SIM.EM-S8 COMPARISON REPORT

Supplementary comparison of current ratio through instrument current transformers

March – 2020

Final Report

Daniel Slomovitz (UTE), Alejandro Santos (UTE), José Luis Casais (INTI)

Contents

1.	Introduction	2
2.	Organization	2
3.	Traveling standard	4
4.	Measuring instructions	7
5.	Comparison reference value	8
6.	Measurement reports	10
7.	Report of the comparison	10
8.	Conclusions	26
9.	References	26
	Annex A – Measurement values	27
	Annex B – Uncertainty budgets	38
	Annex C – Description of measurement equipment as reported by laboratories	46

1 Introduction

Under the auspices of the Committee Consultative of Electromagnetism, CCEM, the SIM Electromagnetic Working Group carried out a Supplementary comparison of current ratio using instrument current transformers. Usinas y Trasmisiones Eléctricas (UTE) was the pilot laboratory. The comparison measurements were conducted from 2013 to 2019.

The measurement parameters were ratio errors and phase displacements, at power frequencies and selected currents and ratios. The test points, current, burden and frequency, were chosen according to the measuring capabilities of the participants and the requirements of their services, taking into account their measurement standards and their measurement procedures.

1.1 Objective

The objective of this comparison was to compare the measurement capabilities of NMI's in the Inter-American Metrology System (SIM), in the field of calibration of instrument current transformers. This is in accordance with the CIPM Mutual Recognition Agreement (MRA) objectives, that NMI's must establish the degree of equivalence between their national measurement standards by performing regional comparisons.

As a future work, it is planned to link this round with the European round EUROMET.EM-S11, through the laboratory Physikalisch-Technische Bundesanstalt (PTB) which participated in both.

2 Organization

2.1 Coordinators and members of the review committee.

Alejandro Santos, UTE Daniel Slomovitz, UTE Jose Luis Casais, INTI

2.2 Participants

Participants are listed in Table 1. UTE acted as the pilot laboratory.

Organization	Country	Contact Person	E-mail	Address
UTE (PILOT)	Uruguay	Alejandro Santos	asantos@ute.com.uy	Usinas y Trasmisiones Eléctricas. Paraguay 2385, Montevideo 11800, Uruguay, tel. 598- 29242042
INMETRO	Brazil	Patrícia Cals de Oliveira Vitorio	pcoliveira@inmetro.gov.br	Instituto Nacional de Metrologia, Qualidade e Tecnologia - (Inmetro) Diretoria de Metrologia Científica - (Dimci) Divisão de Metrologia Elétrica – (Diele) Tel. (021) 2679- 9095/2679-3395
INM	Colombia	Alvaro Zipaquira Triana	azipaquira@inm.gov.co	Instituto Nacional De Metrología. Av, Cr 50 No. 26 – 55 Int. 2 CAN Bogotá - Colombia
CENAMEP	Panamá	Julio Gonzalez	jgonzalez@cenamep.org.pa	Centro Nacional de Metrología de Panamá (CENAMEP AIP). Panamá, Ciudad de Panamá, Clayton, Ciudad del Saber, Edificio 215. Apartado 0843-01353 República de Panamá.
CFE LAPEM	Mexico	Sergio Ochoa Márquez	sergio.ochoa@cfe.gob.mx	Laboratorio de Pruebas a Equipos y Materiales, LAPEM Edificio 5. Oficina de Metrología Av. Apaseo Ote. S/N Ciudad Industrial 36541 Irapuato,
INTI	Argentina	José Luis Casais	jcasais@inti.gob.ar	Instituto Nacional de Tecnología Industrial. Av. Gral. Paz 5445 B1650WAB San Martín Buenos Aires Argentina tel. 5411 4724 6200
РТВ	Germany	Enrico Mohns	Enrico.Mohns@ptb.de	Physikalisch-Technische Bundesanstalt - PTB Bundesallee 100 D-38116 Braunschweig Germany

Table 1. Participant laboratories of the intercomparison

2.3 Comparison schedule

The comparison started in 06-2013 with measurements at the pilot laboratory. They were repeated at the middle and end of the period to assure the stability of the traveling standard. Large delays, compared to the initial schedule, occurred in almost all countries, mainly due to custom procedures. Table 2 shows the original schedule and Table 3, the real timing for each laboratory.

	Receipt of	Departure of
Country	Traveling	Traveling
	Standard	Standard
Uruguay		June 1st, 2013
Brazil	November 11, 2013	December 20, 2013
Colombia	January 6, 2014	14 February 2014
Panama	March 3, 2014	April 11, 2014
Mexico	April 28, 2014	June 6, 2014
Argentina	June 20, 2014	August 1, 2014
	August 15, 2014	September 26,
Oruguay	August 15, 2014	2014
Germany	October 20, 2014	November 28, 2014
Uruguay	December 22, 2014	

Table 2. Original schedule of the comparison.

Table 3. Real timing of the comparison.

Country	Laboratory	Receipt of traveling	Sending of traveling
		standard	standard
Uruguay	UTE		June 2013
Brazil	INMETRO	November 2013	December 2013
Colombia	INM	June 2014	June 2014
Panama	CENAMEP	July 2014	September 2014
Mexico	CFE-LAPEM	October 2014	July 2016
Uruguay	UTE	July 2016	September 2017
Argentina	INTI	September 2017	July 2018
Germany	РТВ	August 2018	April 2019
Uruguay	UTE	May 2019	Round end

3 Traveling Standard

A two-stages current transformer: CONIMED type TI 1205, with the addition of an electronic compensator: LABUTE 201108, were used as traveling standard. Figure 1 shows the aspect of the CT and the compensator, and Table 4 the technical characteristics of the CT. The compensator allowed to connect the two secondary windings of the two-stage CT (A, S), to a single input that most comparing bridges have (see figure 2). Additionally, it reduces the CT error as well as the load influence (a variation of 1 VA affects the errors less than 0.1×10^{-6}).

Fig. 1. Traveling CT and electronic device.

Fig. 2. Connection of CT to the electronic device.

Table 4. Rated charac	teristics of the traveling standard without the electronic device.
Trademark	CONIMED
Model	TI 1205
Serial Number	11023
Frequency	50 Hz, 60 Hz
Primary current	5 A to 1200 A
Secondary current	5 A
Burden	5 VA
Accuracy	± 0.005% ±0.5 min
Dimensions	0.22 X 0.44 X 0.55 m (Wide x long x height)
Weight	85 kg

For 500-A and 1000-A ranges, fixed copper bars were installed in the traveling standard. They were connected in series or parallel using auxiliary bars as figures 3 and 4 shows.

Fig. 4. Connection for 1000-A to 5-A ratio

A heavy box was included to prevent damage during transportation (see figure 5). No significant accidents occurred.

Fig. 5. Transport box.

4. Measurement instructions

Laboratories were instructed on measurement procedure. The measurement methods are described in Annex C. The following additional details were taken into account.

4.1 Quantities to be measured

Current ratio and phase displacement were measured. The ranges of primary currents, I_n , were: 5 A, 10 A, 25 A, 50 A, 100 A, 250 A, 500 A and 1000 A. The rated output current was 5 A. For each range, the current testing points were: 5%, 20%, 100% and 120% of I_n .

4.2 Measurement conditions

The frequencies were 50 Hz, 60 Hz or both, according to the facilities of each laboratory. The burden was 6 VA with $\cos \varphi = 1$. The temperature should be in the range 20±5 °C.

4.3 Grounding

Primary terminal Pi of the traveling standard had to be close to ground potential, but not grounded. This was the terminal that was connected to the reference CT of the participating laboratories. Secondary terminal *s* was grounded. The electrostatic shield between primary and secondary windings was also grounded.

4.4 Measurement uncertainty

Error results and combined standard uncertainties, with a cover factor 95%, were provided to the pilot laboratory by each participant, according to the ISO Guide to the Expression of Uncertainty in Measurement.

4.5 Traceability

Table 5 shows, for each laboratory, its source of traceability, or if it is done to their own national standards.

Laboratory	Traceability to	Self traceability
UTE		Х
INMETRO	METAS	
INM	PTB	
CENAMEP	INTI	
CFE	PTB	
INTI		Х
PTB		Х

Table 5. Source of traceability

5. Comparison reference value

The Comparison Reference Values (CRV) was determined as the weighted mean of each set of results. Only laboratories that have traceability not correlated to other NMIs were used for this calculation (UTE, INTI, PTB). In case of UTE, the results of 2019 were used. The CRV was determined according to the sum of weighted means as

$$CRV = \sum_{i=1}^{n} w_i \varepsilon_i$$

where ε_i was the reported ratio error or phase displacement value for lab *i*, in μ A/A and μ rad, *n* was the number of laboratories with independently-derived measurement results, and the weight w_i was determined according to

$$w_i = \frac{\frac{1}{U_i^2}}{\sum_{i=1}^n \frac{1}{U_i^2}}$$

 U_i was the combined standard uncertainty of measurement ε_i , in μ A/A and μ rad.

The uncertainty of the CRV was calculated according to the following equation

$$U_{CRV}^2 = \sum_{i=1}^n w_i^2 U_i^2$$

All calculations were done using expanded uncertainties. Tables 6 and 7 show the calculated CRV.

Ratio	l/In	ε _{ref}	$U\epsilon_{ref}$	$\boldsymbol{\delta}_{ref}$	$U\delta_{ref}$	Ratio	l/In	ε _{ref}	$U\epsilon_{ref}$	$\boldsymbol{\delta}_{ref}$	$U\delta_{\text{ref}}$
	%	μA/A	μA/A	μrad	μrad		%	μA/A	μA/A	μrad	μrad
	120	0,6	2,2	0,1	2,2		120	1,3	2,2	2,0	2,2
5/5	100	0,7	2,2	-0,1	2,2	100/5	100	1,4	2,2	2,0	2,2
575	20	1,3	2,2	0,0	2,2	100/5	20	1,9	2,2	1,7	2,2
	5	2,7	2,2	0,5	2,2		5	3,7	2,2	2,3	2,2
	120	0,7	2,2	-0,6	2,2		120	0,0	2,2	2,1	2,2
10/5	100	0,8	2,2	-0,7	2,2	250/5	100	0,1	2,2	2,2	2,2
10/5	20	1,9	2,2	-0,2	2,2	230/3	20	0,7	2,2	2,2	2,2
	5	2,9	2,2	0,1	2,2		5	2,9	2,2	3,2	2,2
	120	1,9	2,2	0,8	2,2		120	2,7	2,2	-1,1	2,2
25/5	100	1,9	2,2	0,7	2,2	500/5	100	2,7	2,2	-0,9	2,2
23/3	20	2,6	2,2	1,0	2,2	200/2	20	2,4	2,2	0,4	2,2
	5	4,4	2,2	2,0	2,2		5	3,9	2,2	1,3	2,2
	120	2,2	2,2	-1,4	2,2		120	2,6	2,4	-1,0	2,4
	100	2,3	2,2	-1,4	2,2	1000/5	100	2,4	2,4	-0,9	2,4
50/5	20	2,8	2,2	-1,0	2,2	1000/5	20	1,8	2,4	0,6	2,4
	5	4,7	2,2	0,0	2,2		5	3,3	2,4	1,8	2,4

Table 6. Comparison reference values at 50 Hz.

Table 7. Comparison reference values at 60 Hz.

Ratio	l/In	ε _{ref}	Uε _{ref}	$\boldsymbol{\delta}_{ref}$	$U\delta_{\text{ref}}$	Ratio	l/In	E ref	Uε _{ref}	$\boldsymbol{\delta}_{ref}$	$U\delta_{\text{ref}}$
	%	μA/A	μA/A	μrad	μrad		%	μA/A	μA/A	μrad	μrad
	120	0,5	2,2	-0,1	2,2		120	1,3	2,2	1,9	2,2
5/5	100	0,6	2,2	-0,1	2,2	100/5	100	1,5	2,2	1,9	2,2
5/5	20	1,2	2,2	0,1	2,2	100/5	20	1,8	2,2	1,8	2,2
	5	2,6	2,2	1,0	2,2		5	3,2	2,2	2,3	2,2
	120	0,7	2,2	-0,6	2,2		120	0,2	2,2	2,1	2,2
10/5	100	0,8	2,2	-0,6	2,2	250/5	100	0,2	2,2	2,1	2,2
10/5	20	1,4	2,2	-0,4	2,2	230/3	20	0,6	2,2	2,1	2,2
	5	2,5	2,2	0,6	2,2		5	2,1	2,2	2,9	2,2
	120	1,8	2,2	1,1	2,2		120	2,5	2,2	-0,8	2,2
25/5	100	1,9	2,2	1,2	2,2	500/5	100	2,6	2,2	-0,7	2,2
23/3	20	2,0	2,2	1,4	2,2	50075	20	2,1	2,2	0,5	2,2
	5	3,8	2,2	2,6	2,2		5	3,3	2,2	1,7	2,2
	120	1,9	2,2	-1,0	2,2		120	2,5	2,4	-0,9	2,4
50/5	100	1,9	2,2	-1,0	2,2	1000/5	100	2,1	2,4	-0,8	2,4
50/5	20	2,3	2,2	-0,6	2,2	1000/3	20	1,1	2,4	0,5	2,4
	5	3,8	2,2	0,6	2,2		5	2,7	2,4	1,7	2,4

6. Measurement reports.

Measurement values and uncertainty budgets, as reported by each laboratory, are presented in Annexes A and B respectively.

7. Report of the comparison.

7.1 Drift. No significant variation was observed in the traveling CT during all the comparison period (six years). So, no correction was made due to this factor. Selected curves are shown below.

Current error drift

Hz, Current error drift

Fig. 7. Ratio 5/5, I/In = 5%, Frequency 50 Hz, Phase displacement drift

7.2 All results of the participant laboratories are shown in Tables 8 to 16. These show the differences between the informed values and the CRV. All data are expressed in μ A/A and μ rad, although some of them were informed in other units.

				Tak	JE 0. V	Juneni				Jiacenne		nations			e valu	es al 50	112.				
			UTE (2013)			UTE (2016)			IN	ITI			Р.	ТВ			UTE (2019)	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδ _i
	%	μA/A	μA/A	μrad	μrad	μA/A	μA/A	μrad	μrad	μA/A	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad
	120	0,6	4,5	-0,4	4,5	-0,1	4,5	-0,6	4,5	-1,6	15,0	2,9	15,0	0,0	3,0	0,0	3,0	0,1	3,2	-0,2	3,2
5/5	100	0,6	4,5	-0,2	4,5	0,0	4,5	-0,5	4,5	-1,7	15,0	3,1	15,0	0,0	3,0	0,0	3,0	0,0	3,2	-0,1	3,2
5/5	20	0,5	4,5	-0,5	4,5	-0,1	4,5	-0,8	4,5	-0,3	15,0	3,0	15,0	0,0	3,0	0,1	3,0	0,0	3,2	-0,2	3,2
	5	0,0	4,5	-0,8	4,5	-0,3	4,5	-1,1	4,5	-0,7	15,0	3,5	15,0	0,1	3,0	0,3	3,0	-0,1	3,2	-0,4	3,2
	120	0,9	4,5	-0,3	4,5	-0,1	4,5	-1,0	4,5	-1,7	15,0	-2,4	15,0	0,1	3,0	0,2	3,0	0,0	3,2	-0,1	3,2
10/5	100	0,9	4,5	-0,2	4,5	-0,1	4,5	-0,8	4,5	-1,8	15,0	-2,3	15,0	0,3	3,0	0,1	3,0	-0,2	3,2	0,0	3,2
10,5	20	0,2	4,5	-0,7	4,5	-0,6	4,5	-2,0	4,5	-0,9	15,0	-1,8	15,0	-0,4	3,0	0,3	3,0	0,6	3,4	-0,3	3,2
	5	0,3	4,5	-0,8	4,5	-0,6	4,5	-4,5	4,5	-0,9	15,0	-0,1	15,0	0,0	3,0	0,4	3,0	0,0	3,2	-0,4	3,2
	120	-0,1	4,5	0,4	4,5	0,5	4,5	-0,5	4,5	-2,9	15,0	-3,8	15,0	-0,2	3,0	0,0	3,0	0,3	3,2	0,2	3,2
25/5	100	0,0	4,5	0,4	4,5	0,5	4,5	-0,4	4,5	-2,9	15,0	-3,7	15,0	-0,1	3,0	-0,1	3,0	0,3	3,2	0,3	3,2
2373	20	-0,2	4,5	0,2	4,5	0,2	4,5	-0,2	4,5	-2,6	15,0	-3,0	15,0	-0,2	3,0	-0,1	3,0	0,4	3,2	0,2	3,2
	5	-0,4	4,5	-0,3	4,5	0,7	4,5	-0,8	4,5	-2,4	15,0	-2,0	15,0	-0,4	3,0	0,1	3,0	0,6	3,2	0,0	3,2
	120	0,6	6,4	0,4	6,4	0,8	6,4	-0,7	6,4	-4,2	15,0	-0,6	15,0	-0,1	3,0	-0,1	3,0	0,3	3,2	0,1	3,2
50/5	100	0,5	6,4	0,4	6,4	0,7	6,4	-0,7	6,4	-5,3	15,0	-0,6	15,0	-0,2	3,0	-0,1	3,0	0,4	3,2	0,1	3,2
50/5	20	0,5	6,4	0,2	6,4	0,5	6,4	-0,5	6,4	-3,8	15,0	-1,0	15,0	-0,2	3,0	0,0	3,0	0,4	3,2	0,1	3,2
	5	0,6	6,4	0,1	6,4	0,5	6,4	0,2	6,4	-4,7	15,0	0,0	15,0	-0,1	3,0	0,0	3,0	0,4	3,2	0,0	3,2

Table 8. Current error and phase displacement deviations from reference values at 50 Hz.

			UTE (2013)			UTE (2016)			IN	TI			P.	ГВ			UTE (2019)	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μA/A	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad
	120	1,1	7,8	1,5	7,8	0,4	7,8	-1,1	7,8	-4,3	15,0	4,0	15,0	0,3	3,0	-0,2	3,0	-0,2	3,2	0,1	3,2
100/5	100	1,0	7,8	1,5	7,8	0,3	7,8	-1,1	7,8	-4,4	15,0	6,0	15,0	0,3	3,0	-0,2	3,0	-0,2	3,2	0,0	3,2
100/3	20	0,9	7,8	0,6	7,8	0,5	7,8	-1,0	7,8	-2,9	15,0	11,3	15,0	0,2	3,0	-0,3	3,0	-0,1	3,2	-0,1	3,2
	5	0,5	7,8	0,2	7,8	0,7	7,8	-1,1	7,8	-1,7	15,0	10,7	15,0	-0,1	3,0	-0,2	3,0	0,2	3,2	-0,3	3,2
	120	2,1	9,0	2,3	9,0	3,2	9,0	0,5	9,0	-6,0	15,0	8,9	20,0	0,4	3,0	0,0	3,0	-0,2	3,2	-0,2	3,2
250/5	100	2,0	9,0	2,3	9,0	3,1	9,0	0,5	9,0	-6,1	15,0	7,8	20,0	0,3	3,0	0,0	3,0	-0,1	3,2	-0,2	3,2
230/3	20	1,2	9,0	1,5	9,0	2,6	9,0	-0,2	9,0	-5,7	15,0	6,8	20,0	0,3	3,0	0,0	3,0	-0,1	3,2	-0,2	3,2
	5	1,0	9,1	0,9	9,0	2,8	9,1	0,7	9,0	-5,9	15,0	6,8	20,0	0,0	3,0	0,1	3,0	0,2	3,2	-0,3	3,2
	120	0,5	10,1	4,7	10,1	0,2	10,1	1,2	10,1	-1,7	15,0	0,1	20,0	0,1	3,0	0,0	3,0	-0,1	3,2	0,0	3,2
500/5	100	0,5	10,1	4,6	10,1	0,2	10,1	1,0	10,1	-1,7	15,0	-0,1	20,0	0,1	3,0	0,1	3,0	0,0	3,2	-0,2	3,2
500/5	20	1,3	10,1	3,3	10,1	0,7	10,1	-0,3	10,1	-1,4	15,0	-0,4	20,0	-0,2	3,0	0,1	3,0	0,3	3,2	-0,1	3,2
	5	1,1	10,1	3,0	10,1	1,3	10,1	-0,6	10,1	-1,9	15,0	0,7	20,0	-0,2	3,0	0,0	3,0	0,3	3,2	-0,1	3,2
	120	2,4	11,1	3,8	11,1	2,8	11,1	0,9	11,1	-5,6	15,0	6,0	20,0	0,4	3,0	-0,3	3,0	-0,3	3,9	0,3	3,9
1000/5	100	2,6	11,1	3,7	11,1	3,1	11,1	0,9	11,1	-6,4	15,0	5,9	20,0	0,2	3,0	-0,3	3,0	0,0	3,9	0,3	3,9
1000/3	20	2,7	11,1	2,7	11,1	2,4	11,1	0,5	11,1	-5,8	15,0	6,4	20,0	-0,5	3,0	-0,5	3,0	1,2	3,9	0,6	3,9
	5	1,8	11,1	2,0	11,1	1,5	11,1	-0,2	11,1	-6,3	15,0	5,2	20,0	-0,3	3,0	-0,6	3,0	1,0	4,0	0,8	3,9

			UTE (2013)			INM	ETRO			IN	М			CEN	AMEP			CFE L	APEM	
Rat	io I/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	0,5	4,5	-0,4	4,5	-4,5	45,0	-7,9	47,0	6,5	96,0	-24,9	163,2	19,2	74,5	14,3	112,9	-180,5	230,0	407,3	349,1
F /	. 100	0,5	4,5	-0,4	4,5	-3,6	45,0	-10,9	47,0	5,4	96,0	-34,9	163,2	19,3	74,5	14,3	112,9	-180,6	230,0	407,3	349,1
5/	20	0,3	4,5	-0,7	4,5	-8,2	45,0	-7,1	47,0	-41,2	96,0	-176,1	165,9	19,9	74,5	10,8	112,9	-181,2	230,0	378,0	349,1
	5	-0,3	4,5	-1,4	4,5	-16,6	64,0	-7,0	70,0	-128,6	107,8	-296,0	175,7	21,6	74,5	0,9	112,9	-172,6	230,0	377,2	349,1

Table 9. Current error and phase displacement deviations from reference values at 60 Hz for ratio 5/5.

			UTE (2016)			IN	ΙΤΙ			P.	ТВ		UTE (2019)					
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi		
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad		
	120	-0,2	4,5	-0,6	4,5	-2,5	15,0	3,1	15,0	0,0	3,0	0,0	3,0	0,1	3,2	-0,1	3,2		
E /E	100	-0,1	4,5	-0,7	4,5	-2,6	15,0	3,1	15,0	0,1	3,0	0,0	3,0	0,0	3,2	-0,1	3,2		
5/5	20	-0,3	4,5	-1,0	4,5	-2,2	15,0	3,9	15,0	0,0	3,0	-0,1	3,0	0,1	3,2	0,0	3,2		
	5	-0,7	4,5	-1,8	4,5	-2,6	15,0	3,0	15,0	0,0	3,0	-0,5	3,0	0,1	3,2	0,4	3,2		

			UTE (2013)			INM	etro			IN	M			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	0,8	4,5	-0,4	4,5	-4,7	45,0	-9,4	47,0	9,3	96,0	-65,4	163,1	18,6	74,5	14,1	112,9	-210,7	230,0	466,0	349,1
10/5	100	0,8	4,5	-0,4	4,5	-3,8	45,0	-12,4	47,0	8,2	96,0	-84,4	163,2	18,7	74,5	14,2	112,9	-200,8	230,0	466,1	349,1
10/5	20	0,5	4,5	-0,6	4,5	-8,4	45,0	-7,6	47,0	-24,4	96,0	-184,6	163,2	18,9	74,5	12,0	112,9	-201,4	230,0	465,8	349,1
	5	0,2	4,5	-1,3	4,5	-16,5	64,0	-8,6	70,0	-49,5	107,7	-255,6	175,7	19,6	74,5	7,6	112,9	-182,5	230,0	406,7	349,1

Table 10. Current error and phase displacement deviations from reference values at 60 Hz for ratio 10/5.

			UTE (2016)			IN	ITI			P.	тв			UTE	(2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad
	120	-0,5	4,5	-0,7	4,5	-2,7	15,0	-1,4	15,0	0,0	3,0	0,1	3,0	0,1	3,2	0,0	3,2
10/5	100	-0,4	4,5	-0,6	4,5	-2,8	15,0	-1,4	15,0	0,0	3,0	0,0	3,0	0,2	3,2	0,0	3,2
10/5	20	-0,5	4,5	-1,6	4,5	-2,4	15,0	-0,6	15,0	-0,1	3,0	0,1	3,0	0,2	3,2	0,0	3,2
	5	-0,4	4,5	-4,3	4,5	-2,5	15,0	-0,6	15,0	0,0	3,0	-0,2	3,0	0,2	3,2	0,2	3,2

			UTE (2013)			INM	ETRO			IN	M			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μA/A	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	-0,3	4,5	0,0	4,5	-6,8	45,0	-7,1	47,0	-19,8	96,0	-17,1	163,1	19,3	74,5	13,4	112,9	-191,8	230,0	435,3	349,1
25/5	100	-0,3	4,5	-0,1	4,5	-5,9	45,0	-9,2	47,0	-20,9	96,0	-8,2	162,7	19,4	74,5	13,4	112,9	-191,9	230,0	435,2	349,1
25/5	20	0,0	4,5	-0,2	4,5	-4,0	45,0	-1,4	47,0	-56,0	96,0	-127,4	163,1	19,1	74,5	12,0	112,9	-202,0	230,0	464,0	349,1
	5	-0,4	4,5	-0,8	4,5	-6,8	64,0	0,4	70,0	-100,8	107,8	-223,6	173,7	17,2	74,5	10,1	112,9	-213,8	230,0	491,9	349,1

Table 11. Current error and phase displacement deviations from reference values at 60 Hz for ratio 25/5.

			UTE (2016)			IN	ΙΤΙ			P.	тв			UTE	2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	µrad	μΑ/Α	μA/A	μrad	μrad
	120	0,3	4,5	-0,8	4,5	-3,8	15,0	-2,1	15,0	-0,1	3,0	-0,4	3,0	0,2	3,2	0,5	3,2
<u>эг /г</u>	100	0,2	4,5	-0,7	4,5	-3,9	15,0	-2,2	15,0	-0,1	3,0	-0,5	3,0	0,2	3,2	0,6	3,2
25/5	20	0,4	4,5	-0,6	4,5	-4,0	15,0	-1,4	15,0	0,1	3,0	-0,5	3,0	0,0	3,2	0,6	3,2
	5	0,5	4,5	-1,0	4,5	-3,8	15,0	-1,6	15,0	-0,3	3,0	-0,8	3,0	0,6	3,2	0,9	3,2

			UTE (2013)			INM	ETRO	•		IN	M			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	0,3	6,4	0,6	6,4	-0,9	45,0	-12,0	47,0	0,1	96,0	-46,0	162,6	24,1	74,5	12,6	112,9	-201,9	230,0	466,4	349,1
	100	0,3	6,4	0,5	6,4	1,1	45,0	-14,0	47,0	-1,9	96,0	-63,0	163,1	24,2	74,5	12,7	112,9	-201,9	230,0	437,3	349,1
50/5	20	0,4	6,4	0,4	6,4	-0,3	45,0	-7,4	47,0	-33,3	96,0	-188,4	161,0	23,7	74,5	11,1	112,9	-202,3	230,0	436,9	349,1
	5	0,5	6,4	-0,1	6,4	-1,8	64,0	-11,6	70,0	-100,8	107,7	-323,6	175,2	22,0	74,5	10,0	112,9	-193,8	230,0	435,7	349,1

Table 12. Current error and phase displacement deviations from reference values at 60 Hz for ratio 50/5.

			UTE (2016)			IN	ΙΤΙ			P.	тв			UTE	(2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	µrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad
	120	0,6	6,4	-0,9	6,4	-4,9	15,0	-1,0	15,0	0,1	3,0	-0,3	3,0	0,1	3,2	0,4	3,2
	100	0,5	6,4	-0,9	6,4	-4,9	15,0	-1,0	15,0	0,1	3,0	-0,2	3,0	0,1	3,2	0,3	3,2
50/5	20	0,3	6,4	-0,5	6,4	-5,3	15,0	-0,4	15,0	0,1	3,0	-0,3	3,0	0,1	3,2	0,4	3,2
	5	0,2	6,4	-0,6	6,4	-4,8	15,0	-0,6	15,0	0,0	3,0	-0,5	3,0	0,2	3,2	0,6	3,2

-																					
			UTE (2013)			INM	ETRO			IN	IM			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδ _i	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	0,7	7,8	1,1	7,8	-0,3	45,0	-6,9	47,0	-42,3	96,0	-8,9	162,7	26,4	74,5	13,5	112,9	-181,3	230,0	347,1	349,1
100/5	100	0,5	7,8	1,1	7,8	0,5	45,0	-8,9	47,0	-40,5	96,0	-26,9	163,2	26,6	74,5	13,5	112,9	-181,5	230,0	318,1	349,1
100/5	20	0,6	7,8	0,4	7,8	1,2	45,0	-3,8	47,0	-66,8	96,0	-98,8	162,7	26,6	74,5	11,4	112,9	-171,8	230,0	318,2	349,1
	5	0,1	7,8	0,2	7,8	0,8	64,0	-5,3	70,0	-103,2	107,8	-186,3	175,6	24,5	74,5	10,8	112,9	-173,2	230,0	463,1	349,1

Table 13. Current error and phase displacement deviations from reference values at 60 Hz for ratio 100/5.

			UTE (2016)			IN	ті			P	тв			UTE (2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	µrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	µrad	μΑ/Α	μA/A	μrad	μrad
	120	0,0	7,8	-1,0	7,8	-5 <i>,</i> 3	15,0	7,1	15,0	0,2	3,0	-0,3	3,0	0,0	3,2	0,1	3,2
100/5	100	-0,1	7,8	-1,0	7,8	-5 <i>,</i> 5	15,0	10,1	15,0	0,2	3,0	-0,4	3,0	0,0	3,2	0,0	3,2
100/5	20	0,3	7,8	-1,1	7,8	-4,8	15,0	12,2	15,0	0,2	3,0	-0,5	3,0	0,0	3,2	0,0	3,2
	5	0,2	7,8	-2,0	7,8	-4,2	15,0	10,7	15,0	0,0	3,0	-0,5	3,0	0,2	3,2	0,1	3,2

			UTE (2013)			INM	etro			IN	IM			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	1,3	9,0	2,4	9,0	-5,2	45,0	-10,1	47,0	-40,2	96,0	-14,1	162,0	24,0	74,5	9,8	112,9	-20,2	230,0	-2,1	349,1
250/5	100	1,3	9,0	2,4	9,0	-4,2	45,0	-11,1	47,0	-41,2	96,0	-28,1	163,1	24,2	74,5	9,9	112,9	-70,2	230,0	114,3	349,1
250/5	20	0,7	9,0	1,8	9,0	-2,6	45,0	-7,1	47,0	-63,6	96,0	-74,1	162,0	23,9	74,5	8,7	112,9	-140,6	230,0	259,7	349,1
	5	0,8	9,0	1,4	9,0	-2,1	64,0	-11,9	70,0	-91,1	107,8	-98,9	175,6	21,2	74,5	9,1	112,9	-222,1	230,0	346,2	349,1

Table 14. Current error and phase displacement deviations from reference values at 60 Hz for ratio 250/5.

	I/In εi - εref Uεi δi - δref Uξi % μA/A μA/A μrad μrad 120 2,5 9,0 0,3 9,0 100 2,4 9,0 0,3 9,0 20 2,2 9,0 -0,2 9,0						IN	TI			P.	тв			UTE (2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	µrad	μΑ/Α	μA/A	μrad	μrad
	120	2,5	9,0	0,3	9,0	-6,2	15,0	10,9	20,0	0,3	3,0	0,0	3,0	-0,1	3,2	-0,3	3,2
250/5	100	2,4	9,0	0,3	9,0	-5,2	15,0	11,9	20,0	0,2	3,0	-0,1	3,0	0,0	3,2	-0,2	3,2
250/5	20	2,2	9,0	-0,2	9,0	-5,6	15,0	10,9	20,0	0,3	3,0	0,0	3,0	-0,1	3,2	-0,2	3,2
	5	2,7	9,0	1,0	9,0	-5,1	15,0	10,1	20,0	0,4	3,0	0,0	3,0	-0,2	3,2	-0,3	3,2

			UTE (2013)			INM	ETRO			IN	М			CEN	AMEP			CFE L	APEM	
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	-0,2	10,1	4,5	10,1	0,5	45,0	-0,2	47,0	-35 <i>,</i> 5	96,0	-1,2	162,0	21,1	80,1	15,9	116,7	-12,5	230,0	-57 <i>,</i> 4	349,1
F 00 /F	100	-0,3	10,1	4,4	10,1	1,4	45,0	-4,3	47,0	-44,6	96,0	-8,3	161,0	21,3	80,1	15,6	116,7	-2,6	230,0	-57,5	349,1
500/5	20	0,8	10,1	3,2	10,1	1,9	45,0	-1,5	47,0	-66,1	96,0	-38,5	162,0	21,0	80,1	12,1	116,7	7,9	230,0	-87,7	349,1
	5	1,1	10,1	2,5	10,1	0,7	64,0	-2,7	70,0	-92,3	107,8	75,3	175,2	16,4	80,1	11,3	116,7	26,7	230,0	-118,0	349,1

Table 15. Current error and phase displacement deviations from reference values at 60 Hz for ratio 500/5.

		I/In ε _i - ε _{ref} Uε _i δ _i - δ _{ref} U % μA/A μA/A μrad μ 120 -0,4 10,1 1,4 1 100 -0,5 10,1 1,3 1 20 0,2 10,1 0,1 1					IN	ті			P.	ТВ			UTE (2019)	
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	µrad	μΑ/Α	μA/A	μrad	µrad	μΑ/Α	μΑ/Α	μrad	µrad	μΑ/Α	μA/A	μrad	μrad
	120	-0,4	10,1	1,4	10,1	-1,5	15,0	-2,2	20,0	0,0	3,0	0,0	3,0	0,1	3,2	0,0	3,2
F00/F	100	-0,5	10,1	1,3	10,1	-1,6	15,0	-2,3	20,0	-0,1	3,0	0,1	3,0	0,2	3,2	0,0	3,2
500/5	20	0,2	10,1	0,1	10,1	-2,1	15,0	-3,5	20,0	-0,1	3,0	-0,1	3,0	0,2	3,2	0,1	3,2
	5	1,0	10,1	-0,8	10,1	-1,3	15,0	-2,7	20,0	-0,2	3,0	-0,2	3,0	0,3	3,2	0,3	3,2

			UTE (2013)		INMETRO				INM			CENAMEP				CFE LAPEM				
Ratio	l/In	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uε _i	δi - δ _{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uε _i	δ_i - δ_{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad
	120	2,2	11,1	3,9	11,1	-3,5	45,0	-6,1	47,0	-36,5	96,0	-3,1	163,1	20,5	80,1	14,8	116,7	-12,5	230,0	-28,2	349,1
1000/5	100	2,5	11,1	3,8	11,1	-1,1	45,0	-8,2	47,0	-43,1	96,0	-6,2	162,7	21,1	80,1	14,7	116,7	-12,1	230,0	-28,2	349,1
1000/5	20	3,3	11,1	3,6	11,1	-0,1	45,0	-1,5	47,0	-69,1	96,0	-36,5	163,1	21,8	80,1	11,9	116,7	-11,1	230,0	-58 <i>,</i> 7	349,1
	5	3,5	11,1	4,0	11,1	-1,7	64,0	-4,7	70,0	-100,7	107,7	80,3	174,6	16,9	80,1	11,4	116,7	-22,7	230,0	-59 <i>,</i> 8	349,1

Table 16. Current error and phase displacement deviations from reference values at 60 Hz for ratio 1000/5.

	UTE (2016)				INTI				РТВ				UTE (2019)				
Ratio	l/In	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δ_i - δ_{ref}	Uδi	Ei - Eref	Uεi	δi - δ _{ref}	Uδi
	%	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μA/A	μrad	μrad	μΑ/Α	μΑ/Α	μrad	μrad	μΑ/Α	μA/A	μrad	μrad
	120	2,1	11,1	1,4	11,1	-6 <i>,</i> 5	15,0	3,9	20,0	0,4	3,0	-0,2	3,0	-0,3	3,9	0,1	3,9
1000/5	100	2,4	11,1	1,3	11,1	-6,1	15,0	3,8	20,0	0,2	3,0	-0,3	3,0	0,1	3,9	0,3	3,9
1000/5	20	2,5	11,1	0,9	11,1	-5,1	15,0	4,5	20,0	-0,1	3,0	-0,4	3,0	0,6	3,9	0,5	3,9
	5	1,9	11,1	0,3	11,1	-5,7	15,0	2,3	20,0	-0,1	3,0	-0,6	3,0	0,5	3,9	0,9	3,9

7.3 The following figures show selected results. The dotted line indicates the uncertainty of the CRV.

Fig. 10. Ratio 5/5, I/In = 5%, Frequency 50 Hz, Current error comparison results

Fig. 12. Ratio 5/5, I/In = 100%, Frequency 50 Hz, Current error comparison results

Fig. 11. Ratio 5/5, I/In = 5%, Frequency 50 Hz, Phase displacement comparison results

Fig. 13. Ratio 5/5, I/In = 100%, Frequency 50 Hz, Phase displacement comparison results

Fig. 15. Ratio 1000/5, I/In = 100%, Frequency 50 Hz, Phase displacement comparison . results

Fig. 16. Ratio 50/5, I/In = 20%, Frequency 60 Hz, Current error comparison results

Fig. 17. Ratio 50/5, I/In = 20%, Frequency 60 Hz, Phase displacement comparison results

Fig. 18. Ratio 50/5, I/In = 100%, Frequency 60 Hz, Current error comparison results

Fig. 19. Ratio 50/5, I/In = 100%, Frequency 60 Hz, Phase displacement comparison results

Fig. 20. Ratio 1000/5, I/In = 100%, Frequency 60 Hz, Current error comparison results

Fig. 21. Ratio 1000/5, I/In = 100%, Frequency 60 Hz, Phase displacement comparison results

8. Conclusions

A useful intercomparison of current ratio using CTs, among several laboratories, has been conducted. The ratio ranges were from 5:5 to 1000:5, at 50 Hz and 60 Hz. As methods and standards were very different for each participant, declared uncertainty values showed large dispersion. The range covers from 3 μ A/A to 230 μ A/A for ratio error, and from 3 μ rad to 249 μ rad for phase displacement.

As traveling standard, an electronically compensated CT was used. It had low dependence on ambient parameters and very stable behavior. Both characteristics were very important because of the long time required by the comparison, due to hard difficulties in customs procedures.

Results provided by the laboratories indicate very good agreement, with few exceptions. In total, there were 896 comparison values and 97% of them were compatible with the CRV. Some laboratories presented a certain amount of outlying values that suggests their measurement methods or uncertainty budget should be reevaluated. Other laboratories provided very accurate error values considering their declared uncertainties. The results of this comparison provide them the opportunity to reduce their uncertainty declarations.

The two laboratories with the lowest uncertainties showed a very good agreement. The degree of equivalences are in the order of 0.5 μ A/A - μ rad, with an uncertainty of 4 μ A/A - μ rad.

References

[1] D. Slomovitz, L. Trigo, A. Santos, G. Aristoy, "A Current Comparator for power-frequency applications," presented at the X-SEMETRO conference, Buenos Aires, Argentina, 2013.

[2] A. Santos, G. Aristoy, D. Slomovitz, "A step-up calibration for standard current transformers," 2012-Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), Montevideo, Uruguay, 2012.

[3] D. Slomovitz, A. Santos, "Self-Calibrating High Precision Current Transformer with Stray Capacitances Control," unpublished paper.

[4] E. Mohns, J. Meisner, G. Roeissle, and M. Seckelmann: "A Wideband Current Transformer Bridge," IEEE Trans. Instrum. Meas., vol. 63, No. 10, pp. 2322-2329, October 2014.

[5] E. Mohns, G. Roeissle, S. Fricke and F. Pauling: "An AC Current Transformer Standard Measuring System for Power Frequencies," IEEE Trans. Instrum. Meas.,vol. 66, no. 6, pp. 1433-1440, June 2017, DOI: 10.1109/TIM.2017.2648918.

[6] E. Mohns, J. Chunyang, H. Badura and P. Raether: "A Fundamental Step-Up Method for Standard Voltage Transformers Based on an Active Capacitive High-Voltage Divider," IEEE Trans. Instrum. Meas. (Early Acces), 2017, DOI: 10.1109/TIM.2018.2880055.

Annex A - Measurement values

			Table 17. UTE												
				UTE	2013			UTE	2016			UTE	2019		
Freq.	Ratio	% In	εί	U(ɛi)	δi	U(δi)	εί	U(ɛi)	δi	U(δi)	εί	U(ɛi)	δi	U(δi)	
Hz			μA/A	μA/A	in µrad	μrad	μA/A	μA/A	in µrad	μrad	μA/A	μA/A	in µrad	μrad	
50		120	1,2	4,5	-0,3	4,5	0,5	4,5	-0,5	4,5	0,7	3,2	-0,1	3,2	
50	5/5	100	1,3	4,5	-0,3	4,5	0,7	4,5	-0,6	4,5	0,7	3,2	-0,2	3,2	
50	575	20	1,7	4,5	-0,5	4,5	1,2	4,5	-0,7	4,5	1,3	3,2	-0,2	3,2	
50		5	2,7	4,5	-0,3	4,5	2,4	4,5	-0,5	4,5	2,6	3,2	0,1	3,2	
50		120	1,6	4,5	-0,9	4,5	0,6	4,5	-1,6	4,5	0,7	3,2	-0,8	3,2	
50	10/5	100	1,8	4,5	-0,9	4,5	0,8	4,5	-1,5	4,5	0,6	3,2	-0,7	3,2	
50	10/5	20	2,1	4,5	-1,0	4,5	1,3	4,5	-2,2	4,5	2,5	3,4	-0,6	3,2	
50		5	3,2	4,5	-0,7	4,5	2,3	4,5	-4,4	4,5	2,9	3,2	-0,3	3,2	
50		120	1,8	4,5	1,2	4,5	2,4	4,5	0,3	4,5	2,2	3,2	1,1	3,2	
50	25/5	100	1,9	4,5	1,1	4,5	2,5	4,5	0,3	4,5	2,2	3,2	1,0	3,2	
50	2373	20	2,4	4,5	1,1	4,5	2,8	4,5	0,8	4,5	3,0	3,2	1,2	3,2	
50		5	4,0	4,5	1,7	4,5	5,1	4,5	1,3	4,5	5 <i>,</i> 0	3,2	2,1	3,2	
50		120	2,8	6,4	-1,0	6,4	3,0	6,4	-2,1	6,4	2,5	3,2	-1,3	3,2	
50	50/5	100	2,8	6,4	-1,0	6,4	3,0	6,4	-2,1	6,4	2,7	3,2	-1,3	3,2	
50	50/5	20	3,3	6,4	-0,7	6,4	3,3	6,4	-1,5	6,4	3,3	3,2	-0,9	3,2	
50		5	5,3	6,4	0,1	6,4	5,2	6,4	0,3	6,4	5,1	3,2	0,1	3,2	
50		120	2,3	7,8	3,5	7,8	1,7	7,8	1,0	7,8	1,1	3,2	2,1	3,2	
50	100/5	100	2,3	7,8	3,5	7,8	1,7	7,8	1,0	7,8	1,2	3,2	2,0	3,2	
50	100/5	20	2,8	7,8	2,4	7,8	2,4	7,8	0,7	7,8	1,8	3,2	1,6	3,2	
50		5	4,2	7,8	2,5	7,8	4,4	7,8	1,2	7,8	3,9	3,2	2,0	3,2	
50		120	2,1	9,0	4,5	9,0	3,1	9,0	2,7	9,0	-0,2	3,2	2,0	3,2	
50	250/5	100	2,1	9,0	4,5	9,0	3,1	9,0	2,7	9,0	-0,1	3,2	2,0	3,2	
50	23073	20	1,9	9,0	3,7	9,0	3,3	9,0	2,0	9,0	0,7	3,2	2,0	3,2	
50		5	3,9	9,1	4,1	9,0	5,7	9,1	3,9	9,0	3,1	3,2	2,9	3,2	
50		120	3,2	10,1	3,6	10,1	2,9	10,1	0,1	10,1	2,6	3,2	-1,1	3,2	
50	500/5	100	3,2	10,1	3,6	10,1	2,9	10,1	0,1	10,1	2,7	3,2	-1,1	3,2	
50	500/5	20	3,7	10,1	3,7	10,1	3,1	10,1	0,1	10,1	2,6	3,2	0,3	3,2	
50		5	5,1	10,1	4,2	10,1	5,2	10,1	0,6	10,1	4,3	3,2	1,2	3,2	
50		120	5,0	11,1	2,8	11,1	5,4	11,1	0,0	11,1	2,3	3,9	-0,7	3,9	
50	1000/5	100	5,0	11,1	2,8	11,1	5,4	11,1	0,0	11,1	2,4	3,9	-0,6	3,9	
50	1000/5	20	4,5	11,1	3,3	11,1	4,2	11,1	1,1	11,1	2,9	3,9	1,2	3,9	
50		5	5,2	11,1	3,8	11,1	4,8	11,1	1,5	11,1	4,4	4,0	2,6	3,9	

				UTE	2013		UTE 2016				UTE 2019			
Freq.	Ratio	% In	εί	U(ɛi)	δi	U(δi)	εί	U(ɛi)	δi	U(δi)	εί	U(ɛi)	δi	U(δi)
Hz			μA/A	μA/A	in µrad	μrad	μA/A	μA/A	in µrad	μrad	μA/A	μA/A	in µrad	μrad
60		120	1,0	4,5	-0,5	4,5	0,3	4,5	-0,6	4,5	0,6	3,2	-0,1	3,2
60	5/5	100	1,1	4,5	-0 <i>,</i> 5	4,5	0,5	4,5	-0,7	4,5	0,7	3,2	-0,1	3,2
60	575	20	1,4	4,5	-0,6	4,5	0,9	4,5	-0 <i>,</i> 8	4,5	1,2	3,2	0,1	3,2
60		5	2,2	4,5	-0,4	4,5	1,9	4,5	-0,9	4,5	2,6	3,2	1,3	3,2
60		120	1,5	4,5	-0,9	4,5	0,2	4,5	-1,3	4,5	0,8	3,2	-0,6	3,2
60	10/5	100	1,6	4,5	-1,0	4,5	0,4	4,5	-1,3	4,5	1,0	3,2	-0,6	3,2
60	10/5	20	1,9	4,5	-1,0	4,5	0,9	4,5	-1,9	4,5	1,6	3,2	-0,4	3,2
60		5	2,7	4,5	-0,7	4,5	2,1	4,5	-3,8	4,5	2,7	3,2	0,8	3,2
60		120	1,5	4,5	1,1	4,5	2,1	4,5	0,3	4,5	2,0	3,2	1,6	3,2
60	25/5	100	1,6	4,5	1,1	4,5	2,1	4,5	0,4	4,5	2,1	3,2	1,8	3,2
60	23/5	20	1,9	4,5	1,2	4,5	2,3	4,5	0,8	4,5	2,0	3,2	2,0	3,2
60		5	3,5	4,5	1,7	4,5	4,4	4,5	1,5	4,5	4,4	3,2	3,5	3,2
60		120	2,2	6,4	-0,4	6,4	2,4	6,4	-1,9	6,4	2,0	3,2	-0,7	3,2
60	50/5	100	2,2	6,4	-0,4	6,4	2,4	6,4	-1,9	6,4	2,0	3,2	-0,6	3,2
60	50/5	20	2,7	6,4	-0,1	6,4	2,7	6,4	-1,1	6,4	2,5	3,2	-0,1	3,2
60		5	4,3	6,4	0,5	6,4	4,0	6,4	0,1	6,4	4,1	3,2	1,3	3,2
60		120	2,0	7,8	3,0	7,8	1,4	7,8	0,9	7,8	1,4	3,2	2,0	3,2
60	100/5	100	2,0	7,8	3,0	7,8	1,4	7,8	0,9	7,8	1,5	3,2	1,9	3,2
60	100/5	20	2,4	7,8	2,2	7,8	2,1	7,8	0,7	7,8	1,7	3,2	1,8	3,2
60		5	3,3	7,8	2,5	7,8	3,3	7,8	0,2	7,8	3,3	3,2	2,3	3,2
60		120	1,5	9,0	4,5	9,0	2,6	9,0	2,4	9,0	0,1	3,2	1,8	3,2
60	250/5	100	1,5	9,0	4,5	9,0	2,6	9,0	2,4	9,0	0,3	3,2	1,8	3,2
60	230/3	20	1,3	9,0	3,9	9,0	2,8	9,0	1,9	9,0	0,5	3,2	1,9	3,2
60		5	2,9	9,0	4,3	9,0	4,8	9,0	3,9	9,0	1,9	3,2	2,6	3,2
60		120	2,3	10,1	3,7	10,1	2,1	10,1	0,6	10,1	2,7	3,2	-0,8	3,2
60	E 00 /E	100	2,3	10,1	3,7	10,1	2,1	10,1	0,6	10,1	2,8	3,2	-0,7	3,2
60	500/5	20	2,9	10,1	3,7	10,1	2,3	10,1	0,5	10,1	2,3	3,2	0,6	3,2
60		5	4,4	10,1	4,2	10,1	4,3	10,1	0,8	10,1	3,5	3,2	1,9	3,2
60		120	4,6	11,1	3,0	11,1	4,6	11,1	0,4	11,1	2,2	3,9	-0,8	3,9
60	1000/5	100	4,6	11,1	3,0	11,1	4,6	11,1	0,4	11,1	2,3	3,9	-0,6	3,9
60	1000/5	20	4,4	11,1	4,1	11,1	3,7	11,1	1,4	11,1	1,7	3,9	1,0	3,9
60		5	6,2	11,1	5,6	11,1	4,5	11,1	2,0	11,1	3,1	3,9	2,5	3,9

Frequency	Burden	Ambient	Nominal	Primary	Ratio	Ratio error	Phase	Phase
		Temperature	ratio	current	error	uncertainty	displacement	displacement
					6	c		uncertainty
(Hz)	(VA)	(30)		(A)	(×10 ⁻⁰)	(×10 ⁻⁶)	(µrad)	(µrad)
60	6	23,5	5/5	0,25	-14	64	-6	70
60	6	23,5	5/5	1	-7	45	-7	47
60	6	23,5	5/5	5	-3	45	-11	47
60	6	23,5	5/5	6	-4	45	-8	47
60	6	23,5	10/5	0,5	-14	64	-8	70
60	6	23,5	10/5	2	-7	45	-8	47
60	6	23,5	10/5	10	-3	45	-13	47
60	6	23,5	10/5	12	-4	45	-10	47
60	6	23,5	20/5	1	-3	64	3	70
60	6	23,5	20/5	4	-2	45	0	47
60	6	23,5	20/5	20	-4	45	-8	47
60	6	23,5	20/5	24	-5	45	-6	47
60	6	23,5	50/5	2,5	2	64	-11	70
60	6	23,5	50/5	10	2	45	-8	47
60	6	23,5	50/5	50	3	45	-15	47
60	6	23,5	50/5	60	1	45	-13	47
60	6	23,5	100/5	5	4	64	-3	70
60	6	23,5	100/5	20	3	45	-2	47
60	6	23,5	100/5	100	2	45	-7	47
60	6	23,5	100/5	120	1	45	-5	47
60	6	23,5	250/5	12,5	0	64	-9	70
60	6	23,5	250/5	50	-2	45	-5	47
60	6	23,5	250/5	250	-4	45	-9	47
60	6	23,5	250/5	300	-5	45	-8	47
60	6	23,5	500/5	25	4	64	-1	70
60	6	23,5	500/5	100	4	45	-1	47
60	6	23,5	500/5	500	4	45	-5	47
60	6	23,5	500/5	600	3	45	-1	47
60	6	23.5	1000/5	50	1	64	-3	70
60	6	23.5	1000/5	200	1	45	-1	47
60	6	23.5	1000/5	1000	1	45	-9	47
60	6	23,5	1000/5	1200	-1	45	-7	47

Table 18. INMETRO

E	Date	Tir	me	I [A]	f [Hz]	Mean Value	Std. Dev	U Comb	k	Degrees of	Expanded Uncertainty
Ite		Start	End			[µA/A]	[μΑ/Α]	[μΑ/Α]		Freedom	[µA/A]
1		8:00	8:45	5	60	7	5,16	47,99	2,00	341	95,98
2	/06/0	8:50	9:30	5	60	6	7,07	48,01	2,00	341	96,03
3	2014/	<mark>9:45</mark>	10:35	5	60	-40	4,83	47,98	2,00	341	95,98
4		10:50	11:45	5	60	-126	4,22	53,87	2,00	341	107,75
5		13:10	13:50	10	60	10	3,16	47,97	2,00	341	95,95
6	0/90	13:55	14:35	10	60	9	4,22	47,98	2,00	341	95,96
7	2014/	14:45	15:30	10	60	-23	4,71	47,98	2,00	341	95,97
8	2	15:45	16:55	10	60	-47	3,16	53,86	2,00	341	107,73
		Tir	ne			Mean	Std Dov	II Comb		Degrees	Expanded
ltem	Date	Start	End	I [A]	f [Hz]	Value [µA/A]	[μΑ/Α]	[µA/A]	k	of Freedom	Uncertainty [μΑ/Α]
9	4	8:15	9:05	25	60	-18	4,22	47,98	2,00	341	95,96
10	,0/90,	9:15	10:00	25	60	-19	3,16	47,97	2,00	341	95,95
11	2014/	10:10	10:55	25	60	-54	3,16	47,97	2,00	341	95,95
12		11:00	12:10	25	60	-97	4,71	53,87	2,00	341	107,76
13	4	13:15	14:00	50	60	2	3,16	47,97	2,00	341	95,95
14	,0/90,	14:15	15:10	50	60	0	3,16	47,97	2,00	341	95,95
15	2014/	15:20	16:05	50	60	-31	4,22	47,98	2,00	341	95,96
16		16:15	17:10	50	60	-97	3,16	53,86	2,00	341	107,73
17	<u>Б</u>	8:00	9:10	100	60	-41	3,16	47,97	2,00	341	95,95
18	0/90	9:25	10:10	100	60	-39	4,83	47,98	2,00	341	95,98
19	2014/	10:20	11:15	100	60	-65	4,22	47,98	2,00	341	95,96
20	(1)	11:25	12:20	100	60	-100	4,83	53,87	2,00	341	107,76
21		13:25	14:15	250	60	-40	4,22	47,98	2,00	341	95,96
22	06/05	14:25	15:10	250	60	-41	5,68	47,99	2,00	341	95,99
23	2014/	15:25	16:10	250	60	-63	4,71	47,98	2,00	341	95,97
24	0	16:25	17:30	250	60	-89	4,22	53,87	2,00	341	107,75
25		8:10	9:05	500	60	-33	3,16	47,97	2,00	341	95,95
26	06/06	9:15	10:10	500	60	-42	4,71	47,98	2,00	341	95,97
27	014/	10:25	11:30	500	60	-64	3,16	47,97	2,00	341	95,95
28	2	11:45	12:55	500	60	-89	4,22	53,87	2,00	341	107,75
29		14:00	14:55	1000	60	-34	4,22	47,98	2,00	341	95,96
30	06/0€	15:10	15:55	1000	60	-41	3,16	47,97	2,00	341	95,95
31	014/	16:10	17:05	1000	60	-68	5,27	47,99	2,00	341	95,98
32	2	17:15	18:05	1000	60	-98	3,16	53,86	2,00	341	107,73

Table 19. INM

		Tir	me			Mean				Degrees	Expanded
ltem	Date	Start	End	I [A]	f [Hz]	Value [µrad]	Std. Dev [µrad]	U Comb [µrad]	k	of Freedom	Uncertainty [µrad]
1		8:00	8:45	5	60	-25	52,70	81,60	2,00	341	163,23
2	06/03	8:50	9:30	5	60	-35	52,70	81,60	2,00	341	163,23
3	2014/	9:45	10:35	5	60	-176	69,92	82,88	2,00	341	165,88
4		10:50	11:45	5	60	-295	52,70	87,84	2,00	341	175,71
5		13:10	13:50	10	60	-66	51,64	81,53	2,00	341	163,10
6	06/03	13:55	14:35	10	60	-85	52,70	81,60	2,00	341	163,23
7	2014/	14:45	15:30	10	60	-185	52,70	81,60	2,00	341	163,23
8		15:45	16:55	10	60	-255	52,70	87,84	2,00	341	175,71
9		8:15	9:05	25	60	-16	51,64	81,53	2,00	341	163,10
10	06/04	9:15	10:00	25	60	-7	48,30	81,32	2,00	341	162,68
11	014/0	10:10	10:55	25	60	-126	51,64	81,53	2,00	341	163,10
12		11:00	12:10	25	60	-221	31,62	86,82	2,00	341	173,66
13		13:15	14:00	50	60	-47	47,71	81,29	2,00	341	162,61
14	06/04	14:15	15:10	50	60	-64	51,64	81,53	2,00	341	163,10
15	014/0	15:20	16:05	50	60	-189	31,62	80,50	2,00	341	161,02
16		16:15	17:10	50	60	-323	48,30	87,59	2,00	341	175,20
17		8:00	9:10	100	60	-7	48,30	81,32	2,00	341	162,68
18	06/05	9:25	10:10	100	60	-25	52,70	81,60	2,00	341	163,23
19	2014/	10:20	11:15	100	60	-97	48,30	81,32	2,00	341	162,68
20		11:25	12:20	100	60	-184	51,64	87,78	2,00	341	175,58
21		13:25	14:15	250	60	-12	42,16	80,98	2,00	341	161,98
22	06/05	14:25	15:10	250	60	-26	51,64	81,53	2,00	341	163,10
23	2014/	15:25	16:10	250	60	-72	42,16	80,98	2,00	341	161,98
24		16:25	17:30	250	60	-96	51,64	87,78	2,00	341	175,58
		Tir	ne								
ltem	Date	Start	End	I [A]	f [Hz]	Value [µrad]	Std. Dev [µrad]	U Comb [µrad]	k	of Freedom	Expanded Uncertainty [µrad]
25		8:10	9:05	500	60	-2	42,16	80,98	2,00	341	161,98
26	90/9(9:15	10:10	500	60	-9	31,62	80,50	2,00	341	161,02
27	014/(10:25	11:30	500	60	-38	42,16	80,98	2,00	341	161,98
28	2	11:45	12:55	500	60	77	48,30	87,59	2,00	341	175,20
29		14:00	14:55	1000	60	-4	51,64	81,53	2,00	341	163,10
30	90/90	15:10	15:55	1000	60	-7	48,30	81,32	2,00	341	162,68
31	014/C	16:10	17:05	1000	60	-36	51,64	81,53	2,00	341	163,10
32	2	17:15	18:05	1000	60	82	42,16	87,27	2,00	341	174,56

Frequencia	Carga Nominal	Temperatura Ambiente	Relación Nominal	Intensidad Primaria	Error de Relación	Incertidumbre del Error de Relación	Desplazamiento de Faise	Incertidumbre Desplazamiento de Fase
Hz	VA	°C	(XXX/5)	A.	ppm	ppm	prad	µraid
		21		1200	23	80	-14	117
	6.15	21	1000/5	1000	23	80	-14	117
	6,.0	21	100010	200	23	80	-12	117
		21		50	20	80	-13	117
		22		600	24	80	-15	117
	6.14	21	500/5	500	24	80	-15	117
	0,1~	22	500/5	100	23	80	-13	117
		22		25	20	80	-13	117
		21		300,0	24	75	-12	113
	6 17	21	050/5	250,0	24	75	-12	113
	Q,17	21	250/5	50,0	25	75	-11	113
		21		12,5	23	75	-12	113
		21	100/5	120	28	75	-15	113
	0.45	21		100	28	75	-15	113
	6,15	21		20	28	75	-13	113
		21		5	28	75	-13	113
00,0		21	50/5	60,0	26	75	-12	113
	0.40	21		50,0	26	75	-12	113
	6,13	21		10,0	26	75	-11	113
		21		2,5	26	75	-11	113
		21		30,0	21	75	-14	113
	0.45	21	0.5.15	25,0	21	75	-15	113
	6,15	21	25/5	5,0	21	75	-13	113
ļ		21		1,25	21	75	-13	113
		21		12,0	19	75	-14	113
		21		10,0	20	75	-14	113
	6,15	21	10/5	2,0	20	75	-12	113
		21		0,5	22	75	-8	113
1	4.1	21		6,0	20	75	-14	113
		21	_	5,0	20	75	-14	113
	6,15	21	5/5	1,0	21	75	-11	113
		21		0,25	24	75	-3	113

Table 20. CENAMEP

Corriente de Cal. Amperes % In		Clase Ex	actitud	Lectura	Patrón	Incertic	lumbre	Tole	rancia		
Amperes	% In	Relación	Carga VA	% Error Relación	Error Fase (min)	Fase min.	Relación (%)	Fase min.	Relación (%)		
0.25	5			-0.017	1.3	1.2	0.023				
1.00	20	E.E A	100.0/	-0.018	1.3	1.2	0.023				
5.00	100	5:5 A	100 %	-0.018	1.4	1.2	0.023				
6.00	120			-0.018	1.4	1.2	0.023				
0.5	5			-0.018	1.4	1.2	0.023				
2.0	20	10.5 4	100.9/	-0.020	1.6	1.2	0.023				
10.0	100	10:5 A	100 %	-0.020	1.6	1.2	0.023				
12.0	120			-0.021	1.6	1.2	0.023				
1.3	5			-0.021	1.7	1.2	0.023				
5.0	20		100.9/	-0.020	1.6	1.2	0.023				
25.0	100	25:5 A	100 %	-0.019	1.5	1.2	0.023				
30.0	120			-0.019	1.5	1.2	0.023				
2.5	5			-0.019	1.5	1.2	0.023				
10.0	20	50:5 A	100.0/	-0.020	1.5	1.2	0.023				
50.0	100		100 %	-0.020	1.5	1.2	0.023				
60.0	120			-0.020	1.6	1.2	0.023		Χ		
5	5			-0.017	1.6	1.2	0.023		Λ		
20	20	100.5 4	100.9/	-0.017	1.1	1.2	0.023				
100	100	100.5 A	100 %	-0.018	1.1	1.2	0.023				
120	120			-0.018	1.2	1.2	0.023				
12.5	5			-0.022	1.2	1.2	0.023				
50.0	20	050.5 A	100.9/	-0.014	0.9	1.2	0.023				
250.0	100	250.5 A	100 %	-0.007	0.4	1.2	0.023				
300.0	120			-0.002	0.0	1.2	0.023				
25	5			0.003	-0.4	1.2	0.023				
100	20		100.0/	0.001	-0.3	1.2	0.023				
500	100	500:5 A	100 %	0.000	-0.2	1.2	0.023				
600	120			-0.001	-0.2	1.2	0.023				
50	5			-0.002	-0.2	1.2	0.023				
200	20	1 000:5 A	100 %	-0.001	-0.2	1.2	0.023				
1 000	100			-0.001	-0.1	1.2	0.023				
1 200	120			-	-		-0.001	-0.1	1.2	0.023	1

Table 21. CFE LAPEM

Frequency	Burden	Т	Nominal	Primary	Ratio Error	Ratio Error	Phase	Phase
[Hz]	[VA]	[ºC]	Ratio	Current	[x10 ⁻⁶]	Uncertainty	Displacement	Displacement
	Cos φ:1			[A]		[x10 ⁻⁶]	[urad]	Uncertainty
								[urad]
50	6	23 ± 1	5/5	6	-1	15	3	15
50	6	23±1	5/5	5	-1	15	3	15
50	6	23±1	5/5	1	1	15	3	15
50	6	23 ± 1	5/5	0.25	2	15	4	15
50	6	23 ± 1	10/5	12	-1	15	-3	15
50	6	23±1	10/5	10	-1	15	-3	15
50	6	23±1	10/5	2	1	15	-2	15
50	6	23 ± 1	10/5	0.5	2	15	0	15
50	6	23 ± 1	25/5	30	-1	15	-3	15
50	6	23±1	25/5	25	-1	15	-3	15
50	6	23 ± 1	25/5	5	0	15	-2	15
50	6	23 ± 1	25/5	1.25	2	15	0	15
50	6	23 ± 1	50/5	60	-2	15	-2	15
50	6	23 ± 1	50/5	50	-3	15	-2	15
50	6	23 ± 1	50/5	10	-1	15	-2	15
50	6	23 ± 1	50/5	2.5	0	15	0	15
50	6	23 ± 1	100/5	120	-3	15	6	15
50	6	23±1	100/5	100	-3	15	8	15
50	6	23 ± 1	100/5	20	-1	15	13	15
50	6	23 ± 1	100/5	5	2	15	13	15
50	6	23 ± 1	250/5	300	-6	15	11	20
50	6	23±1	250/5	250	-6	15	10	20
50	6	23±1	250/5	50	-5	15	9	20
50	6	23 ± 1	250/5	12.5	-3	15	10	20
50	6	23 ± 1	500/5	600	1	15	-1	20
50	6	23 ± 1	500/5	500	1	15	-1	20
50	6	23±1	500/5	100	1	15	0	20
50	6	23 ± 1	500/5	25	2	15	2	20
50	6	23 ± 1	1000/5	1200	-3	15	5	20
50	6	23 ± 1	1000/5	1000	-4	15	5	20
50	6	23 ± 1	1000/5	200	-4	15	7	20
50	6	23 ± 1	1000/5	50	-3	15	7	20

Table 22. INTI

Frequency	Burden	Т	Nominal	Primary	Ratio Error	Ratio Error	Phase	Phase
[Hz]	[VA]	[ºC]	Ratio	Current	[x10 ⁻⁶]	Uncertainty	Displacement	Displacement
	Cos φ:1			[A]		[x10 ⁻⁶]	[urad]	Uncertainty
								[urad]
60	6	23 ± 1	5/5	6	-2	15	3	15
60	6	23 ± 1	5/5	5	-2	15	3	15
60	6	23 ± 1	5/5	1	-1	15	4	15
60	6	23 ± 1	5/5	0.25	0	15	4	15
60	6	23 ± 1	10/5	12	-2	15	-2	15
60	6	23 ± 1	10/5	10	-2	15	-2	15
60	6	23 ± 1	10/5	2	-1	15	-1	15
60	6	23 ± 1	10/5	0.5	0	15	0	15
60	6	23 ± 1	25/5	30	-2	15	-1	15
60	6	23 ± 1	25/5	25	-2	15	-1	15
60	6	23 ± 1	25/5	5	-2	15	0	15
60	6	23 ± 1	25/5	1.25	0	15	1	15
60	6	23 ± 1	50/5	60	-3	15	-2	15
60	6	23 ± 1	50/5	50	-3	15	-2	15
60	6	23 ± 1	50/5	10	-3	15	-1	15
60	6	23 ± 1	50/5	2.5	-1	15	0	15
60	6	23 ± 1	100/5	120	-4	15	9	15
60	6	23 ± 1	100/5	100	-4	15	12	15
60	6	23 ± 1	100/5	20	-3	15	14	15
60	6	23 ± 1	100/5	5	-1	15	13	15
60	6	23 ± 1	250/5	300	-6	15	13	20
60	6	23 ± 1	250/5	250	-5	15	14	20
60	6	23 ± 1	250/5	50	-5	15	13	20
60	6	23 ± 1	250/5	12.5	-3	15	13	20
60	6	23 ± 1	500/5	600	1	15	-3	20
60	6	23 ± 1	500/5	500	1	15	-3	20
60	6	23 ± 1	500/5	100	0	15	-3	20
60	6	23 ± 1	500/5	25	2	15	-1	20
60	6	23 ± 1	1000/5	1200	-4	15	3	20
60	6	23 ± 1	1000/5	1000	-4	15	3	20
60	6	23 ± 1	1000/5	200	-4	15	5	20
60	6	23 ± 1	1000/5	50	-3	15	4	20

f	Burden	Т	Kn	In	εi	U(ε _i)	δ_{i}	$U(\delta_i)$
, in Hz	in VA	in °C	(xxx A/5 A)	in A	in 10 ⁻⁶	in 10 ⁻⁶	in urad	urad
			(*******					P*
50	6,0	23	5	6,02	0,6	3,0	0,1	3,0
50	6,0	23	5	5,01	0,7	3,0	-0,1	3,0
50	6,0	23	5	1,00	1,3	3,0	0,1	3,0
50	6,0	23	5	0,25	2,8	3,0	0,8	3,0
60	6,0	23	5	6,00	0,5	3,0	-0,1	3,0
60	6,0	23	5	5,00	0,7	3,0	-0,1	3,0
60	6,0	23	5	1,00	1,2	3,0	0,0	3,0
60	6,0	23	5	0,24	2,6	3,0	0,5	3,0
50	6,0	23	10	12,01	0,8	3,0	-0,4	3,0
50	6,0	23	10	9,99	1,1	3,0	-0,6	3,0
50	6,0	23	10	1,99	1,5	3,0	0,1	3,0
50	6,0	23	10	0,49	2,9	3,0	0,5	3,0
60	6,0	23	10	12,00	0,7	3,0	-0,5	3,0
60	6,0	23	10	9,98	0,8	3,0	-0,6	3,0
60	6,0	23	10	1,99	1,3	3,0	-0,3	3,0
60	6,0	23	10	0,49	2,5	3,0	0,4	3,0
50	6,0	23	25	30,03	1,7	3,0	0,8	3,0
50	6,0	23	25	24,97	1,8	3,0	0,6	3,0
50	6,0	23	25	4,95	2,4	3,0	0,9	3,0
50	6,0	23	25	1,24	4,0	3,0	2,1	3,0
60	6,0	23	25	30,04	1,7	3,0	0,7	3,0
60	6,0	23	25	25,02	1,8	3,0	0,7	3,0
60	6,0	23	25	4,94	2,1	3,0	0,9	3,0
60	6,0	23	25	1,24	3,5	3,0	1,8	3,0
50	6,0	23	50	60,04	2,1	3,0	-1,5	3,0
50	6,0	23	50	50,00	2,1	3,0	-1,5	3,0
50	6,0	23	50	10,00	2,6	3,0	-1,0	3,0
50	6,0	23	50	2,49	4,6	3,0	0,0	3,0
60	6,0	23	50	60,04	2,0	3,0	-1,3	3,0
60	6,0	23	50	50,02	2,0	3,0	-1,2	3,0
60	6,0	23	50	10,01	2,4	3,0	-0,9	3,0
60	6,0	23	50	2,55	3,8	3,0	0,1	3,0
50	6,0	23	100	120,11	1,6	3,0	1,8	3,0
50	6,0	23	100	99,91	1,7	3,0	1,8	3,0
50	6,0	23	100	20,12	2,1	3,0	1,4	3,0
50	6,0	23	100	4,96	3,6	3,0	2,1	3,0
60	6,0	23	100	120,18	1,5	3,0	1,6	3,0
60	6,0	23	100	100,06	1,7	3,0	1,5	3,0
60	6,0	23	100	19,84	2,0	3,0	1,3	3,0
60	6,0	23	100	4,88	3,2	3,0	1,8	3,0
50	6,0	23	250	300,23	0,4	3,0	2,1	3,0

Table 23. PTB

50	6,0	23	250	250,23	0,4	3,0	2,2	3,0
50	6,0	23	250	49,60	1,0	3,0	2,2	3,0
50	6,0	23	250	12,45	2,9	3,0	3,3	3,0
60	6,0	23	250	300,11	0,5	3,0	2,1	3,0
60	6,0	23	250	250,21	0,4	3,0	2,0	3,0
60	6,0	23	250	49,86	0,9	3,0	2,1	3,0
60	6,0	23	250	12,34	2,5	3,0	2,9	3,0
50	6,0	23	500	600,92	2,8	3,0	-1,1	3,0
50	6,0	23	500	500,38	2,8	3,0	-0,8	3,0
50	6,0	23	500	99,90	2,2	3,0	0,5	3,0
50	6,0	23	500	25,37	3,7	3,0	1,3	3,0
60	6,0	23	500	601,50	2,5	3,0	-0,8	3,0
60	6,0	23	500	500,30	2,5	3,0	-0,6	3,0
60	6,0	23	500	99,17	2,0	3,0	0,4	3,0
60	6,0	23	500	24,78	3,1	3,0	1,5	3,0
50	6,0	23	1000	1201,86	3,0	3,0	-1,3	3,0
50	6,0	23	1000	999,66	2,6	3,0	-1,2	3,0
50	6,0	23	1000	199,52	1,3	3,0	0,1	3,0
50	6,0	23	1000	49,28	3,0	3,0	1,2	3,0
60	6,0	23	1000	1200,51	2,9	3,0	-1,1	3,0
60	6,0	23	1000	1001,10	2,3	3,0	-1,1	3,0
60	6,0	23	1000	199,55	1,0	3,0	0,1	3,0
60	6,0	23	1000	49,29	2,6	3,0	1,1	3,0

Annex B - Uncertainty Budgets

Summaries of the uncertainty budget calculations, as reported by each laboratory, are shown below.

Quantity	Standard uncertainty	Probability	Sensitivity coefficient	Uncertainty contribution		
Xi	u(xi) ppm	distribution	ci	ui(y) ppm		
Bridge deviaion Δp_c	0,5	Normal	1	0,5		
Measurement setup δs	2,2	Normal	1	2,2		
Bridge reading p	0,0	3	1	0,0		
Bridge resolution δp_r	0,1	Rectangular	1	0,1		
Standard CT E_N	0	Normal	1	0		
Burden variation Δ_B	0,1	Normal	1	0,1		
Standard uncertainty Ξ_x	2,3					
Rounded expanded measurement	4,5					

Table 24. UTE 2013 and 2016.

Uncertainty Budget for ratio error at a 25/5 ratio and In = 100%

Uncertainty Budget for phase displacement at a 25/5 ratio and In = 100%

Quantity	Standard uncertainty	Probability distribution	Sensitivity coefficient	Uncertainty contribution
Xi	u(xi) µrad	uisuiouuon	ci	ui(y) µrad
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	2,2	Normal	1	2,2
Bridge reading p	0,0	3	1	0,0
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	0	Normal	1	0
Burden variation Δ_B	0,1			
Standard uncertainty Ξ_x	2,3			
Rounded expanded measurement	4,5			

Quantity	Standard uncertainty	Probability	Sensitivity coefficient	Uncertainty contribution
Xi	u(xi) ppm	distribution	ci	ui(y) ppm
Bridge deviaion Δp_c	0,5	0,5 Normal		0,5
Measurement setup δs	2,2	Normal	1	2,2
Bridge reading p	0	3	1	0,0
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	5,0	Normal	1	5,0
Burden variation Δ_B	0,1	Normal	1	0,1
Standard uncertainty Ξ_x	5,5			
Rounded expanded measureme	11,1			

Uncertainty Budget for ratio error at a 1000/5 ratio and In = 100%

Uncertainty Budget for phase displacement at a 1000/5 ratio and In = 100%

Quantity	Standard uncertainty distribution		Sensitivity coefficient	Uncertainty contribution
Xi	u(xi) µrad	distribution	ci	ui(y) µrad
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	2,2	Normal	1	2,2
Bridge reading p	0	3	1	0,0
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	5,0	Normal	1	5,0
<i>Burden variation</i> Δ_B 0,1 Normal 1				0,1
Standard uncertainty Ξ_x	5,5			
Rounded expanded measurement	11,1			

Table 25. UTE 2019

Quantity	Standard uncertainty	Probability distribution	Sensitivity coefficient	Uncertainty contribution
Xi	u(xı) ppm		СІ	uı(y) ppm
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	1	Normal	1	1
Bridge reading p	0,1	3	1	0,1
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	1,1	Normal	1	1,1
Burden variation Δ_B	0,1	Normal	1	0,1
Standard uncertainty Ξ_x	1,6			
Rounded expanded measurement	3,2			

Uncertainty Budget for ratio error at a 25/5 ratio and In = 100%

Uncertainty Budget for phase displacement at a 25/5 ratio and In = 100%

Quantity	Standard uncertainty distribution		Sensitivity coefficient	Uncertainty contribution
Xi	u(xi) µrad	alsuloudon	ci	ui(y) µrad
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	1	Normal	1	1
Bridge reading p	0,1	3	1	0,1
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	1,1	Normal	1	1,1
Burden variation Δ_B	0,1	Normal	1	0,1
Standard uncertainty Ξ_x	1,6			
Rounded expanded measurement	3,2			

Uncertainty Budget for ratio error at a 1000/5 ratio and In = 100%

Quantity	Standard uncertainty	Probability distribution	Sensitivity coefficient	Uncertainty contribution
Xi	u(xi) ppm	unsuiteunion	ci	ui(y) ppm
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	1	Normal	1	1
Bridge reading p	0,1	3	1	0,1
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	1,6	Normal	1	1,6
Burden variation Δ_B	0,1	Normal	1	0,1
Standard uncertainty Ξ_x	2,0			
Rounded expanded measurement	3,9			

Quantity Vi	Standard uncertainty	Probability distribution	Sensitivity coefficient	Uncertainty contribution
	μ(λι) μιαμ		Ci	μι(y) μιαα
Bridge deviaion Δp_c	0,5	Normal	1	0,5
Measurement setup δs	1	Normal	1	1
Bridge reading p	0,1	3	1	0,1
Bridge resolution δp_r	0,1	Rectangular	1	0,1
Standard CT E_N	1,6	Normal	1	1,6
Burden variation Δ_B	0,1	Normal	1	0,1
Standard uncertainty Ξ_x	2,0			
Rounded expanded measureme	3,9			

Uncertainty Budget for phase displacement at a 1000/5 ratio and In = 100%

Table 26. INMETRO

Uncertainty budget (5 % of In):

Source of uncertainty	Value of standard uncertainty u(xi)×10-6	Type (A,B)	Prob. distribution	ci=df/dxi	ui=ci.u(xi) ×10-6	Degree of freedom
Measurement standard	32	В	Normal	1	32	∞
Repeatability	1	A	Normal	1	1	4
Combined uncertainty	32					
Expanded uncertainty (k=2)	64					

Source of uncertainty	Value of standard uncertainty µrad	Type (A,B)	Prob. distribution	ci=df/dxi	ui=ci.u(xi) ×10-6	Degree of freedom
Measurement standard	35	В	Normal	1	35	8
Repeatability	1	A	Normal	1	1	4
Combined uncertainty	35					
Expanded uncertainty (k=2)	70					

Uncertainty budget (20 % to 120 % of In):

Source of uncertainty	Value of standard uncertainty u(xi)×10-6	Type (A,B)	Prob. distribution	ci=df/dxi	ui=ci.u(xi) ×10-6	Degree of freedom
Measurement standard	22,5	В	Normal	1	22,5	8
Repeatability	0	A	Normal	1	0	4
Combined uncertainty	22,5					
Expanded uncertainty (k=2)	45					

Source of uncertainty	Value of standard uncertainty µrad	Type (A,B)	Prob. distribution	ci=df/dxi	ui=ci.u(xi) ×10-6	Degree of freedom
Measurement standard	23,3	В	Normal	1	23,3	∞
Repeatability	0	А	Normal	1	0	4
Combined uncertainty	23,3					
Expanded uncertainty (k=2)	47					

Table 27. INM Ratio 50:5, 20% In

Measurement 15	. [µA/A]					
Main uncertainty	Standard	Type method A or B of	Sensitivity	Uncertainty	Degrees of	
components	uncertainty	evaluation/probability	coefficient	contribution	freedom	
y i	u(y _i)	distribution function	C _i	u(R _i)	n _i	
1) Standard deviation of						
the readings of the	4,22/√10	Normal	1	1,33	241	
traveling standard		Normai				
2) Uncertainty						
components of the	50/2	Туре В		25.00	241	
reference standard of the	50/2	Rectangular	1	25,00	241	
participant						
3) Uncertainty						
components of the	50/1/2	Туре В	1	20 07	2/1	
current transformer test	50/15	Rectangular	r 🔤 🕇	20,07	241	
set						
4) Uncertainty	50/1/2	Туре В	1	20.07	241	
components of drift	50/15	Rectangular	1	20,07	241	
5) Uncertainty		Turne D				
components of	10/v12	Туре в Restangular	1	2,89	~	
resolution		Rectangular				
Root square sum of Type	A standard und	certainties and effective degre	es of freedom	1,33	241	
Root square sum of Type	e B standard und	certainties and effective degre	es of freedom	47,96	241	
Combined stand	dard uncertaint	y and effective degrees of free	edom	47,98	340,8	
Expand	ded uncertainty	(95,45 % coverage factor)		95,95		

Measurement 15. [µrad]								
Main uncertainty	Standard	Type method A or B of	Sensitivity	Uncertainty	Degrees of			
components	uncertainty	evaluation/probability	coefficient	contribution	freedom			
y i	u(y _i)	distribution function	c _i	u(R _i)	n _i			
1) Standard deviation				· ·	'			
of the readings of the	31,62/√10	Normal	1	10,00	241			
traveling standard				!				
2) Uncertainty		1		· ·	· · · · · · · · · · · · · · · · · · ·			
components of the	11 54/2	Туре В	1	20.09	241			
reference standard of	11,04/2	Rectangular	1	29,09	241			
the participant			<u> </u>	!	<u> </u>			
3) Uncertainty		(
components of the	82 07/1/3	Туре В	1	48.48	2/1			
current transformer	65,57785	Rectangular	-	40,40	241			
test set		<u> </u>						
4) Uncertainty	92 97/1/2	Туре В	1	49.48	2/1			
components of drift	05,97,95	Rectangular		40,40	241			
5) Uncertainty		Type B		· · · · · · · · · · · · · · · · · · ·				
components of	100/v12	Pectangular	1	28,87	~			
resolution		Nectaliguiai		I				
Root square sum of Ty	pe A standard une	certainties and effective degre	es of freedom	10,00	241			
Root square sum of Ty	pe B standard und	certainties and effective degre	es of freedom	79,88	241			
Combined sta	andard uncertaint	y and effective degrees of free	adom	80,50	340,8			
Expa	161,00							

Table 28. CENAMEP RELACIÓN 1000/5 120 % In

·····		20 70	111			
Fuentes de Incertidumbre	Incertidumbre Estándar u(xi)x10^6	Тіро	Distribución	Coef. Sensibilidad (ci)	u≔c. u(xi)x10^6	Grados de libertad
Especificación transformador patrón (U1)	28,87	В	Rectangular	1	28,87	500
Comparador de corriente (U2)	17,32	В	Rectangular	1	17,32	100
Especificación multímetro maestro (U3)	5,77	В	Rectangular	1	5,77	500
Especificación multímetro esclavo (U4)	5,77	В	Rectangular	1	5,77	500
Afectación por carga (Us)	5,77	В	Rectangular	1	5,77	100
Afectación por temperatura (U6)	11,55	В	Rectangular	1	11,55	500
Afectación por conexiones (U7)	17,32	В	Rectangular	1	17,32	100
Mediciones (U8)	0,04	Α	Normal	1	0,04	4
Incertidumbre Combinada	41			Grado	s efectivos	857
Incertidumbre Expandida k=2	80			Factor d	le cobertura	1,96

Same uncertainties are for ratio error (in μ A/A) and for phase displacement (in μ rad).

Fuente de Incertidumbre	Simbolo	Tip o	Ci	u _x [ppm]	Distribución	Factor A	Vi	$_{Ui} = u_x / A$	C_i ² . U_i ²
Tipo A	u_A	А	1	0.4	Ν	1	9	0.4	0.16
TI Patrón	u_{F_N}	В	1	5	N	1	50	5	25
setup de medición	u_P	В	1	4	N	1	50	4	16
Resolución	u_{R_P}	В	1	1	R	1.732	50	0,58	0,34
Corriente I _P	u_{I_P}	В	1	2	N	1	50	2	4
Variación carga	u_B	В	1	2	N	1	50	2	4
Temperatura	<i>u</i> _t	В	1	1	N	1	50	1	1
Frecuencia	u _f	В	1	1	N	1	50	1	1
Incertidumbre combinada	uc								7.2
Incertidumbre expandida (K=2)	U				N(95%)	2			15 [ppm]

 Table 29. INTI

 Ejemplo de balance de incertidumbre en error de relación para la relación 5/5:

Ejemplo de balance de incertidumbre en error de desplazamiento de fase para la relación 5/5:

Fuente de Incertidumbre	Simbolo	Tipo	Ci	u _x [µrad]	Distribución	Factor A	Vi	$U_i = u_x / A$	C_i ² . U_i ²
Tipo A	u_A	А	1	0.4	Ν	1	9	0.4	0.16
TI Patrón	u_{F_N}	В	1	5	Ν	1	50	5	25
setup de medición	u_P	В	1	4	N	1	50	4	16
Resolución	u_{R_P}	В	1	1	R	1.732	50	0,58	0,34
Corriente I _P	u_{I_P}	В	1	2	Ν	1	50	2	4
Variación carga	u _B	В	1	2	Ν	1	50	2	4
Temperatura	<i>u</i> _t	В	1	1	Ν	1	50	1	1
Frecuencia	u _f	В	1	1	Ν	1	50	1	1
Incertidumbre combinada	uc								7.2
Incertidumbre expandida (K=2)	U				N(95%)	2			15 [µrad]

	Table 30.								
uncertainty budget (traveling CT)		PTB Braunschweig							
50/60 Hz; (5A - 1kA) / 5A; <i>I</i> _p / <i>I</i> _{p,r} = 5%	120%	WG 2.31 Instrument Tranformers and Sensors							
current ratio error ε_x									
quantity x _i	limits in μΑ / Α	type	distribution	standard uncertainty <i>u</i> (x _i)					
$s(\varepsilon_X)$ (SEKAM IV; $n = 20$)	4	A	normal	0,46					
ε _{Bridge} (SEKAM IV)	0,5	В	normal	0,25					
$\varepsilon_{\rm N}$ (standard CT - IW51)	1	В	normal	0,50					
$\varepsilon_{\rm B}$ (influence of burden)	1,5	В	rectangular	0,87					
ε_{F} (influence of frequency)	0,2	В	rectangular	0,12					
$\varepsilon_{\rm repro}$ (reproducibility; day to day)	0,2	В	rectangular	0,12					
		standard und	certainty $u(\varepsilon_x) =$	1,14 µA / A					
round off - expand	ded measureme	nt uncertainty (k	$x = 2$) $U_{\text{PTB}}(\varepsilon_x) =$	3,0 µA / A					
phase displacement δ_x									
	phase displac	ement δ_x							
quantity x _i	limits in µrad	ement δ _x type	distribution	standard uncertainty u(x _i)					
quantity x _i s(δ _X) (SEKAM IV; <i>n</i> = 20)	limits in µrad	ement δ _x type	distribution normal	standard uncertainty <i>u(x_i)</i> 0,46					
quantity x_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV)	limits in µrad 4 0,5	ement δ _x type A B	distribution normal normal	standard uncertainty <i>u(x_i)</i> 0,46 0,25					
quantity x_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV) δ_N (standard CT - IW51)	limits in µrad 4 0,5 1,5	ement ð _x type A B B	distribution normal normal normal	standard uncertainty <i>u</i>(<i>x</i>_i) 0,46 0,25 0,75					
quantity x_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV) δ_N (standard CT - IW51) δ_B (influence of burden)	limits in µrad 4 0,5 1,5 1,5	ement ð _x type A B B B B	distribution normal normal normal rectangular	standard uncertainty u(x_i) 0,46 0,25 0,75 0,87					
quantity X_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV) δ_N (standard CT - IW51) δ_B (influence of burden) δ_F (influence of frequency)	limits in µrad 4 0,5 1,5 1,5 0,2	ement ð _x type A B B B B B	distribution normal normal normal rectangular rectangular	standard uncertainty u(xi) 0,46 0,25 0,75 0,87 0,12					
quantity x_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV) δ_N (standard CT - IW51) δ_B (influence of burden) δ_F (influence of frequency) δ_{repro} (reproducibility; day to day)	limits in µrad 4 0,5 1,5 1,5 0,2 0,2	ement ð _x type A B B B B B B B	distribution normal normal normal rectangular rectangular rectangular	standard uncertainty u(xi) 0,46 0,25 0,75 0,87 0,12 0,12					
quantity x_i $s(\delta_X)$ (SEKAM IV; $n = 20$) δ_{Bridge} (SEKAM IV) δ_N (standard CT - IW51) δ_B (influence of burden) δ_F (influence of frequency) δ_{repro} (reproducibility; day to day)	limits in µrad 4 0,5 1,5 1,5 0,2 0,2	ement ð _x type A B B B B B Standard unc	distribution normal normal normal rectangular rectangular rectangular ertainty u(δ _x) =	standard uncertainty u(x _i) 0,46 0,25 0,75 0,87 0,12 0,12 0,12 0,12					

Annex C - Description of measurement equipment as reported by laboratories.

a. UTE

The comparison between the traveling CT and the laboratory standard CT was made by a bridge which schematic is shown in figure 22. The power source can be set at 50 Hz or 60 Hz. The primary current is adjusted by a regulating transformer with a step-down transformer. A variable resistor and a capacitor allow to get close to null voltage at the connection point between both CTs (Pi-P1).

The self-calibrated current comparator is described in [1]. Its output is connected to a lock-in amplifier with two multimeters, one indicating the in-phase error and the other, the phase shift error.

Two UTE laboratory standard CTs were used, one in the 2013-2016 calibrations, and other in 2019 calibrations. Both were of two-stage type with electronic compensators, calibrated by self-calibration procedures. The first one (CONIMED, TI 1205) was calibrated by a step-up method [2]. The second one (LABUTE 201809) is a self-development that has its primary windings separated in sectors to allow series-parallel configurations [3]. The 5:5-ratio was self-calibrated. Higher ranges relate their errors to the first one by changing its series-parallel primary configurations. Using this last CT, a lower uncertainty was achieved.

Fig. 22. UTE measurement equipment.

b. INMETRO

Calibration was performed by the comparison method (same method declared in CMC's), using a standard CT and a standard CT bridge. Measurements were performed at a frequency of 60 Hz, referenced to the standards listed below:

Current Transformer PR 008.

Measurement bridge PR 046.

c. INM

The comparison method is shown in figure 23.

Control

Fig. 23. Measurement set up of INM.

d. CENAMEP

The direct comparison method was used. That is, the traveling transformer was compared against a current transformer of equal class. The measurement system for the calibration of current measurement transformers, shown in figure 24, consists of:

Current transformer standard. This transformer is of two stages type, and constitutes the reference of our measurement system. It has an accuracy of 0.005 % and 0.5' for currents between 1 % and 120 % of the rated current.

Current measurement transformer comparator. It is of the differential type, it allows to compare our reference transformer with the one you want to test, by means of two voltage output signals (reference and difference), which can be visualized and processed with certain display equipment. Digital multimeters: configured as master and slave, the signals coming from the comparator are connected, they digitize the voltage signals using Swerlein algorithm.

Variable current source: two current injector modules that by induction generate the current that circulates through the primary transformers.

Data:

Current transformer standard: CONIMED, TI 1205. Current comparator: CONIMED, CTI-CT3. Digital multimeters: AGILENT, 3458 A.

e. CFE

The direct comparison method was used. Table 31 shows the measurement equipment used.

DATOS	PATRÓN EMPLEADO	PATRÓN EMPLEADO	PATRÓN EMPLEADO	INSTRUMENTO
Nombre	Puente de TC's			Transformador de Corriente
Marca	ZERA			CONIMED
Modelo	SCT 6000-120			TI 1205
No. Serie y/o ld.	2/09/0984			11023
Clase de Exactitud	e(0,02%rel 1 min. fase			±(0.005% rel 0.5 min. fase)
Folio del patrón	20101063			
Vigencia	2015-02-27			n.a.

Table 31. Measurement equipment used by CFE.

f. INTI

Figure 25 shows the measurement scheme based on a differential method using a current comparator. The difference signal provides the error and it is read with a lock in amplifier, and processed by specially designed software.

Fig. 25. INTI measurement equipment.

g. PTB

The CT measurement system consists mainly of an electronically compensated current comparator T_N (Std.: "IW 51") and a self-calibrating current transformer test set (Std.: "SEKAM IV") based on the ratiometric method [4], [5]. Fig. 26 shows the simplified setup of the test set for calibrating the CT T_x against the standard CT T_N using the high accurate dual current-to-voltage converter module SEKAM IV with a sampling-based two-channel ratio measurement system [6]. A waveform generator with a high power amplifier and associated range transformers is used to generate the test current I_p. The output of the current source is connected to the reference T_N and the CT under test T_x. Each secondary of both CTs is connected to the self-calibrated current-to-voltage converters of the subsequently arranged bridge. The bridge SEKAM IV consists of two identical transformer-based current-to-voltage converters with several primary windings for rated currents from 100 mA to 5 A, error correction amplifiers, and active, i.e., amplifier aided, measuring resistors. This setup ensures a very precise ratio of the output voltage and the input currents of the so defined bridge paths N and X.

