	0,25•10 ⁻⁶	-
M _× ⁺M	1	0,58•10 ⁻⁶	-	Rectangular	8	1	0,58•10 ⁻⁶	-
δres	0	0,058•10 ⁻⁶	-	Rectangular	8	1	0,058•10 ⁻⁶	-
δ_{volt}	0	-	0,577 V	Rectangular	8	0,003•10 ⁻⁶ /V	0,0017•10 ⁻⁶	-
$\delta_{temp \ uuc}$	0	-	2,89 °C	Rectangular	8	0,01•10 ⁻⁶ / ^o C	0,03•10 ⁻⁶	-
Cď	+0,001 75 pF	-	0,04•10 ⁻⁶	Normal	4	1	0,04 • 10 ⁻⁶	-
C _x	100,000 13 pF				> 100		0,86•10 ⁻⁶	-

Expanded Uncertainty :

 $U = k \cdot u(C_x) = 2.0 \cdot 0.86 \cdot 10^{-6} = 1.7 \cdot 10^{-6}$

B.6 Uncertainty statement: NMI, Australia

The uncertainty statements presented below are for the 11th measurement (mean measurement date 27 May 2006). They are typical of the uncertainty statements for each measurement by the pilot laboratory at 1592 Hz.

APMP.EM-S7 (100 pF)											
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)			
1. Realisation of SI farad											
Calculable Capacitor	0	μF/F	0.0320	μF/F	6.4	1		0.0320			
2. Working standard (50I)											
Transformer Ratio	0	μF/F	0.0039	μF/F	4078	1.41		0.0055			
Bridge voltage coefficient	0	μF/F	0.0034	μF/F	7	1.41		0.0048			
Bridge loading correction	0	μF/F	0.0015	μF/F	5	1.41		0.0021			
Bridge balance injection	0	μF/F	0.0010	μF/F	3	1.41		0.0014			
2-port definition	0	μF/F	0.0010	μF/F	3	1.41		0.0014			
50I Voltage Coefficient	0	μF/F	0.0000	μF/F	5	1		0.0000			
Bridge resolution	0	μF/F	0.0029	μF/F	x	1.41		0.0041			
Extrapolation (1)	0	μF/F	0.0088	μF/F	22	1		0.0088			
3. Measurement of artefact											
Mean of 5 independent	0	μF/F	0.0023	μF/F	4	1		0.0023			
measurements (1)											
Bridge resolution (2)	0	μF/F	0.0029	μF/F	x	1.58		0.0046			
Lead correction (1)	-0.032	μF/F	0.0016	μF/F	x	1		0.0016			
Temperature (1)	19.6	°C	0.058	°C	246	0.0065	μF/F/K	0.0004			
Final Values:	-0.032	μF/F			9			0.035			

Notes:

1. These uncertainties may vary slightly from measurement to measurement.

2. In measuring the 100 pF) artefact, the bridge resolution is applied on four occasions, two of which have a weight of 0.5.

B.7 Uncertainty statement: NMIJ/AIST, Japan

APMP.EM-S7 (100 pF)											
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)			
Realisation of SI farad: reference standard 100 pF capacitance standard based on a quantized Hall resistance (QHR) (1),(2) Measurement of comparison	-0.262	μF/F	0.033	μF/F	1828	1		0.033			
artefact Mean of 5 independent measurements	0.723	μF/F	0.004	μF/F	4	1		0.004			
Lead correction (3)	-0.040	μF/F	0.012	μF/F	00	1		0.012			
Temperature correction: (23 °C \rightarrow 20 °C) (4)	0.005	μF/F	0.005	$\mu F/F$	œ	1		0.005			
Measurement voltage: 100 Vrms (5)			0.1	V	œ	0.003	$\mu F/F/V$	0.0003			
Measurement frequency: $10000/2\pi$ Hz (5)			0.005	Hz	00	0.0002	$\mu F/F/Hz$	0.000001			
Final Values:	0.426	μF/F		-	2277			0.036			

Notes:

1. Latest value of the von Klitzing constant of $R_{\rm K} = 25.812807449$ k Ω with a relative standard uncertainty of 3.3×10^{-9} was used [9].

2. Details of uncertainties are described in [10].

3. Leads effect was estimated by measuring the relative change of capacitance with changing the length of leads.

4. The temperature coefficient of capacitance with respect to changes in ambient laboratory temperature was measured to be 0.0085 μ F/F/K for Capacitor A (10 pF) and -0.0018 μ F/F/K for Capacitor B (100 pF).

5. Type B uncertainty only.

B.8 Uncertainty statement: NMISA, South Africa

	UNCERTAINTY BUD		•	,				Certifica	te No	DCLF/C-12	259
Reference:	Guide to the Expression of Uncertainty in Measurement, issued by	BIPM, IEC, IFCC,		PAP, OIML	- ISO 1995 (ISBN 92	2-67-1018	18-9)				
Description	Calibration of 100 pF Capacitor vs 100 pF reference i method with AH2500A bridge	n substitution	Type & Serial Number		100 pł	=, AH 11	IA, #01350		Range	100 pF, 1 k	:Hz, 10 V
	Mathematical Model $\Delta C_x =$	$\Delta C_{x_{Read}}$ –	$\Delta C_{s_{Read}}$ +	$\Delta C_{s_{Cer}}$	$_{rr} + \Delta C_{Res} + \Delta C_{Res}$	$\Delta C_{s_{Cer}}$	$+\Delta C_{s_{Drift}}$	$+\Delta C_{s_{Volt}}$ +	$-\Delta C_{\tau c c}$	$+\Delta C_{PLF}$	
Symbol	Input Quantity (Source of Uncertainty)	Estimated Input Quantity	Estimat Uncerta		Probability Distribution		Standard Uncertainty	Sensiti Coeffic		Standard Uncertainty Contribution	Degrees o Freedom
	(X _i)	(x _i)		Unit	(N, R, T, U)		U(Xi)	Ci	Unit	Ui (y)	v
$\Delta C_{x_{Read}} - \Delta C_{s_{Read}}$	Average of 29 pairs of readings	-0.4080	0.0005	μF/F	Normal k = 1	1.00	4.668E-04	1.000E+00	-	4.668E-04	28.00
ΔC_{Res}	Reading resolution of the AH2500A (in % mode)	0.000	0.001	μF/F	Triangular √6	2.45	4.082E-04	1.000E+00	-	4.082E-04	infinite
$\Delta C_{s_{Cert}}$	Calibration of the reference (BIPM cert. no. 51)	0.910	0.050	μF/F	Normal k = 1	1.00	5.000E-02	1.000E+00	-	5.000E-02	infinite
$\Delta C_{s_{Drift}}$	Drift of the standard since last calibration	0.009	0.003	μF/F	Normal k = 1	1.00	3.000E-03	1.000E+00	-	3.000E-03	infinite
$\Delta C_{s_{Volt}}$	Voltage coefficient of capacitance of reference standard (no contribution)	0.000	0.000	μF/F	Rectangular √3	1.73	0.000E+00	1.000E+00	-	0.000E+00	infinite
$\Delta C_{x_{Volt}}$	Voltage coefficient of capacitance of unit under test (no contribution)	0.000	0.000	μF/F	Rectangular √3	1.73	0.000E+00	1.000E+00	-	0.000E+00	infinite
ΔC_{TCC}	Corrections for temperature influences	0.000	0.030	μF/F	Rectangular √3	1.73	1.732E-02	1.000E+00	-	1.732E-02	infinite
ΔC_{PLF}	Corrections for powerline fluctuations	0.000	0.001	μF/F	Rectangular √3	1.73	5.774E-04	1.000E+00	-	5.774E-04	infinite
	Value of the measurand (deviation from nominal)		0.511	μF/F							
	Combined Standard Uncertainty							5.301E-02	μF/F	Veff	infinite
	Expanded Uncertainty	Level	of Confidence		68,27 % K =	1		5.30E-02	μF/F	k =	1.00

B.9 Uncertainty statement: NPL, India

The following uncertainty statements are those for measurements at 1592 Hz. Uncertainty statements for measurements at 1000 Hz differ where indicated.

	APMP	.EM-S	57 (100 pF	, measui	red at 10	V)		
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)
1. Realisation of SI farad:								
reference standard								
Value of reference standard (1)	9.9999923	pF	0.3	μF/F	400	1		0.3
Temperature correction	25.0	°C	0.05	μF/F		1		0.05
Bridge Transformer Ratio	$4x10^{-7}$		0.05	10-6		1		0.05
Drift in Standards	2	years	0.2	μF/F		1		0.2
Temp Hysteresis	1	°C	0.01	μF/F		1		0.01
Bridge resolution	0.04	μF/F	0.02	$\mu F/F$		1		0.02
3. Measurement of comparison artefact Mean of n independent	99,999932	pF	0.01	μF/F	8	1		0.01
measurements (1)		-		•	5	1		
Lead correction	0	μF/F	0	μF/F				0
Final Values: (1)	99.999932				1028			0.40

	APMP.	EM-S	7 (100 pF,	measur	ed at 10) V)		
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)
1. Realisation of SI farad:								
reference standard								
Value of reference standard (1)	99.999931	pF	0.4	μF/F	500	1		0.4
Temperature correction	25.0	°C	0.05	μF/F		1		0.05
Bridge calibration	0.1		1	10-6	700	1		1
Drift in Standards	2	years	0.2	μF/F		1		0.2
Temp Hysteresis	1	°C	0.01	μF/F		1		0.01
Bridge resolution	0.02	μF/F	0.01	μF/F		1		0.02
Voltage Difference	90	V	0.1	μF/F		1		0.1
3. Measurement of comparison								
artefact								
Mean of n independent	99,999933	ъE	0.02	···E/E	8	1		0.02
measurements (1)	77.779933	pF	0.02	μF/F	8	1		0.02
Lead correction	0	μF/F	0	μF/F				0
Final Values: (1)	99.999933				840			1.05

Notes:

1. Indicates those values that differ for measurements at a frequency of 1000 Hz.

B.10 Uncertainty statement: SCL, Hong Kong

		AP	MP.EM-S7	' (100	pF)			
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)
1. Realisation of SI farad: reference standard								
Value of reference standard	99.9981	pF	1.5	μF/F	100	1		1.5
Extrapolation to mean measurement date	99.9979	pF	1.3	$\mu F/F$	100	1		1.3
Temperature correction	0	°C	0.2	Κ	100	2	μF/F/K	0.4
3. Measurement of comparison artefact								
Mean of 5 independent measurements	100.00020	pF	0.05	$\mu F/F$	5	1		0.05
Bridge resolution	0	μF/F	0.29	μF/F	50	1		0.29
Lead correction	0	μF/F	0.06	μF/F	50	1		0.06
Temperature	23.0	°C	1.73	K	50	0.01	μF/F/K	0.0173
Measurement voltage	7.5	V	53.4	V	50	0.003	μF/F/V	0.1602
Final Values:					223			2.1

B.11 Uncertainty statement: SIRIM, Malaysia

Quantity	Identifier	Estimate	Unit	Standard	Unit	Effortivo	Sensitivity	Unit	Contribution to
Quantity	laentiner	Estimate	Unit	standard uncertainty	Unit	DOF	coefficient	Unit	rel. std. unc. (µF/F)
1. Reference Standard									
0	CRef _{BIPM}	99.999530	pF	0.050	μF/F	50	1		0.050
Transportation effects	$\delta CRef_{Transport}$	-	pF	0.156	μF/F	x	1		0.156
Temp.coefficient of Ref. Cap.	$\delta CRef_{Tambient}$	-	pF	0.003	μF/F	∞	1		0.003
Temp. hysteresis of Ref. Cap.	$\delta CRef_{Thysteresis}$	-	pF	0.029	μF/F	00	1		0.029
Voltage coefficient of Ref.	δCRef _{testvoltage}	-	pF	0.000	μF/F	œ	1		0.000
Mains line coeff.of Ref. Cap.	δCRef _{mainsvoltage}	-	pF	0.000	μF/F	x	1		0.000
Change in the value of Ref. Cap with time	$\delta CRef_{time}$	-	pF	0.662	μF/F	œ	1		0.662
2. Measurement of comparison artefact									
Mean bridge readings	Decade _{Mean}	0.018720	pF	0.362	μF/F	9	1		0.362
Bridge calibration	∆Bridge _{Corr}	-0.018099	pF	0.362	μF/F	9	1		0.362
Bridge GR 1615 resolution	δ _{resl}	-	pF	0.029	µF/F	00	1		0.029
Lead Correction	δX_{lead}	-	pF		•				
Ambient Temperature		22.5	°C			x	1.00E-06		0.003
Correction to temp differing from 20 deg. C	∆TempCorr	-0.0000025	pF	0.003	μF/F	œ	1.00E-06		0.000
Measurement voltage		10	v			x	3.00E-07		0.000
Measurement frequency		1000	Hz						
Final Values:		100.00015	рF			139			0.853

Notes:

 $\begin{array}{ll} 1. \quad C_x = C_{Ref} + Decade_{Mean} + \Delta Bridge_{Corr} + \delta X_{Tambient} + \delta X_{testvoltage} + \delta_{resl} + \delta X_{lead} \\ 2. \quad C_{ref} = CRef_{BIPM} + \delta CRef_{Tambient} + \delta CRef_{Thysteresis} + \delta CRef_{testvoltage} + \delta CRef_{mainsvoltage} + \delta CRef_{time} + \delta CRef_{Transport} \\ \end{array}$

B.12 Uncertainty statement: SPRING, Singapore

Uncertainty statements for measurements at 1592 Hz are given below. Uncertainty statements for measurements at 1000 Hz differ only in the uncertainty component relating to repeatability.

				SPRING					
	UNCERTAINTY STATEMENT : APMP.EM-S7 (100 pF @ 1592 Hz)								
	Capacitor A : Serial Number 01350								
	Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective degrees	Senstivity coefficient	Unit	Contribution to the relative standard
				uncertainty		of freedom	coenicient		uncertainty (µF/F)
1	Reference Standard								uncertainty (pr. /)
1.1	Realisation of SI farad								
1.1.2	Reference standard calibration uncertainty	0.90	μF/F	0.45	μF/F	oo (7)	1		0.45
1.2	Derivation of value of Reference Standard								
1.2.1	Stability (1)	0.31	μF/F	0.18	μF/F	oo (7)	1		0.18
1.2.2	Chassis temperature (2)	30.06	°C	0.68	°C	oo (7)	0.01	µF/F/°C	0.0039
1.2.3	Measurement voltage (3)	10	v	0.17	v	00 (7)	0.003	μF/F/V	0.0000
3	Measurement of comparison artefact								
3.1	Bridge calibration (4)	0.40	μF/F	0.23	μF/F	oo (7)	1		0.23
3.2	Bridge resolution	0.010	μF/F	0.0058	μF/F	00 (7)	1		0.0058
3.3	Repeatability	0.031	µF/F	0.010	µF/F	9	1		0.010
3.4	Measurement Conditions								
3.4.1	Ambient temperature (5)	23	°C	0.58	°C	oo (7)	0.01	µF/F/°C	0.0033
3.4.2	Measurement voltage (3)	10	v	0.17	v	00 (7)	0.003	µF/F/V	0.0000
3.4.3	Measurement frequency (6)	1592	Hz	-		00 (7)	-		-
Final V	Values : (combined standard uncertainty)			1		1	1		0.6
Notes	Notes :								

 1
 due to drift of reference standard
 5
 ambient temperature was 23 ± 1.0 °C

 2
 reference standard calibrated at chassis temperature of 28.9 °C
 6
 frequency was derived by systhesis from a frequency primary standard so effect of frequency

 2
 AC text simple uttrace: 10 V = 2 % concerned uttrace upper onlibered at 10 V
 6
 frequency was derived by systhesis from a frequency primary standard so effect of frequency

 uncertainty is insignificant

3 AC test signal voltage; 10 V \pm 3 %, reference values were calibrated at 10 V

4 includes stability, non-linearity, temperature coefficient, leads 7 type B uncertainty, assuming rectangular distribution

B.13 Uncertainty statement: VNIIM, Russia

APMP.EM-S7 (100 pF)								
Quantity	Estimate	Unit	Standard uncertainty	Unit	Effective DOF	Sensitivity coefficient	Unit	Contribution to rel. std. unc. (µF/F)
1. Realisation of SI farad:								
VNIIM calculable capacitor								
Geometrical imperfections	0.2	pF	0.08	μF/F	13	1		0.08
Laser interferometer	0	μF/F	0.03	μF/F	8	1		0.03
Transformer bridge	0	μF/F	0.06	μF/F	13	1		0.06
Insufficient sensitivity	0	μF/F	0.09	μF/F	6	1		0.09
Repeatability	0	μF/F	0.10	μF/F	6	1		0.10
2. Working standard (10 pF) (1)								
Build-up from calculable	0	μF/F	0.04	μF/F	8	1		0.04
capacitor		•		•				
Extrapolation to mean	0	μF/F	0.02	μF/F	50	1		0.02
measurement date								
Bridge calibration	0	μF/F	0.02	μF/F	13	1		0.02
Temperature correction	0	μF/F	0.03	μF/F	20	1		0.03
3. Measurement of comparison								
artefact								
Mean of 7 independent	0.27	μF/F	0.016	μF/F	6	1		0.016
measurements								
Ratio calibration	0.12	μF/F	0.08	μF/F	6	1		0.08
Bridge resolution	0	μF/F	0.02	μF/F	13	1		0.02
Lead correction	-0.018	μF/F	0.005		20	1		0.005
Temperature correction	-0.004	μF/F	0.1	°C	13	0.01	μF/F/K	0.001
Final Values: (2)	0.37	μF/F			39			0.198

Notes:

1. The group standard for maintenance of the national unit of capacitance.

2. Calculated value of effective degrees of freedom is truncated to the next lower integer.

Appendix C: Optional measurements: Dissipation factor

Reporting of the dissipation factor was optional. The capacitor is modelled as an ideal capacitor, of capacitance *C*, in parallel with an ideal resistor, of conductance *G*. The admittance of the capacitor is therefore $Y = G + j\omega C$ and the dissipation factor $D = G/\omega C$.

Three participants made measurements of the dissipation factor. Results are shown in Table A - 2.

	Measurement	<i>f</i> = 10	00 Hz	<i>f</i> = 1592 Hz		
Participant	Voltage	D	$U_{95\%}$	D	$U_{95\%}$	
	(V)	(µrad)	(µrad)	(µrad)	(µrad)	
NPLI	10	0	3	0	3	
	100	0	3	0	5	
KRISS	10	0.550	0.009	0.550	0.009	
VNIIM	9.85	1.5	1.5	-	-	

 Table A - 2 Dissipation factor measurements.

Appendix D: References

[1] Mutual Recognition Arrangement "Mutual Recognition of National Measurement Standards and of Calibration and Measurement Certificates Issued by National Metrology Institutes - Arrangement Drawn up by the International Committee of Weights and Measures under the Authority Given to it in the Metre Convention." <u>http://www.bipm.org/utils/en/pdf/mra_2003.pdf</u> 15 January 2007.

[2] Witt T. J. "Pressure coefficient of some Zener diode-based electronic voltage standards," *IEEE Trans. Instrum. Meas.*, Vol. 48, No. 2, 1999, pp. 329-332.

[3] Thompson A. M. and Lampard D. G. "A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance", Nature, Vol. 177, 1956, p. 888.

[4] Thompson A. M. "The Cylindrical Cross-capacitor as a Calculable Standard", *Proc. IEE*, Vol. 106, Part B No. 27, 1959, pp. 307-310.

[5] Clothier W. K. "A Calculable Standard of Capacitance", *Metrologia*, Vol. 1, No. 2, 1965, pp 35-56.

[6] Small G. W. "Twenty Years of SI Ohm Determinations at NML", *IEEE Trans. Instrum. Meas.*, Vol. IM-36, No. 2, 1987, pp. 190-195.

[7] McGregor M. C., Hersh J.F., Cutkosky R.D., Harris F.R. and Kotter F.R. "New apparatus at the National Bureau of Standards for absolute capacitance measurement", IRE Trans. Instrum., v.7, 1958, pp. 253-61

[8] GOST 8.371-80. State system for ensuring the uniformity of measurements. State primary standard and all-union verification schedule for means measuring electrical capacity.

[9] http://physics.nist.gov/cuu/Constants/index.html 15 January 2007

[10] Nakamura Y., Nakanishi M. and Endo T. "Measurement of frequency dependence of standard capacitor based on the QHR in the range between 1 kHz and 1.592 kHz" IEEE Trans. Instrum. Meas., vol. 50, No. 2, pp. 290-293, 2001

Appendix E: Comparison protocol

The comparison protocol is attached.

Protocol

for

APMP.EM-K4.1

APMP Key Comparison of Capacitance at 10 pF

and

APMP.EM-S7

APMP Supplementary Comparison of Capacitance at 100 pF

Contents

1. Introduction	35
2. Travelling Artefacts	35
(a) Description(b) Operation 37	
3. Transport of Artefacts	
(a) Customs arrangements	37
(b) Transport case	
(c) Damage 37	
(d) Receipt of travelling standard	
(e) Measurement Period	
(f) Dispatch of travelling standard	
4. Measurement of the capacitors	
(a) Preparation	
(b) Laboratory conditions	
(c) Measurement voltage	
(d) Measurement frequency	
(e) Measurement leads	
(f) Recorded quantities	
(g) Temperature dependence of capacitance	
5. Reporting of results	
(a) General comments	39
(b) Results 40	
(c) Uncertainty	
6. Notes	40

7. Comparison costs	. 41
8. Inquiries	. 42
Appendix I: Schedule	51

11Introduction

A key comparison of capacitance at 10 pF and a supplementary comparison of capacitance at 100 pF is to be conducted between participating APMP member laboratories. Its aim is to provide participating laboratories with the opportunity to intercompare national standards of capacitance within the Region, and to gain experience and knowledge in this field.

It is proposed that the values from this key comparison in the APMP region be linked to the international key comparison CCEM-K4 carried out between 1994 and 1996. The linking laboratories will be NML CSIRO (Australia), MSL IRL (New Zealand), NIM (China) and VNIIM (Russian Federation).

The National Measurement Laboratory (NML), Australia, will act as the pilot laboratory for the comparison. Dr Leigh Johnson will act as the coordinator. The members of the support group for the comparison are Dr. Sze Wey Chua, SPRING Singapore, Dr Rae Duk Lee, KRISS Korea and Mr Andrew Corney, MSL New Zealand.

It is expected that the comparison will start towards the end of 2003. Each participating laboratory should ensure that the time required for their measurements and for transportation to the next laboratory does not exceed four weeks. It is anticipated that the comparison measurements will be completed within two years.

The circulation of the capacitors will be organised in loops of no more than five laboratories to allow close monitoring of the behaviour of the standard capacitors.

In the event of failure of a standard the pilot laboratory should be informed. The pilot laboratory will consider whether to continue the comparison with the remaining capacitor, substitute an alternative standard or abandon the comparison.

This protocol has been developed according to the Guidelines for CIPM key comparisons, available on the BIPM web site:

http://www.bipm.fr/pdf/guidelines.pdf

12Travelling Artefacts

12.1 Description

The artefacts are a 10 pF and a 100 pF Andeen-Hagerling AH11A fused silica capacitance standard mounted in a single AH1100 capacitance standard frame. Details of the two comparison capacitors are given in Table 3 and the manufacturer's specifications for this type of standard are given in Table 4. The AH1100 frame is a standard width bench-top or rack-mountable frame. Each AH11A capacitance standard includes a temperature-controlled oven that is powered via the AH1100 frame. The frame also monitors internal power voltages and temperatures.

More detailed information on this type of capacitance standard is available on the manufacturers web site:

http://www.andeen-hagerling.com/ah11a.htm

The capacitors are fitted with BNC co-axial terminations. Co-axial measuring leads with BNC to MUSA connectors will be supplied with the capacitors, together with MUSA-GR874 adapters and MUSA-BNC adapters.

A power line cord (standard IEC connector to Australian three-pin plug) will be supplied to power the standard. Participants may need an adapter or a power line cord appropriate to their country.

Comparison identifier	P2-APMP.EM-K4.1	P1-APMP.EM-S7		
Comparison type	Кеу	Supplementary		
Nominal value of capacitance	10 pF	100 pF		
Capacitor identifier	Capacitor A	Capacitor B		
Serial number of capacitor	01349	01350		

Table 3 Details of the comparison capacitors.

Operating parameters:				
	95 to 115, 102 to 129, 197 to 252 and 204 to 276 welts			
12.1.1.1.1 Power voltage ranges	85 to 115, 102 to 138, 187 to 253 and 204 to 276 volts rms			
Power frequency	48 to 440 Hz			
Warm up time from power-on	30 minutes			
Operating temperature range	10° to 40° C			
Maximum allowable applied voltage	250 volts peak			
Operating humidity range	0 to 85% relative humidity, non-condensing			
Sensitivity of AH11A capacitance	standard:			
12.1.1.1.1.2 Temperature coefficient relative to a change in ambient temperature	0.01 µF/F/K			
12.1.1.1.3AC voltage coefficient	$0.003 \ \mu F/F/volt rms at 1 \ kHz$			
12.1.1.1.1.4 Sensitivity to power line voltage changes	$0.0003 \ \mu$ F/F per 1% change in power line voltage			
12.1.1.1.5Hysteresis from mechanical shock	0.05 µF/F			
12.1.1.1.6Hysteresis from temperature cycling	0.05 µF/F			
12.1.1.1.1.7DC voltage coefficient	0.0001 µF/F/V			
Transport information:				
Storage temperature range	-40° to +75° C			
AH 1100 frame size	8.9 cm high and 38.1 cm deep behind the front panel.			

Total weight of AH1100 frame and two AH11A capacitors	8.4 kg
--	--------

Table 4Manufacturer's specifications for the Andeen-Hagerling AH11A standard capacitor and AH1100frame.

12.2 Operation

The AH 1100/11A Operation and Maintenance Manual will be included with the shipment. Participants should familiarise themselves with the operation of the standards before proceeding. In particular, the correct line voltage must be selected and a corresponding fuse fitted **before applying power to the unit.**

Measurements should not be taken until the OVEN NOT READY indicator stops blinking. If the OVEN NOT READY indicator continues blinking for more than an hour after applying power to the standard or starts blinking during measurements, please contact the pilot laboratory.

Note that the HIGH and LOW terminals of the capacitors have different properties. Refer to Chapter 2 of the AH 1100/11A Operation and Maintenance Manual for more information.

13Transport of Artefacts

13.1 Customs arrangements

The artefacts will be transported using an ATA Carnet for customs clearance where possible. A separate comparison loop will be organised for those participants that do not qualify for the ATA scheme.

13.2 Transport case

The capacitors will be transported in an aluminium case. The dimensions of the transport case are 750 mm x 750 mm x 450 mm. The case weighs 27 kg giving a total shipping weight of approximately 36 kg.

Participants are requested to ensure that handling and transport shock is kept to a minimum.

13.3 Damage

Please report to the pilot laboratory any damage of the artefacts or accompanying items.

13.4 Receipt of travelling standard

On receipt of the travelling standard:

- 1. Inspect the outside of the transport case for any signs of physical damage. A shock monitor is attached to the outside of the transport case. Check that the monitor label has not been activated.
- 2. Open the transport case and check that the contents are complete (refer to Packing List for list of contents). In particular, please check that the Carnet is with the shipment.
- 3. Notify **both the pilot laboratory and the sending laboratory** of the receipt of the travelling standards using the Artefact Received Fax Form provided. Fax numbers for each participating laboratory are given in the Participant List.
- 4. Retain or make a copy of all shipping documentation. Please do not dispose of this documentation until the comparison is complete. DO NOT retain the original copy of the carnet.

- 5. A copy of the AH 1100/11A Operation and Maintenance Manual is included in the shipment. If you have not used this type of standard before, please familiarise yourself with the operation of the standards before proceeding.
- 6. The AH1100 frame containing the two capacitance standards should be removed from the transport case. Please do not open the AH1100 frame. Please do not remove the AH11A capacitance standards from the frame. Remove the travelling plug from the power line cord receptacle at the back of the bridge. Before applying power to the unit, select the correct line voltage and fit an appropriate fuse, referring to pages 1-5 and 1-6 of the AH 1100/11A Operation and Maintenance Manual.
- 7. Apply power to the frame and wait until the oven temperature is stable (OVEN NOT READY indicator stops blinking). Typically, the oven will take 20 minutes to stabilise. For the most precise measurements, it is recommended that the standards are left to stabilise for two to three days.

13.5 Measurement Period

The draft comparison schedule allows a total of four weeks for each laboratory. The four week period starts when the travelling artefact arrives in the participant's country and ends when the travelling artefact arrives in the following participant's country. It is anticipated that participants will have at least a two week measurement period.

Arrangements for shipping the artefact to the next scheduled laboratory should be in place before the end of the measurement period. As a courtesy, contact should be made with the next scheduled laboratory regarding shipping, particularly if the anticipated dispatch date is earlier or later than scheduled.

Participants are requested to inform the pilot laboratory if delays to the Schedule have occurred or are likely to occur. If unforeseen circumstances prevent a laboratory from carrying out or completing measurements within the scheduled period, the pilot laboratory will, in most cases, request that the artefacts be sent to the next scheduled laboratory without delay. If time allows, the artefacts will be returned to the laboratory for the completion of measurements at a later date.

13.6 Dispatch of travelling standard

On completion of measurements each participant is requested to ship the travelling standard to the next scheduled laboratory.

Repack the artefact and all accompanying items in the transport case. Please check that the contents are complete (refer to Packing List for list of contents). In particular, please ensure that the carnet travels with the artefact but do **NOT** pack the Carnet inside the transport case.

Addresses for dispatching the artefacts are given in the Participant List.

On dispatch of the travelling standard, notify **both the pilot laboratory and the recipient laboratory** using the Artefact Shipped Fax Form provided. Fax numbers for each participating laboratory are given in the Participant List.

14Measurement of the capacitors

14.1 Preparation

The artefacts should be unpacked and left to stabilise according to the instructions given in Section 13.4 "Receipt of travelling standard".

14.2 Laboratory conditions

Refer to the manufacturer's specifications listed in Table 4.

14.3 Measurement voltage

The measurement voltage must not exceed a peak value of 250 V.

The preferred measuring voltage for both capacitor is 100 V(rms).

An alternate measuring voltage for the 100 pF capacitor is 10 V(rms).

The manufacturer's specification for the voltage coefficient of the capacitors is 0.003 μ F/F/V(rms) at 1 kHz. Participants may choose to include this as a source of uncertainty if they use measuring voltages other than those listed above.

14.4 Measurement frequency

The preferred measurement frequency is 1592 Hz ($\omega = 10^4 \text{ rad} \cdot \text{s}^{-1}$). Measurements may be made at a frequency of 1000 Hz instead of, or as well as, 1592 Hz.

14.5 Measurement leads

Participants may use any of the leads and adapters supplied with the capacitors, or may choose to use their own leads. Please note that participants are responsible for determining any necessary corrections for leads or adapters to obtain the capacitance **at the terminals on the AH1100 frame**.

14.6 Recorded quantities

For each measurement, the following quantities should be recorded:

- 1. the measurement date
- 2. the applied voltage,
- 3. the measurement frequency,
- 4. the measured capacitance,
- 5. the air temperature in the vicinity of the measuring apparatus and the capacitors, and
- 6. the chassis temperature and the drift reading (these quantities need not be included in the report but should be noted on the Artefact Shipped Fax Form)

14.7 Temperature dependence of capacitance

The temperature coefficient of capacitance with respect to changes in ambient laboratory temperature is less than 0.01 μ F/F/K for both capacitors. No corrections should be made for ambient laboratory temperature. Participants may choose to include a component for ambient laboratory temperature in their uncertainty budget if the ambient laboratory temperature differs from 20 °C.

15Reporting of results

15.1 General comments

A full measurement report in English containing all relevant data and uncertainty estimates is to be forwarded to the coordinator within six weeks of completing measurement of the capacitors. Prompt reporting is encouraged to allow rapid identification of problems with the travelling artefacts. The report should include a description of the measurement method (facilities and methodology), the traceability to the SI, and the results, associated uncertainty and number of degrees of freedom.

Participants are encouraged to submit their results using the Measurement Report Form. Participants may submit their results in the format of Calibration Certificates normally issued by their laboratory provided the all the required data are either included or attached.

15.2 Results

The capacitance at the terminals on the AH1100 frame is to be reported for each capacitor.

The mean measurement date, the measurement frequency and the applied voltage must also be reported for each capacitor.

Details of any corrections that have been applied (for example, bridge corrections or leads corrections) must be given.

All results should be clearly identified with the serial number of the capacitor (refer to Table 3).

15.3 Uncertainty

The uncertainly calculation should be carried out in accordance with the ISO "Guide to the expression of uncertainty in measurement". All contributions to the uncertainty of measurement should be listed separately in the report and identified as either Type A or Type B uncertainties. The overall uncertainty, as calculated from the individual uncertainties, should be stated. Uncertainties are to be evaluated at the level of one standard uncertainty and the number of degrees of freedom are to be reported. The main uncertainty components are expected to be:

- Experimental standard uncertainty of the mean of *n* independent measurements (Type A)
- Uncertainty in the primary standard or working standard against which the artefacts are measured (Type B)
- Uncertainty due to leads correction

Participants may need to consider the following additional sources of uncertainty, depending on their individual circumstances:

- Uncertainty due to ambient laboratory temperature differing from 20 °C (see Section 14.7) (Type B)
- Uncertainty due to measurement voltage differing from recommended level (see Section 14.3)
- Uncertainty due to power line changes (refer to Table 4) (Type B)
- Uncertainty due to frequency

Participants may need to include additional sources of uncertainty appropriate to their measurement system.

16Notes

If any laboratory feels that it would have difficulty meeting any of the above requirements, rather than withdraw from the comparison, it should discuss the problem with the coordinator so that satisfactory arrangements can be made. It is expected that amongst participating laboratories, uncertainties will cover a wide range (according to local requirements). This should not be seen as a deterrent to participating in the comparison.

(Type B)

(Type B)

(Type B)

17Comparison costs

Each participating laboratory is responsible for meeting the costs of its own measurements.

In addition, each participating laboratory is responsible for meeting all costs, and making all arrangements, relating to the transport of the travelling artefact from the time the artefact arrives in their country to the time the artefact arrives in the country of the next participating laboratory. Costs may include (but are not limited to) costs associated with the arrival in the country (eg. customs charges, quarantine fees, broker fees, carrier charges from the port of arrival to the participants laboratory) and costs associated with transporting the artefacts from the participant's laboratory to the international port in the next scheduled country closest to the next participant's laboratory. International carriage is to be by air.

18Inquiries

All inquiries or communications relating to the comparison should be addressed in the first instance to the comparison co-ordinator, Leigh Johnson. *18 1 1 1 Dr Leigh Johnson*

10.1.1.1 Dr Leign Johns	son		
National	Measurement	Telephone	+ <i>61 2 8467 3529</i>
Institute	18.1.1	.3 Fax:	+ 61 2 8467 3610
P. O. Box 218		E-mail:	
18.1.1.1.1 Lindfield			<u>leigh.johnson@measurement.gov.</u>
NSW 2070		<u>au</u>	
18.1.1.2 AUSTRALIA			

An alternative contact for urgent inquiries or communications relating to shipment: *18.1.1.4 Mrs Darien Northcote*

18.1.1.4 Mrs D	arien Northcote		
Nationa	l Measurement	Telephone:	+ 61 2 8467 3574
Institute	18.	1.1.6 Fax:	+ 61 2 8467 3719
<i>P. O. Bo</i>	ox 218	E-mail:	
18.1.1.4.1 Lindj	field		darien.northcote@measurement.g
NSW 20	70	<u>ov.au</u>	
18.1.1.5 AUST	RALIA		

Further information and progress reports for the comparison will be available on the NML website at:

http://www.measurement.gov.au/

Appendix II: Participants

M0	Contact Person:	Dr Leigh Johnson
NML, CSIRO	E-mail:	leigh.johnson@measurement.gov.au
	Telephone Number:	+61 2 8467 3529
(AUSTRALIA)	Fax Number:	+61 2 8467 3610
	Delivery Address:	National Measurement Institute (NMI)
		Bradfield Road
		Lindfield
		NSW 2070
		AUSTRALIA

M1		Contact Person:	Dr Yasuhir	o Nakamura			
	NMIJ	E-mail:	y.nakamura	a@aist.go.jp			
		Telephone Number:	+81 29 861	5659			
	(JAPAN)	Fax Number:	+81 29 861	3469			
		Delivery Address:		Metrology /AIST)	Institute	of	Japan
			AIST Tsuk	uba Central 2	-2		
			1-1-1 Ume	zono			
			Tsukuba-sh	ni			
			Ibaraki 305	5-8568			
			JAPAN				

M2		Contact Person:	Dr Rae Duk Lee
	KRISS	E-mail:	rdlee@kriss.re.kr
		Telephone Number:	+82 42 868 5150
	(KOREA)	Fax Number:	+82 42 868 5018

Delivery Address: Korea Research Institute of Standards an Science (KRISS)
Division of Electromagnetic Metrology
P O Box 102
Yusong
Taejon 305-600
KOREA

M3		Contact Person:	Jinni Lee
	SPRING	E-mail:	jinni@spring.gov.sg
		Telephone Number:	+65 6773 9823
(Sl	INGAPORE)	Fax Number:	+65 6773 9804
		Delivery Address:	Standards, Productivity and Innovation Board (SPRING Singapore)
			1 Science Park Drive
			118211
			SINGAPORE

M4		Contact Person:	Jimmy C Hsu
	CMS	E-mail:	JimmyCHsu@itri.org.tw
		Telephone Number:	+886 3 574 3726
(CHI	NESE TAIPEI)	Fax Number:	+886 3 572 4952
		Delivery Address:	Center for Measurement Standards (CMS)
			Industrial Technology Reasearch Institute
			E200, BLDG 16
			321 Kuang Fu Road, Section 2
			Hsinchu 30042
			CHINESE TAIPEI

M7		Contact Person:	A K Saxena
NPL	E-mail:	aksaxena@mail.nplindia.ernet.in	
		Telephone Number:	+91 11 2574 26 10 or 11 or 12: Ext 2291, 2211, 2259
	(INDIA)	Fax Number:	+91 11 2572 6938 or 91 11 2572 6952
		Delivery Address:	National Physical Laboratory (NPL)
			Director
			National Physical Laboratory
			Dr K S Krishnan Rd
			New Dehli 110012
			INDIA

M8		Contact Person:	Mrs Ajchara Charoensook
	NIMT	E-mail:	ajchara@nimt.or.th
		Telephone Number:	+66 2 248 2181
(T	HAILAND)	Fax Number:	+66 2 248 4485
		Delivery Address:	National Institute of Metrology Thailand (NIMT)
			Department of Electrical Metrology
			Ministry of Science and Technology
			75/7 Rama VI Road
			Thungphayathai, Rajthevi
			Bangkok 10400
			THAILAND

M9	Contact Person:	Mr Louis Marais
NML, CSIR	E-mail:	ELMarais@csir.co.za
	Telephone Number:	+27 12 841 3013
(SOUTH AFRICA)	Fax Number:	+27 12 841 4458
	Delivery Address:	National Metrology Laboratory (NML), CSIR
		Build 5
		CSIR, National Metrology Laboratory
		Meiring Naude Rd
		Brummeria
		Pretoria
		0001
		SOUTH AFRICA

M11	Contact Person: Abdul Rashid Bin Zainal Abidin
SIRIM	E-mail: abd.rashid_z.abidin@sirim.my
	<i>Telephone Number:</i> +603 8778 1600
(MALAYSIA)	<i>Fax Number:</i> +603 8778 1616

Delivery Address: Standards & Industrial Research Institute Malaysia (SIRIM) Berhad	of
National Metrology Laboratory	
SIRIM Berhad	
PT Lot 4803	
Bandar Baru Salak Tinggi	
43900 Sepang	
Selangor Darul Ehsan	
MALAYSIA	

M12	Contact Person:	n: Mr Y K Yan			
SCL	E-mail:	ykyan@itc.gov.hk			
	Telephone Number:	+852 2829 4855			
(HONG KONG)	Fax Number:	<i>Fax Number:</i> +852 2824 1302			
	Delivery Address:	Standards and Calibration Laboratory (SCL)			
		36/F., Immigration Tower			
		7 Gloucester Road			
		Wanchai			
		HONG KONG			

M13		Contact Person:	erson: Mr R Hadi Sardjono		
K	KIM-LIPI <i>E-mail:</i> Sar_djono@yahoo.com		Sar_djono@yahoo.com		
		Telephone Number:	+62 21 756 0571		
(IN	DONESIA)	Fax Number:	+62 21 756 0568		
Deliv		Delivery Address:	Puslitbang KIM-LIPI		
			Electrical Metrology Laboratory		
			Kompleks PUSPIPTEK		
			Serpong (15314)		
			Tangerang, BANTEN		
			INDONESIA		

MSL	E-mail: L.Christian@irl.cri.nz			
	Telephone Number:	+64 4 931 3110		
(NEW ZEALAND)	Fax Number:	+64 4 931 3194		
	Delivery Address:	Measurement Standards Laboratory(MSL), IRL		
		Inwards Goods Store		
		Industrial Research Ltd		
		Gracefield Road		
		Lower Hutt		
		NEW ZEALAND		

M16	Contact Person:	Zhang Zhonghua
NIM	NIM <i>E-mail:</i> zzh@public.bta.net.cn	
	Telephone Number:	+86 10 6421 1631-3304
(CHINA)	(CHINA) Fax Number: +86 10 6421 8629	
	Delivery Address: National Institute of Metrology (NIM)	
		No. 18 BeiSanHuan Dong Lu
		Beijing 100013
		CHINA

M18	Contact Person:	Dr Yuri P Semenov
VNIIM	E-mail: Y.P.Semenov@vniim.ru	
	Telephone Number:	+7 801 323 9621
(RUSSIA FEDERATION)	$Har Number + 1 \times 12 \times 10$	
	Delivery Address: D I Mendeleyev Institute for Metrology (Gosstandart of Russia	
	ATTN: V Dyskin	
		19 Moskovsky pr.
		St. Petersburg
		198005
		RUSSIA FEDERATION

Appendix I: Schedule

Measure- ment Period	Laboratory	Economy	Receive Date	Ship Date	Report Date
M0	NMI	Australia		12 January, 2004	
M1	NMIJ	Japan	19 January, 2004	09 February, 2004	22 March, 2004
M2	KRISS	Korea	16 February, 2004	08 March, 2004	19 April, 2004
M3	PSB	Singapore	15 March, 2004	05 April, 2004	17 May, 2004
M4	CMS/ITRI	Chinese Taipei	12 April, 2004	03 May, 2004	14 June, 2004
M5	NMI	Australia	10 May, 2004	31 May, 2004	
M6	CPEM 2004	27 June - 2 July			
M7	NPL	India	05 July, 2004	26 July, 2004	06 September, 2004
M8	NIMT	Thailand	02 August, 2004	23 August, 2004	04 October, 2004
M9	NML, CSIR	South Africa	30 August, 2004	20 September, 2004	01 November, 2004
M10	NMI	Australia	27 September, 2004	18 October, 2004	
M11	SIRIM	Malaysia	25 October, 2004	15 November, 2004	27 December, 2004
M12	HKGSCL	Hong Kong	22 November, 2004	13 December, 2004	24 January, 2005
M13	LIPI	Indonesia	20 December, 2004	10 January, 2005	21 February, 2005
M14	IRL	New Zealand	17 January, 2005	07 February, 2005	21 March, 2005
M15	NMI	Australia	14 February, 2005	07 March, 2005	
M16	NIM	China	14 March, 2005	04 April, 2005	16 May, 2005
M17	Extra time for cus	tom clearance to VNIIM			
M18	VNIIM	Russian Federation	09 May, 2005	30 May, 2005	11 July, 2005
M19	NMI	Australia	06 June, 2005		

Additional Schedule:

Measure- ment Period	Laboratory	Economy	Receive Date	Ship Date	Report Date
M20	NMI	Australia		20 January 2006	
M21	KRISS	Korea	27 January 2006	17 February 2006	31 March 2006
M22	SPRING	Singapore	24 February 2006	17 March 2006	28 April 2006
M23	NMIJ/AIST	Japan	24 March 2006	14 April 2006	26 May 2006
M24	CMS/ITRI	Chinese Taipei	21 April 2006	12 May 2006	23 June 2006
M25	NMI	Australia	19 May 2006		