
Application Note

Keysight Technologies
Test-System Development Guide
Understanding Drivers and Direct I/O

02 | Keysight | Test-System Development Guide - Application Note

This application note is part of the Test-System Development
Guide series, which is designed to help you quickly design a test
system that produces reliable results, meets your throughput
requirements, and does so within your budget. This application
note answers common questions about the use of drivers and
direct I/O to send commands from a PC application to the test
instrument. It discusses how the driver came about, what the
different software layers do in a system to help the instrument
communicate to the PC, which drivers are compatible with various
software languages and I/O software, and references for further
study. See the list of additional application notes in the series on
page 18.

Table of contents

Introduction . 3
History 	 . 4
	 GPIB 	 . 4
	 SCPI 	 . 5
The I/O Software…SICL and VISA . 6
	 SICL 	 . 6
	 VISA	 . 6
PC Industry Adds Language Independence 8
	 VISA-COM . 8
What is a Driver? . 9
	 A driver is… . 9
	 Driver coverage . 10
	 Generations of drivers . 11
		 What is IVI? . 11
		 IVI Classes . 11
Conclusion . 12
Appendix 	 . 13
Glossary 	 . 16
Related Literature . 18

Introduction

In a September 2001 survey, Test & Measurement World published a summary of engineers’ worst
headaches. Instrument drivers topped the list. Instrument manufacturers and various trade groups
have been working on driver standards for some time, in an attempt to alleviate the frustrations of
engineers who need to automate measurements and create test systems on a deadline. As a result of
these efforts, we might expect finding and using appropriate drivers to be dramatically easier, but at
the moment, complexities and incompatibilities are still troublesome.

This application note answers common questions about the use of drivers and direct I/O to send com-
mands from a PC application to the test instrument. It discusses how the driver came about, what the
different software layers do in a system to help the instrument communicate to the PC, which drivers
are compatible with various software languages and I/O software, and references for further study.

With new insight into these topics, you should be able to choose, install and use drivers more easily
and reduce the amount of time you spend getting your instruments and computer applications to talk
to each other.

04 | Keysight | Test-System Development Guide - Application Note

History

By computer standards, 1970 could be considered the mists of antiquity. That’s when
instruments were connected via imaginative schemes to devices resembling computers.
One popular I/O format involved connecting a large cable to the instrument. Each line on
the cable represented a function or range, and the line was simply grounded at the proper
time. The device, say a voltmeter, would return a value using binary coded decimal (BCD)
1-2-4-8 format, or a quainter 1-2-2-4 format. Needless to say, the programming syntax
of instruments at this time was anything but standardized. However, since everything
was hard-wired, the process was straightforward and immediate.

GPIB
In 1971, development began on a standard hardware interface. The idea was to be able
to trigger multiple instruments at once and still allow both slow and fast instruments to
“talk” on the same bus without conflict. The first products to use this bus were released
in 1972. The same year this new bus was dubbed Hewlett-Packard Interface Bus (HP-IB).
In 1975, IEEE adopted it as a standard with little modification, and IEEE-488 was born.
A variant of the original interface is now popularly known as General Purpose Interface
Bus (GPIB).

With GPIB and a desktop computer (actually at the time it was called a ‘desktop calcula-
tor’), the need arose for a common communication language. Limited processing power
in the ‘calculators’ demanded a simple syntax, so ASCII commands were chosen. A DMM
might be sent what was affectionately termed “R2D2 code”. Here’s an example:

“F1R2T1”

The command means “Go to the dc volts Function, the 1 volt Range and Trigger a read-
ing.” Different manufacturers had unique ways to interpret the command strings, based
on their instruments’ capabilities. If you had to replace a product with one from another
manufacturer, or even a new-generation product from the same manufacturer, it could
mean completely rewriting the entire program. Later versions of IEEE 488 elevated the
standard from being a hardware-only standard to one that also specified protocol.

Figure 1. Early instrument control utilized hard-wired commands.

05 | Keysight | Test-System Development Guide - Application Note

SCPI
In 1989, seeing a need for more clarity and interchangeability that was available with
simple ASCII, Hewlett-Packard introduced a programming language known as Test &
Measurement Systems Language (TMSL). Within less than a year, nine T&M manufactur-
ers had met to generate a universal approach to instrument control, using TMSL as the
basis. The outcome was Standard Commands for Programmable Instruments (SCPI).

Today, SCPI is still the most-used form of instrument control. In SCPI, the instrument
programming syntax became much more robust and predictable. SCPI defined a strict
hierarchy, and every command was associated with a concomitant response. These were
defined for source, sense and switch devices. Here’s an example of SCPI code:

CONF:VOLT:DC 0.3,0.003

This command tells the instrument to configure itself to get ready to read a 0.3 volt dc
signal with 3-millivolt resolution. It should be obvious from this statement that SCPI
commands require some intelligence on the other end of the wire, as not every voltmeter
has a 0.3 V range. The commands need to be parsed by the voltmeter and this parsing
adds a small layer of delay time to the system.

One advantage of SCPI is that the list of commands typically covers 100% of the instru-
ment’s programmable functions, no matter how arcane.

Figure 2. Compared to “R2D2” code, SCPI commands standardize programming
and make life easier for the programmer. SCPI commands can access virtually any
programming function in the instrument, but the parser does add small delays to
the process.

06 | Keysight | Test-System Development Guide - Application Note

The I/O Software…SICL and VISA

Instrument commands aren’t the whole story. It takes more
“layers” of software to communicate with a computer. Before you
send the instrument a command, you need to define the I/O path,
route the information through the proper I/O card, find out where
the instrument is on the bus and speak to the instrument in the
syntax of the I/O you’re using. Assuming the GPIB I/O card in the
computer is at address 7 and the DMM is at address 22 on the
bus, the simple BASIC command might be:

ASSIGN @Dvm to 722 !
This tells the computer where to send the command

OUTPUT @Dvm;
“TRIG:SOURCE:INT” !
sets the trigger source to internal

The above will work with a GPIB interface, but if you try the same
thing using RS-232, the syntax is very different. Switching be-
tween GPIB and RS-232 would require rewriting some code.

SICL
That’s where Standard Instrument Control Library (SICL) I/O soft-
ware comes in. SICL was developed by HP to make software as
I/O-independent as possible. It adds a layer on top of the instru-
ment code. The layer checks to see what I/O is used and alters
the syntax accordingly. The code looks the same, regardless of
I/O type. All you have to do is use one line of code to declare the
I/O type at the beginning of the program.

SICL is not the only I/O software available today. Keysight VISA,
NI-VISA and NI-488 and VISA-COM (from Keysight Technologies,
Inc.) perform similar functions. That’s a dizzying array of choices,
so for now let’s concentrate on VISA. While SICL software was
created to communicate with Keysight interfaces only, VISA was
created to work industry-wide.

VISA
In the late 1980’s, there was a move to build standardized card
cage instruments. This movement led to a software and hardware
standard known as VME Extensions for Instrumentation (VXI).
Based on the VME standard, VXI made special modifications
for software, shielding, triggering, power supplies and analog
performance. VXI was adopted by hundreds of instrument man-
ufacturers who produced a wide variety of plug-in cards. VXI’s
interchangeability at the card level brought about the need for
common I/O software, similar to HP’s SICL, but implemented as
an industry-wide standard. Largely derived from the SICL library,
the VISA syntax was born.

Figure 3. SICL I/O software reduces a test engineer’s programming burden by
making it easier to change I/O types (USB, GPIB, USB, VXI, RS-232, etc) without
recoding the program. SICL adds a software layer, which has a small effect on
system speed.

07 | Keysight | Test-System Development Guide - Application Note

The I/O Software…SICL and VISA (continued)

Virtual Instrument Software Architecture (VISA), was created by the VXIplug&play
Foundation to standardize I/O software across physical interfaces and between various
vendors. In most cases, test systems are not solely VXI, but rather hybrids of VXI and
Rack & Stack architectures, so it was not enough to create I/O software exclusively for
VXI. For that reason, the VXIplug&play specifications were extended to include tradition-
al standalone instruments as well as both types 1 of VXI instruments.

Today’s two main suppliers of VISA are Keysight Technologies and National Instruments.
(In 2000, the same people from HP Test & Measurement who were involved in instrument
connectivity were split from HP in the new venture now known as Keysight Technologies.)

VISA I/O software uses common terminology and syntax to connect to and control
instruments. A VISA library supports complete control of instrument across the physical
interfaces GPIB, RS-232, USB, LAN and VXI.

The VISA library provides the capability of SICL, in a way that conforms to industry
standards. A program written to work with Keysight’s VISA library will work with imple-
mentations of VISA from other vendors. For those accustomed to using SICL, Keysight’s
implementation of VISA is provided along with its SICL libraries. (Since the introduction
of VISA, programming based on the SICL library has gradually been phased out in favor
of the industrystandard VISA library.)

To program a new test system, the test engineer installs the appropriate I/O library
along with the application programming language. VISA was originally developed to be
used with C and C++, but can also be called from any language that can call arbitrary
Windows dynamic-link libraries (DLLs), including Microsoft Visual Basic. Keysight pro-
vides header files to facilitate the use of VISA in Visual Basic .NET and C#. These can be
downloaded from www.keysight.com/find/iolib.

Figure 4. VISA is the most popular form of I/O software. Drawing heavily on the
work done for SICL, VISA was created to serve multiple T&M suppliers and be a
universal standard. VISA-COM is a new variant of VISA.

1.  VXI has two types of instruments, based mostly upon their local intelligence. “Message-based”
cards” can react to a high-level message, and usually have on-card parsing. “Register-based” cards
are just what the name implies… cards that have directly-programmable registers. Messagebased
cards do more, but are inherently slower, since they must interpret complex commands.

www.keysight.com/find/iolib

08 | Keysight | Test-System Development Guide - Application Note

PC Industry Adds Language Independence

As I/O development was proceeding in the T&M industry, the PC industry was making
big strides in I/O-independence and language-independence. In 1994, Microsoft stated:
“The Component Object Model (COM) is a software architecture that allows components
made by different software vendors to be combined into a variety of applications. COM
defines a standard for component interoperability, is not dependent on any particular
programming language, is available on multiple platforms, and is extensible.” 1

In February, 2001, Microsoft introduced .NET, their 3rd generation of component tech-
nology. .NET has been applied to their integrated development environment, Visual Studio
.NET, as well as MS Office, other applications, operating systems and web services.

All this is well and good, but should the Test & Measurement industry embrace PC Oper-
ating Systems?

Detractors point out the frequent operating system upgrades in the PC industry relative
to T&M languages. However, from Figure 5, it can be seen that COM, which is integral
to .NET components, has been around longer that most T&M standards. It seems only
logical to take advantage of the investments Microsoft has made to create this paradigm
shift. With 3,000 engineers working for three years on the first version of .NET, Mic-
rosoft’s investment is twenty times that of the leading T&M language. Similar correla-
tions apply to software. Visual Basic has over 6,000,000 users and C/Visual C++ has
1,000,000 users worldwide. This will result in an unprecedented body of software the
average engineer will be able to leverage.

The most important immediate benefit for the test engineer is that, using Visual Studio
.NET, engineers are reporting 20-30% less development time to create their test programs.
They are delighted in their ability to pull in legacy code from languages such as C,
Visual C++, VEE and Visual Basic into the .NET environment.

VISA-COM
To incorporate this programming language independence, Keysight initiated a VISA-COM
standard as a companion to the VISA specification. VISA-COM software makes VISA
services available in a languageindependent COM component architecture. What does
that mean? It means not only are you free to pick from popular I/O configurations, but
now you also have the freedom to choose from a list of software languages like C++, C#
and VB.NET. With Keysight’s T&M Programmer’s Toolkit product acting as a T&M “face”
for .NET, you can access all this from a single environment.

When using Keysight VISA-COM, you also need to install Keysight VISA. Keysight I/O
libraries are shipped along with Keysight software and I/O products.

1.  Dr. Dobb’s Journal, Microsoft Corp. December, 1994.

Figure 5. PC Software Overtakes T&M Software in
interchangeability. The millions of people using Visual
Studio software will afford the engineer an unprece-
dented pool of available intellectual property.

09 | Keysight | Test-System Development Guide - Application Note

What is a Driver?

It’s about time we explained what a driver is; after all, that’s the
title of this application note. By now, we know this much: The
computer has an operating system, say Windows XP, under which
there is an Application Development Environment (ADE) like
Visual Studio.NET. Some language, say C#, is used to program
commands for the instrument, and those commands are passed
to the I/O software, which then passes them via a physical inter-
face to the instruments’ internal microprocessor. The micropro-
cessor decodes those commands using its internal I/O structure,
and the instrument carries out the commands.

To make all this practical, you need to write some code. If you
are a programmer, you must either memorize or look up the
Direct I/O SCPI commands related to the particular instrument
being programmed. If you intend to code in a proprietary lan-
guage, then you need to know how those commands fit. For
simple applications, this approach works well, but as application
complexity increases, using direct I/O quickly can become
difficult and time consuming. Programming a direct communica-

tion path usually requires you to know a specialized computer
programming language and its programming environment, and
be familiar with proper command sequences and interrelation-
ships between commands. You also need to know how to load
and configure various I/O libraries and parse instrument responses
that may be in the form of binary data or screen graphics.
Whether you have these competencies or not, when today’s
product design cycles are measured in months rather than years,
it doesn’t make sense to spend several of those months coding a
new test system, unless very high volume production is the goal.

The driver is...
The driver is a high-level, intelligent, instrument-specific or
instrument class-specific piece of software intended to make
programming simpler and shorten development time. In the
T&M world, it facilitates communication to an instrument by by
guiding the user through the steps. Its user interface can take
many forms. A driver could be a list that pops up when you hit the
next “dot” in Visual Basic, or it could be as elaborate as a “panel
driver” that displays a virtual front panel on the screen of your
computer to help you set up the instrument.

Figure 6. Keysight’s T&M Programmers Toolkit using a VXIplug&play WIN32 power supply driver in VB
.NET after being wrapped by the Driver Wizard.

Figure 7. A tiny but interesting program, written in VEE. With its intuitive interface, VEE is the fastest T&M
graphical language to learn. Fill in the boxes, and the VEE panel driver generates code for you.

10 | Keysight | Test-System Development Guide - Application Note

What is a Driver? (continued)

Even if you have never programmed an instrument in a test system, you have probably
used a driver. Digital cameras, external hard drives and printers—all require a driver to
talk to the PC. If you’ve upgraded a PC, you may have found that the old printer driver no
longer works with the new operating system, and you need to go to the Microsoft web-
site to find a new one. Or you may find that the printer doesn’t work exactly the same way
it did under the old operating system. Similar issues exist in T&M equipment.

Driver coverage
A simple DMM may have only 25 commands, while a more complex instrument may
have hundreds. You can imagine how expensive it is to write an intelligent driver that
anticipates all the possible permutations of instrument setup, triggering, sourcing and
measurement. And that’s why you’ll seldom see a driver that covers every command in
the instrument.

Instrument manufacturers take their best guess at the commands you are likely to use
and craft the driver accordingly. A typical IVI driver covers about 40-60% of the instru-
ment’s command list. This may sound like a small number, but consider this: Keysight
surveyed customers who used our 3852A Data Acquisition/Switch Unit. It was a complex
instrument with over 300 distinct commands available. By poring over our customers’
code, we found they rarely used more than 5% of the available commands. This is an
extreme case, but it tells you that 40%-60% coverage is a good start.

Figure 8. The driver is, among other things, a programming aid
that works between the PC application and the I/O software. It
can save enormous amounts of development time and prevent
mistakes, but can also slow system performance by adding
another layer of software.

Figure 9. If you are using a driver and need to access instrument
functions the driver doesn’t have, you can send direct SCPI or
ASCII commands, or go through the driver with pass-through
commands to control the instrument directly. This gives you the
convenience of drivers, with the 100% coverage of direct I/O. To
avoid command conflicts, this technique requires in-depth knowl-
edge on the part of the programmer.

11 | Keysight | Test-System Development Guide - Application Note

Generations of Drivers

There are three basic generations of drivers: Proprietary T&M drivers, Traditional T&M
drivers and Component PC drivers (Figure 10). These represent the past, present, and
future of driver technology. In the past, instrument drivers were customdesigned to func-
tion with a vendor’s own application development environment (ADE). A considerable
body of legacy application programs uses these proprietary drivers, but for new develop-
ment, engineers today have better choices.

When you need to accelerate test system design and deployment, Keysight recommends
the new IVI-COM driver and the VXIplug&play WIN32 driver for instrument control. The
only Component PC driver built on PC standard architecture is the new IVI-COM driver.
This standard is being led by Keysight and other instrument companies. A component
driver built on COM works in all popular PC languages and most T&M languages, uses
the most popular types of I/O, can be used in the latest .NET technologies and is back-
ward-compatible.

What is IVI?
Notice the word “IVI” is sprinkled around the chart in Figure 10. In 1998, test and mea-
surement companies formed the Interchangeable Virtual Instrument (IVI) Foundation 1 to
address the high cost of developing and maintaining test system software and being able
to evolve technology more rapidly, by the use of better drivers. The foundation comprises
end-user test engineers, equipment manufacturers and system integrators with many
years of experience building test systems.

IVI classes:
The goal of hardware interchangeability led IVI to the concept of instrument classes. The
idea is as simple as it sounds: If you use a spectrum analyzer, it certainly would save time
if you could program every instrument in the spectrum analyzer class the same way, no
matter who built it. Both the specification and any specific driver that implements it are
called an IVI Class Driver (IVI-C Class or IVI-COM Class).

As of this writing, the IVI Foundation has defined the following instrument classes: DC
Power Supply, Digital Multimeter (DMM), Function Generator/Arbitrary Waveform Gen-
erator, Oscilloscope, Power Meter, RF Signal Generator, Spectrum Analyzer and Switch.
Others are under development.

This work makes it much simpler for the engineer to program instruments from separate
suppliers, when those instruments conform to a particular “class”.

1.  For additional information, you can visit the IVI Foundation website at: www.ivifoundation.org.

When should I use a driver?
Use an instrument driver if:

–– A driver is available that works
with your development envi-
ronment and I/O software, and
supports the majority of instru-
ment features you want to use.

–– You want easy access to com-
monly used instrument func-
tions because the instrument
commands are typically orga-
nized in a hierarchical structure

–– You want to simplify the process
of developing and maintaining
your code over time, because
there is a single point of inter-
face to update or change

–– Software interchangeability is
important to you.

–– You need to simplify maintain-
ing the system when instru-
ments need to be exchanged.

Use direct I/O if:
–– You have instrument program-

ming experience or access to
programming experts

–– You need to use instrument
features not supported by the
available drivers (the other
40~80% of the instrument
capability)

–– You need the absolute max-
imum in system throughput
speed

–– You need to control the exact
configuration of the instruments
in your system

–– You have a large volume of
legacy SCPI-based code.

Figure 10. The three generations of drivers represent varying degrees of language independence.
IVI-COM is the newest and the one supporting the widest variety of software environments.

www.ivifoundation.org

12 | Keysight | Test-System Development Guide - Application Note

Conclusion

If the project you are pursuing is not complex, there are often situations where you don’t
even know you are using a driver. Indeed, that is the ultimate goal of T&M companies…
to keep this process entirely transparent. In the meantime, if you do get embroiled with
issues of driver selection, note there can be tradeoffs between speed of development
and speed of execution. The industry is working through these issues by instituting faster
I/O and software aids, such as tools to keep track of instrument states. The whole idea is
to give you both fast programming times and fast throughput.

If you choose to use a driver, computer industry-standard IVI COM drivers and a Visual
Studio .NET-compliant development program such as the Keysight T&M Programmers
Toolkit give you significant leverage. The T&M applications you develop will show sig-
nificant hardware and software interchangeability, while being easily maintainable and
extensible. The intellectual property you create during the development process will be
widely transferable to other projects.

For downloads or more information on drivers, I/O software, connectivity and application
software, join us at the Keysight Developer Network: www.keysight.com/find/adn.

www.keysight.com/find/adn

13 | Keysight | Test-System Development Guide - Application Note

Appendix

Resources

Where do I get drivers and driver tools?
Instrument vendors typically provide drivers on a CD with new products and offer their
most up-to-date instrument drivers on their Web pages. Table 1 lists some of the primary
sources.

Third-party software and systems integration companies that support the
test-and-measurement industry can provide driver development tools and services.
One such company is Vektrex (www.vektrex.com).

Keysight offers its own drivers on the Web at www.Keysight.com/find/ADN, but it does
not post drivers written by others. Because you are at the mercy of whoever created
the driver, it is a good idea to use a driver supplied by the same vendor who made the
equipment.

Tools

Mixing I/O hardware and I/O software from different suppliers
Want to use Keysight I/O cards with NI LabVIEW software? Want to use NI I/O cards with
Keysight VEE? Need to install Keysight VISA and NI-VISA side by side? Help is available
for all these scenarios. Go to: ftp://ftp.keysight.com/pub/mpusup/pc/binfiles/iop/
m0101/readme/trouble/niinfo.htm

Table 1. Sources of driver software

Instrument/ Tools vendor Finding Driver Availability

Keysight Keysight drivers are available through the Keysight Developer
Network Web site. Go to www.keysight.com/find/ADN and click on
“Downloads.” Drivers are listed by type of driver, and by instrument
model number.

Vektrex www.vektrex.com
Tools for developing IVI-COM drivers

Pacific Mindworks www.pacificmindworks.com/Default.aspx
Tools for developing drivers

Data Translation www.datx.com/support/
Registration is required to download drivers.

IOtech www.iotech.com/ftp.html
Listed by instrument type

National Instruments www.natinst.com/idnet
Allows you to search by instrument vendor, instrument type, etc.

Racal www.racalinst.com/downloads
After registering on this site, you get a listing by instrument of the
types of available drivers.

Tektronix www.tek.com/site/sw/search/?wt=247&link=/site/sw/search/
Search by product category or model number (drivers co-mingled
with software and firmware)

Anritsu www.us.anritsu.com/downloads/default.aspx?lc=Eng&cc=US&rc=ARO

Rohde & Schwarz www.rohde-schwarz.com/
Look under “Shortcuts” for “drivers”

www.vektrex.com
www.Keysight.com/find/ADN
ftp://ftp.keysight.com/pub/mpusup/pc/binfiles/iop/m0101/readme/trouble/niinfo.htm
ftp://ftp.keysight.com/pub/mpusup/pc/binfiles/iop/m0101/readme/trouble/niinfo.htm
www.keysight.com/find/ADN
www.vektrex.com
www.pacificmindworks.com/Default.aspx
www.datx.com/support/
www.iotech.com/ftp.html
www.natinst.com/idnet
http://www.racalinst.com/downloads
www.tek.com/site/sw/search/?wt=247&link=/site/sw/search/
http://www.rohde-schwarz.com/

14 | Keysight | Test-System Development Guide - Application Note

Keysight T&M Programmer’s Toolkit
(Keysight Wll40A-TK1)
Want to use IVI-C drivers in Visual Studio .NET? Among many
other capabilities, Keysight’s T&M Programmer’s Toolkit (see
www.keysight.com/find/toolkit) can create managed wrappers
around your existing IVI-C and VXIplug&play drivers. The wrapper
is a native .NET class and fully object-oriented. The T&M Toolkit
ships with more than one hundred pre-generated wrappers and
its powerful wizard helps you to easily create others. As Figure 11
shows, the Toolkit wizard will:

–– Automatically find all your installed drivers
–– Find the installed drivers for your instruments, or allow you to

download a driver from the Web
–– Create a managed wrapper around the raw C-language DLL
–– Add the appropriate Project Reference into the project
–– Insert sample code to create the driver for your instrument at

the proper hardware address

The Wrapper Wizard makes the test engineer’s life easier:

–– An example of how to call a method on the driver
–– IntelliSense help supports all the driver’s properties and

methods, including help
on each method parameter

–– Driver call errors are automatically translated into standard
.NET exceptions

–– Automatic translation of parameters that have only a small
range of possible values into a true enumeration, including
IntelliSense help on each possible value

–– Fully object-oriented implementation of the wrapper makes it
intuitive to use

Figure 11. Keysight’s IVI-C Driver Wrapper Wizard makes it easy
to use IVI-C compliant drivers in VS .NET.

Figure 12. Toolkit saves time. It searches for instruments, talks to
them regardless of I/O type, shows all choices for the next function
call, writes the VB .NET or C# commands for that function, and
gives you context-sensitive help—all in one environment.

15 | Keysight | Test-System Development Guide - Application Note

Keysight Test Automation Kit (Keysight N1908A)
www.keysight.com/find/kit

The average test system takes 360 hours to configure, test and verify.
The Test Automation Kit can save up to 100 of those hours by:

–– A USB-to-GPIB converter to simplify installation
–– loading all the Instrument Drivers/I/O libraries (included)
–– providing a real device and wiring harness for independent verification
–– stepping the engineer through the setup process, using Test Express software
–– calling any familiar programming language and automatically installing the

proper drivers for the instruments present
–– a library of over 200 examples in various languages, to use as a head start
–– and providing two hours of expert test consulting

Keysight N1908A Test Automation Kit Lit # 5989-0000EN.

Keysight Developer Network
www.keysight.com/find/adn
The Keysight Developer Network is the place to go for

–– Drivers
–– Downloads
–– Discussions

…Instrument Connectivity from Keysight…It simply works.

www.keysight.com/find/adn

16 | Keysight | Test-System Development Guide - Application Note

Glossary

ADE (application development environment) — An integrated suite of software develop-
ment programs. ADEs may include a text editor, compiler, and debugger, as well as other
tools used in creating, maintaining, and debugging application programs. Example:
Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of software
routines through which application program can access the functions and services pro-
vided by an underlying operating system or library. Example: IVI Drivers

C# (pronounced “C sharp”) — new C-like, component-oriented language that eliminates
much of the difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument, without the benefit of, or interfer-
ence from a driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO

Driver (or device driver) — a collection of functions resident on a computer and used to
control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an application
program and loaded only when needed, thereby reducing memory requirements. The
functions or data in a DLL can be simultaneously shared by several applications.

Input/Output (I/O) layer — The software that collects data from and issues commands
to peripheral devices. The VISA function library is an example of an I/O layer that allows
application programs and drivers to access peripheral instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model defined
by the IVI Foundation that enables engineers to exchange instruments made by different
manufacturers without rewriting their code. www.ivifoundation.org.

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the IVI
driver as a COM object in Visual Basic. You get all the intelligence and all the benefits of
the development environment because IVI COM does things in a smart way and presents
an easier, more consistent way to send commands to an instrument. It is similar across
multiple instruments.

Microsoft COM (Component Object Model) — The concept of software components is
analogous to that of hardware components: as long as components present the same
interface and perform the same functions, they are interchangeable. Software compo-
nents are the natural extension of DLLs. Microsoft developed the COM standard to allow
software manufacturers to create new software components that can be used with an
existing application program, without requiring that the application be rebuilt. It is this
capability that allows T&M instruments and their COM-based IVI-Component drivers to
be interchanged.

.NET Framework — The .NET Framework is an object-oriented API that simplifies applica-
tion development in a Windows environment. The .NET Framework has two main compo-
nents: the common language runtime and the .NET Framework class library.

Plug and Play drivers — (also known as universal instrument drivers) are an important
category of proprietary drivers. Plug and Play driver standards were originally developed
for VXI instruments, and were known as VXIplug&play standards. When these standards
were adapted for non-VXI instruments they became known simply as “Plug and Play”
drivers. Library functions are in accessible C-language source and you can call them
from programs written in VEE, BASIC, LabVIEW or LabWindows/CVI.

www.ivifoundation.org

17 | Keysight | Test-System Development Guide - Application Note

Glossary (continued)

SCPI (Standard Commands for Programmable Instrumentation) — SCPI defines a
standard set of commands to control programmable test and measurement devices in
instrumentation systems. Learn more at www.scpiconsortium.org. See “Direct I/O” for
example.

SICL — Standard Instrument Control Library (SICL) is a library of I/O function calls pri-
marily implemented and supported by Keysight. Some of these are core functions that
are common across all physical interfaces (GPIB, RS-232, etc.), while others are specific
to the interface. The SICL library provides very complete and flexible control of instru-
ments. SICL is optimized for use from C-language and C++ application programs, but
can also be used from Visual Basic and other environments that can call arbitrary
Windows DLLs. SICL provides complete access to GPIB, RS-232, LAN, VXI message-
based, and VXI register-based products.

Universal drivers — another name for Plug and Play drivers

VISA (Virtual Instrument Software Architecture) — The VISA standard was created
by the VXIplug&play Foundation. Drivers that conform to the VXIplug&play standards
always perform I/O through the VISA library. Therefore if you are using Plug and Play
drivers, you will need the VISA I/O library. The VISA standard was intended to provide
a common set of function calls that are similar across physical interfaces. In practice,
VISA libraries tend to be specific to the vendor’s interface.

VISA-COM — The VISA-COM library is a COM interface for I/O that was developed as a
companion to the VISA specification. VISA-COM I/O provides the services of VISA in a
COM-based API. VISA-COM includes some higher-level services that are not available
in VISA, but in terms of low-level I/O communication capabilities, VISA-COM is a subset
of VISA. Keysight VISA-COM is used by its IVI-Component drivers and requires that
Keysight VISA also be installed.

VXIplug&play — A hardware and software standard that allows interoperability between
VXI instruments made by different manufacturers. Learn more at www.vxipnp.org.

www.scpiconsortium.org
www.vxipnp.org

18 | Keysight | Test-System Development Guide - Application Note

Related Literature

Data sheets
–– W1140A Software and Connectivity

literature number 5988-5756EN

–– N1908A Test Automation Kit
literature number 5989-0000EN

Application notes

Test-System Development Guide:
–– Introduction to Test-System Design

(AN 1465-1) literature number 5988-9747EN
http://literature.cdn.keysight.com/litweb/pdf/5988-9747EN.pdf

–– Computer I/O Considerations
(AN 1465-2) literature number 5988-9818EN,
http://literature.cdn.keysight.com/litweb/pdf/5988-9818EN.pdf

–– Understanding Drivers and Direct I/O
(AN 1465-3) literature number 5989-0110EN
http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf

–– Choosing Your Test-System Software Architecture
(AN 1465-4) literature number 5988-9819EN
http://literature.cdn.keysight.com/litweb/pdf/5988-9819EN.pdf

–– Choosing Your Test-System Hardware Architecture and Instrumentation
(AN 1465-5) literature number 5988-9820EN
http://literature.cdn.keysight.com/litweb/pdf/5988-9820EN.pdf

–– Understanding the Effects of Racking and System Interconnections
(AN 1465-6) literature number 5988-9821EN
http://literature.cdn.keysight.com/litweb/pdf/5988-9821EN.pdf

–– Maximizing System Throughput and Optimizing Deployment
(AN 1465-7) literature number 5988-9822EN
http://literature.cdn.keysight.com/litweb/pdf//5988-9822EN.pdf

–– Operational Maintenance
(AN 1465-8) literature number 5988-9823EN
http://literature.cdn.keysight.com/litweb/pdf/5988-9823EN.pdf

–– Using LAN in Test Systems: The Basics
(AN 1465-9) literature number 5989-1412EN
http://literature.cdn.keysight.com/litweb/pdf/5989-1412EN.pdf

–– Using LAN in Test Systems: Network Configuration
(AN 1465-10) literature number 5989-1413EN
http://literature.cdn.keysight.com/litweb/pdf/5989-1413EN.pdf

–– Using LAN in Test Systems: PC Configuration
(AN 1465-11) literature number 5989-1415EN
http://literature.cdn.keysight.com/litweb/pdf/5989-1415EN.pdf

–– Using USB in the Test and Measurement Environment
(AN 1465-12) literature number 5989-1417EN
http://literature.cdn.keysight.com/litweb/pdf/5989-1417EN.pdf

–– Using LAN in Test Systems: Applications
AN 1465-14

–– The IVI Open-Architecture Driver Specifications: An Overview for System Designers,
(AN 1409-4) literature number 5988-7939EN
http://literature.cdn.keysight.com/litweb/pdf/5988-7939EN

http://literature.cdn.keysight.com/litweb/pdf/5988-9747EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9818EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9819EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9820EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9821EN.pdf
http://literature.cdn.keysight.com/litweb/pdf//5988-9822EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9823EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1412EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1413EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1415EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1417EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-7939EN

19 | Keysight | Test-System Development Guide - Application Note

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5989-0110EN
www.keysight.com

For more information on Keysight
Technologies’ products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you
reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and
find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your
instrument’s lifecycle. Our comprehensive service offerings—one-
stop calibration, repair, asset management, technology refresh,
consulting, training and more—helps you improve product quality
and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure
your instruments are operating to specification, so you can rely on
accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and
product breadth, combined with channel partner convenience.

http://www.keysight.com
http://www.keysight.com/find/contactus
http://www.keysight.com/find/contactus
http://www.keysight.com/go/quality
http://www.keysight.com/find/mykeysight
http://www.keysight.com/find/emt_product_registration
http://www.keysight.com/find/service
http://www.keysight.com/find/AssurancePlans
http://www.keysight.com/find/channelpartners

