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Abstract - The proliferation of wireless and mobile products 
has dramatically increased the number and variety of low 
power, high performance electronic systems being designed. 
Noise is an important limiting factor in these systems. The noise 
generated is often cyclostationary. This type of noise cannot be 
predicted using SPICE, nor is it well handled by traditional test 
equipment such as spectrum analyzers or noise figure meters, 
but it is available from the new RF simulators. 
The origins and characteristics of cyclostationary noise are 
described in a way that allows designers to understand the 
impact of cyclostationarity on their circuits. In particular, 
cyclostationary noise in time-varying systems (mixers), sampling 
systems (switched filters and sampleholds), thresholding sys- 
tems (logic circuitry), and autonomous systems (oscillators) is 
discussed. 

I. INTRODUCTION 
SPICE noise analysis is not able to compute valid noise results 
for many common classes of circuit for which noise is of 
interest. Circuits such as mixers, oscillators, samplers, and 
logic gates either produce noise at their output whose power 
varies significantly with time, or whose sensitivity to noise 
varies significantly with time, or both. New simulation algo- 
rithms have recently become available that can be used to 
predict the noise performance of these types of circuits 
[7,10,12]. However, noise of this type is unfamiliar to most 
designers. This paper introduces the ideas needed to under- 
stand and model noise in these types of circuits using termi- 
nology and concepts familiar to circuit designers. 

A .  Ensemble Averages 
Noise free systems are deterministic, meaning that repeating 
the same experiment produces the same result. Noisy systems 
are stochastic - repeating the same experiment produces 
slightly different results each time. An experiment is referred 
to as a trial and a group of experiments is referred to as an 
ensemble of trials, or simply an ensemble. Noise can be char- 
acterized by using averages over the ensemble, called expec- 
tations, and denoted by the operator E { * } .  The expectation is 
the limit of the ensemble average as the number of trial 
approaches infinity. 
Let vn be a noisy signal. It can be separated into a purely 
noise free, or deterministic, signal v, and a stochastic signal 
that is pure noise, n, where 

v,(t) = v(t) + n(t). (1) 

The mean of the noisy signal is the noise free signal, E{v,(t)}  
= v( t ) ,  and the mean of the noise is zero, E ( n ( t ) }  = 0. The 
variance of n ( t ) ,  var(n(t)) = E ( n ( t ) * } ,  is a measure of the 
power in the noise at a specific time. A more general power- 
like quantity is the autocorrelation, R,(?,T) = E{n(t)  n(t-T)}, a 
measure of how points on the same signal separated by T sec- 
onds are correlated. The autocorrelation is related to the vari- 
ance by var(n(t)) = R,(t,O). By performing the Fourier 
transform of the autocorrelation function with respect to the 
variable T and then averaging over t, we obtain the time-aver- 
aged power spectral density, or PSD, that is measured by 
spectrum analyzers. 

B. Colored or Time-Correlated Noise 
Noise that is completely uncorrelated versus time is known as 
white noise. For white noise the PSD is a constant and the 
autocorrelation function is an impulse function centered at 0, 

If the noise passes through a circuit that contains energy stor- 
age elements, such as capacitors and inductors, the PSD of 
the resulting signal will be shaped by the transfer function of 
the circuit. This shaping of the noise versus frequency is 
referred to as coloring the noise. 
Energy storage elements also cause the noise to be correlated 
versus time. This occurs simply because noise produced at 
one point in time is stored in the energy storage element, and 
comes out some time later. Thls results in the autocorrelation 
function having nonzero width in T. 
The energy-storage elements cause the noise spectrum to be 
shaped and the noise to be time-correlated. This is a general 
property. If the noise has shape in the frequency domain then 
the noise is correlated in time, and vice versa. 

R,(t, T) = R( t )G(T) .  

C. Cyclostationary or Frequency-Correlated Noise 
Circuits with time-varying operating points can cause the 
ensemble averages that describe noise to vary with time t. If 
they vary in a periodic fashion, the noise is said to have 
cyclostationary properties, and the ensemble averages 
referred to as being cyclostationary [3]. If they vary in a qua- 
siperiodic fashion, they are referred to as polycyclostationary, 
though in this paper there will be no distinction made 
between cyclostationary and polycyclostationary processes. 
Cyclostationarity occurs when the time-varying operating 
point modulates the noise generated by bias-dependent noise 
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sources or when the time-varying circuit modulates the trans- 
fer function from the noise source to the output. As suggested 
by the name, modulated noise sources can be modeled by 
modulating the output of stationary noise sources. 

n 
- 

Fig. 1 .  The resistor generates white thermal noise. The switch opens 
and closes periodically, so the noise at the output is cyclostationary. 

Figure 1 shows a simple example of cyclostationary noise. A 
periodically operating switch between the noise source (the 
resistor generating white thermal noise) and the observer 
causes the output noise to have periodically varying statistics. 
Noise is transmitted from the resistor to the observer only 
when the switch is closed. It can be said that cyclostationary 
noise is “shaped in time t”. However, with no energy storage 
elements the noise is completely uncorrelated versus time T 
(noise at a particular time is uncorrelated with the noise at any 
previous time) and therefore is white, even though it is 
cyclostationary. One cannot tell that noise is cyclostationary 
by just observing the time-average PSD. 

Noise Output 

LO 

Input Signals 
Noise 

Total Output Noise 

Fig. 2. How noise is moved around by a mixer. The noise is 
replicated and translated by each harmonic of the LO, resulting in 
correlations at frequencies separated by wLo. 

In the example shown in Figure 2, stationary noise with an 
arbitrary PSD is modulated by a periodic signal. This is repre- 
sentative of both ways in which cyclostationary noise is gen- 
erated (modulated noise sources and modulated signal paths). 
It is also representative of how noise is modulated in many 
types of circuits. In a mixer, the noise is modulated by the 

LO. In a sampler, it is modulated by the clock. In a digital 
logic, the noise is modulated by the logic signals. And in an 
oscillator, it is modulated by the oscillation signal itself. 
Modulation can be interpreted as multiplication in the time 
domain or convolution in the frequency domain. Thus, the 
modulation by a periodic signal causes the noise to mix up 
and down in multiples of the modulation frequency in a pro- 
cess that is often referred to as noise folding. 
Noise from the source at a particular frequency f is replicated 
and copies appear at f +_ WO, where k is an integer and fO is the 
fundamental frequency of the periodic signal. Conversely, 
noise at the output at a particular frequency f has contribu- 
tions from noise from the sources at frequencies f +_ yb. 

t 

f 

Fig. 3. With a complex phasor representation of noise, noise at 
frequencies separated by k q  is correlated. When converted to real 
signals, the complex conjugate of the noise at negative frequencies is 
mapped to positive frequencies. As a result, the upper and lower 
sidebands contain correlated noise. 

Because of the translation of replicated copies of the same 
noise source, noise separated by kfo is generally correlated. 
Remember that noise folds across DC, so noise in upper and 
lower sidebands will be correlated. Consider the top of Figure 
3 where noise is shown at both negative and positive frequen- 
cies. This implies a complex phasor representation is being 
used. When this complex signal is converted to a real signal, 
the complex conjugate of signals at negative frequencies is 
mapped to positive frequencies. In this way, the signal at fre- 
quencies Aw above and below a harmonic are correlated. 
These frequencies are referred to as upper and lower side- 
bands of the harmonic. 
Recall from the previous section that 

shape infrequency tj correlation in time 
Now from this section also see that 

shape in time e correlation infi-equency 
This is the duality of shape and correlation. If one is known, 
the other can be recovered. This is important because it 
allows us to choose either the time or frequency domain to 
describe noise in any particular system by simply noting 
whether the dominant statistical effects are more easily 
described by the shape or the correlation. 
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11. CALCULATING NOISE 
Noise is generally so small that it does not cause the circuit to 
behave nonlinearly (one exception is with oscillators, which 
is discussed later). Therefore noise is calculating using pertur- 
bation techniques, that is, by splitting the noisy signal into 
large and small components. The large signal component (the 
operating point) is periodic and the small component (the 
noise) is stochastic. First we set the small stochastic portion 
of the stimulus to zero by disabling all of the noise sources 
and solve for the large-signal periodic steady-state solution 
that determines the circuit operating point. We then linearize 
the circuit about the periodic large signal operating point and 
apply the small stochastic signal to this linearized system. 
The linearized system is time-varying and unlike linear time- 
invariant systems, can model frequency conversion effects 
that create cyclostationarity. The linear time-varying system 
is solved numerically. These linear time-varying systems gen- 
erally are quite large and require special numerical techniques 
to be practical. The reader is referred to [10,12] for details of 
numerical implementations. 

111. CHARACTERIZING CYCLOSTATIONARY NOISE 
There are three common methods of characterizing cyclosta- 
tionary noise. 
The time-average power spectral density is similar to what 
would be measured with a conventional spectrum analyzer. 
Since the analyzer has a very small effective input bandwidth, 
it ignores correlations in the noise and so ignores the cyclos- 
tationary nature of the noise (assuming that the frequency of 
the cyclostationarity is much higher than the bandwidth of the 
analyzer). 
The second method is to use the spectrum along with infor- 
mation about the correlations in the noise between sidebands. 
This is a complete description of the cyclostationarity in the 
noise. It is used when considering the impact of cyclostation- 
ary noise from one stage on a subsequent synchronous stage. 
Two stages would be synchronous if they were driven by the 
same LO or clock, or if the output of one stage caused the 
subsequent stage to behave nonlinearly. From this form it is 
relatively easy to determine the amount of power in the AM 
or PM components of the noise. 
The third method is to track the noise at a point in phase, or 
noise versus phase. The noise at a point in phase is defined as 
the noise in the sequence of values obtained if a noisy peri- 
odic signal7 is repeatedly sampled at the same point in phase 
during each period. It is useful in determining the noise that 
results when converting a continuous-time signal to a dis- 
crete-time signal. It is also useful when determining the jitter 
associated with a noisy signal crossing a threshold. 

f By noisyperiodic signal we mean a signal of the form v,,(r) = v(r) 
+ n(r) where v(r) is T-periodic and n(r) is T-cyclostationary but is not 
periodic. 

A .  Time-Average Power Spectral Density 
If a stage that generates cyclostationary noise is followed by a 
filter whose passband is constrained to a single sideband (the 
passband does not contain a hannonic and has a bandwidth of 
less than f0/2, where fo is the fundamental frequency of the 
cyclostationarity), then the output of the filter will be station- 
ary. This is true because noise at any frequency fl is uncorre- 
lated with noise at any other frequencyh as long as both fi 
andh  are within the passband. 
Consider a stage that generates cyclostationary noise with 
modulation frequency f, that is followed by a stage whose 
transfer characteristics vary periodically at a frequency off2 
(such as a mixer, sampler, etc.). Assume that fl  and f2 are 
noncommensurate (there is nofo such thatfi = n f o  and& = m 
fo with n and m both integers). Then there is no way to shiftfi 
by a multiple of f2 and have it fall on a correlated copy of 
itself. As a result, the cyclostationary nature of the noise at 
the output of the first stage can be ignored. With regard to its 
effect on the subsequent stage, the noise from the first stage 
can be treated as being stationary and we can characterize it 
using the time-average power spectral density [6,11]. 
Iff, andh  are commensurate, but m and n are both large with 
no common factors, then many periods off, and f2 are aver- 
aged before the exact phasing between the two repeats, In this 
case, the cyclostationary nature of the noise at the output of 
the first stage can often be ignored. 
The time-averaged power spectral density (PSD) can be used 
as the basis of a noise model when the subsequent stages 
eliminate or ignore the cyclostationary nature of the noise. 
Filtering eliminates the cyclostationary nature of noise, con- 
verting it to stationary noise, if the filter is a single-sideband 
filter with bandwidth less thatfo12. The cyclostationary nature 
of the noise is ignored if the subsequent stage is not synchro- 
nous with the noise, or if it is synchronous but running at a 
sufficiently different frequency so that averaging serves to 
eliminate the cyclostationarity. 
When a stage producing cyclostationary noise drives a subse- 
quent stage that has a time-varying transfer function that is 
synchronous with the first, then ignoring the cyclostationary 
nature of the noise from the first stage (say by using the time- 
average PSD) generates incorrect results. One common situa- 
tion where this occurs is when a switched-capacitor filter is 
followed by a sample-and-hold, and both are clocked at the 
same rate (or a multiple of the same rate). Another common 
situation is when the first stage produces a periodic signal that 
is large enough to drive the subsequent stage to behave non- 
linearly. In this case, the large periodic output signal will 
modulate the gain of the subsequent stage synchronously with 
the cyclostationary noise produced by the first stage. This 
occurs when an oscillator drives the LO port of a mixer or 
sampler, when one logic gate drives another, or when a large 
interfering signal drives two successive stages into compres- 
sion. 
In these situations, the cyclostationary nature of the noise pro- 
duced in the first stage must be considered when determining 
the overall noise performance of the stages together. 
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B. AM & PM Noise 
One can separate noise near the carrier into AM and PM com- 
ponents [6,9]. Consider the noise at sidebands at frequencies 
Ao from the camer. Treat both these sidebands and the car- 
rier as phasors. Individually add the sideband phasors to the 
carrier phasor. The sideband phasors are at a different fre- 
quency from the carrier, and so rotate relative to it. One side- 
band will rotate at Am, and the other at -do. If the noise is 
not cyclostationary, then the two sidebands will be uncorre- 
lated, meaning that their amplitude and phase will vary ran- 
domly relative to each other. Combined, the two sideband 
phasors will trace out an ellipse whose size, shape, and orien- 
tation will shift randomly. However, if the noise is cyclosta- 
tionary, then the sidebands are correlated. This reduces the 
random shifting in the shape and orientation of the ellipse 
traced out by the phasors. If the noise is perfectly correlated, 
then the shape and orientation will remain unchanged, though 
its size still shifts randomly. 

Upper and Lower Sidebands Shown Separately 

Sum of Upper and Lower Sidebands 

Fig. 4. How the amplitude and phase relationship between sidebands 
cause AM and PM variations in a camer. The phasors with the 
hollow tips represents the carrier, the phasors with the solid tips 
represent the sidebands. The upper sideband rotates in the clockwise 
direction and the lower in the counterclockwise direction. The 
composite trajectory is shown below the individual components. (a) 
Single-sideband modulation (only upper sideband). (b) Arbitrary 
double-sideband modulation where there is no special relationship 
between the sidebands. (c) Amplitude modulation (identical 
magnitudes and phase such that phasors point in same direction 
when parallel to carrier). (d) Phase modulation (identical magnitudes 
and phase such that phasors point in same direction when 
perpendicular to carrier). 

The shape and orientation of the ellipse is determined by the 
relative size of the AM and PM components in the noise. This 
is demonstrated in Figure 4. For example, oscillators almost 
exclusively generate PM noise near the carrier whereas noise 
on the control input to a variable gain amplifier results almost 
completely in AM noise at the output of the amplifier. Having 
one component of noise dominate over the other is a charac- 
teristic of cyclostationary noise. Stationary noise can also be 

decomposed into AM and PM components, but there will 
always be equal amounts of both. 
It is a general rule that combining stationary noise with a 
large periodic or quasiperiodic signal and is passing it 
through a stage undergoing compression or saturation results 
primarily in phase noise at the output. Stationary noise con- 
tains equal amounts of amplitude and phase noise. Passing it 
through a stage undergoing compression causes the amplitude 
noise to be suppressed, leaving mainly the noise in phase. 

IV. OSCILLATOR PHASE NOISE 
It is the nature of all autonomous systems, such as oscillators 
that they produce relatively high levels of noise at frequencies 
close to the oscillation frequency. Because the noise is close 
to the oscillation frequency, it cannot be removed with filter- 
ing without also removing the oscillation signal. It is also the 
nature of nonlinear oscillators that the noise be predominantly 
in the phase of the oscillation. Thus, the noise cannot be 
removed by passing the signal through a limiter. This noise is 
referred to as oscillator phase noise. 
In a receiver, the phase noise of the LO can mix with a large 
interfering signal from a neighboring channel and swamp out 
the signal from the desired channel even though most of the 
power in the interfering IF is removed by the IF filter. This is 
referred to as reciprocal mixing and is illustrated in Figure 5. 

Interfering 

R ~ f  
I Desired 

Channel 
J 

Interfering IF ' I h L .  Desired IF 

Fig. 5.  In a receiver, the phase noise of the LO can mix with a large 
interfering signal from a neighboring channel and swamp out the 
signal from the desired channel even though most of the power in the 
interfering IF is removed by the IF filter. This process is referred to 
as reciprocal mixing. 

Similarly, phase noise in the signal produced by a nearby 
transmitter can interfere with the reception of a desired signal 
at a hfferent frequency produced by a distant transmitter. 

A .  Feedback Oscillators 
Consider a feedback oscillator with a loop gain of H ( f ) .  X ( f )  
is taken to represent some perturbation stimulus and Y ( f )  is 
the response of the oscillator to X. The Barkhausen condition 
for oscillation states that the effective loop gain equals unity 
and the loop phase shift equals 360 degrees at the oscillation 
frequencyf,. The gain from the perturbation stimulus to the 
output is Y( f ) / X (  f ) = H( f ) / H (  f)-1, which goes to infinity 
at the oscillation frequencyf,. 
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The amplification near the oscillation frequency is quantified 
by assuming the loop gain varies smoothly as a function of 
frequency in this region [ 81. Iff = f ,  + AJ then H( f )  c H( &) 
+ dH/df Af and the transfer function becomes 

Y(f+ Aj) H ( f )  + dH/dfAf  
X m  HCf) + dH/dfAf - 1 . 

Since H( f,) = 1 and dH/df Af 1 in most practical situations, 
the transfer function reduces to 

(3) 

Thus, for circuits that contain only white noise sources, the 
noise voltage (or current) is inversely proportional to Af 

near the oscillation frequency. 
So far we have assumed that the oscillator is linear time- 
invariant (LTI). This has allowed us to see $at the amplifica- 
tion of noise near the carrier frequency is created by an LTI 
phenomenon that is a natural consequence of the oscillator’s 
complex pole pair on the imaginary axis of the s-plane at&. 
However, the LTI model does not explain why the noise is 
predominantly in the phase of the oscillation. Nor is it a good 
foundation for further analysis. It is easy to be misled by this 
model because it does not include effects that are fundamen- 
tally important to the behavior of the oscillator. To include 
these effects would require modeling the periodically time- 
varying nature of the transfer functions [13], which is beyond 
the scope of this paper. Instead, this model will be ‘fixed-up’ 
to explain phase noise with qualitative arguments and the 
next section presents a more solid and general model. 
The Barkhausen criterion for oscillation in a feedback oscilla- 
tor states that the effective gain around the loop must be unity 
for stable oscillation (loop gain magnitude equals 1 and loop 
phase shift equals 360’). To assure the oscillator starts, the 
initial loop gain is designed to be greater than one, which 
causes the oscillation amplitude to grow until the amplifier 
goes into compression far enough so that the effective loop 
gain reduces to 1. If, for some reason the amplitude of the 
oscillation decreases, the amount of compression reduces, 
causing the loop gain to go above 1, which causes the oscilla- 
tion amplitude to increase. Similarly, if the oscillation ampli- 
tude increases, the amplifier goes further into compression, 
causing the loop gain to go below 1, which causes the ampli- 
tude to decrease. Thus, the nonlinearity of the amplifier is 
fundamental to providing a stable oscillation amplitude, and 
also causes amplitude variations to be suppressed. As shown 
in Figure 6, any amplitude variations that result from noise 
are also suppressed, leaving only phase variations. As a 
result, the noise at the output of an oscillator is generally 
referred to as oscillator phase noise. 

B. Oscillator Limit Cycle 
The above explanation only addresses feedback oscillators. In 
this section, an alternative approach is taken that only 
assumes that the oscillator has a stable limit cycle and so 
applies to oscillators of all kinds. 

while the noise power spectral density is proportional llAf z 

m 
Fig. 6. A linear oscillator along with its response to noise (left) and a 
nonlinear oscillator with its response to noise (right). For the 
nonlinear oscillator to have a stable amplitude, the average 
conductance exhibited by the nonlinear resistor must be negative 
below, positive above, and zero at the desired amplitude. The open- 
tipped arrows are phasors that represents the unperturbed oscillator 
output, the carriers, and the circles represent the response to 
perturbations in the form of noise. With a linear oscillator the noise 
simply adds to the carrier. In a nonlinear oscillator, the nonlinearities 
act to control the amplitude of the oscillator and so to suppress 
variations in amplitude, thereby radially compressing the noise ball 
and converting it into medominanth a variation in uhase. 

Consider plotting two state variables for an oscillator against 
each other, as shown in Figure 7. In steady state, the trajec- 
tory is a stable limit cycle, v .  Now consider perturbing the 
oscillator with an impulse and assume that the response to the 
perturbation is AV. Separate AV into amplitude and phase vari- 
ations, 

Av(t) = (1 + a(t))v(t + @(t)/27c f ,)  - v(t). (4) 
where v( t )  represents the unperturbed output voltage of the 
oscillator, a ( t )  represents the variation in amplitude, @ ( t )  is 
the variation in phase, and f, is the oscillation frequency. 

v2 

Fig. 7. The trajectory of an oscillator shown in state space with and 
without a perturbation AV. By observing the time stamps (to, ..., t6) 
one can see that the deviation in amplitude dissipates while the 
deviation in Dhase does not. 

Since the oscillation is stable and the duration of the distur- 
bance is finite, the deviation in amplitude eventually decays 
away and the oscillator returns to its stable orbit (a( t )  + 0 as 
t + CO). In effect, there is a restoring force that tends to act 
against amplitude noise. This restoring force is a natural con- 
sequence of the nonlinear nature of the oscillator and at least 
partially suppresses amplitude variations. 
The oscillator is autonomous, and so any time-shifted version 
of the solution is also a solution. Once the phase has shifted 
due to a perturbation, the oscillator continues on as if never 
disturbed except for the shift in the phase of the oscillation. 
There is no restoring force on the phase and so phase devia- 
tions accumulate. A single perturbation causes the phase to 
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permanently shift (4(t) + AI$ as t + CO). If we neglect any 
short term time constants, it can be inferred that the impulse 
response of the phase deviation $(z) can be approximated with 
a unit step s(t). The phase shift over time for an arbitrary input 
disturbance U is 

m I 

-m -m 

or the power spectral density (PSD) of the phase is 

This shows that in all oscillators the response to any form of 
perturbation, including noise, is amplified and appears mainly 
in the phase. The amplification increases as the frequency of 
the perturbation approaches the frequency of oscillation. Var- 
ious approaches are available to improve the relative noise 
performance of the oscillator, such as using a resonator with a 
higher Q, increasing the output signal level relative to the 
noise (increases power dissipation), or using cleaner devices. 
However the 1IAf * amplification of noise that occurs in oscil- 
lators can only be removed by constraining the phase of the 
oscillator. This is accomplished by entraining the oscillator to 
another, cleaner signal, either by injection locking it to that 
signal, or by embedding it in a phase-locked loop for which 
that signal is the reference. 

C. Oscillator Voltage Noise and Phase Noise Spectra 
There are two different ways commonly used to characterize 
noise in an oscillator. S4 is the spectral density of the phase 
and S, is the spectral density of the voltage. S, contains both 
amplitude and phase noise components, but with oscillators 
the phase noise dominates except at frequencies far from the 
carrier and its harmonics. S, is directly observable on a spec- 
trum analyzer, whereas S4 is only observable if the signal is 
first passed through a phase detector. Another measure of 
oscillator noise is L, which is simply S, normalized to the 
power in the fundamental. 

Fig. 8. Two different ways of characterizing noise in the same 
oscillator. S is the spectral density of the phase and S,, is the spectral 
density of tte voltage. S,, contains both amplitude and phase noise 
components, but with oscillators the phase noise dominates except at 
frequencies far from the carrier and its harmonics. S, is directly 
observable on a spectrum analyzer, whereas S@ is only observable if 
the signal is first passed through a phase detector. 

As t + 00 the phase of the oscillator drifts without bound, and 
so S,+( A f )  + CO as Af + 0. However,. even as the phase drifts 
without bound, the excursion in the voltage is limited by the 

diameter of the limit cycle of the oscillator. Therefore, as Af 
-+ 0 the PSD of v flattens out, as shown in Figure 8. The more 
phase noise, broader the linewidth (the higher the comer fre- 
quency), and the lower signal amplitude within the linewidth. 
This happens because the phase noise does not affect the total 
power in the signal, it only affects its distribution. Without 
noise, S , ( f )  is a series of impulse functions at the harmonics 
of the oscillation frequency. With noise, the impulse func- 
tions spread, becoming fatter and shorter but retaining the 
same total power. 
The voltage noise S, is considered to be a small signal outside 
the linewidth and thus can be accurately predicted using 
small-signal analyses. Conversely, the voltage noise within 
the linewidth is a large signal (it is large enough to cause the 
circuit to behave nonlinearly) and cannot be predicted with 
small-signal analyses. Thus, small-signal noise analysis, such 
as is available from RF simulators, is valid only up to the cor- 
ner frequency (it does not model the comer itself). 

D. Oscillators and Frequency Correlation 
With driven cyclostationary systems that have a stable time 
reference, the correlation in frequency is a series of impulse 
functions separated by& = 1/T. Thus, noise atfi is correlated 
withf2 iff2 = f, + kfo, where k is an integer, and not other- 
wise. However, the phase produced by oscillators that exhibit 
phase noise is not stable. And while the noise produced by 
oscillators is correlated across frequency, the correlation is 
not a set of equally spaced impulses as it is with driven sys- 
tems [3]. Instead, the correlation is a set of smeared impulses. 
That is, noise atfi is correlated withf2 iff2 =fi + WO, where k 
is close to being integer. 
Technically, the noise produced by oscillators is not cyclosta- 
tionary [ 11. This distinction only becomes significant when 
the output of an oscillator is compared to its own output from 
the distant past. This might occur, for example, in a radar sys- 
tem where the current output of an oscillator might be mixed 
with the previous output after it was delayed by traveling to 
and from a distant object. It occurs because the phase of the 
oscillator has drifted randomly during the time-of-flight. If 
the time-of-flight is long enough, the phase difference 
between the two becomes completely randomized and the 
two signals can be treated as if they are non-synchronous (see 
section 111-A). Thus, the noise in the return signal can be 
taken as being stationary because it is ‘non-synchronous’ 
with the LO, even though the return signal and the LO are 
derived from the same oscillator. If the time-of-flight is very 
short, then there is no time for the phase difference between 
the two to become randomized and the noise is treated as if it 
is simply cyclostationary. Finally, if the time-of-flight signifi- 
cant but less than the time it takes the oscillator’s phase to 
become completely randomized, then the phase is only par- 
tially randomized. In this case, one must be careful to take 
into account the smearing in the correlation spectrum that 
occurs with oscillators. Because of these difficulties in inter- 
preting the oscillator frequency spectrum, it is wise to refer to 
the time-domain model implied in (4) when interpreting noise 
from autonomous oscillators. 
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E. Phase Noise Calculations 
To see how oscillator phase noise can be calculated, consider 
the effect of a small phase perturbation on the oscillator sig- 
nal. With observation times that are short (in other words, if 
we do not attempt to resolve frequencies to within the line- 
width of the oscillator), we can linearize (4) to obtain 

(7) 

This equation simply says that phase perturbations are those 
that align with tangential perturbations to the oscillator limit 
cycle. To analyze phase noise, we must determine how much 
each noise source contributes to perturbations in the oscillator 
state along the direction of the limit-cycle tangent. Because 
noise perturbations that contribute to tangential movements 
are not, in the general case, strictly tangential, accurate oscil- 
lator noise analysis requires some rather involved linear alge- 
braic calculations [ 131 that are derived from Floquet theory. 

V. JITTER 
Jitter is an undesired fluctuation in the timing of events. One 
models jitter in a signal by starting with a noise-free signal v 
and displacing time with a stochastic process j. The noisy sig- 
nal becomes 

v,{t) = v(t + j ( t ) ) .  (8) 
Jitter is equivalent to phase noise in (4) wherej = $/2nf,. It is 
used in situations where i t  is more natural to think of the noise 
being in the timing of events rather than in the phase or in the 
signal level. 

A .  Sources of Jitter 
In systems where signals are continuous valued, an event is 
usually defined as a signal crossing a threshold in a particular 
direction. ,The threshold crossings of a noiseless periodic sig- 
nal, v, are precisely evenly spaced. However, when noise is 
added to the signal, 

V,(O = v(t) + n w ,  (9) 
each threshold crossing is displaced slightly. Thus, a thresh- 
old converts additive noise to jitter. This is the way jitter is 
created in nonlinear circuits such as logic circuitry. 
The noise n and the jitterj can be related by expanding (8) 
into a Taylor series, setting v,(t) = vj(t), and dropping the high 
order terms, 

Then, the variance in the time of the threshold crossing is 

where tc is the expected time of the threshold crossing. 
Another important source of jitter is oscillator phase noise. To 
predict the jitter in an oscillator, assume that U in (5) is a 
white stationary process and define a such that 

f 2  
s4u> = a 2  

f2 ' 
wheref, = 1/T is the oscillation or carrier frequency. Demir 
[ 13 shows that the variance of the length of a single period is 
aT. The variance of the length of each period is uncorrelated 
and so the variance in the length of k periods is simply k times 
the variance of one period. The jitter Jk is the standard devia- 
tion of the length of k periods, and so 

Jk = S T .  (14) 

In the case where U represents flicker noise, S,( f )  is gener- 
ally pink or roportional to 1 6  Then S& f) would be propor- 

explicit formulas for Jb 

B. Eflect of Jitter 
Jitter in the time at which a signal is sampled creates noise in 
the result if the signal is changing at the time when it is sam- 
pled. This is one way in which noise is generated when con- 
verting continuous-time signals to discrete-time signals. 
Using (1  l), the variance of the noise can be computed from 
the variance of the jitter at the time of the sampling and the 
slewrate (or time derivative) of the input signal at the time of 
the sampling. 

tional to llf s at low frequencies [4]. In this case, there are no 

If one samples a constant valued signal, jitter in the time at 
which the sampling occurs does not create noise in the output. 
Thus, during flat portions of waveforms, an uncertainty in the 
sampling time creates no noise 

VI. NOISE AND JITTER IN LOGIC CIRCUITS 
Logic circuits are thresholding circuits and so ignore noise at 
the input when the input signal is far from the threshold. As 
such, logic circuits are only sensitive to noise at an input 
when that input is undergoing a transition. Similarly, logic 
circuits produce their highest noise levels at the output when 
the output is transitioning. Because of the strong variability in 
both the level of noise produced at the output and the sensitiv- 
ity to noise at the input, traditional approaches to describing 
noise, such as signal-to-noise ratio, are not very helpful when 
working with logic circuits. Instead, it is best to characterize 
the noise in terms of jitter. Once the jitter is known for the 
logic blocks that make up a system, it is generally relatively 
straight-foiward to compute the jitter of the system (the vari- 
ance of the jitter for a cascade of uncorrelated jitter sources is 
simply the sum of the variance of the jitter of each source 
individually). The difficulty, of course, is determining the jit- 
ter of the individual blocks. 
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A .  Cyclostationary Noise from Logic Circuits 
The noise produced by a logic circuit, such as the inverter 
shown in Figure 9, comes from different places depending on 
the phase of the output. When the output is high, the output is 
insensitive to small changes on the input. The transistor Mp is 
on, however, and the noise at the output is predominantly due 
to the thermal noise from its channel. When the output is low, 
the situation is reversed and most of the output noise is due to 
the thermal noise from the channel of MN When the output is 
transitioning, thermal noise from both Mp and MN contribute 
to the output. In addition, the output is sensitive to small 
changes in the input. In fact, any noise at the input is ampli- 
fied before reaching the output. Thus, noise from the input 
tends to dominate over the thermal noise from the channels of 
M p  and MN in this region. Noise at the input includes noise 
from the previous stage and thermal noise from the gate resis- 
tance. In addtion, with significant current flowing in the tran- 
sistors, flicker noise from the channel also contributes. 

In < Out 

* 
Fig. 9. Schematic of a inverter. 

B. Characterizing the Jitter of a Logic Circuit 

One can apply (12) to compute jitter of this circuit. To do so, 
one must drive the circuit with a representative periodic sig- 
nal while accurately modeling the input source and output 
load, both of which are typically other logic circuits. Both the 
slewrate and the noise must be determined at the time of the 
threshold crossing. This last point is very important. The total 
output noise power of a logic circuit would be dominated by 
the thermal noise produced by the output devices if the circuit 
spends most of its time with an unchanging output. This noise 
is usually ignored by subsequent stages and does not contrib- 
ute to jitter. Thus, using the time-averaged spectral density to 
characterize the noise in a logic circuit is misleading. Only 
the noise produced by a circuit at the point where its output 
crosses the threshold of the subsequent stage should be taken 
into account when characterizing the jitter of a logic circuit. 
There are several different ways of determining the noise pro- 
duced by a logic circuit at the time when its output crosses the 
threshold. All assume the availability of a circuit simulator 
that can perform a cyclostationary noise analysis. If the simu- 
lator can directly compute the noise level as a function of 
time, it is a simple matter to determine the time of the thresh- 
old crossing and use noise computed for that time. If the noise 
is output as a spectral density, it is necessary to integrate the 
noise over all frequencies to determine the total noise before 
applying (1 2). If the simulator can only compute the time- 
average noise, one can use a limiter or a sample-and-hold to 
isolate the noise at the threshold crossing [ 5 ] .  Each of these 
approaches make assumptions as to how sensitive a subse- 

quent stage will be to noise produced away from the thresh- 
old. If the simulator is capable of producing a summary of 
noise contributions from each noise source, then an alterna- 
tive approach would be to simulate both stages together and 
use the above techniques to measure the jitter at the output of 
the subsequent stage. When applying (12), only include the 
output noise contributed by noise sources within the stage 
being characterized. In this way both the loading and the 
noise sensitivity of the subsequent stage are accurately mod- 
eled. It is also possible and desirable to include a representa- 
tive driver stage. Noise generated by the driver and load 
stages are ignored by this method. 
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