
Keysight Technologies
Using VISA COM I/O API in .NET

Application Note

Introduction
.NET and Test & Measurement I/O
The Microsoft .NET architecture, with its C# and Visual Basic
programming languages and the Microsoft Visual Studio development environment,
has many features that make it an excellent environment for Test & Measurement
programmers. There is only one problem: doing actual instrument communication.
Keysight Technologies, Inc. has released the T&M Toolkit, which provides services,
applications, and API’s to make instrument programming natural and simple in Visual
Studio environments (www.keysight.com/find/toolkit). While the T&M Toolkit provides
a simple, easy-to-use programming environment from Visual Studio, savvy Visual
Studio users today can fall back on more basic I/O tools such as VISA COM I/O to get
their T&M programming tasks done in .NET environments.

VISA COM I/O and .NET
The VISA COM I/O API is a programming interface standardized by the IVI Foundation
for communicating with instruments over GPIB, LAN, USB, RS-232, or other hard-
ware interfaces. Keysight Technologies has an implementation of the VISA COM I/O
standard that works with Keysight I/O hardware as well as the computer-standard
I/O interfaces. VISA COM I/O is an update of the older VISA C API to work in and with
Microsoft’s COM technology.

Microsoft has integrated robust support for COM components in the .NET environ-
ment. The COM interfaces tend to translate well into .NET equivalents via automated
wrapper-generator tools that Microsoft provides. Due to this COM support in .NET,
many programmers will find VISA COM to be an excellent choice for instrument com-
munication in .NET. This article describes how to use Keysight’s VISA COM I/O imple-
mentation with C# and Visual Basic (VB) examples.

Getting started

The examples in this application note
were developed using C# 2003 and Visual
Basic 2003 as part of Visual Studio 2003
Professional Edition. We will commonly
call them C# and VB throughout this
application note. In addition, Keysight IO
Libraries Suite 14.2 was used.

First you must install Keysight VISA
COM I/O, which is installed as part of
the Keysight IO Libraries Suite. You can
download the latest version of the IO
Libraries Suite at www.keysight.com/find/
iolib. After installing the IO Libraries Suite,
you are ready to add VISA COM I/O to
your C# Microsoft Visual Studio project.
To use VISA COM I/O, you need to create
a reference to it in your project. To add a
COM reference to your project, click the
“Solution Explorer” window in your C#
project and right-click the “References”
menu item.

The Visual Studio Add Reference
dialog
You will see the “Add Reference” dialog.
Click on the “COM” tab to look for the
VISA COM reference you will need. Select
the “VISA COM 3.0 Type Library” reference
so that you can instantiate the Keysight
VISA COM I/O implementation. The VISA
COM 3.0 Type Library also includes the
type information for VISA COM I/O.

The Visual Studio environment with the Solution Explorer window

The Visual Studio Add Reference dialog

03 | Keysight | Using VISA COM I/O API in .NET – Application Note

Get familiar with the Object
Browser
Now that you have added the appropriate
references into your application, it is
a good time to look at the interfaces
and classes available to use. Press
CTRL+ALT+J or go to the View menu
and select Object Browser to open
the Object Browser. This window allows
you to examine the class hierarchies of all
the currently referenced COM and .NET
projects and libraries. Take a look at Ivi.
Visa.Interop to see the classes and
interfaces you will be using.

The Visual Studio Oject Browser dialog

04 | Keysight | Using VISA COM I/O API in .NET – Application Note

C#

private void DoInstrumentIO()
{
 Ivi.Visa.Interop.ResourceManagerClass rm = new Ivi.Visa.Interop.ResourceManagerClass();
 Ivi.Visa.Interop.FormattedIO488Class ioobj = new Ivi.Visa.Interop.FormattedIO488Class();

 try
 {

 object[] idnItems;

 ioobj.IO = (Ivi.Visa.Interop.IMessage) rm.Open(“GPIB2::10::INSTR”,
 Ivi.Visa.Interop.AccessMode.NO_LOCK, 0, “”);

 ioobj.WriteString(“*IDN?”, true);

 idnItems = (object[]) ioobj.ReadList(Ivi.Visa.Interop.IEEEASCIIType.ASCIIType_Any, “,”);

 foreach(object idnItem in idnItems)
 {
 System.Console.Out.WriteLine(“IDN Item of type “ + idnItem.GetType().ToString());
 System.Console.Out.WriteLine(“\tValue of item is “ + idnItem.ToString());
 }

 }
 catch(Exception e)
 {
 System.Console.Out.WriteLine(“An error occurred: “ + e.Message);
 }
 finally
 {

 try{ ioobj.IO.Close(); }
 catch {}

 try{
 System.Runtime.InteropServices.Marshal.ReleaseComObject(ioobj);
 }
 catch {}

 try{
 System.Runtime.InteropServices.Marshal.ReleaseComObject(rm);
 }
 catch {}
 }
}

Instantiating and using Keysight’s
VISA COM I/O in .NET
Once you have your references to VISA
COM in your project, you are ready to
create and use VISA COM I/O objects.
Included is an example of a simple method
that creates a resource and uses the VISA
COM 488.2 Formatted I/O component
to communicate with a keysight 54501A
Oscilloscope. It is shown using both C#
and VB.

05 | Keysight | Using VISA COM I/O API in .NET – Application Note

VB

Private Sub DoInstrumentIO()

 Dim rm As Ivi.Visa.Interop.ResourceManagerClass
 Dim ioobj As Ivi.Visa.Interop.FormattedIO488Class

 Dim idnItem As Object
 Dim idnItems As Object()

 Try

 rm = New Ivi.Visa.Interop.ResourceManagerClass
 ioobj = New Ivi.Visa.Interop.FormattedIO488Class

 ioobj.IO = rm.Open(“GPIB2::10::INSTR”)

 ioobj.WriteString(“*IDN?”, True)

 idnItems = ioobj.ReadList(Ivi.Visa.Interop.IEEEASCIIType.ASCIIType_Any, “,”)
 For Each idnItem In idnItems

 MsgBox(“IDN Item of type “ + idnItem.GetType().ToString())
 MsgBox(“Value of item is “ + idnItem.ToString())

 Next idnItem

 Catch e As Exception

 MsgBox(“An error occurred: “ + e.Message)

 Finally

 Try
 ioobj.IO.Close()
 Catch ex As Exception
 End Try

 Try
 System.Runtime.InteropServices.Marshal.ReleaseComObject(ioobj)
 Catch ex As Exception
 End Try

 Try
 System.Runtime.InteropServices.Marshal.ReleaseComObject(rm)
 Catch ex As Exception
 End Try

 End Try

End Sub

06 | Keysight | Using VISA COM I/O API in .NET – Application Note

Using Keysight VISA COM I/O in
Microsoft Visual Studio
The line Ivi.Visa.Interop.
ResourceManagerClass rm
= newIvi.Visa.Interop
ResourceManagerClass() creates the
Global Resource Manager (GRM), which
can instantiate (create) any VISA COM
resource installed on the system. Here
you see it used to open a GPIB resource at
“GPIB2::10::INSTR”. The line Ivi.Visa.
Interop.FormattedIO488Class
ioobj = new Ivi.Visa. Interop.
FormattedIO488Class() creates an
instance of the 488.2 Formatted I/O Class,
which can help with parsing and writing
out the data types most instruments use.
Setting the IO property of the formatted
I/O object prepares the object for reading
and writing.

You may notice a few differences between
C# and VB. These differences in large part
mirror the differences between Microsoft
Visual C++ 6 and Microsoft Visual Basic
6. Aside from the obvious syntactic
differences there is a capability difference
in how you can use VISA COM I/O. The
optional parameters on the Open()
method in VB are not optional in C#, and
optional parameters in general are lost
in C#.

After creating the VISA COM I/O
objects to be used, you see a call to
WriteString(). This call sends the
“*IDN?” string to the instrument. The next
line uses the ReadList() method to
parse the *IDN?” return value. The method
returns an object, which you can cast to
an array based on the type parameter
of the ReadList() Method. With type
ASCIIType_Any, the return value is an
array of objects.

The code in the Finally block is designed
to clean up the I/O to be sure that the
I/O session is closed immediately, all
hardware I/O resources are released, and
any valid COM objects are released. In
COM environments like Visual C++, it was
possible to destroy objects by removing
the last reference to them, but in the .NET
environment, you must explicitly close
the session. Call the Close() method
on the Keysight VISA COM Formatted I/O
session to cause the session to release any
hardware I/O resources.

Advanced VISA COM I/O
operations in .NET

One of the design goals of Microsoft’s
COM technology was to try to simplify
threading for typical COM programmers.
They used the concept of Apartments,
where certain threading behaviors were
guaranteed so as to limit the possible
multithreading interaction the programmer
would have to defend against. Perversely,
this made thread programming significantly
more difficult in some cases. Microsoft’s
.NET architecture has placed themulti-
threading burden back on the program-
mer, and there are some interactions that
must be guarded against when dealing
with possible multithreaded situations
during VISA COM I/O programming.

The programmer must worry about VISA
COM I/O and threading when VISA events
are used to communicate with a device.
This can take the form of asynchronous
I/O, handling service requests, and
other VISA events. The following code
demonstrates handing an SRQ event on a
keysight 34401A multimeter. Only the VB
version is included for brevity.

07 | Keysight | Using VISA COM I/O API in .NET – Application Note

VB

Public Class Form1
 Inherits System.Windows.Forms.Form
 Implements Ivi.Visa.Interop.IEventHandler

 ‘. . . (extra VB stuff omitted)

 Dim rm As Ivi.Visa.Interop.ResourceManagerClass
 Dim msg As Ivi.Visa.Interop.IMessage

 Delegate Sub t_srqEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
 ByVal evnt As Ivi.Visa.Interop.IEvent)

 Public Sub SrqEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
 ByVal evnt As Ivi.Visa.Interop.IEvent)

 Try
 man.Close()
 evnt.Close()
 System.Runtime.InteropServices.Marshal.ReleaseComObject(rm)
 Catch
 End Try

 MsgBox(“SRQ Occurred!”, MsgBoxStyle.OKOnly, “SRQ Event”)

 End Sub

 Private Sub DoAdvancedIO()

 rm = New Ivi.Visa.Interop.ResourceManagerClass
 msg = rm.Open(“GPIB1::22::INSTR”)

 DoGenerateSRQ(msg)

 End Sub

 Public Sub DoGenerateSRQ(ByVal msg As Ivi.Visa.Interop.IMessage)

 Dim eventman As Ivi.Visa.Interop.IEventManager

 eventman = msg

 ‘ Reset dmm and clear DMM status registers
 msg.WriteString(“*RST;*CLS” & vbLf)

 System.Threading.Thread.Sleep(500)

 eventman.InstallHandler(Ivi.Visa.Interop.EventType.EVENT_SERVICE_REQ, Me, 1000)
 eventman.EnableEvent(Ivi.Visa.Interop.EventType.EVENT_SERVICE_REQ, _
 Ivi.Visa.Interop.EventMechanism.EVENT_HNDLR)

08 | Keysight | Using VISA COM I/O API in .NET – Application Note

 ‘ Enable ‘operation complete bit’ to set ‘standard event’ bit in status byte
 msg.WriteString(“*ESE 1” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ Enable ‘standard event’ bit in status byte to pull the IEEE-488 SRQ line
 msg.WriteString(“*SRE 32” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ Assure synchronization
 msg.WriteString(“*OPC?” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ recieve *OPC? result
 msg.ReadString(1000)

 ‘ set dmm to 10 volt dc range
 msg.WriteString(“Configure:Voltage:dc 10” & vbLf)
 ‘ set integration time to 10 Power line cycles (PLC)”
 msg.WriteString(“Voltage:DC:NPLC 10” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ set dmm to accept 1 trigger
 msg.WriteString(“Trigger:count 1” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ Place dmm in ‘wait-for-trigger’ state
 msg.WriteString(“Init” & vbLf)

 System.Threading.Thread.Sleep(500)

 ‘ Set ‘operation complete’ bit in standard event registers when measurement is complete
 msg.WriteString(“*OPC” & vbLf)

 End Sub

 Public Sub HandleEvent(ByVal man As Ivi.Visa.Interop.IEventManager, _
 ByVal evnt As Ivi.Visa.Interop.IEvent, ByVal unused As Integer) Implements _
 Ivi.Visa.Interop.IEventHandler.HandleEvent

 Dim args() As Object
 ‘ the threadsafe Invoke methods are the only safe thing to do in a COM callback
 args = New Object(1) {man, evnt}
 Me.BeginInvoke(New t_srqEvent(AddressOf Me.SrqEvent), args)

 End Sub

End Class

09 | Keysight | Using VISA COM I/O API in .NET – Application Note

Advanced I/O in Microsoft Visual
Studio
The DoAdvancedIO() method creates
the I/O session and passes it to the
DoGenerateSRQ() method, which
generates a service request and
enables event handling. The VB class
Form1 implements the VISA COM I/O
interface IEventHandler. This class has
one method, HandleEvent(), which
is called by VISA COM I/O whenever an
event the client is interested in occurs.
The InstallHandler() method call
informs VISA COM to call the form’s
HandleEvent() method implementation
whenever an SRQ event occurs. The
EnableEvent() call turns on asynchro-
nous handler invocation for SRQ events.

The HandleEvent() method does not
have much code in it. This is because when
you receive an event from VISA COM I/O,
we don’t know what thread it came in on.
In VB 6, you could be certain that it was
the application’s main thread because VB
6 used apartment threading, guaranteeing
a single-threaded environment for COM
and VB methods. In an attempt to reduce
overhead and complex implementation
errors, Microsoft has abandoned this
strategy and it is up to the user to
recognize that this method call occurs
in an unknown thread context. As a
consequence, you must know which .NET
methods are thread-specific and which
ones are not, and be aware of your current
threading context. Most form methods are
thread-specific, so you must be careful
what methods you use.

This diagram shows the thread interaction
going on in the sample code above
(assuming the application is multi-
threaded.)

VISA COM I/O and VB threading
One of the few safe method calls in such
a context is the BeginInvoke() method
of the .NET System.Windows.Forms.
Control class. This method accepts a
.NET Delegate class, which is a wrapper
for a method. We wrap up a method on
the form object called SrqEvent() that
we want to do useful things on the VB.NET
Form class when an event occurs. The
BeginInvoke() method then queues up
a request on the application’s main thread
to call the delegate’s underlying method
on the form’s main thread when it is free.
As a consequence, you have to make sure
that the application’s main thread is active
and not occupied in a blocking task. Also,
to receive the VISA COM event at all your
application cannot be blocking if it is
single-threaded. In a console application,
this usually means calling Application.
DoEvents() occasionally to give queued
asynchronous COM events an opportunity
to execute on the application’s only thread.

Conclusion

VISA COM I/O is a viable method
of programming instruments in Microsoft’s
VB and C# languages, which live in the
.NET execution environment. Both tools
can quickly import the VISA COM I/O
types for use in a relatively straightforward
fashion. While the Keysight T&M Toolkit
provides the best solution for simple .NET
T&M programming tasks, basic and even
advanced I/O operations are possible with
VISA COM I/O and the Microsoft .NET
programming languages.

VISA COM I/O

VISA COM
asynchronous
event thread

VB Form1
object main
thread

IEventManager::
HandleEvent()

HandleEvent() VISA
COM I/O callback

VISA COM
Methods,

Write(), Read(), etc.
SrqEvent() via
BeginInvoke()

VISA COM
I/O worker

thread

VB application

VISA COM I/O and VB threading

10 | Keysight | Using VISA COM I/O API in .NET – Application Note

11 | Keysight | Using VISA COM I/O API in .NET – Application Note

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5989-6338EN
www.keysight.com

For more information on Keysight
Technologies’ products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you
reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and
find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your
instrument’s lifecycle. Our comprehensive service offerings—one-
stop calibration, repair, asset management, technology refresh,
consulting, training and more—helps you improve product quality
and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure
your instruments are operating to specification, so you can rely on
accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and
product breadth, combined with channel partner convenience.

