cal equipment

Reference	xDevs.com	Calibration date	December 092020
Ref P/N	Volt	Ambient Temperature	$24.12{ }^{\circ} \mathrm{C}$
Serial	FX8	Relative Humidity	18.00 \%
ID Number	2nd Transfer, traceable	Pressure	1005.76 hPa
Notes	Battery powered standards	Test type	Front 5440A-7003 cable terminals, nulled DMM

Reference standard	Mfg	Model	Options	Serial / Unc	CEID	Calibration date	Due date
DC STD	xDevs.com	792X	$9.9999698 \pm 0.3 \mathrm{ppm}$	X102	XVR1	11/26/2020	05/26/2021
DC STD	Datron	4910	REDACTED $\pm 0.1 \mathrm{ppm}$	REDACTED	NVR1	12/03/2020	12/03/2021
DMM	Keysight	3458A/001/002	03	Process unit	XDM5	11/28/2020	12/28/2020
Thermometer	Fluke	1529	Omega RTD100CAP Class A	Process unit	XTM2	12/04/2020	12/04/2021

 expanded method and is expressed in values at approximately the 95% confidence level using a coverage factor of $\mathrm{K}=2$.
 of failure includes uncertainty data compilation. Calibration due date that appears on the Certificate of Calibration and labels are determined by the customer and does not imply conformance to a standard.
 zero offset is DUT is nulled prior to the measurement

Configuration : Battery power STD, NPLC100, NDIG8, Guard is open. DUT Reference powered by Keysight E36312A +/-12 VDC.

	Measurement	Unit	Uncertainty	Standard Deviation	DUT Spec / Δ	Degree of freedom / Notes
Transfer reference output	9.9999698	VDC	$\pm 0.300 \mathrm{ppm}$			
Reference measured output (+)	9.9999711	VDC	$\pm 0.100 \mathrm{ppm}$	$\sigma=2.439142 \mathrm{e}-07 \mathrm{VDC}$	$\Delta=0.134 \mathrm{ppm}$	20
Reference measured output (-)	-9.9999708	VDC	$\pm 0.100 \mathrm{ppm}$	$\sigma=2.008229 \mathrm{e}-07 \mathrm{VDC}$	$\Delta=0.097 \mathrm{ppm}$	20
Reference calculated + /-	9.9999710	VDC	$\pm 0.100 \mathrm{ppm}$		$\Delta=0.116 \mathrm{ppm}$	
Detector zero offset	0.0000007	VDC		$\sigma=8.803437 \mathrm{e}-08 \mathrm{VDC}$		
UUT measured output (+)	10.0000091	VDC	$\pm 0.100 \mathrm{ppm}$	$\sigma=2.540394 \mathrm{e}-07 \mathrm{VDC}$		20
UUT measured output (-)	-10.0000090	VDC	$\pm 0.100 \mathrm{ppm}$	$\sigma=2.431698 \mathrm{e}-07 \mathrm{VDC}$		20
Ratio positive polarity	1.00000380		$\pm 0.200 \mathrm{ppm}$			Inf
Ratio negative polarity	1.00000383		$\pm 0.200 \mathrm{ppm}$			Inf
UUT calculated output (+)	10.0000078	VDC	$\pm 0.500 \mathrm{ppm}$		$\Delta=-0.015 \mathrm{ppm}$	
UUT calculated output (-)	-10.0000081	VDC	$\pm 0.500 \mathrm{ppm}$		$\Delta=0.015 \mathrm{ppm}$	
Temperature Δ	-0.301	${ }^{\circ} \mathrm{C}$	$\pm 0.60{ }^{\circ} \mathrm{C}$		$\pm 1.0^{\circ} \mathrm{C}$	
UUT previous data	10.00000953	VDC	$\pm 0.400 \mathrm{ppm}$			Report
Deviation from previous measurement	-0.163 ppm	VDC				
UUT Expanded measurement (Linear) $\mathbf{k}=\mathbf{2}$	10.0000079	VDC	$\pm 0.500 \mathrm{ppm}$		0.1\%	In spec
UUT Expanded measurement (RSS) k=2	10.0000079	VDC	$\pm 0.361 \mathrm{ppm}$		0.1\%	In spec

Test procedure : \$Id: xfer_dcv.py | Rev 1989 | 2020/11/04 00:28:02 tin_fpga \$
Lab temperature maintained $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
xDevs.com Confidential

Array Ref [9.999971195, 9.99997116, 9.999971195, 9.999970982, 9.999970911, 9.99997068, 9.999971124, 9.999970804, 9.999971427, 9.999971355, 9.999970911, 9.999971053, 9.999971533, Array
Array Ref $[-9.999971284,-9.999971213,-9.999971498,-9.999971498,-9.999971302,-9.999970644,-9.999971035,-9.999971,-9.999970431,-9.999970804,-9.999970769,-9.999970413$, N $-9.999970804,--9.999970893,-9.999970769,-9.999971035,-9.999970555,-9.99997068,-9.999970537,-9.999970946$
$\begin{array}{ll}\text { Array } & {[10.00000861,10.00000901,10.00000917,10.00000911,10.00000901,10.00000922,10.00000927,10.00000961,10.00000933,10.00000883,10} \\ \text { UUT P } & 10.00000876,10.00000911,10.00000941,10.00000945,10.00000913,10.00000885,10.00000892,10.00000888]\end{array}$
Array $\quad[-10.00000892,-10.00000893,-10.0000087,-10.00000865,-10.00000849,-10.00000838,-10.00000904,-10.00000908,-10.00000911,-10.00000881$ UUT N $-10.00000904,-10.00000906,-10.00000952,-10.00000915,-10.00000922,-10.00000901,-10.00000874,-10.00000901]$

