User Guide for Agilent iOS IO
Introduction:
The Agilent iOS IO (AiOS_IO) is a tool for iOS developers who want to create software or apps for the iPad / iPhone / iPod that communicate with LXI test and measurement instrumentation. The AiOS_IO abstracts and handles the low level network sockets for LAN based communication, making sending data to and fetching data from LXI instruments much easier for the iOS programmer. To use an analogy, it creates a VISA like IO layer for the iOS.
The AiOS_IO folder that is available for download consists of six objective C source code files. There are three classes in the six files, three .m files and three .h files. The three classes are AiOS_IO, SocketIO, and Error their functionality will be discussed in more detail in the following sections. The source code that makes up the AiOS_IO is being offered free of charge and “As is” so it is not supported by Agilent for more information see the disclosure statement at the end of this document. Feel free to use and modify the AiOS_IO source code as you see fit.
Technical Overview of AiOS_IO:
When using the AiOS_IO tools you will only need to reference and access the AiOS_IO class and its methods. The SocketIO and Error class are referenced by AiOS_IO class and you do not need to reference them in your project. The Error and SocketIO class just need to be included in your iOS project. The following is a description of each of the three classes:
SocketIO A class to perform low level socket I/O communication between an iOS device and a LAN instrument. The socket communication is done using the BSD socket API. This class is abstracted by AiOS_IO class and does not need to be referenced by the user. To learn more about the BSD socket API click here.
AiOS_IO A class for doing instrument I/O communication. It provides higher level functions applicable to instruments as compared to SocketsIO. It uses SocketIO as a lower communication layer. Additional layers could be added. You can open connection, print, scan, query, and close.
Error This class abstracts IO error handling. Error handling is done using the Objective C NSError class. Click here to learn more about NSError class.
The following is an overview of the methods found in the AiOS_IO class:
/**
 Attempt to open connection to the specific address
 address: ip or hostname
 port: port number
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)openWithAddress:(NSString *)address port:(int)port error:(NSError **)error;

/**
 Close the connection
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)closeWithError:(NSError **)error;

/**
 When connecting using a sockets connect a separate connection on a different port needs to be made when sending a device clear. The instrument provides the port number to use for a device clear. Run this function after establishing a connection with open function
 query: the query to send to the instrument to retrieve the port, pass NULL to use the default
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)queryDeviceClearPort:(NSString *)query error:(NSError **)error;

/**
 Send a buffer (an array) to the instrument
 buffer: an array to send
 size: the size of the array (bytes)
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)printBuffer:(char*)buffer size:(int)size error:(NSError**)error;

/**
 Send a string (array terminated by \0) to the instrument
 message: text string to send
 appendNewLine: should a new line be appended if not present in the message parameter
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)print:(NSString*)message appendNewLine:(BOOL)appendNewLine error:(NSError**)error;

/**
 Send a string (array terminated by \0) to the instrument and a new line will be appended to message if not present
 message: text string to send
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)print:(NSString*)message error:(NSError**)error;

/**
 Receive a buffer from the instrument
 buffer: a pointer to an allocated array
 sizeToRead: size to read from socket (bytes)
 sizeRead: size of that was actually read from the socket (bytes)
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)scanBuffer:(char*)buffer sizeToRead:(int)sizeToRead sizeRead:(int*)sizeRead error:(NSError**)error;

/**
 Receive a string terminated by a newline (line) from the instrument
 response: pointer to a pointer where the string response will be placed. The pointer to a pointer should be an unallocated location, or there may be a memory leak.
 trimNewLine: should the end line be removed from response after it's read
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)scan:(NSString**)response trimNewLine:(BOOL)trimNewLine error:(NSError**)error;

/**
 Receive a string terminated by a newline (line) from the instrument and trim the new line from the response
 response: pointer to a pointer where the string response will be placed.
 the pointer to a pointer should be an unallocated location, or there
 may be a memory leak.
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)scan:(NSString**)response error:(NSError**)error;

/**
 Receive a binary definite size block(s) as defined in the 488.2 standard for transferring binary. Some commands transfer data back in binary format to reduce bandwidth as compared to text transfer. SCPI commands "format real" and "format:border swap" are often used to tell an instrument to use binary. You need to deallocate the arrays created in buffers after the call to this function.
 blocksCount: number of definite size blocks to read
 buffers: an array of arrays. The first dimension should be equal to blocksCount. The second dimension should be deallocated.
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)scanBinaryDefiniteSizeBlocks:(int)blocksCount buffers:(char**)buffers blocksRead:(int *)blocksRead buffersReadSize:(int *)buffersReadSize error:(NSError**)error;

/**
 Send a string to the instrument, append a newline to the string if one is not present. Receive a string terminated by a newline (line) from the instrument, trim endline from response.
 query: the string to send to the instrument
 response: pointer to a pointer where the string response will be placed.
 the pointer to a pointer should be an unallocated location, or there
 may be a memory leak.
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)query:(NSString*)query response:(NSString**)response error:(NSError**)error;

/**
 Send device clear to the instrument. A device clear is needed when the instrument command parser is in a bad state and is not responding.
 error: object where error information will be placed
 returns: YES on success. NO on error.
 ***/
- (BOOL)deviceClearWithError:(NSError **)error;

AiOS_IO Usage Instructions:
The following brief instructions describe how to use the AiOS_IO in your iOS project. You can download the source code for the “StarIDN” app, which demonstrates the use of AiOS_IO. Instructions for using AiOS_IO:
1. Add all 3 classes (6 files) to your iOS project in Xcode
2. Add a reference in your project to the AiOS_IO class: #import "AiOS_IO.h"
3. Create handle to the AiOS_IO: AiOS *io = [[AiOS_IO alloc] init];
4. Open connection to LAN instrument:
bool connected = [io openWithAddress:@”1.1.1.1” port:5025 error:&hError]
5. Send *IDN? SCPI and read response:
NSString *response;
Bool success = [io query:@"*idn?" response:&response error:&hError];
6. Close connection: bool closed = [io closeWithError:&hError];

“As is” Disclosure:
AGILENT PROVIDES THIS FREE SOFTWARE "AS IS". ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF NON-INFRINGEMENT, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, REASONABLE CARE AND SKILL, AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. Agilent shall not be liable in any way whatsoever for any damages of any nature arising from its use. In no event shall Agilent be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to: procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) except if caused by willful misconduct or gross negligence arising in any way out of the use of this software, even if advised of the possibility of such damage and if it has been ensured that such data can be reconstructed with reasonable expenditure from data material provided in machine-readable form.
