
Linux-GPIB 4.3.3 Documentation
Frank Mori Hess

fmhess@users.sourceforge.net

Dave Penkler

dpenkler@gmail.com

Copyright © 2003-2006, 2008 Frank Mori Hess

Table of Contents
Copying...3
Configuration...3
Supported Hardware..9
Linux-GPIB Reference ...14
GPIB protocol ..81
A. GNU Free Documentation License ..84

Copying
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section enti-
tled "GNU Free Documentation License".

Alternatively, you may redistribute and/or modify this document under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

Configuration
Configuration of the GPIB library is accomplished through the configuration file
gpib.conf, and the administration program gpib_config.

gpib.conf

Name
gpib.conf — GPIB library configuration file

Description
The library, and the administration tool gpib_config read their configuration infor-
mation from the file gpib.conf. The file is located in the sysconfdir directory con-
figured when linux-gpib was compiled. The sysconfdir is typically set to /etc or
/usr/local/etc. A template gpib.conf file can be found in the util/templates/ sub-
directory of the linux-gpib package.

The configuration file must contain one or more ’interface’ entries, and can contain
zero or more ’device’ entries. ’device’ entries are only required if you wish to open
device descriptors with ibfind() instead of using ibdev(). Several example entries, and
a table summarizing the possible options follow.

interface {
minor = 0
board_type = "ni_pci"
pad = 0
master = yes

}

interface {
minor = 1
board_type = "ines_pci"
name = "joe"
pad = 5
sad = 0
timeout = T10s
pci_bus = 0
pci_slot = 0xd
master = no

}

interface {
minor = 2
board_type = "pcII"
pad = 3
sad = 0x62

3

Linux-GPIB 4.3.3 Documentation

eos = 0x0d
set-reos = yes
set-bin = no
set-xeos = no
set-eot = yes
base = 0x300
irq = 5
dma = 0
master = no

}

device {
minor = 0
name = "counter"
pad = 24

}

device {
minor = 0
name = "voltmeter"
pad = 7
sad = 110
eos = 0xa
set-reos = yes
set-bin = no
set-xeos = yes
set-eot = no
timeout = T1s

}

Table 1. configuration options

option name description used by interface
or device entries

required or
optional

base Specifies the base ioport or
io memory address for a
board that lacks
plug-and-play capability.

interface optional

board_type Specifies the type
of interface board.
See the drivers.txt
file for a list of
possible board
types, and the
kernel driver
module that
supports them.

interface required

dma Specifies the dma
channel for a board
that lacks
plug-and-play
capability.

interface optional

4

Linux-GPIB 4.3.3 Documentation

option name description used by interface
or device entries

required or
optional

eos Sets the
end-of-string byte
for board or device
descriptors
obtained with
ibfind(). See also
the set-reos,
set-bin, and
set-xeos options.

interface or device optional

irq Specifies the
interrupt level for a
board that lacks
plug-and-play
capability.

interface optional

master Set to ’yes’ if you
want the interface
board to be the
system controller
of the bus. There
can only be one
system controller
on a bus.

interface required

minor ’minor’ specifies
the minor number
of the device file
this interface board
will use. A ’minor’
of 0 corresponds to
/dev/gpib0, 1 is
/dev/gpib1, etc.
The minor number
is also equal to the
’board index’
which can be used
as a board
descriptor, and is
passed as one of
the arguments of
ibdev()

interface required

name The ’name’
specifies the name
which can be used
with ibfind() to get
a descriptor for the
board or device
associated with this
entry.

interface or device optional

5

Linux-GPIB 4.3.3 Documentation

option name description used by interface
or device entries

required or
optional

pad Specifies the
primary GPIB
address (valid
addresses are 0 to
30). For interfaces,
this is the primary
address that the
board will be
assigned when it is
first brought
online. For devices,
this is address that
will be used by
device descriptors
obtained with
ibfind().

interface or device required

pci_bus Useful for
distinguishing
between multiple
PCI cards. If you
have more than
one PCI card that
with the same
’board_type’, you
can use the
’pci_bus’ and
’pci_slot’ options to
specify the
particular card you
are interested in.

interface optional

pci_slot Can be used in
conjunction with
’pci_bus’ to specify
a particular pci
card.

interface optional

sad Specifies the
secondary GPIB
address. Valid
values are 0, or
0x60 to 0x7e
hexadecimal (96 to
126 decimal). A
value of 0 means
secondary
addressing is
disabled (the
default). Secondary
addresses from 0 to
30 are specified by
the library’s
convention of
adding an offset of
0x60.

interface or device optional

6

Linux-GPIB 4.3.3 Documentation

option name description used by interface
or device entries

required or
optional

set-bin Enables 8-bit
comparisons when
matching the
end-of-string byte,
instead of only
comparing the 7
least significant
bits. Only affects
descriptors
returned by
ibfind(), and has
same effect as
setting the BIN bit
in a ibeos() call.

interface or device optional

set-eot Enables assertion
of the EOI line at
the end of writes,
for descriptors
returned by
ibfind(). See ibeot().

interface or device optional

set-reos Enables the
termination of
reads on reception
of the end-of-string
byte for descriptors
returned by
ibfind(). Same as
setting the REOS
bit in a ibeos() call.

interface or device optional

set-xeos Enables the
assertion of EOI on
transmission of the
end-of-string byte
for descriptors
returned by
ibfind(). Same as
setting the XEOS
bit in a ibeos() call.

interface or device optional

sysfs_device_path A string which
may be used to
select a particular
piece of hardware
by its sysfs device
path.

interface optional

timeout Sets the io timeout
for a board or
device descriptor
opened through
ibfind(). The
possible settings
are the same as the
constants used by
ibtmo().

interface or device optional

7

Linux-GPIB 4.3.3 Documentation

gpib_config

Name
gpib_config — GPIB administration program

Synopsis

gpib_config [--minor number]

gpib_config [--board-type board_type] [--device-file file_path] [--dma
number] [--file file_path] [--help] [--iobase number] [--ifc] [--no-ifc] [--init-data
file_path] [--irq number] [--minor number] [--offline] [--pad
number] [--pci-bus number] [--pci-slot number] [--sad number] [--
serial-number serial_number] [--sre] [--no-sre] [--sysfs-device-path
sysfs_device_path] [--system-controller] [--no-system-controller] [--version]

Description
gpib_config must be run after the kernel driver module for a GPIB interface board
is loaded. It performs configuration of driver settings that cannot be performed by
libgpib at runtime. This includes configuration which requires root privilege (for ex-
ample, setting the base address or irq of a board), and configuration which should
only be performed once and not automatically redone every time a program using
libgpib is run (for example, setting the board’s GPIB address).

The board to be configured by gpib_config is selected by the --minor option. By
default, the board settings are read from the gpib.conf configuration file. However,
individual settings can be overiden by use of command-line options (see below).

Options
-t, --board-type board_type

Set board type to board_type.

-c, --device-file file_path

Specify character device file path for the board. This can be used as an alternative to
the --minor option.

-d, --dma number

Specify isa dma channel number for boards without plug-and-play cabability.

-f, --file file_path

Specify file path for configuration file. The values in the configuration file will
be used as defaults for unspecified options. The default configuration file is
"sysconfdir/gpib.conf".

-h, --help

Print help on options and exit.

-I, --init-data file_path

8

Linux-GPIB 4.3.3 Documentation

Upload binary initialization data (firmware) from file_path to board.

--[no-]ifc

Perform (or not) interface clear after bringing board online. Default is --ifc.

-b, --iobase number

Set io base address to number for boards without plug-and-play cabability.

-i, --irq number

Specify irq line number for boards without plug-and-play cabability.

-m, --minor number

Configure gpib device file with minor number number (default is 0).

-o, --offline

Unconfigure an already configured board, don’t bring board online.

-p, --pad number

Specify primary gpib address. number should be in the range 0 through 30.

-u, --pci-bus number

Specify pci bus number to select a specific pci board. If used, you must also specify
the pci slot with --pci-slot.

-l, --pci-slot number

Specify pci slot number to select a specific pci board. If used, you must also specify
the pci bus with --pci-bus.

-s, --sad number

Specify secondary gpib address. number should be 0 (disabled) or in the range 96
through 126 (0x60 through 0x7e hexadecimal).

--[no-]sre

Assert (or not) remote enable line after bringing board online. Default is --sre.

-a, --sysfs-device-path dev_path

Select a specific board to attach by its sysfs device path. The sysfs device path is the
absolute path to the device’s directory under /sys/devices, with the leading "/sys"
stripped off. The device path is available in udev scripts as the DEVPATH variable.

--[no-]system-controller

Configure board as system controller (or not).

-v, --version

Prints the current linux-gpib version and exits.

Supported Hardware

Supported Hardware Matrix

Table 2. Linux-GPIB Supported Hardware Matrix

make model kernel driver
module

board_type (for
gpib.conf)

9

Linux-GPIB 4.3.3 Documentation

make model kernel driver
module

board_type (for
gpib.conf)

Agilent (HP) 82341C hp_82341.ko hp_82341

Agilent (HP) 82341D hp_82341.ko hp_82341

Agilent (HP) 82350A agilent_82350b.ko agilent_82350b

Agilent 82350B agilent_82350b.ko agilent_82350b

Agilent 82351A agilent_82350b.ko agilent_82350b

Agilent 82357A agilent_82357a.ko agilent_82357a

Agilent 82357B agilent_82357a.ko agilent_82357a

Beiming
Technologies

F82357 agilent_82357a.ko agilent_82357a

Beiming
Technologies

S82357 agilent_82357a.ko agilent_82357a

Capital Equipment
Corporation

PC-488 pc2_gpib.ko pcII

Capital Equipment
Corporation

PCI-488 cec_gpib.ko cec_pci

Capital Equipment
Corporation

CEC-488 tnt4882.ko ni_pci

CONTEC GP-IB(PC) pc2_gpib.ko pcIIa

Frank Mori Hess fmh_gpib_core fmh_gpib.ko fmh_gpib,
fmh_gpib_unaccel

Hameg HO80 pc2_gpib.ko pcII

Hameg HO80-2 ines_gpib.ko ines_isa

Hewlett Packard HP82335 hp82335.ko hp82335

Hewlett Packard HP27209 hp82335.ko hp82335

Ines GPIB-HS-NT ines_gpib.ko ines_isa

Ines GPIB for Compact
PCI

ines_gpib.ko ines_pci,
ines_pci_unaccel

Ines GPIB for PCI ines_gpib.ko ines_pci,
ines_pci_unaccel

Ines GPIB for PCMCIA ines_gpib.ko ines_pcmcia,
ines_pcmcia_unaccel

Ines GPIB PC/104 ines_gpib.ko ines_isa

Iotech GP488B pc2_gpib.ko pcIIa

Keithley KPCI-488 cec_gpib.ko cec_pci

Keithley KUSB-488 ni_usb_gpib.ko ni_usb_b

Keithley KUSB-488A ni_usb_gpib.ko ni_usb_b

Keithley MBC-488 pc2_gpib.ko pcII

Keysight (Agilent) 82350B PCI agilent_82350b.ko agilent_82350b

Keysight (Agilent) 82351A PCIe agilent_82350b.ko agilent_82350b

Keysight (Agilent) 82357B USB agilent_82357a.ko agilent_82357a

10

Linux-GPIB 4.3.3 Documentation

make model kernel driver
module

board_type (for
gpib.conf)

Measurement
Computing
(Computer Boards)

CPCI-GPIB cb7210.ko cbi_pci,
cbi_pci_unaccel

Measurement
Computing
(Computer Boards)

ISA-GPIB cb7210.ko cbi_isa,
cbi_isa_unaccel

Measurement
Computing
(Computer Boards)

ISA-GPIB/LC cb7210.ko cbi_isa_unaccel

Measurement
Computing
(Computer Boards)

ISA-GPIB-PC2A pc2_gpib.ko pcIIa (nec7210
chip), pcIIa_cb7210
(cb7210 chip)

Measurement
Computing
(Computer Boards)

PCI-GPIB/1M cb7210.ko cbi_pci,
cbi_pci_unaccel

Measurement
Computing
(Computer Boards)

PCI-GPIB/300K cb7210.ko cbi_pci_unaccel

Measurement
Computing
(Computer Boards)

PCMCIA-GPIB cb7210.ko cbi_pcmcia,
cbi_pcmcia_unaccel

Measurement
Computing
(Computer Boards)

USB-488 ni_usb_gpib.ko ni_usb_b

National
Instruments

AT-GPIB (with
NAT4882 chip)

tnt4882.ko ni_nat4882_isa,
ni_nat4882_isa_accel

National
Instruments

AT-GPIB (with
NEC7210 chip)

tnt4882.ko ni_nec_isa,
ni_nec_isa_accel

National
Instruments

AT-GPIB/TNT tnt4882.ko ni_isa, ni_isa_accel

National
Instruments

GPIB-USB-B ni_usb_gpib.ko ni_usb_b

National
Instruments

GPIB-USB-HS ni_usb_gpib.ko ni_usb_b

National
Instruments

GPIB-USB-HS+ ni_usb_gpib.ko ni_usb_b

National
Instruments

PCI-GPIB tnt4882.ko ni_pci

National
Instruments

PCIe-GPIB tnt4882.ko ni_pci

11

Linux-GPIB 4.3.3 Documentation

make model kernel driver
module

board_type (for
gpib.conf)

National
Instruments

PCI-GPIB+ tnt4882.ko ni_pci

National
Instruments

PCM-GPIB tnt4882.ko ni_pci

National
Instruments

PXI-GPIB tnt4882.ko ni_pci

National
Instruments

PCII pc2_gpib.ko pcII

National
Instruments

PCIIa pc2_gpib.ko pcIIa

National
Instruments

PCII/IIa pc2_gpib.ko pcII or pcII_IIa
(depending on
board switch)

National
Instruments

PCMCIA-GPIB tnt4882.ko ni_pcmcia,
ni_pcmcia_accel

self-made (see
note)

http://lpvo.fe.uni-
lj.si/gpib

lpvo_usb_gpib.ko lpvo_usb_gpib

Quancom PCIGPIB-1 ines_gpib.ko (Ines
iGPIB 72010 chip)
or cb7210.ko
(Measurement
Computing cb7210
chip)

ines_pci or
ines_pci_unaccel
(Ines iGPIB 72010
chip),
cbi_pci_unaccel
(Measurement
Computing cb7210
chip)

Board-Specific Notes

Agilent (HP) 82341
After power-up, the Agilent 82341 boards require a firmware upload before they can
be used. This can be accomplished using the "--init-data" option of gpib_config. The
firmware data for the boards can be found at this repository1. Note the C and D
versions use different firmware data.

If you specify a non-zero base address in gpib.conf, the driver will assume you are
trying to configure a 82341C. Otherwise, the driver will use the kernel’s ISAPNP
support to attempt to configure an 82341D.

The 82341 does not support detection of an end-of-string character in hardware, it
only automatically detects the when the EOI line is asserted. Thus if you use the
REOS flag for a read, the board’s fifos will not be used for the transfer. This will
greatly reduce the maximum transfer rate for your board (which may or may not be
noticeable depending on the device you are talking to).

Agilent 82350A/B and 82351A
The Agilent 82350A/B and 82351A boards do not support detection of an end-of-
string character during reads in hardware, they can only detect assertion of the EOI
line. Thus if you use the REOS flag for a read, the boards’ fifos will not be used for the

12

Linux-GPIB 4.3.3 Documentation

transfer. This will greatly reduce the maximum transfer rate for your board (which
may or may not be noticeable depending on the device you are talking to).

After power-up, the 82350A boards require a firmware upload before they can be
used. This can be accomplished using the "--init-data" option of gpib_config. The
firmware data for the 82350A can be found at this repository2. The 82350B and 82351A
do not require a firmware upload.

Agilent 82357A/B
The Agilent 82357A and 82357B require a firmware upload (before gpib_config is run)
to become functional after being plugged in. The linux-gpib tarball contains udev
rules for automatically running the fxload program to upload the firmware (and to
run gpib_config after the firmware is uploaded). However, the actual firmware data
itself must be obtained seperately. It can be found at this repository3.

The 82357A/B have a few limitation due to their firmware code:

• They cannot be run as a device, but must be the system controller.

• They cannot be assigned a secondary address.

• They cannot do 7 bit compares when looking for an end-of-string character (they
always compare all 8 bits).

Beiming F/S82357
Linux-gpib support requires a minimum firmware version of 1.10 for the F82357 and
version 1.20 for the S82357. These devices have on-board firmware and do not require
a firmware upload before becoming functional afer plug-in. The on-board firmware
can be re-flashed; contact the manufacturer for firmware and re-flash procedure.

Limitations:

• These devices can only be used as system controllers.

• They can only do 8-bit end-of-string (EOS) compares.

fmh_gpib_core
fmh_gpib_core is a GPIB chip written in VHDL suitable for
programming into a FPGA. The code for the chip may be found at
https://github.com/fmhess/fmh_gpib_core. It supports a cb7210.2 style register
interface with some extensions. More specifically, the driver is for the hardware
layout specified in src/example/fmh_gpib_top.vhd file in the fmh_gpib_core
repository.

The driver obtains its hardware information (base addresses, interrupt, dma, etc.)
from the device tree. It expects to find two i/o memory resources, an interrupt, and
a dma channel. One i/o memory resource is called "gpib_control_status" which con-
tains the 8 bit cb7210.2 registers. The other i/o memory resource is called "dma_fifos"
and contains 16 bit registers for the fifos and transfer counter. The dma channel the
chip is wired to is specified with the standard "dmas" and "dma-names" fields, with
a dma-name of "rxtx". So, the device tree entry for a chip connected to channel 2 of
dma controller "dmac" might look something like:

fmh_gpib_0: fmh_gpib@0x00049800 {

13

Linux-GPIB 4.3.3 Documentation

compatible = "fmhess,fmh_gpib_core";
reg = < 0x00049600 0x00000080

0x00049800 0x00000008 >;
reg-names = "gpib_control_status", "dma_fifos";
interrupt-parent = < &intc >;
interrupts = < 0 57 4 >;
dmas = < &dmac 2 >;
dma-names = "rxtx";

}; //end fmh_gpib@0x00049800 (fmh_gpib_0)

Self-made usb-gpib adapter
This usb-gpib adapter can be assembled following the project from the Laboratory of
Photovoltaics and Optoelectronics at the Faculty of Electrical Engineering, Univer-
sity of Ljubljana. It is available at http://lpvo.fe.uni-lj.si/gpib . The adapter allows
the control of GPIB devices with some limitations: it can only be the system con-
troller; multicontroller and device operations are not supported (as yet). The linux-
gpib driver ’lpvo_usb_gpib’, written at the Department of Physics of University of
Florence (Italy), is currently under development. It offers basic capabilities like ibrd(),
ibwrt(), WaitSRQ() and others. Requests for unsupported features are flagged by a di-
agnostic message to syslog.

The driver assumes by default that the adapter is connected to port ttyUSB0. It is
possible to change the 0 into any value n in the range 0-99 with the gpib_config option
-b n (or base = n in the configuration file). Currently there is no way for the kernel
to know that a gpib adapter of this kind is available, hence the following commands
have to be entered manually (as root), before gpib_config (n is the port number as
before)

modprobe lpvo_usb_gpib
stty raw -echo -iexten -F /dev/ttyUSBn
gpib_config ...

National Instruments GPIB-USB-B
The USB-B requires a firmware upload (before gpib_config is run) to become func-
tional after being plugged in. The linux-gpib tarball contains udev rules for automat-
ically running the fxload program to upload the firmware (and to run gpib_config
after the firmware is uploaded). However, the actual firmware must be obtained sep-
arately. It can be found at this repository6.

National Instruments GPIB-USB-HS and GPIP-USB-HS+
Unlike the USB-B, the USB-HS does not require a firmware upload to become func-
tional after being plugged in. Most GPIB-USB-HS+ also do not require firmware up-
load, however some exceptions have been identified. If your GPIB-USB-HS+ initially
comes up with a USB product id of 0x761e it will require a one-time firmware upload
which permanently changes the product id to the usual 0x7618 for a GPIB-USB-HS+.
Currently this can be done by plugging the adapter into a Windows computer which
has the NI driver software installed. Alternatively, you may use the hsplus_load7

utility to initialize the adapter under Linux.

The linux-gpib tarball contains udev rules which will automatically run gpib_config
after the device is plugged in.

14

Linux-GPIB 4.3.3 Documentation

Linux-GPIB Reference
Reference for libgpib functions, macros, and constants.

Global Variables

ibcnt and ibcntl

Name
ibcnt and ibcntl — hold number of bytes transferred, or errno

Synopsis

#include <gpib/ib.h>

volatile int ibcnt;
volatile long ibcntl;

Description
ibcnt and ibcntl are set after IO operations to the the the number of bytes sent or
received. They are also set to the value of errno after EDVR or EFSO errors.

If you wish to avoid using a global variable, you may instead use ThreadIbcnt() or
ThreadIbcntl() which return thread-specific values.

iberr

Name
iberr — holds error code

Synopsis

#include <gpib/ib.h>

volatile int iberr;

Description
iberr is set whenever a function from the ’traditional’ or ’multidevice’ API fails with
an error. The meaning of each possible value of iberr is summarized in the following
table:

15

Linux-GPIB 4.3.3 Documentation

constant value meaning

Table 1. iberr error codes

constant value meaning

EDVR 0 A system call has failed.
ibcnt/ibcntl will be set to
the value of errno.

ECIC 1 Your interface board needs
to be controller-in-charge,
but is not.

ENOL 2 You have attempted to
write data or command
bytes, but there are no
listeners currently
addressed.

EADR 3 The interface board has
failed to address itself
properly before starting
an io operation.

EARG 4 One or more arguments to
the function call were
invalid.

ESAC 5 The interface board needs
to be system controller,
but is not.

EABO 6 A read or write of data
bytes has been aborted,
possibly due to a timeout
or reception of a device
clear command.

ENEB 7 The GPIB interface board
does not exist, its driver is
not loaded, or it is not
configured properly.

EDMA 8 Not used (DMA error),
included for compatibility
purposes.

EOIP 10 Function call can not
proceed due to an
asynchronous IO
operation (ibrda(),
ibwrta(), or ibcmda()) in
progress.

ECAP 11 Incapable of executing
function call, due the
GPIB board lacking the
capability, or the
capability being disabled
in software.

EFSO 12 File system error.
ibcnt/ibcntl will be set to
the value of errno.

16

Linux-GPIB 4.3.3 Documentation

constant value meaning
EBUS 14 An attempt to write

command bytes to the bus
has timed out.

ESTB 15 One or more serial poll
status bytes have been
lost. This can occur due to
too many status bytes
accumulating (through
automatic serial polling)
without being read.

ESRQ 16 The serial poll request
service line is stuck on.
This can occur if a
physical device on the bus
requests service, but its
GPIB address has not been
opened (via ibdev() for
example) by any process.
Thus the automatic serial
polling routines are
unaware of the device’s
existence and will never
serial poll it.

ETAB 20 This error can be returned
by ibevent(), FindLstn(),
or FindRQS(). See their
descriptions for more
information.

If you wish to avoid using a global variable, you may instead use ThreadIberr() which
returns a thread-specific value.

ibsta

Name
ibsta — holds status

Synopsis

#include <gpib/ib.h>

volatile int ibsta;

Description
ibsta is set whenever a function from the ’traditional’ or ’multidevice’ API is called.
Each of the bits in ibsta has a different meaning, summarized in the following table:

17

Linux-GPIB 4.3.3 Documentation

Table 1. ibsta Bits

bit value
(hexadecimal)

meaning used for
board/device

DCAS 0x1 DCAS is set when a
board receives the
device clear
command (that is,
the SDC or DCL
command byte). It
is cleared on the
next ’traditional’ or
’multidevice’
function call
following ibwait()
(with DCAS set in
the wait mask), or
following a read or
write (ibrd(),
ibwrt(), Receive(),
etc.). The DCAS
and DTAS bits will
only be set if the
event queue is
disabled. The event
queue may be
disabled with
ibconfig().

board

DTAS 0x2 DTAS is set when a
board has received
a device trigger
command (that is,
the GET command
byte). It is cleared
on the next
’traditional’ or
’multidevice’
function call
following ibwait()
(with DTAS in the
wait mask). The
DCAS and DTAS
bits will only be set
if the event queue
is disabled. The
event queue may
be disabled with
ibconfig().

board

LACS 0x4 Board is currently
addressed as a
listener (IEEE
listener state
machine is in LACS
or LADS).

board

18

Linux-GPIB 4.3.3 Documentation

bit value
(hexadecimal)

meaning used for
board/device

TACS 0x8 Board is currently
addressed as talker
(IEEE talker state
machine is in TACS
or TADS).

board

ATN 0x10 The ATN line is
asserted.

board

CIC 0x20 Board is controller-
in-charge, so it is
able to set the ATN
line.

board

REM 0x40 Board is in ’remote’
state.

board

LOK 0x80 Board is in
’lockout’ state.

board

CMPL 0x100 I/O operation is
complete. Useful
for determining
when an
asynchronous I/O
operation (ibrda(),
ibwrta(), etc) has
completed.

board or device

EVENT 0x200 One or more clear,
trigger, or interface
clear events have
been received, and
are available in the
event queue (see
ibevent()). The
EVENT bit will
only be set if the
event queue is
enabled. The event
queue may be
enabled with
ibconfig().

board

SPOLL 0x400 If this bit is enabled
(see ibconfig()), it is
set when the board
is serial polled. The
SPOLL bit is
cleared when the
board requests
service (see ibrsv())
or you call ibwait()
on the board with
SPOLL in the wait
mask.

board

19

Linux-GPIB 4.3.3 Documentation

bit value
(hexadecimal)

meaning used for
board/device

RQS 0x800 RQS indicates that
the device has
requested service,
and one or more
status bytes are
available for
reading with
ibrsp(). RQS will
only be set if you
have automatic
serial polling
enabled (see
ibconfig()).

device

SRQI 0x1000 SRQI indicates that
a device connected
to the board is
asserting the SRQ
line. It is only set if
the board is the
controller-in-
charge. If
automatic serial
polling is enabled
(see ibconfig()),
SRQI will generally
be cleared, since
when a device
requests service it
will be
automatically
polled and then
unassert SRQ.

board

END 0x2000 END is set if the
last io operation
ended with the EOI
line asserted, and
may be set on
reception of the
end-of-string
character. The
IbcEndBitIsNormal
option of ibconfig()
can be used to
configure whether
or not END should
be set on reception
of the eos character.

board or device

TIMO 0x4000 TIMO indicates
that the last io
operation or
ibwait() timed out.

board or device

20

Linux-GPIB 4.3.3 Documentation

bit value
(hexadecimal)

meaning used for
board/device

ERR 0x8000 ERR is set if the last
’traditional’ or
’multidevice’
function call failed.
The global variable
iberr will be set
indicate the cause
of the error.

board or device

If you wish to avoid using a global variable, you may instead use ThreadIbsta() which
returns a thread-specific value.

’Traditional’ API Functions

ibask

Name
ibask — query configuration (board or device)

Synopsis

#include <gpib/ib.h>
int ibask(int ud, int option, int *result);

Description
Queries various configuration settings associated with the board or device descriptor
ud. The option argument specifies the particular setting you wish to query. The result
of the query is written to the location specified by result. To change the descriptor’s
configuration, see ibconfig().

Table 1. ibask options

option value
(hexadecimal)

result of query used for
board/device

IbaPAD 0x1 GPIB primary address board or device

IbaSAD 0x2 GPIB secondary
address (0 for none,
0x60 to 0x7e for
secondary
addresses 0 to 30)

board or device

21

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

result of query used for
board/device

IbaTMO 0x3 Timeout setting for
io operations (a
number from 0 to
17). See ibmto().

board or device

IbaEOT 0x4 Nonzero if EOI is
asserted with last
byte on writes. See
ibeot().

IbaPPC 0x5 Parallel poll
configuration. See
ibppc().

board

IbaREADDR 0x6 Useless, included
for compatibility
only.

device

IbaAUTOPOLL 0x7 Nonzero if
automatic serial
polling is enabled.

board

IbaCICPROT 0x8 Useless, included
for compatibility
only.

board

IbaSC 0xa Nonzero if board is
system controller.
See ibrsc().

board

IbaSRE 0xb Nonzero if board
autmatically
asserts REN line
when it becomes
the system
controller. See
ibsre().

board

IbaEOSrd 0xc Nonzero if
termination of
reads on reception
of the end-of-string
character is
enabled. See
ibeos(), in
particular the
REOS bit.

board or device

IbaEOSwrt 0xd Nonzero if EOI is
asserted whenever
end-of-string
character is sent.
See ibeos(), in
particular the
XEOS bit.

board or device

22

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

result of query used for
board/device

IbaEOScmp 0xe Nonzero if all 8 bits
are used to match
end-of-string
character. Zero if
only least
significant 7 bits
are used. See
ibeos(), in
particular the BIN
bit.

board or device

IbaEOSchar 0xf The end-of-string
byte.

board or device

IbaPP2 0x10 Nonzero if in local
parallel poll
configure mode.
Zero if in remote
parallel poll
configure mode.

board

IbaTIMING 0x11 Number indicating
T1 delay. 1 for 2
microseconds, 2 for
500 nanoseconds, 3
for 350
nanoseconds. The
values are declared
in the header files
as the constants
T1_DELAY_2000ns,
T1_DELAY_500ns,
and
T1_DELAY_350ns.

board

IbaReadAdjust 0x13 Nonzero if byte
pairs are
automatically
swapped during
reads.

board or device

IbaWriteAdjust 0x14 Nonzero if byte
pairs are
automatically
swapped during
writes.

board or device

IbaEventQueue 0x15 Nonzero if event
queue is enabled.

board

IbaSPollBit 0x16 Nonzero if the use
of the SPOLL bit in
ibsta is enabled.

board

23

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

result of query used for
board/device

IbaSendLLO 0x17 Nonzero if devices
connected to this
board are
automatically put
into local lockout
mode when
brought online
with ibfind() or
ibdev().

board

IbaSPollTime 0x18 Timeout for serial
polls. The value of
the result is
between 0 and 17,
and has the same
meaning as in
ibtmo().

device

IbaPPollTime 0x19 Timeout for
parallel polls. The
value of the result
is between 0 and
17, and has the
same meaning as in
ibtmo().

board

IbaEndBitIsNormal 0x1a Nonzero if END bit
of ibsta is set on
reception of
end-of-string
character or EOI.
Zero if END bit is
only set on EOI.

board or device

IbaUnAddr 0x1b Nonzero if UNT
(untalk) and UNL
(unlisten)
commands are
automatically sent
after a completed
io operation using
this descriptor.

device

IbaHSCableLength 0x1f Useless, included
only for
compatibility.

board

IbaIst 0x20 Individual status
bit, a.k.a. ’ist’.

board

IbaRsv 0x21 The current status
byte this board will
use to respond to
serial polls.

board

24

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

result of query used for
board/device

IbaBNA 0x200 Board index (minor
number) of
interface board
which is the
controller-in-
charge of this
device’s GPIB bus.

device

Iba7BitEOS 0x1000 Nonzero if board
supports 7 bit EOS
comparisons. See
ibeos(), in
particular the BIN
bit. This is a
Linux-GPIB
extension.

board

Return value
The value of ibsta is returned.

ibbna

Name
ibbna — change access board (device)

Synopsis

#include <gpib/ib.h>
int ibbna(int ud, const char *name);

Description
ibbna() changes the GPIB interface board used to access the device specified by ud.
Subsequent device level calls using the descriptor ud will assume the device is con-
nected to the interface board specified by name. If you wish to specify a device’s new
access board by board index instead of name, you can use the IbcBNA option of ib-
config().

The name of a board can be specified in the configuration file gpib.conf.

On success, iberr is set to the board index of the device’s old access board.

25

Linux-GPIB 4.3.3 Documentation

Return value
The value of ibsta is returned.

ibcac

Name
ibcac — assert ATN (board)

Synopsis

#include <gpib/ib.h>
int ibcac(int ud, int synchronous);

Description
ibcac() causes the board specified by the board descriptor ud to become active con-
troller by asserting the ATN line. The board must be controller-in-change in order to
assert ATN. If synchronous is nonzero, then the board will wait for a data byte on the
bus to complete its transfer before asserting ATN. If the synchronous attempt times
out, or synchronous is zero, then ATN will be asserted immediately.

It is generally not necessary to call ibcac(). It is provided for advanced users who
want direct, low-level access to the GPIB bus.

Return value
The value of ibsta is returned.

ibclr

Name
ibclr — clear device (device)

Synopsis

#include <gpib/ib.h>
int ibclr(int ud);

26

Linux-GPIB 4.3.3 Documentation

Description
ibclr() sends the clear command to the device specified by ud.

Return value
The value of ibsta is returned.

ibcmd

Name
ibcmd — write command bytes (board)

Synopsis

#include <gpib/ib.h>
int ibcmd(int ud, const void *commands, long num_bytes);

Description
ibcmd() writes the command bytes contained in the array commands to the bus. The
number of bytes written from the array is specified by num_bytes. The ud argu-
ment is a board descriptor, and the board must be controller-in-charge. Most of the
possible command bytes are declared as constants in the header files. In particu-
lar, the constants GTL, SDC, PPConfig, GET, TCT, LLO, DCL, PPU, SPE, SPD, UNL,
UNT,and PPD are available. Additionally, the inline functions MTA(), MLA(), MSA(),
and PPE_byte() are available for producing ’my talk address’, ’my listen address’,
’my secondary address’, and ’parallel poll enable’ command bytes respectively.

It is generally not necessary to call ibcmd(). It is provided for advanced users who
want direct, low-level access to the GPIB bus.

Return value
The value of ibsta is returned.

ibcmda

Name
ibcmda — write command bytes asynchronously (board)

27

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibcmda(int ud, const void *commands, long num_bytes);

Description
ibcmda() is similar to ibcmd() except it operates asynchronously. ibcmda() does not
wait for the sending of the command bytes to complete, but rather returns immedi-
ately.

While an asynchronous operation is in progress, most library functions will fail with
an EOIP error. In order to sucessfully complete an asynchronous operation, you must
call ibwait() with CMPL set in the wait mask, until the CMPL bit is set ibsta. Asyn-
chronous operations may also be aborted with an ibstop() or ibonl() call.

After the asynchronous I/O has completed and the results resynchronized with the
current thread, the Linux-GPIB extensions AsyncIbsta, AsyncIberr, AsyncIbcnt and
AsyncIbcntl may be useful to more cleanly separate the results of the asynchronous
I/O from the results of the ibwait or similar call used to resynchronize.

Return value
The value of ibsta is returned.

ibconfig

Name
ibconfig — change configuration (board or device)

Synopsis

#include <gpib/ib.h>
int ibconfig(int ud, int option, int setting);

Description
Changes various configuration settings associated with the board or device descrip-
tor ud. The option argument specifies the particular setting you wish to modify. The
setting argument specifies the option’s new configuration. To query the descrip-
tor’s configuration, see ibask().

Table 1. ibconfig options

28

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcPAD 0x1 Sets GPIB primary
address. Same as ibpad()

board or device

IbcSAD 0x2 Sets GPIB
secondary address.
Same as ibsad()

board or device

IbcTMO 0x3 Sets timeout for io
operations. Same
as ibmto().

board or device

IbcEOT 0x4 If setting is
nonzero, EOI is
asserted with last
byte on writes.
Same as ibeot().

IbcPPC 0x5 Sets parallel poll
configuration.
Same as ibppc().

board

IbcREADDR 0x6 Useless, included
for compatibility
only.

device

IbcAUTOPOLL 0x7 If setting is nonzero
then automatic
serial polling is
enabled.

board

IbcCICPROT 0x8 Useless, included
for compatibility
only.

board

IbcSC 0xa If setting is
nonzero, board
becomes system
controller. Same as
ibrsc().

board

IbcSRE 0xb If setting is nonzero
then board asserts
REN line.
Otherwise REN is
unasserted. Same
as ibsre().

board

IbcEOSrd 0xc If setting is nonzero
then reads are
terminated on
reception of the
end-of-string
character. See
ibeos(), in
particular the
REOS bit.

board or device

29

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcEOSwrt 0xd If setting is nonzero
then EOI is
asserted whenever
the end-of-string
character is sent.
See ibeos(), in
particular the
XEOS bit.

board or device

IbcEOScmp 0xe If setting is nonzero
then all 8 bits are
used to match the
end-of-string
character.
Otherwise only the
least significant 7
bits are used. See
ibeos(), in
particular the BIN
bit.

board or device

IbcEOSchar 0xf Sets the
end-of-string byte.
See ibeos().

board or device

30

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcPP2 0x10 If setting is nonzero
then the board is
put into local
parallel poll
configure mode
(IEEE 488.1 PP2
subset), and will
not change its
parallel poll
configuration in
response to
receiving ’parallel
poll enable’
command bytes
from the controller-
in-charge. Instead,
the parallel poll
configuration is set
locally by doing a
board-level call of
ibppc(). A zero
value puts the
board in remote
parallel poll
configure mode
(IEEE 488.1 PP1
subset). IEEE 488.2
requires devices to
support the remote
PP1 subset and not
the local PP2
subset. Some older
hardware does not
support local
parallel poll
configure mode.

board

31

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcTIMING 0x11 Sets the T1 delay.
Use setting of 1 for
2 microseconds, 2
for 500
nanoseconds, or 3
for 350
nanoseconds.
These values are
declared in the
header files as the
constants
T1_DELAY_2000ns,
T1_DELAY_500ns,
and
T1_DELAY_350ns.
A 2 microsecond
T1 delay is safest,
but will limit
maximum transfer
speeds to a few
hundred kilobytes
per second.

board

IbcReadAdjust 0x13 If setting is nonzero
then byte pairs are
automatically
swapped during
reads. Presently,
this feature is
unimplemented.

board or device

IbcWriteAdjust 0x14 If setting is nonzero
then byte pairs are
automatically
swapped during
writes. Presently,
this feature is
unimplemented.

board or device

IbcEventQueue 0x15 If setting is nonzero
then the event
queue is enabled.
The event queue is
disabled by
default.

board

IbcSPollBit 0x16 If the setting is
nonzero then the
use of the SPOLL
bit in ibsta is
enabled.

board

32

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcSendLLO 0x17 If the setting is
nonzero then
devices connected
to this board are
automatically put
into local lockout
mode when
brought online
with ibfind() or
ibdev().

board

IbcSPollTime 0x18 Sets timeout for
serial polls. The
setting must be
between 0 and 17,
which correspond
to the same time
periods as in
ibtmo().

device

IbcPPollTime 0x19 Sets timeout for
parallel polls. The
setting must be
between 0 and 17,
which correspond
to the same time
periods as in
ibtmo().

board

IbcEndBitIsNormal 0x1a If setting is nonzero
then the END bit of
ibsta is set on
reception of the
end-of-string
character or EOI
(default).
Otherwise END bit
is only set on EOI.

board or device

IbcUnAddr 0x1b If setting is nonzero
then UNT (untalk)
and UNL (unlisten)
commands are
automatically sent
after a completed
io operation using
this descriptor.
This option is off
by default.

device

33

Linux-GPIB 4.3.3 Documentation

option value
(hexadecimal)

effect used for
board/device

IbcHSCableLength 0x1f Configures the
total cable length in
meters for your
system, by sending
the command bytes
CFE and CFGn.
This is required to
enable high speed
noninterlocked
handshaking (a.k.a.
HS488) and set
associated
handshake timings.
Valid setting
values are 0
through 15. A
value of zero
disables
noninterlocked
handshaking,
otherwise the value
is the total number
of meters of cable.

board

IbcIst 0x20 Sets the individual
status bit, a.k.a.
’ist’. Same as ibist().

board

IbcRsv 0x21 Sets the current
status byte this
board will use to
respond to serial
polls. Same as
ibrsv().

board

IbcBNA 0x200 Changes the GPIB
interface board
used to access a
device. The setting
specifies the board
index of the new
access board. This
configuration
option is similar to
ibbna() except the
new board is
specified by its
board index
instead of a name.

device

Return value
The value of ibsta is returned.

34

Linux-GPIB 4.3.3 Documentation

ibdev

Name
ibdev — open a device (device)

Synopsis

#include <gpib/ib.h>
int ibdev(int board_index, int pad, int sad, int timeout, int send_eoi,
int eos);

Description
ibdev() is used to obtain a device descriptor, which can then be used by other func-
tions in the library. The argument board_index specifies which GPIB interface board
the device is connected to. The pad and sad arguments specify the GPIB address of
the device to be opened (see ibpad() and ibsad()). The timeout for io operations is
specified by timeout (see ibtmo()). If send_eoi is nonzero, then the EOI line will
be asserted with the last byte sent during writes (see ibeot()). Finally, the eos argu-
ment specifies the end-of-string character and whether or not its reception should
terminate reads (see ibeos()).

Return value
If sucessful, returns a (non-negative) device descriptor. On failure, -1 is returned.

ibeos

Name
ibeos — set end-of-string mode (board or device)

Synopsis

#include <gpib/ib.h>
int ibeos(int ud, int eosmode);

Description
ibeos() is used to set the end-of-string character and mode. The least significant 8
bits of eosmode specify the eos character. You may also bitwise-or one or more of the
following bits to set the eos mode:

35

Linux-GPIB 4.3.3 Documentation

Table 1. End-of-String Mode Bits

constant value (hexadecimal) meaning

REOS 0x400 Enable termination of
reads when eos character
is received.

XEOS 0x800 Assert the EOI line
whenever the eos
character is sent during
writes.

BIN 0x1000 Match eos character using
all 8 bits (instead of only
looking at the 7 least
significant bits).

Return value
The value of ibsta is returned.

ibeot

Name
ibeot — assert EOI with last data byte (board or device)

Synopsis

#include <gpib/ib.h>
int ibeot(int ud, int send_eoi);

Description
If send_eoi is non-zero, then the EOI line will be asserted with the last byte sent by
calls to ibwrt() and related functions.

Return value
The value of ibsta is returned.

36

Linux-GPIB 4.3.3 Documentation

ibevent

Name
ibevent — get events from event queue (board)

Synopsis

#include <gpib/ib.h>
int ibevent(int ud, short *event);

Description
ibevent() is used to obtain the oldest event stored in the event queue of the board
specified by the board descriptor ud. The EVENT bit of ibsta indicates that the event
queue contains 1 or more events. An event may be a clear command, a trigger com-
mand, or reception of an interface clear. The type of event is stored in the location
specified by event and may be set to any of the following values:

Table 1. events

constant value description

EventNone 0 The board’s event queue is
empty

EventDevTrg 1 The board has received a
trigger command from the
controller-in-charge.

EventDevClr 2 The board has received a
clear command from the
controller-in-charge.

EventIFC 3 The board has received an
interface clear from the
system controller. Note,
some models of GPIB
interface board lack the
ability to report interface
clear events.

The event queue is disabled by default. It may be enabled by a call to ibconfig().
Each interface board has a single event queue which is shared across all processes
and threads. So, only one process can retrieve any given event from the queue. Also,
the queue is of finite size so events may be lost (ibevent() will return an error) if it is
neglected too long.

Return value
The value of ibsta is returned.

37

Linux-GPIB 4.3.3 Documentation

ibfind

Name
ibfind — open a board or device (board or device)

Synopsis

#include <gpib/ib.h>
int ibfind(const char *name);

Description
ibfind() returns a board or device descriptor based on the information found in the
configuration file. It is not required to use this function, since device descriptors can
be obtained with ibdev() and the ’board index’ (minor number in the configuration
file) can be used directly as a board descriptor.

Return value
If sucessful, returns a (non-negative) board or device descriptor. On failure, -1 is re-
turned.

ibgts

Name
ibgts — release ATN (board)

Synopsis

#include <gpib/ib.h>
int ibgts(int ud, int shadow_handshake);

Description
ibgts() is the complement of ibcac(), and causes the board specified by the board de-
scriptor ud to go to standby by releasing the ATN line. The board must be controller-
in-change to change the state of the ATN line. If shadow_handshake is nonzero, then
the board will handshake any data bytes it receives until it encounters an EOI or end-
of-string character, or the ATN line is asserted again. The received data is discarded.

It is generally not necessary to call ibgts(). It is provided for advanced users who
want direct, low-level access to the GPIB bus.

38

Linux-GPIB 4.3.3 Documentation

Return value
The value of ibsta is returned.

ibist

Name
ibist — set individual status bit (board)

Synopsis

#include <gpib/ib.h>
int ibist(int ud, int ist);

Description
If ist is nonzero, then the individual status bit of the board specified by the board de-
scriptor ud is set. If ist is zero then the individual status bit is cleared. The individual
status bit is sent by the board in response to parallel polls.

On success, iberr is set to the previous ist value.

Return value
The value of ibsta is returned.

iblines

Name
iblines — monitor bus lines (board)

Synopsis

#include <gpib/ib.h>
int iblines(int ud, short *line_status);

39

Linux-GPIB 4.3.3 Documentation

Description
iblines() is used to obtain the status of the control and handshaking bus lines of the
bus. The board used to monitor the bus is specified by the ud argument, and the
status of the various bus lines are written to the location specified by line_status.

Some older chips are not capable of reporting the status of the bus lines, so each
line has two corresponding bits in line_status. One bit indicates if the board can
monitor the line, and the other bit indicates the line’s state. The meaning of the
line_status bits are as follows:

Table 1. line status bits

constant value description

ValidDAV 0x1 The BusDAV bit is valid.

ValidNDAC 0x2 The BusNDAC bit is valid.

ValidNRFD 0x4 The BusNRFD bit is valid.

ValidIFC 0x8 The BusIFC bit is valid.

ValidREN 0x10 The BusREN bit is valid.

ValidSRQ 0x20 The BusSRQ bit is valid.

ValidATN 0x40 The BusATN bit is valid.

ValidEOI 0x80 The BusEOI bit is valid.

BusDAV 0x100 Set/cleared if the DAV
line is
asserted/unasserted.

BusNDAC 0x200 Set/cleared if the NDAC
line is
asserted/unasserted.

BusNRFD 0x400 Set/cleared if the NRFD
line is
asserted/unasserted.

BusIFC 0x800 Set/cleared if the IFC line
is asserted/unasserted.

BusREN 0x1000 Set/cleared if the REN line
is asserted/unasserted.

BusSRQ 0x2000 Set/cleared if the SRQ line
is asserted/unasserted.

BusATN 0x4000 Set/cleared if the ATN
line is
asserted/unasserted.

BusEOI 0x8000 Set/cleared if the EOI line
is asserted/unasserted.

Return value
The value of ibsta is returned.

40

Linux-GPIB 4.3.3 Documentation

ibln

Name
ibln — check if listener is present (board or device)

Synopsis

#include <gpib/ib.h>
int ibln(int ud, int pad, int sad, short *found_listener);

Description
ibln() checks for the presence of a device, by attempting to address it as a listener. ud
specifies the GPIB interface board which should check for listeners. If ud is a device
descriptor, then the device’s access board is used.

The GPIB address to check is specified by the pad and sad arguments. pad specifies
the primary address, 0 through 30 are valid values. sad gives the secondary address,
and may be a value from 0x60 through 0x7e (96 through 126), or one of the constants
NO_SAD or ALL_SAD. NO_SAD indicates that no secondary addressing is to be
used, and ALL_SAD indicates that all secondary addresses should be checked.

If the board finds a listener at the specified GPIB address(es), then the variable speci-
fied by the pointer found_listener is set to a nonzero value. If no listener is found,
the variable is set to zero.

The board must be controller-in-charge to perform this function. Also, it must have
the capability to monitor the NDAC bus line (see iblines()).

This function has the additional effect of addressing the board as talker for the dura-
tion of the Find Listeners protocol, which is beyond what IEEE 488.2 specifies. This
is done because some boards cannot reliably read the state of the NDAC bus line
unless they are the talker. Being the talker causes the board’s gpib transceiver to con-
figure NDAC as an input, so its state can be reliably read from the bus through the
transceiver.

Return value
The value of ibsta is returned.

ibloc

Name
ibloc — go to local mode (board or device)

41

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibloc(int ud);

Description
Causes the board or device specified by the descriptor ud to go to local mode. If ud is
a board descriptor, and the board is in local lockout, then the function will fail.

Note, if the system controller is asserting the REN line, then devices on the bus will
return to remote mode the next time they are addressed by the controller in charge.

Return value
The value of ibsta is returned.

ibonl

Name
ibonl — close or reinitialize descriptor (board or device)

Synopsis

#include <gpib/ib.h>
int ibonl(int ud, int online);

Description
If the online is zero, then ibonl() frees the resources associated with the board or
device descriptor ud. The descriptor cannot be used again after the ibonl() call.

If the online is nonzero, then all the settings associated with the descriptor (GPIB
address, end-of-string mode, timeout, etc.) are reset to their ’default’ values. The ’de-
fault’ values are the settings the descriptor had when it was first obtained with ib-
dev() or ibfind().

Return value
The value of ibsta is returned.

42

Linux-GPIB 4.3.3 Documentation

ibpad

Name
ibpad — set primary GPIB address (board or device)

Synopsis

#include <gpib/ib.h>
int ibpad(int ud, int pad);

Description
ibpad() sets the GPIB primary address to pad for the device or board specified by the
descriptor ud. If ud is a device descriptor, then the setting is local to the descriptor
(it does not affect the behaviour of calls using other descriptors, even if they refer
to the same physical device). If ud is a board descriptor, then the board’s primary
address is changed immediately, which is a global change affecting anything (even
other processes) using the board. Valid GPIB primary addresses are in the range from
0 to 30.

Return value
The value of ibsta is returned.

ibpct

Name
ibpct — pass control (board)

Synopsis

#include <gpib/ib.h>
int ibpct(int ud);

Description
ibpct() passes control to the device specified by the device descriptor ud. The device
becomes the new controller-in-charge.

43

Linux-GPIB 4.3.3 Documentation

Return value
The value of ibsta is returned.

ibppc

Name
ibppc — parallel poll configure (board or device)

Synopsis

#include <gpib/ib.h>
int ibppc(int ud, int configuration);

Description
Configures the parallel poll response of the device or board specified by ud. The
configuration should either be set to the ’PPD’ constant to disable parallel poll
responses, or set to the return value of the PPE_byte() inline function to enable and
configure the parallel poll response.

If ud is a device descriptor then the device will be remotely configured by the con-
troller.

If ud is a board descriptor then the board will be locally configured. Note, in order to
do a local parallel poll configuration IbcPP2 must be set using ibconfig(). IEEE 488.2
prohibits local parallel poll configuration (IEEE 488.1 PP2 subset), requiring support
for remote parallel poll configuration (IEEE 488.1 PP1 subset) instead.

After configuring the parallel poll response of devices on a bus, you may use ibrpp()
to parallel poll the devices.

Return value
The value of ibsta is returned.

ibrd

Name
ibrd — read data bytes (board or device)

44

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibrd(int ud, void *buffer, long num_bytes);

Description
ibrd() is used to read data bytes from a device or board. The argument ud can be either
a device or board descriptor. Up to num_bytes bytes are read into the user-supplied
array buffer. The read may be terminated by a timeout occuring(see ibtmo()), the
talker asserting the EOI line, the board receiving the end-of-string character (see
ibeos()), receiving a device clear command, or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the
device as talker and the interface board as listener before performing the read.

If ud is a board descriptor, no addressing is performed and the board must be ad-
dressed as a listener by the controller-in-charge.

After the ibrd() call, ibcnt and ibcntl are set to the number of bytes read.

Return value
The value of ibsta is returned.

ibrda

Name
ibrda — read data bytes asynchronously (board or device)

Synopsis

#include <gpib/ib.h>
int ibrda(int ud, void *buffer, long num_bytes);

Description
ibrda() is similar to ibrd() except it operates asynchronously. ibrda() does not wait for
the reception of the data bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with
an EOIP error. In order to sucessfully complete an asynchronous operation and resyn-
chronize its results with the current thread, you must call ibwait() with CMPL set in
the wait mask, until the CMPL bit is set ibsta. Asynchronous operations may also be
completed by a call to ibstop() or ibonl() call. Note, ibwait() will only complete the
asynchronous operation if you explicitly set the CMPL bit in the wait mask parameter
of ibwait().

45

Linux-GPIB 4.3.3 Documentation

After the asynchronous I/O has completed and the results resynchronized with the
current thread, the Linux-GPIB extensions AsyncIbsta, AsyncIberr, AsyncIbcnt and
AsyncIbcntl may be useful to more cleanly separate the results of the asynchronous
I/O from the results of the ibwait or similar call used to resynchronize.

Return value
The value of ibsta is returned.

ibrdf

Name
ibrdf — read data bytes to file (board or device)

Synopsis

#include <gpib/ib.h>
int ibrdf(int ud, const char *file_path);

Description
ibrdf() is similar to ibrd() except that the data bytes read are stored in a file instead
of an array in memory. file_path specifies the save file. If the file already exists, the
data will be appended onto the end of the file.

Return value
The value of ibsta is returned.

ibrpp

Name
ibrpp — perform a parallel poll (board or device)

Synopsis

#include <gpib/ib.h>
int ibrpp(int ud, char *ppoll_result);

46

Linux-GPIB 4.3.3 Documentation

Description
ibrpp() causes the interface board to perform a parallel poll, and stores the resulting
parallel poll byte in the location specified by ppoll_result. Bits 0 to 7 of the parallel
poll byte correspond to the dio lines 1 to 8, with a 1 indicating the corresponding dio
line is asserted. The devices on the bus you wish to poll should be configured before-
hand with ibppc(). The board which performs the parallel poll must be controller-in-
charge, and is specified by the descriptor ud. If ud is a device descriptor instead of a
board descriptor, the device’s access board performs the parallel poll.

Return value
The value of ibsta is returned.

ibrsc

Name
ibrsc — request system control (board)

Synopsis

#include <gpib/ib.h>
int ibrsc(int ud, int request_control);

Description
If request_control is nonzero, then the board specified by the board descriptor ud is
made system controller. If request_control is zero, then the board releases system
control.

The system controller has the ability to assert the REN and IFC lines, and is typi-
cally also the controller-in-charge. A GPIB bus may not have more than one system
controller.

Return value
The value of ibsta is returned.

ibrsp

Name
ibrsp — read status byte / serial poll (device)

47

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibrsp(int ud, char *result);

Description
ibrsp() obtains the status byte from the device specified by ud. The status byte is
stored in the location specified by result.

If automatic serial polling is enabled on the board controlling the device, the status
byte is automatically read and queued whenever the device requests service. If the
status byte queue is not empty ibrsp() obtains the status byte information from the
queue. If the queue is empty the status byte is obtained by serial polling the device.
Automatic serial polling is controlled with ibconfig(). The contents of the status byte
returned in result are device specific. Refer to the device manufacturer’s documen-
tation for details. For devices conforming to the IEEE488.1 or 2 specification the bits
defined in the table below are available if enabled in the device’s Status Byte Enable
register.

Table 1. Standard IEEE.488 GPIB status byte bits

constant value description

IbStbRQS 0x40 The request service bit is
set when device asserts
RQS. It is cleared by serial
polling the device.
Supported by devices
conforming to IEEE 488.1
or IEEE 488.2.

IbStbESB 0x20 The event-status bit is set
when there are one or
more bits set in the
device’s Standard Event
Status Register. It is
cleared by reading the
Standard Event Status
Register. For devices
conforming to IEEE 488.2
only.

IbStbMAV 0x10 The message available bit
indicates whether or not
the device’s data output
queue is empty. Whenever
the device has data
available, this bit will be
set. It is cleared when the
output queue is empty.
The queue is emptied by
reading data from the
device with ibrd() for
example. For devices
conforming to IEEE 488.2
only.

48

Linux-GPIB 4.3.3 Documentation

Return value
The value of ibsta is returned.

ibrsv

Name
ibrsv — request service (board)

Synopsis

#include <gpib/ib.h>
int ibrsv(int ud, int status_byte);

Description
The serial poll response byte of the board specified by the board descriptor ud is set to
status_byte. If MSS (bit 6 in status_byte) is set, then the IEEE 488.2 local message
"reqt" will be set true, causing the board to request service by asserting the SRQ line.
If the MSS bit is clear, then the "reqf" message will be set true, causing the board to
stop requesting service.

Boards will also automatically stop requesting service when they are serial polled by
the controller.

This function follows the implementation technique described in IEEE 488.2 section
11.3.3.4.3. It is prone to generating spurious requests for service, which are permitted
by 488.2 but less than ideal. In order to avoid spurious requests, use ibrsv2() instead.

Return value
The value of ibsta is returned.

ibrsv2

Name
ibrsv2 — request service (board)

49

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibrsv2(int ud, int status_byte, int new_reason_for_request);

Description
The serial poll response byte of the board specified by the board descriptor ud is set
to status_byte. A service request may be generated, cleared, or left unaffected de-
pending on the values of MSS (bit 6 in status_byte) and new_reason_for_request.

There are three valid possibilities for MSS and new_reason_for_request. If
MSS is 1 and new_reason_for_request is nonzero, then the IEEE 488.2 local
message "reqt" will be set true. reqt sets local message "rsv" true which in turn
causes the board to request service by asserting the SRQ line. If the MSS bit is 0
and new_reason_for_request is also 0, then the "reqf" message will be set true,
causing rsv to clear and the board to stop requesting service. Finally, if MSS is 1
and new_reason_for_request is 0, then ibrsv2 will have no effect on the service
request state (it will only update the status byte). The fourth possibilty of MSS is
0 (which implies no service request) and new_reason_for_request is nonzero
(which implies there is a service request) is contradictory and will be rejected with
an EARG error.

Boards will also automatically stop requesting service when they are serial polled by
the controller.

This function follows the preferred implementation technique described in IEEE
488.2 section 11.3.3.4.1. It can be used to avoid the spurious requests for service that
ibrsv() is prone to. However, not all drivers/hardware implement support for this
function. In such a case, this function may result in a ECAP error, and you will have
to fall back on using the simpler ibrsv().

If you are implementing a 488.2 device, this function should be called every time
either the status byte changes, or the service request enable register changes. The
value for new_reason_for_request may be calculated from:

new_reason_for_request = (status_byte & service_request_enable) &
~(old_status_byte & old_service_request_enable);

Return value
The value of ibsta is returned.

ibsad

Name
ibsad — set secondary GPIB address (board or device)

50

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibsad(int ud, int sad);

Description
ibsad() sets the GPIB secondary address of the device or board specified by the de-
scriptor ud. If ud is a device descriptor, then the setting is local to the descriptor (it
does not affect the behaviour of calls using other descriptors, even if they refer to
the same physical device). If ud is a board descriptor, then the board’s secondary
address is changed immediately, which is a global change affecting anything (even
other processes) using the board.

This library follows NI’s unfortunate convention of adding 0x60 hexadecimal (96
decimal) to secondary addresses. That is, if you wish to set the secondary address to 3,
you should set sad to 0x63. Setting sad to 0 disables the use of secondary addressing.
Valid GPIB secondary addresses are in the range from 0 to 30 (which correspond to
sad values of 0x60 to 0x7e).

Return value
The value of ibsta is returned.

ibsic

Name
ibsic — perform interface clear (board)

Synopsis

#include <gpib/ib.h>
int ibsic(int ud);

Description
ibsic() resets the GPIB bus by asserting the ’interface clear’ (IFC) bus line for a du-
ration of at least 100 microseconds. The board specified by ud must be the system
controller in order to assert IFC. The interface clear causes all devices to untalk and
unlisten, puts them into serial poll disabled state (don’t worry, you will still be able
to conduct serial polls), and the board becomes controller-in-charge.

51

Linux-GPIB 4.3.3 Documentation

Return value
The value of ibsta is returned.

ibspb

Name
ibspb — obtain length of serial poll bytes queue (device)

Synopsis

#include <gpib/ib.h>
int ibspb(int ud, short *result);

Description
ibspb() obtains the number of serial poll bytes queued for the device specified by ud.
The number of queued serial poll bytes is stored in the location specified by result.

If automatic serial polling is enabled on the board controlling the device, the status
byte is automatically read and queued whenever the device requests service. Auto-
matic serial polling is controlled with ibconfig().

The queued status bytes are read with ibrsp().

Return value
The value of ibsta is returned.

ibsre

Name
ibsre — set remote enable (board)

Synopsis

#include <gpib/ib.h>
int ibsre(int ud, int enable);

52

Linux-GPIB 4.3.3 Documentation

Description
If enable is nonzero, then the board specified by the board descriptor ud asserts the
REN line. If enable is zero, the REN line is unasserted. The board must be the system
controller.

Return value
The value of ibsta is returned.

ibstop

Name
ibstop — abort asynchronous i/o operation (board or device)

Synopsis

#include <gpib/ib.h>
int ibstop(int ud);

Description
ibstop() aborts an asynchronous i/o operation (for example, one started with
ibcmda(), ibrda(), or ibwrta()).

The return value of ibstop() is counter-intuitive. On successfully aborting an asyn-
chronous operation, the ERR bit is set in ibsta, and iberr is set to EABO. If the ERR bit
is not set in ibsta, then there was no asynchronous i/o operation in progress. If the
function failed, the ERR bit will be set and iberr will be set to some value other than
EABO.

Return value
The value of ibsta is returned.

ibtmo

Name
ibtmo — adjust io timeout (board or device)

53

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibtmo(int ud, int timeout);

Description
ibtmo() sets the timeout for IO operations and ibwait calls performed using the board
or device descriptor ud. The actual amount of time before a timeout occurs may be
greater than the period specified, but never less. timeout is specified by using one of
the following constants:

Table 1. Timeout constants

constant value timeout

TNONE 0 Never timeout.

T10us 1 10 microseconds

T30us 2 30 microseconds

T100us 3 100 microseconds

T300us 4 300 microseconds

T1ms 5 1 millisecond

T3ms 6 3 milliseconds

T10ms 7 10 milliseconds

T30ms 8 30 milliseconds

T100ms 9 100 milliseconds

T300ms 10 300 milliseconds

T1s 11 1 second

T3s 12 3 seconds

T10s 13 10 seconds

T30s 14 30 seconds

T100s 15 100 seconds

T300s 16 300 seconds

T1000s 17 1000 seconds

Return value
The value of ibsta is returned.

54

Linux-GPIB 4.3.3 Documentation

ibtrg

Name
ibtrg — trigger device (device)

Synopsis

#include <gpib/ib.h>
int ibtrg(int ud);

Description
ibtrg() sends a GET (group execute trigger) command byte to the device specified by
the device descriptor ud.

Return value
The value of ibsta is returned.

ibvers

Name
ibvers — Obtain the current linux gpib version.

Synopsis

#include <gpib/ib.h>
void ibvers(char ** version);

Description
ibvers() will return the current version string in version.

ibwait

Name
ibwait — wait for event (board or device)

55

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ibwait(int ud, int status_mask);

Description
ibwait() will sleep until one of the conditions specified in status_mask is true. The
meaning of the bits in status_mask are the same as the bits of the ibsta status vari-
able.

If status_mask is zero, then ibwait() will return immediately. This is useful if you
simply wish to get an updated ibsta.

When calling ibwait() on a device, only the following condition bits in the
status_mask are valid: TIMO, END, CMPL, and RQS. For the RQS bit to be set in
the returned ibsta automatic serial polling must be enabled for the board controlling
the device, see ibconfig(). The RQS condition is cleared by serial polling the device,
see ibrsp().

If you wish to resynchronize and obtain the results from an asynchronous I/O oper-
ation, you must wait on CMPL by setting its bit in the status_mask parameter. Then
if ibwait returns with CMPL set, it will have updated iberr, ibcnt, and the ERR bit of
ibsta with the most recent asynchronous I/O results.

If TIMO is set in the status_mask parameter, then ibwait will timeout after the time
period set by ibtmo and set TIMO in ibsta.

Return value
The value of ibsta is returned.

ibwrt

Name
ibwrt — write data bytes (board or device)

Synopsis

#include <gpib/ib.h>
int ibwrt(int ud, const void *data, long num_bytes);

Description
ibwrt() is used to write data bytes to a device or board. The argument ud can be either
a device or board descriptor. num_bytes specifies how many bytes are written from
the user-supplied array data. EOI may be asserted with the last byte sent or when the
end-of-string character is sent (see ibeos() and ibeot()). The write operation may be

56

Linux-GPIB 4.3.3 Documentation

interrupted by a timeout (see ibtmo()), the board receiving a device clear command,
or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the
device as listener and the interface board as talker, before sending the data bytes
onto the bus.

If ud is a board descriptor, the board simply writes the data onto the bus. The
controller-in-charge must address the board as talker.

After the ibwrt() call, ibcnt and ibcntl are set to the number of bytes written.

Return value
The value of ibsta is returned.

ibwrta

Name
ibwrta — write data bytes asynchronously (board or device)

Synopsis

#include <gpib/ib.h>
int ibwrta(int ud, const void *buffer, long num_bytes);

Description
ibwrta() is similar to ibwrt() except it operates asynchronously. ibwrta() does not wait
for the sending of the data bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with
an EOIP error. In order to sucessfully complete an asynchronous operation, you must
call ibwait() with CMPL set in the wait mask, until the CMPL bit is set ibsta. Asyn-
chronous operations may also be aborted with an ibstop() or ibonl() call.

After the asynchronous I/O has completed and the results resynchronized with the
current thread, the Linux-GPIB extensions AsyncIbsta, AsyncIberr, AsyncIbcnt and
AsyncIbcntl may be useful to more cleanly separate the results of the asynchronous
I/O from the results of the ibwait or similar call used to resynchronize.

Return value
The value of ibsta is returned.

57

Linux-GPIB 4.3.3 Documentation

ibwrtf

Name
ibwrtf — write data bytes from file (board or device)

Synopsis

#include <gpib/ib.h>
int ibwrtf(int ud, const char *file_path);

Description
ibwrtf() is similar to ibwrt() except that the data to be written is taken from a file
instead of an array in memory. file_path specifies the file, which is written byte for
byte onto the bus.

Return value
The value of ibsta is returned.

"Multidevice" API Functions
The "Multidevice" API functions provide similar functionality to the "Traditional"
API functions. However, some of the "multidevice" functions can be performed on
multiple devices simultaneously. For example, SendList() can be used to write a mes-
sage to multiple devices. Such functions take an array of Addr4882_t as an argument.
The end of the array is specified by setting the last element to the constant NOADDR.

AllSPoll

Name
AllSPoll — serial poll multiple devices

Synopsis

#include <gpib/ib.h>
void AllSPoll(int board_desc, Addr4882_t *addressList, short
*resultList);
void AllSpoll(int board_desc, const Addr4882_t *addressList, short
*resultList);

58

Linux-GPIB 4.3.3 Documentation

Description
AllSPoll() causes the interface board specified by board_desc to serial poll all the
GPIB addresses specified in the addressList array. The results of the serial polls are
stored into resultList. If you only wish to serial poll a single device, ReadStatus-
Byte() or ibrsp() may be more convenient.

This function may also be invoked with the alternate capitalization ’AllSpoll’ for com-
patibility with NI’s library.

DevClear

Name
DevClear — clear a device

Synopsis

#include <gpib/ib.h>
void DevClear(int board_desc, Addr4882_t address);

Description
DevClear() causes the interface board specified by board_desc to send the clear com-
mand to the GPIB addresses specified by address. The results of the serial polls are
stored into resultList. If you wish to clear multiple devices simultaneously, use
DevClearList()

DevClearList

Name
DevClearList — clear multiple devices

Synopsis

#include <gpib/ib.h>
void DevClearList(int board_desc, const Addr4882_t addressList[]);

59

Linux-GPIB 4.3.3 Documentation

Description
DevClear() causes the interface board specified by board_desc to send the clear com-
mand simultaneously to all the GPIB addresses specified by the addressList array.
If addressList is empty or NULL, then the clear command is sent to all devices on
the bus. If you only wish to clear a single device, DevClear() or ibclr() may be slightly
more convenient.

EnableLocal

Name
EnableLocal — put devices into local mode.

Synopsis

#include <gpib/ib.h>
void EnableLocal(int board_desc, const Addr4882_t addressList[]);

Description
EnableLocal() addresses all of the devices in the addressList array as listeners then
sends the GTL (go to local) command byte, causing them to enter local mode. This
requires that the board is the controller-in-charge. Note that while the REN (remote
enable) bus line is asserted, the devices will return to remote mode the next time they
are addressed.

If addressList is empty or NULL, then the REN line is unasserted and all devices
enter local mode. The board must be system controller to change the state of the REN
line.

EnableRemote

Name
EnableRemote — put devices into remote mode.

Synopsis

#include <gpib/ib.h>
void EnableRemote(int board_desc, const Addr4882_t addressList[]);

60

Linux-GPIB 4.3.3 Documentation

Description
EnableRemote() asserts the REN (remote enable) line, and addresses all of the de-
vices in the addressList array as listeners (causing them to enter remote mode).
The board must be system controller.

FindLstn

Name
FindLstn — find devices

Synopsis

#include <gpib/ib.h>
void FindLstn(int board_desc, const Addr4882_t padList[], Addr4882_t
resultList[], int maxNumResults);

Description
FindLstn() will check the primary addresses in the padList array for devices. The
GPIB addresses of all devices found will be stored in the resultList array, and ibcnt
will be set to the number of devices found. The maxNumResults parameter limits the
maximum number of results that will be returned, and is usually set to the number
of elements in the resultList array. If more than maxNumResults devices are found,
an ETAB error is returned in iberr. The padList should consist of primary addresses
only, with no secondary addresses (all possible secondary addresses will be checked
as necessary).

Your GPIB board must have the capability to monitor the NDAC bus line in order to
use this function (see iblines).

This function has the additional effect of addressing the board as talker for the dura-
tion of the Find Listeners protocol, which is beyond what IEEE 488.2 specifies. This
is done because some boards cannot reliably read the state of the NDAC bus line
unless they are the talker. Being the talker causes the board’s gpib transceiver to con-
figure NDAC as an input, so its state can be reliably read from the bus through the
transceiver.

FindRQS

Name
FindRQS — find device requesting service and read its status byte

61

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
void FindRQS(int board_desc, const Addr4882_t addressList[], short
*status);

Description
FindRQS will serial poll the GPIB addresses specified in the addressList array until
it finds a device requesting service. The status byte of the device requesting service
is stored in the location specified by status. The addressList array index of the
device requesting service is returned in ibcnt. If no device requesting service is found,
an ETAB error is returned in iberr.

PassControl

Name
PassControl — make device controller-in-charge

Synopsis

#include <gpib/ib.h>
void PassControl(int board_desc, const Addr4882_t address);

Description
PassControl() causes the board specified by board_desc to pass control to the device
specified by address. On success, the device becomes the new controller-in-charge.

PPoll

Name
PPoll — parallel poll devices

Synopsis

#include <gpib/ib.h>
void PPoll(int board_desc, short *result);

62

Linux-GPIB 4.3.3 Documentation

Description
PPoll() is similar to the ’traditional’ API function ibrpp(). It causes the interface board
to perform a parallel poll, and stores the parallel poll byte in the location specified
by result. Bits 0 to 7 of the parallel poll byte correspond to the dio lines 1 to 8,
with a 1 indicating the corresponding dio line is asserted. The devices on the bus you
wish to poll should be configured beforehand with PPollConfig(). The board must be
controller-in-charge to perform a parallel poll.

PPollConfig

Name
PPollConfig — configure a device’s parallel poll response

Synopsis

#include <gpib/ib.h>
void PPollConfig(int board_desc, Addr4882_t address, int dio_line, int
line_sense);

Description
PPollConfig() configures the device specified by address to respond to parallel polls.
The dio_line (valid values are 1 through 8) specifies which dio line the device be-
ing configured should use to send back its parallel poll response. The line_sense
argument specifies the polarity of the response. If line_sense is nonzero, then the
specified dio line will be asserted to indicate that the ’individual status bit’ (or ’ist’)
is 1. If sense is zero, then the specified dio line will be asserted when ist is zero.

PPollUnconfig

Name
PPollUnconfig — disable devices’ parallel poll response

Synopsis

#include <gpib/ib.h>
void PPollUnconfig(int board_desc, const Addr4882_t addressList[]);

63

Linux-GPIB 4.3.3 Documentation

Description
PPollUnconfig() configures the devices specified by addressList to ignore parallel
polls.

RcvRespMsg

Name
RcvRespMsg — read data

Synopsis

#include <gpib/ib.h>
void RcvRespMsg(int board_desc, void *buffer, long count, int
termination);

Description
RcvRespMsg() reads data from the bus. A device must have already been addressed
as talker (and the board as listener) before calling this function. Addressing may be
accomplished with the ReceiveSetup() function.

Up to count bytes are read into the array specified by buffer. The termination
argument specifies the 8-bit end-of-string character (which must be a value from 0
to 255) whose reception will terminate a read. termination can also be set to the
’STOPend’ constant, in which case no end-of-string character will be used. Assertion
of the EOI line will always end a read.

You may find it simpler to use the slightly higher level function Receive(), since it
does not require addressing and reading of data to be performed separately.

ReadStatusByte

Name
ReadStatusByte — serial poll a device

Synopsis

#include <gpib/ib.h>
void ReadStatusByte(int board_desc, Addr4882_t address, short *result);

64

Linux-GPIB 4.3.3 Documentation

Description
ReadStatusByte() causes the board specified by the board descriptor board_desc to
serial poll the GPIB address specified by address. The status byte is stored at the
location specified by the result pointer. If you wish to serial poll multiple devices,
it may be slightly more efficient to use AllSPoll(). Serial polls may also be conducted
with the ’traditional API’ function ibrsp().

Receive

Name
Receive — perform receive addressing and read data

Synopsis

#include <gpib/ib.h>
void Receive(int board_desc, Addr4882_t address, void *buffer, long
count, int termination);

Description
Receive() performs the necessary addressing, then reads data from the device speci-
fied by address. It is equivalent to a ReceiveSetup() call followed by a RcvRespMsg()
call.

ReceiveSetup

Name
ReceiveSetup — perform receive addressing

Synopsis

#include <gpib/ib.h>
void ReceiveSetup(int board_desc, Addr4882_t address);

Description
ReceiveSetup() addresses the device specified by address as talker, and addresses
the interface board as listener. A subsequent RcvRespMsg() call will read data from
the device.

65

Linux-GPIB 4.3.3 Documentation

You may find it simpler to use the slightly higher level function Receive(), since it
does not require addressing and reading of data to be performed separately.

ResetSys

Name
ResetSys — reset system

Synopsis

#include <gpib/ib.h>
void ResetSys(int board_desc, const Addr4882_t addressList[]);

Description
ResetSys() has the following effects:

• The remote enable bus line is asserted.

• An interface clear is performed (the interface clear bus line is asserted for at least
100 microseconds).

• The device clear command is sent to all the devices on the bus.

• The *RST message is sent to every device specified in the addressList.

Send

Name
Send — perform send addressing and write data

Synopsis

#include <gpib/ib.h>
void Send(int board_desc, Addr4882_t address, const void *data, long
count, int eot_mode);

66

Linux-GPIB 4.3.3 Documentation

Description
Send() addresses the device specified by address as listener, then writes data onto
the bus. It is equivalent to a SendList() except it only uses a single GPIB address to
specify the listener instead of allowing an array of listeners.

SendCmds

Name
SendCmds — write command bytes onto bus

Synopsis

#include <gpib/ib.h>
void SendCmds(int board_desc, const void *cmds, long count);

Description
SendCmds() writes count command byte onto the the GPIB bus from the array cmds.

It is generally not necessary to call SendCmds(). It is provided for advanced users
who want direct, low-level access to the GPIB bus.

SendDataBytes

Name
SendDataBytes — write data

Synopsis

#include <gpib/ib.h>
void SendDataBytes(int board_desc, const void *data, long count, int
eot_mode);

Description
SendDataBytes() writes data to the bus. One or more devices must have already been
addressed as listener (and the board as talker) before calling this function. Address-
ing may be accomplished with the SendSetup() function.

67

Linux-GPIB 4.3.3 Documentation

count bytes are written from the array specified by data. The eot_mode argument
specifies how the message should be terminated, and may be any of the following
values:

Table 1. eot modes

constant value description

NULLend 0 Do not assert EOI or add a
newline at the end of the
write.

DABend 1 Assert EOI with the last
byte of the write.

NLend 2 Append a newline, and
assert EOI with the
newline at the end of the
write.

You may find it simpler to use the slightly higher level functions Send() or SendList(),
since they does not require addressing and writing of data to be performed sepa-
rately.

SendIFC

Name
SendIFC — perform interface clear

Synopsis

#include <gpib/ib.h>
void SendIFC(int board_desc);

Description
SendIFC() resets the GPIB bus by asserting the ’interface clear’ (IFC) bus line for a
duration of at least 100 microseconds. The board specified by board_desc must be
the system controller in order to assert IFC. The interface clear causes all devices to
untalk and unlisten, puts them into serial poll disabled state (don’t worry, you will
still be able to conduct serial polls), and the board becomes controller-in-charge.

68

Linux-GPIB 4.3.3 Documentation

SendList

Name
SendList — write data to multiple devices

Synopsis

#include <gpib/ib.h>
void SendList(int board_desc, const Addr4882_t addressList[], const
void *data, long count, int eot_mode);

Description
SendList() addresses the devices in addressList as listeners, then writes the con-
tents of the array data to them. It is equivalent to a SendSetup() call followed by a
SendDataBytes() call.

SendLLO

Name
SendLLO — put devices into local lockout mode

Synopsis

#include <gpib/ib.h>
void SendLLO(int board_desc);

Description
SendLLO() asserts the ’remote enable’ bus line, then sends the LLO command byte.
Any devices currently addressed as listener will be put into RWLS (remote with lock-
out state), and all other devices will enter LWLS (local with lockout state). Local lock-
out means the remote/local mode of devices cannot be changed though the devices’
front-panel controls. Unasserting the REN line should bring the devices out of lock-
out state.

The SetRWLS() performs a similar function, except it lets you specifiy which devices
you wish to address as listener before sending the LLO command.

69

Linux-GPIB 4.3.3 Documentation

SendSetup

Name
SendSetup — perform send addressing

Synopsis

#include <gpib/ib.h>
void SendSetup(int board_desc, const Addr4882_t addressList[]);

Description
SendSetup() addresses the devices in addressList as listeners, and addresses the
interface board as talker. A subsequent SendDataBytes() call will write data to the
devices.

You may find it simpler to use the slightly higher level functions Send() or SendList(),
since they does not require addressing and writing of data to be performed sepa-
rately.

SetRWLS

Name
SetRWLS — put devices into remote with lockout state

Synopsis

#include <gpib/ib.h>
void SetRWLS(int board_desc, const Addr4882_t addressList[]);

Description
SetRWLS() asserts the ’remote enable’ bus line, addresses the devices in the
addressList array as listeners, then sends the LLO command byte. The devices
addressed as listener will be put into RWLS (remote with lockout state), and all
other devices will enter LWLS (local with lockout state). Local lockout means the
remote/local mode of devices cannot be changed though the devices’ front-panel
controls. Unasserting the REN line should bring the devices out of the lockout state.

70

Linux-GPIB 4.3.3 Documentation

TestSRQ

Name
TestSRQ — query state of SRQ bus line

Synopsis

#include <gpib/ib.h>
void TestSRQ(int board_desc, short *result);

Description
TestSRQ() checks the state of the SRQ bus line and writes its state to the location
specified by result. A ’1’ indicates the SRQ line is asserted, and a ’0’ indicates the
line is not asserted.

Some boards lack the capability to report the status of the SRQ line. In such a case, an
ECAP error is returned in iberr.

TestSys

Name
TestSys — perform self-test queries on devices

Synopsis

#include <gpib/ib.h>
void TestSys(int board_desc, const Addr4882_t addressList[], short
results[]);

Description
TestSys() sends the ’*TST?’ message to all the devices in the addressList array, then
reads their responses into the results array. This will cause devices that conform to
the IEEE 488.2 standard to perform a self-test and respond with a zero on success. A
non-zero response indicates an error during the self-test.

The number of devices which responded with nonzero values from their self-tests is
returned in ibcnt and ibcntl. If a device fails to respond to the *TST? query, an error
will be flagged in ibsta (this is different than NI’s documented behaviour which is
broken).

71

Linux-GPIB 4.3.3 Documentation

Trigger

Name
Trigger — trigger a device

Synopsis

#include <gpib/ib.h>
void Trigger(int board_desc, Addr4882_t address);

Description
Trigger() is equivalent to a TriggerList() call with a single address.

TriggerList

Name
Trigger — trigger multiple devices

Synopsis

#include <gpib/ib.h>
void TriggerList(int board_desc, Addr4882_t addressList[]);

Description
TriggerList() sends a GET (group execute trigger) command byte to all the devices
specified in the addressList array. If no addresses are specified in addressList
then the GET command byte is sent without performing any addressing.

WaitSRQ

Name
WaitSRQ — sleep until the SRQ bus line is asserted

72

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
void WaitSRQ(int board_desc, short *result);

Description
WaitSRQ() sleeps until either the SRQ bus line is asserted, or a timeout (see ibtmo())
occurs. A ’1’ will be written to the location specified by result if SRQ was asserted,
and a ’0’ will be written if the function timed out.

Utility Functions

AsyncIbcnt and AsyncIbcntl

Name
AsyncIbcnt and AsyncIbcntl — ibcnt and ibcntl values for last asynchronous
I/O operation

Synopsis

#include <gpib/ib.h>
int AsyncIbcnt(void);
long AsyncIbcntl(void);

Description
AsyncIbcnt() and AsyncIbcntl() return thread-local counts related to the global vari-
ables ibcnt and ibcntl. Their values correspond to the result of the last asynchronous
I/O operation resynchronized to the current thread by an ibwait or ibstop call. These
functions only reflect the result of the asynchronous I/O operation itself and not,
for example, the ibwait which resynchronized the asynchronous result to the current
thread. Thus the result from AsyncIbcnt() is easier to interpret than ThreadIbcnt(),
since it is unambiguous whether the value is associated with the asynchronous I/O
result, or with the function call used to resynchronize (ibwait or ibstop).

These functions are Linux-GPIB extensions.

Return value
A value related to ibcnt or ibcntl corresponding to the last asynchronous I/O opera-
tion resynchronized to the current thread is returned.

73

Linux-GPIB 4.3.3 Documentation

AsyncIberr

Name
AsyncIberr — iberr value for last asynchronous I/O operation

Synopsis

#include <gpib/ib.h>
int AsyncIberr(void);

Description
AsyncIberr() returns a thread-local error number related to the global variable iberr.
Its value corresponds to the result of the last asynchronous I/O operation resynchro-
nized to the current thread by an ibwait or ibstop call. This function only reflects
the result of the asynchronous I/O operation itself and not, for example, the ibwait
which resynchronized the asynchronous result to the current thread. Thus the result
from AsyncIberr() is easier to interpret than ThreadIberr(), since it is unambiguous
whether the value is associated with the asynchronous I/O result, or with the func-
tion call used to resynchronize (ibwait or ibstop).

This function is a Linux-GPIB extension.

Return value
A value related to iberr corresponding to the last asynchronous I/O operation resyn-
chronized to the current thread is returned.

AsyncIbsta

Name
AsyncIbsta — ibsta value for last asynchronous I/O operation

Synopsis

#include <gpib/ib.h>
int AsyncIbsta(void);

74

Linux-GPIB 4.3.3 Documentation

Description
AsyncIbsta() returns a thread-local status value related to the global variable ibsta.
Its value corresponds to the result of the last asynchronous I/O operation resynchro-
nized to the current thread by an ibwait or ibstop call. This function only reflects
the result of the asynchronous I/O operation itself and not, for example, the ibwait
which resynchronized the asynchronous result to the current thread. Thus the result
from AsyncIbsta() is easier to interpret than ThreadIbsta(), since it is unambiguous
whether the value is associated with the asynchronous I/O result, or with the func-
tion call used to resynchronize (ibwait or ibstop).

Only the status bits END | ERR | TIMO | CMPL are valid in the returned status
byte. The rest of the bits should be ignored and will be set to zero.

This function is a Linux-GPIB extension.

Return value
A value related to ibsta corresponding to the last asynchronous I/O operation resyn-
chronized to the current thread.

CFGn

Name
CFGn — generate ’configure n meters’ command byte

Synopsis

#include <gpib/ib.h>
uint8_t CFGn(unsigned int num_meters);

Description
CFGn() returns a ’configure n meters’ command byte corresponding to the
num_meters argument. num_meters (valid values are 1 through 15) specifies how
many meters of cable are in your system. This is necessary in before high speed
non-interlocked handshaking (a.k.a. HS488) can be used on the bus. The CFGn
command byte must be preceded by a CFE command byte to take effect.

Return value
The appropriate CFGn command byte is returned.

75

Linux-GPIB 4.3.3 Documentation

GetPAD

Name
GetPAD — extract primary address from an Addr4882_t value

Synopsis

#include <gpib/ib.h>
static __inline__ unsigned int GetPAD(Addr4882_t address);

Description
GetPAD() extracts the primary address packed into the Addr4882_t value address.

Return value
The primary GPIB address (from 0 through 30) stored in address.

GetSAD

Name
GetSAD — extract secondary address from an Addr4882_t value

Synopsis

#include <gpib/ib.h>
static __inline__ unsigned int GetSAD(Addr4882_t address);

Description
GetSAD() extracts the secondary address packed into the Addr4882_t value address.

Return value
The secondary GPIB address (from 0x60 through 0x7e, or 0 for none) stored in
address.

76

Linux-GPIB 4.3.3 Documentation

MakeAddr

Name
MakeAddr — pack primary and secondary address into an Addr4882_t value

Synopsis

#include <gpib/ib.h>
static __inline__ Addr4882_t MakeAddr(unsigned int pad, unsigned int
sad);

Description
MakeAddr() generates an Addr4882_t value that corresponds to the specified pri-
mary address pad and secondary address sad. It does so by putting pad into the least
significant byte and left shifting sad up to the next byte.

Examples

Addr4882_t addressList[5];

addressList[0] = 5 /* primary address 5, no secondary address */
addressList[1] = MakeAddr(3, 0); /* primary address 3, no secondary address */
addressList[2] = MakeAddr(7, 0x70); /* primary address 3, secondary address 16 */
addressList[3] = MakeAddr(20, MSA(9)); /* primary address 20, secondary address 9 */
addressList[4] = NOADDR;

Return value
An Addr4882_t value corresponding to the specified primary and secondary GPIB
address.

MLA

Name
MLA — generate ’my listen address’ command byte

Synopsis

#include <gpib/ib.h>
uint8_t MLA(unsigned int address);

77

Linux-GPIB 4.3.3 Documentation

Description
MLA() returns a ’my listen address’ command byte corresponding to the address
argument. The address may be between 0 and 30.

Return value
The appropriate MLA command byte is returned.

MSA

Name
MSA — generate ’my secondary address’ command byte

Synopsis

#include <gpib/ib.h>
uint8_t MSA(unsigned int address);

Description
MSA() returns a ’my secondary address’ command byte corresponding to the
address argument. The address may be between 0 and 30. This macro is also useful
for mangling secondary addresses from the ’real’ values between 0 and 30 to the
range 0x60 to 0x7e used by most of the library’s functions.

Return value
The appropriate MSA command byte is returned.

MTA

Name
MTA — generate ’my talk address’ command byte

Synopsis

#include <gpib/ib.h>
uint8_t MTA(unsigned int address);

78

Linux-GPIB 4.3.3 Documentation

Description
MTA() returns a ’my talk address’ command byte corresponding to the address ar-
gument. The address may be between 0 and 30.

Return value
The appropriate MTA command byte is returned.

PPE_byte

Name
PPE_byte — generate ’parallel poll enable’ command byte

Synopsis

#include <gpib/ib.h>
uint8_t PPE_byte(unsigned int dio_line, int sense);

Description
PPE_byte() returns a ’parallel poll enable’ command byte corresponding to the
dio_line and sense arguments. The dio_line (valid values are 1 through 8)
specifies which dio line the device being configured should use to send back its
parallel poll response. The sense argument specifies the polarity of the response. If
sense is nonzero, then the specified dio line will be asserted to indicate that the
’individual status bit’ (or ’ist’) is 1. If sense is zero, then the specified dio line will be
asserted when ist is zero.

Return value
The appropriate PPE command byte is returned.

ThreadIbcnt and ThreadIbcntl

Name
ThreadIbcnt and ThreadIbcntl — thread-specific ibcnt and ibcntl values

79

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ThreadIbcnt(void);
long ThreadIbcntl(void);

Description
ThreadIbcnt() and ThreadIbcntl() return thread-local versions of the global variables
ibcnt and ibcntl.

Return value
The value of ibcnt or ibcntl corresponding to the last ’traditional’ or ’multidevice’
function called in the current thread is returned.

ThreadIberr

Name
ThreadIberr — thread-specific iberr value

Synopsis

#include <gpib/ib.h>
int ThreadIberr(void);

Description
ThreadIberr() returns a thread-local version of the global variable iberr.

Return value
The value of iberr corresponding to the last ’traditional’ or ’multidevice’ function
called by the current thread is returned.

ThreadIbsta

Name
ThreadIbsta — thread-specific ibsta value

80

Linux-GPIB 4.3.3 Documentation

Synopsis

#include <gpib/ib.h>
int ThreadIbsta(void);

Description
ThreadIbsta() returns a thread-local version of the global variable ibsta.

Return value
The value of ibsta corresponding to the last ’traditional’ or ’multidevice’ function
called by the current thread is returned.

GPIB protocol

GPIB command bytes
The meaning and values of the possible GPIB command bytes are as follows:

Table 13. GPIB command bytes

byte value (hexadecimal) name description

0x1 GTL Go to local

0x4 SDC Selected device clear

0x5 PPConfig (also ’PPC’ on
non-powerpc
architectures)

Parallel poll configure

0x8 GET Group execute trigger

0x9 TCT Take control

0x11 LLO Local lockout

0x14 DCL Device clear

0x15 PPU Parallel poll unconfigure

0x18 SPE Serial poll enable

0x19 SPD Serial poll disable

0x1f CFE Configure enable

0x20 to 0x3e MLA0 to MLA30 My (primary) listen
address 0 to 30

0x3f UNL Unlisten

0x40 to 0x5e MTA0 to MTA30 My (primary) talk address
0 to 30

81

Linux-GPIB 4.3.3 Documentation

byte value (hexadecimal) name description

0x5f UNT Untalk

0x60 to 0x6f MSA0 to MSA15, also
PPE, also CFG1 to CFG15

When following a
primary talk or primary
listen address, this is "my
secondary address"
MSA0 (0x60) to MSA15
(0x6f). When following a
PPC "parallel poll
configure", this is PPE
"parallel poll enable".
When following a CFE
"configure enable", this is
CFG1 (0x61) to CFG15
(0x6f) "configure n
meters".
For parallel poll enable,
the least significant 3
bits of the command
byte specify which DIO
line the device should
use to send its paral-
lel poll response. The
fourth least significant
bit (0x8) indicates the
’sense’ or polarity the
device should use when
responding.

0x70 to 0x7e MSA16 to MSA30, also
PPD

When following a talk or
listen address, this is ’my
secondary address’ 16 to
30. When following a
parallel poll configure,
this is ’parallel poll
disable’.

0x7f PPD Parallel poll disable

GPIB bus lines
Physically, the GPIB bus consists of 8 data lines, 3 handshaking lines, and 5 control
lines (and 8 ground lines). Brief descriptions of how they are used follow:

Table 14. GPIB bus lines

bus line description pin number

DIO1 through DIO8 Data input/output bits.
These 8 lines are used to
read and write the 8 bits of
a data or command byte
that is being sent over the
bus.

DIO1 to DIO4 use pins 1
to 4, DIO5 to DIO8 use
pins 13 to 16

82

Linux-GPIB 4.3.3 Documentation

bus line description pin number
EOI End-or-identify. This line

is asserted with the last
byte of data during a
write, to indicate the end
of the message. It can also
be asserted along with the
ATN line to conduct a
parallel poll.

5

DAV Data valid. This is a
handshaking line, used to
signal that the value being
sent with DIO1-DIO8 is
valid. During transfers the
DIO1-DIO8 lines are set,
then the DAV line is
asserted after a delay
called the ’T1 delay’. The
T1 delay lets the data lines
settle to stable values
before they are read.

6

NRFD Not ready for data. NRFD
is a handshaking line
asserted by listeners to
indicate they are not ready
to receive a new data byte.

7

NDAC Not data accepted. NDAC
is a handshaking line
asserted by listeners to
indicate they have not yet
read the byte contained on
the DIO lines.

8

IFC Interface clear. The system
controller can assert this
line (it should be asserted
for at least 100
microseconds) to reset the
bus and make itself
controller-in-charge.

9

SRQ Service request. Devices
on the bus can assert this
line to request service
from the
controller-in-charge. The
controller can then poll
the devices until it finds
the device requesting
service, and perform
whatever action is
necessary.

10

83

Linux-GPIB 4.3.3 Documentation

bus line description pin number
ATN Attention. ATN is asserted

to indicate that the DIO
lines contain a command
byte (as opposed to a data
byte). Also, it is asserted
with EOI when
conducting parallel polls.

11

REN Remote enable. Asserted
by the system controller, it
enables devices to enter
remote mode. When REN
is asserted, a device will
enter remote mode when
it is addressed by the
controller. When REN is
false, all devices will
immediately return to
local mode.

17

A. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifi-
cations made by others.

This License is a kind of "copyleft", which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,

84

Linux-GPIB 4.3.3 Documentation

and is addressed as "you". You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Trans-
parent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the Document means that
it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:

85

Linux-GPIB 4.3.3 Documentation

any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version un-
der precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever pos-
sesses a copy of it. In addition, you must do these things in the Modified Version:

86

Linux-GPIB 4.3.3 Documentation

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives permis-
sion.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled "History" in the
Document, create one stating the title, year, authors, and publisher of the Doc-
ument as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

87

Linux-GPIB 4.3.3 Documentation

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Docu-
ment already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying
of that document.

AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an "aggregate" if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-

88

Linux-GPIB 4.3.3 Documentation

ment’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License "or any later ver-
sion" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License".

89

Linux-GPIB 4.3.3 Documentation

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Notes
1. https://github.com/fmhess/linux_gpib_firmware

2. https://github.com/fmhess/linux_gpib_firmware

3. https://github.com/fmhess/linux_gpib_firmware

4. https://github.com/fmhess/fmh_gpib_core

5. http://lpvo.fe.uni-lj.si/gpib

6. https://github.com/fmhess/linux_gpib_firmware

7. https://github.com/fmhess/hsplus_load

90

	Table of Contents
	Copying
	Configuration
	gpib.conf
	Name
	Description

	gpibconfig
	Name
	Synopsis
	Description
	Options

	Supported Hardware
	Supported Hardware Matrix
	BoardSpecific Notes
	Agilent (HP) 82341
	Agilent 82350A/B and 82351A
	Agilent 82357A/B
	Beiming F/S82357
	fmhgpibcore
	Selfmade usbgpib adapter
	National Instruments GPIBUSBB
	National Instruments GPIBUSBHS and GPIPUSBHS+

	LinuxGPIB Reference
	Global Variables

	ibcnt and ibcntl
	Name
	Synopsis
	Description

	iberr
	Name
	Synopsis
	Description

	ibsta
	Name
	Synopsis
	Description
	'Traditional' API Functions

	ibask
	Name
	Synopsis
	Description
	Return value

	ibbna
	Name
	Synopsis
	Description
	Return value

	ibcac
	Name
	Synopsis
	Description
	Return value

	ibclr
	Name
	Synopsis
	Description
	Return value

	ibcmd
	Name
	Synopsis
	Description
	Return value

	ibcmda
	Name
	Synopsis
	Description
	Return value

	ibconfig
	Name
	Synopsis
	Description
	Return value

	ibdev
	Name
	Synopsis
	Description
	Return value

	ibeos
	Name
	Synopsis
	Description
	Return value

	ibeot
	Name
	Synopsis
	Description
	Return value

	ibevent
	Name
	Synopsis
	Description
	Return value

	ibfind
	Name
	Synopsis
	Description
	Return value

	ibgts
	Name
	Synopsis
	Description
	Return value

	ibist
	Name
	Synopsis
	Description
	Return value

	iblines
	Name
	Synopsis
	Description
	Return value

	ibln
	Name
	Synopsis
	Description
	Return value

	ibloc
	Name
	Synopsis
	Description
	Return value

	ibonl
	Name
	Synopsis
	Description
	Return value

	ibpad
	Name
	Synopsis
	Description
	Return value

	ibpct
	Name
	Synopsis
	Description
	Return value

	ibppc
	Name
	Synopsis
	Description
	Return value

	ibrd
	Name
	Synopsis
	Description
	Return value

	ibrda
	Name
	Synopsis
	Description
	Return value

	ibrdf
	Name
	Synopsis
	Description
	Return value

	ibrpp
	Name
	Synopsis
	Description
	Return value

	ibrsc
	Name
	Synopsis
	Description
	Return value

	ibrsp
	Name
	Synopsis
	Description
	Return value

	ibrsv
	Name
	Synopsis
	Description
	Return value

	ibrsv2
	Name
	Synopsis
	Description
	Return value

	ibsad
	Name
	Synopsis
	Description
	Return value

	ibsic
	Name
	Synopsis
	Description
	Return value

	ibspb
	Name
	Synopsis
	Description
	Return value

	ibsre
	Name
	Synopsis
	Description
	Return value

	ibstop
	Name
	Synopsis
	Description
	Return value

	ibtmo
	Name
	Synopsis
	Description
	Return value

	ibtrg
	Name
	Synopsis
	Description
	Return value

	ibvers
	Name
	Synopsis
	Description

	ibwait
	Name
	Synopsis
	Description
	Return value

	ibwrt
	Name
	Synopsis
	Description
	Return value

	ibwrta
	Name
	Synopsis
	Description
	Return value

	ibwrtf
	Name
	Synopsis
	Description
	Return value
	"Multidevice" API Functions

	AllSPoll
	Name
	Synopsis
	Description

	DevClear
	Name
	Synopsis
	Description

	DevClearList
	Name
	Synopsis
	Description

	EnableLocal
	Name
	Synopsis
	Description

	EnableRemote
	Name
	Synopsis
	Description

	FindLstn
	Name
	Synopsis
	Description

	FindRQS
	Name
	Synopsis
	Description

	PassControl
	Name
	Synopsis
	Description

	PPoll
	Name
	Synopsis
	Description

	PPollConfig
	Name
	Synopsis
	Description

	PPollUnconfig
	Name
	Synopsis
	Description

	RcvRespMsg
	Name
	Synopsis
	Description

	ReadStatusByte
	Name
	Synopsis
	Description

	Receive
	Name
	Synopsis
	Description

	ReceiveSetup
	Name
	Synopsis
	Description

	ResetSys
	Name
	Synopsis
	Description

	Send
	Name
	Synopsis
	Description

	SendCmds
	Name
	Synopsis
	Description

	SendDataBytes
	Name
	Synopsis
	Description

	SendIFC
	Name
	Synopsis
	Description

	SendList
	Name
	Synopsis
	Description

	SendLLO
	Name
	Synopsis
	Description

	SendSetup
	Name
	Synopsis
	Description

	SetRWLS
	Name
	Synopsis
	Description

	TestSRQ
	Name
	Synopsis
	Description

	TestSys
	Name
	Synopsis
	Description

	Trigger
	Name
	Synopsis
	Description

	TriggerList
	Name
	Synopsis
	Description

	WaitSRQ
	Name
	Synopsis
	Description
	Utility Functions

	AsyncIbcnt and AsyncIbcntl
	Name
	Synopsis
	Description
	Return value

	AsyncIberr
	Name
	Synopsis
	Description
	Return value

	AsyncIbsta
	Name
	Synopsis
	Description
	Return value

	CFGn
	Name
	Synopsis
	Description
	Return value

	GetPAD
	Name
	Synopsis
	Description
	Return value

	GetSAD
	Name
	Synopsis
	Description
	Return value

	MakeAddr
	Name
	Synopsis
	Description
	Examples
	Return value

	MLA
	Name
	Synopsis
	Description
	Return value

	MSA
	Name
	Synopsis
	Description
	Return value

	MTA
	Name
	Synopsis
	Description
	Return value

	PPEbyte
	Name
	Synopsis
	Description
	Return value

	ThreadIbcnt and ThreadIbcntl
	Name
	Synopsis
	Description
	Return value

	ThreadIberr
	Name
	Synopsis
	Description
	Return value

	ThreadIbsta
	Name
	Synopsis
	Description
	Return value

	GPIB protocol
	GPIB command bytes
	GPIB bus lines

	A. GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

