
Keysight Technologies
Programming USB Instruments

Application Note

2

Figure 1. Connecting a USB instrument to a PC is
quick and easy

Most users of test and measurement
(T&M) equipment are familiar with
programming an instrument over
GPIB/IEEE-488. However, now that
USB instruments from companies
like Keysight Technologies, Inc.
are beginning to appear with USB
interfaces, many users may want to try
USB instead of GPIB. This is because
of the ease-of-use and performance
advantages of USB when compared
with GPIB and other I/O interfaces
used in T&M. This article will provide
information on how to set up a test
system that includes USB instruments
and how to program the USB
instruments using Virtual Instrument
Software Architecture (VISA) I/O
library software. Information is
also presented about the T&M USB
protocol specifications, and how these
protocol specifications make use of
USB endpoints. Two programming
examples are available. One example
shows how to use VISA to download
an arbitrary waveform to the Keysight
33220A. Another example shows
how to use Visual Basic to program
the Keysight 33220A to execute
a frequency sweep. Both of these
Programming USB Instruments
examples are available from www.
keysight.com/find/33220a in the
Drivers and Software section of
Technical Support.

USB has truly become a computer
standard I/O. Every new PC is shipped
with the hardware and software
drivers necessary to support USB,
and many consumer electronic USB
peripherals are available today—mice,
printers, scanners, disk drives,
cameras, etc. Users of T&M equipment
have seen how easy it is to use these
types of USB consumer electronic
peripherals and have been asking T&M
manufacturers to provide USB I/O on
their products. With the high-speed
480 Megabits/second defined in the
USB 2.0 specification, it became clear
that USB would provide both ease-of-
use and real performance benefits to
T&M equipment users.

To illustrate the ease-of-use of USB,
Figure 1 shows a simple desktop test
system, similar to what might be set
up on an R&D engineer’s workbench.

To create this test system, a USB
cable simply had to be connected
from the PC to the instrument.

Figure 2 shows a slightly more
complex test system in which a USB
hub is used. A USB hub must be used
if there are no more available USB
ports on the PC. A hub typically adds
4-7 additional ports and is used to
create the USB “tiered” topology. USB
hubs are low-cost and are readily
available at any consumer electronics
store. Figure 2 shows two USB
instruments connected to a USB hub.
Hubs introduce very little delay in USB
transactions.

To illustrate the performance
advantage of USB, Figure 3 shows the
performance of an instrument using
USB high-speed, USB full-speed,

Figure 2. Using a USB hub with 2 USB instruments

and GPIB. As can be seen from the
graph, high-speed USB transfers
data at 20 Mbytes/second, up to
40 times the performance of GPIB.
Even full-speed USB provides about
twice the performance of GPIB. The
performance curves for writing to an
instrument are similar.

A group of T&M equipment manufac-
turers recognized the potential for
USB’s use in T&M and began an effort
in April 2001 to address the problem
of how to use USB to communicate
with T&M instruments. A protocol
standard was necessary so that users
could construct test systems using
equipment from all T&M manufac-
turers. Any proprietary USB protocol
solution would have allowed quicker
time-to-market, but proprietary
protocols would inevitably become
obsolete and fail.

3

This group of T&M manufacturers
worked within the USB Implementers
Forum Device Working Group (USB-IF
DWG) and started by agreeing on
goals. One goal was to make it easy
to modify an existing application to
use USB instead of GPIB. Achieving
this goal requires a mapping of GPIB
“out-of-band” communications
to USB. The term “out-of-band”
simply refers to a communication
path outside of the normal “in-band”
communication path. Examples of
GPIB out-of-band communications
include device clear, service request,
trigger, and Remote/Local. Examples
of GPIB in-band communications
includes program messages, which
are used to set up an instrument state
and to query for measurement results.
In-band communication also includes
the measurement results returned by
instruments in response messages.

Out-of-band

Some T&M out-of-band commu-
nication, such as device clear and
Remote/Local, map well to the USB
control endpoint. This is because the
USB specification requires a control
endpoint on every device for enumer-
ation, and it turns out that many USB
Device Class specifications (Printer,
Mass Storage, Still Image, etc.) also
use the USB control endpoint to
reset devices, which is an example of
out-of-band communication.

Figure 3. This graph shows that USB is up to 40 times the performance of GPIB

For USB, think of an FIFO memory. A
device can have multiple endpoints,
and each endpoint has an associated
address. The control endpoint address
is 0. To begin a control endpoint
transfer, the PC (USB Host) sends an
8-byte SETUP packet to the control
endpoint. The SETUP packet contains
the request and some other parame-
ters associated with the request. The
8-byte SETUP packet may be followed
by either a DATA IN phase or a DATA
OUT phase. (In USB, the endpoint
direction is always relative to the PC.)

Service-request out-of-band T&M
communication maps well to a USB
Interrupt-IN endpoint. Since USB is a
master-slave protocol, the transfer of
Interrupt-IN data does not really hap-
pen until the PC polls the Interrupt-IN
endpoint. Fortunately, this polling
interval is set by the device, but must
be within the limits set by the USB 2.0
specification. For high-speed devices,
the polling interval must be ≥ 1 USB
microframe (125 microseconds). For
full-speed, the polling interval must be
≥ 1 USB frame (1 millisecond). When
polled, the device sends a Status
Byte, which improves the overall
efficiency of delivering interrupts and
the associated Status Byte. In GPIB,
after an SRQ, the PC must enter a
“serial poll” sequence to find the
device that pulled the SRQ line.

In-band

In-band communication of program
messages sent to an instrument map
well to a USB Bulk-OUT endpoint
(Remember, direction is relative to the
PC). Program messages are used to
program an instrument state (e.g., DC
or AC volts, auto-range, etc.) and to
send queries to an instrument (e.g.,
*IDN?, *OPC?). Typical USB device
silicon provide high performance bulk
endpoints with larger FIFO’s than the
control and interrupt endpoint FIFO’s.
Also, USB device silicon may provide
the ability to DMA from a bulk-OUT
endpoint to memory, but does not
provide DMA capability for control or
interrupt endpoints. The ability for the
PC to send a long program message
quickly is important in the case of
an arbitrary waveform generator. To
allow devices to set up DMA, and
to communicate the GPIB “End-of-
message” and other “meta-data”
information, each Bulk-OUT transfer
is prefixed with a 12 byte Bulk-OUT
Header.

In-band communication of response
messages from an instrument map
well to a USB Bulk-IN endpoint. Again,
USB device silicon typically provides
the ability to DMA from memory to a
Bulk-IN endpoint. The ability for the
PC to read a long response message
quickly is important in the case of
reading buffered A/D samples, an
oscilloscope trace, or a spectrum
analyzer trace. As with Bulk-OUT
transfers, each Bulk-IN transfer
is prefixed with a 12 byte Bulk-IN
Header.

20 —

18 —

16 —

14 —

12 —

10 —

8 —

6 —

4 —

2 —

0 —

0
—

10
,00

0
—

20
,00

0
—

30
,00

0
—

40
,00

0
—

50
,00

0
—

60
,00

0
—

70
,00

0
—

80
,00

0
—

90
,00

0
—

10
0,0

00
 —

11
0,0

00
 —

12
0,0

00
 —

13
0,0

00
 —

USB vs. GPIB performance
Direction = Instrument-to-PC (read)
(transfer rate vs. transfer rate)

USB high-speed

USB full-speed

GPIB

Tr
an

sf
er

 ra
te

 (M
By

te
s/

se
c)

Transfer size (bytes)

4

Trigger

GPIB provides both an in-band mech-
anism to trigger a device (“*TRG”) and
an out-of-band mechanism to trigger
a device (GET). Because a trigger must
be synchronized with other program
messages, trigger was mapped to the
Bulk-OUT endpoint.

The table in Figure 4 summarizes the
mapping of GPIB to USB. Examples
of control endpoint, Bulk-OUT, and
Bulk-IN transfers are shown later.

Figure 4. Mapping of GPIB to USB

GPIB USB

Device clear Control endpoint
request

Remote/local Control endpoint
request

SRQ Interrupt-IN
transfer

Program message Bulk-OUT transfer

Response message Bulk-IN transfer

Trigger (GET) Bulk-OUT transfer

The USB-IF DWG work concluded in
December, 2002, with the acceptance
of the USB Test and Measurement
Class (USBTMC) base-class spec-
ification and the acceptance of the
USBTMC-USB488 subclass speci-
fication. The USBTMC specification
provides the ability to
communicate with very simple T&M
devices (sensors, A/D’s), while the
USB488 specification provides the
ability to communicate with more
complex devices. Both of these
specifications, as well as the USB 2.0
specification, can be found at www.
usb.org.

VISA and USBTMC

Now that the T&M USB specifications
exist, USB software can be written to
match the specification. Most T&M
applications make use of software that
abstracts and hides all of the bus-spe-
cific protocol details for GPIB, TCP/
IP, VXI, and other I/O’s so applications
do not have to worry about them. This
software is called Virtual Instrument
Software Architecture (VISA). Keysight
and other companies that make VISA
implementations have made changes
to the VISA specification to support
the USB T&M protocol specifications.
This means that an application does
not have to concern itself with USB
endpoints, headers, FIFO lengths,
etc. The only code change to make
any application run over USB involves
a change to the viOpen() rsrcName
parameter.

viOpen()

VISA specifies that the viOpen(...,rsrc-
Name,...) rsrcName parameter
for a USB T&M device is a string
consisting of the unique attributes of
the device—the idVendor, idProduct,
and serial number. An example is
USB0::0x0957::0x0123::SN_001001.
This is rather unwieldy to type and
would be prone to errors. Fortunately,
the VISA specification allows an
alternative rsrcName—a human
readable alias. When a device is first
plugged in, a VISA implementation
will typically provide a dialog box that
allows a user to assign this human
readable alias. See Figure 5. This alias
is then used instead of the idVendor,
idProduct, and serial number.

Another significant benefit of using
an alias is that the same compiled
application code can run unchanged
on a similar test system. This is
important on the production
floor, where they may be multiple
identical test systems. All that must
be done is to re-use the same alias
names for each instrument.

Figure 5. Assigning a USB device alias

http://www.usb.org
http://www.usb.org

5

viClear()

After calling viOpen(), an application
might do a device clear using the
viClear() API to make sure the in-
strument I/O is in a known state. The
VISA I/O library software implements
a viClear() to a USB device by sending
an 8-byte control endpoint SETUP
request to initiate the clear operation.
This is followed by a DATA IN and
finally by a 0-length DATA OUT. The
complete transfer sequence to initiate
a clear is shown in Figure 6.

The ‘05’ in the ‘A1 05 ... 00’ sequence
in the SETUP DATA0 packet identifies
the request as an INITIATE_CLEAR.
The ‘01’ in the following DATA1 packet
identifies the request was accepted
by the device and the device has
begun a clear. The 0-length DATA1
packet is required by USB and
terminates the control endpoint
transaction.

After the device clear is initiated, the
PC must later send another control
endpoint request to check the status
of the clear operation. A device clear
is split into an INITIATE_CLEAR and
a CHECK_CLEAR_STATUS because
USB requires a single control
endpoint transaction to complete in
500 milliseconds, and the time for
an instrument to perform a clear is
potentially much longer.

viWrite()

After calling viOpen(), an application
will typically send program messages
to a device by calling viWrite().The
VISA I/O library software implements
a viWrite() to a USB device by
prefixing the application buffer with
a 12 byte Bulk-OUT Header and
then calling a USB kernel routine to
perform the write operation.

The 12-byte Bulk-OUT Header
contains a message type (MsgID), a
tag value (bTag), a transfer length,

and an indication of whether or not
the last byte in the transfer is the last
byte of the message (EOM)

An example “*IDN?” query program
message is shown in Figure 7.

The DATA0 ‘01 8B 74 ... 01 00 00
00’ is the 12-byte Bulk-OUT Header
and contains the meta-data for
the transfer. In C-style code, this
Bulk-OUT Header has the following
information:

UINT8 MessageID;
// identifies this as a program message

UINT8 bTag;
// a tag identifying this transfer

UINT8 bTagInverse;
// the inverse of bTag

UINT8 reserved1;
// reserved

UINT32 transferLength;
// number of message data bytes
(little-endian)

UINT8 eom;
// bit 0=1 if last message data byte in
payload

	 // is the end of the message
UINT8 reserved2;	

// reserved
UINT8 reserved3;	

// reserved
UINT8 reserved4;	

 // reserved

Following the Bulk-OUT Header is the
hex representation of “*IDN?” followed
by 2 alignment bytes. Alignment
bytes to make the overall transfer a
multiple of 4 bytes are required by
the USBTMC specification and allow
devices to DMA multiple-bytes at a
time to improve performance.

Figure 6. Initiating a device clear

Figure 7. Sending a *IDN? program message to a USB instrument

6

viRead()

After sending program messages
to set the state of an instrument,
an application will typically query
the instrument for a measurement
result. To read the response message
from a device, the application calls
viRead(). The VISA I/O library software
implements a viRead() to a USB device
by first sending a 12-byte Bulk-OUT
Header that indicates how many bytes
the device can send. This simplifies
I/O library software since response
message data bytes never have to be
cached on the PC. After sending the
Bulk-OUT Header, the VISA I/O library
calls a USB kernel routine to perform
the read operation. This will cause
Bulk-IN requests to the device.

An example viRead() showing both
the Bulk-OUT Header and the Bulk-IN
transfer is shown in Figure 8. This
example shows the identification
string response to the viWrite() of the
“*IDN?” query shown earlier.

The DATA1 ‘02 91 6E ... 00’ is the Bulk-
OUT Header. Note that MessageID
= 0x02. This MessageID means that
bytes at offset 4 to 7 represent the
number of bytes (512 = 0x200, least
significant byte 1st) the device may
now send to the PC.

The DATA0 ‘02 91 6E 00 ... 01 00 00
00’ is the required 12-byte Bulk-IN
Header, and is followed by the ‘41 67
69 ... 30 0A’ is the identification string,
shown in hex.

viTrigger()

To cause an instrument to trigger, an
application uses the VISA viTrigger()
API. The VISA I/O library software
implements a viTrigger() to a USB
device by sending a Bulk-OUT transfer
as shown in Figure 9.

The 80 in the DATA0 ‘80 A2 5D 00 ...
00’ identifies the Bulk-OUT transfer
as a trigger request. The device must
execute his request in time-order with
other Bulk-OUT transfers.

Figure 9. Triggering a USB instrument

Figure 8. Reading a response message from a USB instrument

7

Status Byte and VISA
Events

Some applications are written to poll
(busy-wait), reading the device Status
Byte periodically, to detect when the
device has a message available or
some other status condition. Other
applications may install an “event
handler” using the VISA viInstallHan-
dler() API. The specified event handler
will be called by VISA when a specified
event occurs.

For those applications that poll, the
application can use the VISA viRead-
STB() API to read a Status Byte from
an instrument. The VISA I/O library
software can read the Status Byte by
executing a control endpoint request
or use a cached Status Byte value.

For those applications that install an
event handler and specify VI_EVENT_
SERVICE_REQ, VISA must cause
the kernel USB driver to execute IN
requests to the Interrupt-IN endpoint
on the device.
When an SRQ condition exists, the
device sends a data packet as shown
in Figure 10.

The 81 in the DATA1 ‘81 50’ sequence
identifies the packet as an SRQ and
VISA interprets the 2nd byte as the
GPIB defined Status Byte.

Conclusions

The ease-of-use and performance
benefits of using USB in T&M applica-
tions will undoubtedly lead many test
application developers to try USB. For
those that do, they will find it easy to
physically construct their test system
and once in operation, they will see
decreased test times.

The details given concerning the
USB-IF DWG specification for T&M
devices has hopefully shown how
GPIB semantics have been mapped
onto USB. The information about VISA
has shown that using USB in a T&M
application is similar to using VISA for
any other interface.

Figure 10. A USB instrument sending an SRQ

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5989-6582EN
www.keysight.com

08 | Keysight | Programming USB Instruments – Application Note

For more information on Keysight
Technologies’ products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you
reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and
find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your
instrument’s lifecycle. Our comprehensive service offerings—one-
stop calibration, repair, asset management, technology refresh,
consulting, training and more—helps you improve product quality
and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure
your instruments are operating to specification, so you can rely on
accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and
product breadth, combined with channel partner convenience.

http://www.keysight.com
http://www.keysight.com/find/contactus
http://www.keysight.com/find/contactus
http://www.keysight.com/go/quality
http://www.keysight.com/find/mykeysight
http://www.keysight.com/find/emt_product_registration
http://www.keysight.com/find/service
http://www.keysight.com/find/AssurancePlans
http://www.keysight.com/find/channelpartners

