

 __________________________________Maxim Integrated Products 1

ERRATA SHEET
MAXQ61H

 __ Revision B1 Errata

The errata listed below describe situations where MAXQ61H revision B1 components perform differently
than expected or differently than described in the data sheet. Maxim Integrated Products, Inc., intends to
correct these errata when the opportunity to redesign the product presents itself.

This errata sheet only applies to MAXQ61H revision B1 components. Revision B1 components are branded
on the topside of the package with a six-digit code in the form yywwB1, where yy and ww are two-digit
numbers representing the year and work week of manufacture, respectively. To obtain an errata sheet on
another MAXQ61H die revision, visit our website at www.maxim-ic.com/errata.

1) CANNOT EXECUTE A RETURN AT FLASH WORD ADDRESS 0x7FFF

Description:
A return instruction executed at word address 0x7FFF in flash memory does not return correctly to the
calling function.

Workaround:
Make sure this location does not hold a return instruction.

2) IDD CAN EXCEED SPECIFIED VALUES WITH SLOW VDD RISE TIME OR STEADY STATE
VOLTAGE BETWEEN VPOR AND VRST

Description:
IDD can exceed the specified maximum value by as much as 500µA if VDD is held at a voltage between
VPOR and VRST. This condition only occurs if VDD starts at a voltage lower than VPOR and then rises
above VPOR but remains below VRST. A standard brownout condition will not cause this errata behavior.

Workaround:
Guarantee that the VDD rise time is faster than 1.5V/s to minimize the time spent in the region between
VRST and VPFW. The system designer must ensure that VDD cannot remain in the region between VRST
and VPFW during power-up as a result of a low-voltage condition such as a discharged battery.

19-5463; Rev 2; 6/11

http://www.maxim-ic.com/errata�

MAXQ61H
REV B1 ERRATA

2 __
19-5463; Rev 2; 6/11

3) INTERRUPTS IMMEDIATELY PRECEEDING ENTRY INTO STOP MODE CAN AFFECT INTERRUPT
PRIORITY HANDLING

Description:
If an interrupt is received on the cycle preceding entry into stop mode, that interrupt is handled as if it
were high priority, regardless of the original priority. If the interrupt was not originally a high-priority
interrupt, the interrupt priority logic erroneously believes that another interrupt of the original priority is
still in progress. The existence of this false interrupt can prevent the activation of valid interrupts of the
same or lower priority.

Workaround:
There are several workarounds. A software example that performs workaround #2 of erratum #3 as well
as the fixes required for workaround #2 of erratum #4 is contained in the workaround section for erratum
#4.
1) Disable low and medium priority interrupts before entering stop mode. Re-enable them as desired

immediately after exiting stop mode. If low and medium priority interrupts are required in the
interrupt service routines, however, they can be re-enabled at the start of the interrupt service
routines.

2) Immediately following the NOP after stop mode, perform a POPI and matching PUSH instruction to
clear the interrupt logic and remove the false interrupts.

4) INTERRUPTS IMMEDIATELY PRECEEDING ENTRY INTO STOP MODE CAN AFFECT STACK
INTEGRITY

Description:
If an interrupt is received on the cycle preceding entry into stop mode, the stop-mode logic pushes an
additional return address onto the stack in addition to the one pushed by the interrupt logic. The
additional write to the stack offsets all stack values by one word.

Workaround:
There are several workarounds. A software example that performs workaround #2 of erratum #3 as well
as the fixes required for workaround #2 of erratum #4 is below.
1) Disable low and medium priority interrupts before entering stop mode. Re-enable them as desired

immediately after exiting stop mode. If low and medium priority interrupts are required in the
interrupt service routines, however, they can be re-enabled at the start of the interrupt service
routines.

2) Save the stack pointer in an intermediate location before entering stop mode. After the interrupt
service routine is complete, the code resumes with the instruction following the instruction that
activates stop mode. Read the stack pointer and compare it to the saved value. If they are not
identical, that means that an extra value was pushed onto the stack. Perform a POP instruction,
disregarding the returned value, to remove the extra data from the stack. An example of this
procedure is:

MAXQ61H
REV B1 ERRATA

 ___ 3

19-5463; Rev 2; 6/11

 move CORRECT_STACK_VALUE, SP ; Save current SP value into a temp register

 move CKCN.4, #1 ; Enter STOP mode
 nop ; NOP that is necessary for errata #2

 move SCRATCH_REGISTER, ACC ; Save contents of ACC to unused register

repairIPS:
 move ACC, IC ; Get register holding IPS bits
 and #0Ch ; Mask off everything but IPS bits
 cmp #0Ch ; Check for proper value
 jump E, ipsFixed ; If IPS == 0x3, no damage was done
 popi ACC ; else, do a popi to clear current interrupt level
 push ACC ; Need to put the popped value back
 jump repairIPS: ; Repeat until IPS == 0x03
ipsFixed:

repairStack:
 move ACC, SP ; Get current stack value
 cmp CORRECT_STACK_VALUE ; Compare against pre-stop value
 jump E, stackFixed ; If they match, no damage was done
 pop nul ; else, pop off the extra value that was stored
 jump repairStack: ; Repeat until SP is back to its original value
stackFixed:

 move ACC, SCRATCH_REGISTER ; Restore contents of ACC

5) PUSH INSTRUCTION CAUSES CODE EXECUTION ERROR WHEN THE MOD[1:0] BITS HAVE

BEEN CHANGED FROM THEIR DEFAULT VALUES

Description:
Changing the MOD[1:0] bits (APC[2:0]) from their default value can cause the device to operate
incorrectly any time a PUSH instruction is followed by any instruction which reads the active
accumulator.

Workaround:
The user must ensure that software never changes the MOD[1:0] bits of the AP register from their
default value of 00b.

6) USE OF INTERRUPT PRIORITY FEATURE CAN CAUSE INCORRECT PROCESSING OF
INTERRUPTS

Description:
An interrupt that is followed immediately by a higher priority interrupt can cause the CPU to incorrectly
service the interrupts.

Workaround:
Do not use high-priority interrupts. Do not modify the IPR0 or IPR1 registers from their reset value. This
sets all interrupt sources to the lowest (default) priority level.

MAXQ61H
REV B1 ERRATA

4 __
19-5463; Rev 2; 6/11

REVISION HISTORY
REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED
0 7/10 Initial release —
1 11/10 Added erratum #5 (PUSH Instruction) 3
2 6/11 Added erratum #6 (Interrupt Priority) 3

	Revision B1 Errata

