

	 Development Tools

CodeWarrior® Development
Studio is a complete
integrated development
environment (IDE) from
hardware bring-up through
programming embedded
applications. By combining
state-of-the-art debugging
technology with the simplicity
of a robust development
environment, CodeWarrior
Development Studio takes
source-level debugging
and embedded application
development to a new level.

The CodeWarrior Development Studio

provides a highly visual and automated

framework that accelerates the development

of even the most complex applications.

Creating applications is fast and easy for

developers of all experience levels. As

a single development environment, it is

consistent across all supported workstations

and personal computers with an organization.

On each of the supported platforms, the

features and uses are identical. There is

no need to worry about host-to-host

incompatibilities. Learn once, use everywhere.

The CodeWarrior Development Studio

contains all of the tools needed to complete

a major embedded development project.

Complete Set of Tools	
From text editors to compilers and debuggers,

CodeWarrior development studio provides

everything the professional embedded

developer needs:

•	 CodeWarrior C/C++ Compiler Suite

•	 Runtime libraries

•	 Assembler

•	 Standard template library (STL)

Source-Level Debugger	
Provides a high-performance windowed

source-level debugger equipped with the

latest productivity—enhancing graphical

features to shorten board bring-up and

application development time; uses the

symbolics database to provide source-level

debugging; supports symbol formats such

as Microsoft® CodeView®, Debug With

Arbitrary Records Format (DWARF)

and STABS.

�

®

Debugger
By combining a state-of-the-art IDE with the simplicity of a windowed environment, the debugger
takes C/C++ source-level debugging to a new level. The debugger assembles a wide array of high-
powered components and features into a powerful GUI to help get projects completed and to market
ahead of schedule and under budget.

All of the debugger hardware and software features provide simple access and execution. Any debug
operation desired is done through an intuitive “point-and-click” interface to make debugging fast,
flexible and easy.

Instruction Set Simulator	
Jump-starts application development with

an integrated instruction set simulator (ISS).

Project Manager	
Handles top-level file management for the

software developer; organizes project items

by major group, such as files and targets;

tracks state information (such as file

modification dates); determines build order

and inclusion of specific files in each build;

coordinates with plug-ins to provide services

like version-control and RTOS support.

Text Editor	
Enables the creation and manipulation

of source code and other text files and

is completely integrated with other

IDE functions.

Search Engine	
Finds a specific text string or replaces found

text with substitute text across multiple

files and directories; allows use of regular

expressions; provides file-comparison and

differencing functionality.

Source Browser	
Maintains a symbolics database for the

program (examples of symbols include

names and values of variables and functions);

uses the symbolics database to assist code

navigation; links every symbol to other

locations in the code related to that symbol;

processes both object-oriented and

procedural languages.

Window-Based Workspace
Environment
The debugger enables developers to operate

more efficiently with user-friendly debugging,

multiple windows, point-and-click capabilities

and outline format.

The debugger’s interface allows users to

customize the workspace to fit their needs:

to create custom buttons, toolbars and

menus, and to “float” windows that are an

integral part of the debugger so that they

become independent windows on the work

station. This provides increased visibility and

control over the display of information in the

debugger. Windows that have been separated

from the debugger can also be “docked” to

rejoin the main debugger workspace controls.

The debugger’s workspace allows users

to focus on complex debugging tasks.

Each workspace contains just the set of

views needed for the task at hand. The

application workspace provides a high-level

view of the target software, while the

hardware workspace provides a low-level

view of the target hardware.

Seamless Integration

The debugger is fully integrated with a variety

of run-control devices like Ethernet TAP and

CodeWarrior USB TAP, resulting in optimized

run-control and faster downloads.

Full-Featured Debugging	
The debugger provides a rich set of

debugging features designed to help

the developer quickly find and repair

software defects.

Stack Crawl Window	
Displays information about a suspended

thread or process while debugging—all in

the primary window used during a debug

session. The stack crawl window can be

used to view the call stack for a function,

view function variables and global data,

view a routine in source, assembler or

mixed-mode, view the current program

counter indicating the statement about

to be executed, view and set breakpoints

for the current function or single-step

through the current function from the

program counter.

Single-Stepping	
Supports the common single-stepping

mechanisms (Step Into, Step Over, Step

Out), stepping statements in source-level

display and instructions in Assembler and

mixed-mode level display. Single-stepping

can be performed in any of the source code

display windows (stack crawl window, class

browser window, source file window and

symbolics window).

Contextual Data	
Displays data values at a glance for

variables in source windows during

execution. In addition to standard toolbar

tool tips common to applications, the

debugger reveals contextual data when

developers mouse over the variable in the

source statement.

Preprocessor Information

Provides clear understanding of the code

being generated and relevant scoping

used during the build cycle in the current

debug context.

�

Breakpoints	
Sets breakpoints in source display windows

with a simple click on the window’s left

margin or by dragging a source statement

or assembly instruction to the breakpoints

window. A separate breakpoints window

in the debugger allows developers to view

all breakpoints consolidated into a single

worksheet and save them to disk for use

later or for sharing with other project members.

CodeWarrior Debugger	
Offers Many Different	
Types of Breakpoints

Eventpoints	
Eventpoints are used to perform a task

when program execution arrives at a

specific line of source code or when an

associated conditional expression evaluates

to true. Developers can set an eventpoint

that performs a task such as logging or

speaking a string or expression and then

recording messages to the log window,

pausing execution just long enough to refresh

debugger data, running a script, playing a

sound, skipping execution of a line of source

code or collecting trace data. An eventpoint is

equivalent to a breakpoint that performs a task

other than halting program execution.

Watchpoints	
Watchpoints halt program execution when

a specific location in memory changes value.

After a developer sets a watchpoint at a

key point in memory, he/she can halt program

execution when that point in memory changes

value or, for some devices, when the memory

location is accessed, examine the call chain,

check register and variable values, and step

through the code. Developers can also change

values and alter the flow of normal program

execution. A watchpoint is equivalent to a

memory breakpoint.

Special Breakpoints	
Special breakpoints halt program execution

for very specific reasons, such as when pro-

gram execution arrives at the beginning of the

function main(), a C++ exception occurs or an

event occurs that the debugger plug-in has

defined as a break event. Developers cannot

change or delete special breakpoints, but they

can enable and disable them.

Memory Window	
Displays data in various data formats: raw

hexadecimal and ASCII, standard C data

types, structures and enumeration types

from the current debug project, or as

machine instructions either in machine

language assembly or displayed related to

source code. The memory window displays

data in a “raw” hexadecimal format, as well

as ASCII, with the word-length variable

through a drop-down selection at the bottom

of the screen. The memory window allows

for the display and editing of memory

locations. Allows for editing in the context

of the current display format—for example,

“view as int” allows editing an integer value.

Establishes selected memory addresses as

a watchpoint for conditional execution simply

by right-click mouse selection.

Register Window	
Shows a complete list of available processor

and peripheral registers, both built-in and

memory mapped. Registers are grouped

by function in a hierarchical view that lets

developers browse in a single window or open

a new window for a specific group. Registers

are shown for multiple processes, threads or

processors. Register values are shown and

can be modified in a variety of formats (signed

decimal, hexadecimal, etc.). The display of

register groupings and memory mapped

registers is controlled by a user-modifiable

XML register description file.

Register Details Window	
Shows the contents of a given register in

a format similar to a processor data book.

Register and bit field descriptions are included

along with logical groupings of bits into value

fields. Bit field values can be modified manu-

ally or from a list of relevant value choices.

The display of register details is controlled by

a user-modifiable XML register description file.

Cache Window	
Displays current values and state of cache

contents for each data and instruction cache

within the target processor. Cache writes allow

developers the freedom to edit cache contents

and experiment with cache behavior as it

relates to the current code being debugged.

Object File Format	
Supports STABS and ELF/DWARF

(version 1 and 2) object file output formats.

Multi-Thread/Process Debugging*	
Enables debugging of multi-threaded applications

and multiple processes. Debugging can select

and debug a single thread, multiple threads

or all threads—based on debug preferences.

Each thread being debugged can be managed

through the threads window or separate stack

crawl windows per thread.

*This capability is not available for all processors.

Multi-Core Debugging	
Complete quad-core debugging functionality

integrated in one development environment.

With a single instance of the CodeWarrior

debugger running, developers are capable of

debugging a four-processor SoC through four

separate process stack crawl windows and

subsequently derived windows for that proces-

sor. As a developer switches context between

the stack crawl windows, appropriate windows

and menu items for processor cache are

adjusted.

�

Multiple CPU Debugging	
Debugs up to 255 processors in a symmetric multiprocessor

array—each running multiple processes and threads. For those

computers with SMP capabilities, the processors window is

used to define which processor specifically will be placed into

stop-mode debugging.

Target Connection Wizard	
Simplifies and automates the task of defining new connection

definitions based on hardware and communication parameters.

Command-Line Window	
Developers can use the command-line interface together with various

scripting engines such as the Microsoft Visual Basic® script engine,

the JavaScript™ engine, Tcl, Python and Perl to automate test/SW/HW

validation. Developers can also issue a command line that saves a

log file of command-line activity.

�

Other CodeWarrior	
Debugger Tools

Board Bring-Up*	
Helps developers deal with the complexity of

bringing up a board by providing complete

control over all board settings, including initial

register values and memory configuration.

After initial target register values are defined,

the debugger restores these values each

time the user connects to the board. Then

an assembler source file can be created from

these settings as an addition to the project.

The debugger also includes a comprehensive

set of hardware diagnostics and robust flash

programming to support an extensive list of

flash devices.

*This capability is only available with 32-bit processors.

Flash Programming	
Programs on-board flash devices from

within the same GUI used to troubleshoot

the application. No boot code is required to

run on the target system in order to use the

programming features of the CodeWarrior

flash programmer.

Logic Analyzer	
Developers can utilize the debugger

with the logic analyzer to troubleshoot

low-level hardware components in order

to understand complex signals on an

embedded hardware platform.

Freescale has implemented an interface

to seamlessly integrate logic analyzer

communications into the debugger.

Features include:

•	 Trace on/off

•	 Trace everything

•	 Trace history

•	 Start trace based on specified address

•	 Start trace on address range

•	 Trace all in address range

•	 Breakpoint on trigger

•	 Trigger tracing on breakpoint

•	 Support for Tektronix® and Agilent test

equipment

Hardware Diagnostics*	
The CodeWarrior Development Studio comes

with diagnostics that enable the developer to

determine if the basic hardware is functional.

These tests include:

•	 Memory Read/Write—Performs diagnostic

tests for performing memory reads and

writes over the remote connection interface.

•	 Scope Loop—Configures diagnostic tests

for performing repeated memory reads and

writes over the remote connection interface.

The tests repeat until the developer stops

them. By performing repeated read and

write operations, developers can use a

scope analyzer or logic analyzer to debug

the hardware device.

•	 Memory Tests—Lets developers perform

three different tests on the hardware:

Walking Ones, Address or Bus Noise.

*This capability is not available for all products.

�

Developers can specify any combination of

the tests and the number of passes to perform

them. For each pass, the hardware diagnostic

tools perform the tests in turn, until all passes

are complete. The tools tally memory test

failures and display them in a log window after

all passes are complete. Errors resulting from

memory test failures do not stop the testing

process; however, fatal errors immediately

stop the testing process.

CodeWarrior Instruction Set Simulator*	
Provides a quick and easy way to begin

developing code without the requirement

for access to hardware. The ability to develop

software without requiring hardware provides

a number of significant benefits to software

engineers, including the ability to run

code before custom hardware is available,

running/testing code when hardware resources

are limited, and learning how to use the

development environment without first having

to get hardware running.

The CodeWarrior ISS provides full instruction

simulation and supports standard C library

I/O. It is fully integrated with the CodeWarrior

IDE and also provides a full command-line

interface. The CodeWarrior ISS is available

for specific platforms.

*Simulator varies by processor family.

Compiler
CodeWarrior Development Studio combines industry-leading components to offer embedded
developers all the necessary tools to create, build and deploy quality products to their customers.
One major component of the IDE is the CodeWarrior compiler. It combines industry-proven
optimization technology with the versatility and control needed to fully exploit today’s complex PC
CPUs. CodeWarrior Compiler’s design is based on a partitioned architecture that results in proven
reliability and flexibility for embedded applications, as well as interoperability with other CodeWarrior
development products.

The compiler provides language-specific front ends for C, embedded C++ and C++ that parse the
original source code into a common token-based representation of the source. Optimizations are
applied to this intermediate language representation. Also, the fully optimized code is converted into
the appropriate machine code via a robust, table-driven back-end module. Freescale’s integration of
silicon design with our compiler team, combined with the compiler’s modular design, make it possible
for the CodeWarrior portfolio to provide highly optimized compilers for new silicon with very short
lead times. The compiler’s modular architecture enables developers to immediately gain maximum
performance from their compiler/silicon investments.

�

Proven Optimization Technology

The CodeWarrior compiler produces exceptionally fast, compact,

high-quality object code. A large number of highly refined, global,

local, CPU-specific and sometime application–specific (profile-driven)

optimization techniques enable the programmer to fine-tune

the compiler’s output to match the application’s requirements.

Programmers can select various optimizations to balance execution

speed with code size while intelligent defaults can generate optimal

code out of the box.

Full-Featured Compiler	
The compiler provides a rich set of features and components:

Advanced C/Embedded C++/C++ Compiler	
Designed for highly embedded development support.

Key features include:

•	 Advanced optimization technology to generate fast,

compact, high-quality code

•	 Field-proven reliability to meet extreme embedded

design constraints

•	 Compatibility with ANSI C++ specs (ISO/IEC 14882:1998E) and

ANSI C specs (X3.159-1989 and most compilers are also ANSIC99

[except complex numbers])

•	 Standards conformance (ANSI and EABI) for maximum

tool interoperability

•	 Complete control of code and data memory allocation

•	 Options to pack or byte-swap structures to match

existing data types

•	 Support for position-independent code (PIC) and data (PID)

•	 Board support routines for bare-board applications (no OS)

•	 Proven performance with industry-leading RTOSs

Assembler	
Full-featured macro assembler that is automatically invoked by

the project manager or as a complete stand-alone assembler for

generating object modules. Key features include:

•	 Conditional macro assembler with over 30 directives

•	 Unlimited number of symbols

•	 Debug information for source-level debugging of assembly programs

Linker	
Offers precise control over the allocation, placement and alignment of

code and data in memory. Key features include:

•	 Links object modules into absolute or relocatable modules

•	 Reads/writes/mixes ELF and STABS object files

•	 Generates fully EABI-compliant ELF/DWARF 2.0 output for consumer

tool interoperability

Libraries	
The standard libraries include:

•	 Complete C++ library (STL)

•	 Complete, reentrant C libraries compliant with ANSI/ISO,

POSIX and SVID standards

•	 Multithreading

•	 Full complement of math libraries, including IEEE-754

appendix functions

•	 Efficient floating-point libraries for fast execution of calculations

Profiler	
Profiling options contained in the compiler instrument application code,

which when executed save profile information that can be viewed by

the profiler utility. This profile data can also be used by the compiler

for additional code optimization based on execution paths.

Documentation	
The IDE and compiler ship with extensive documentation specific

to the chosen architecture. The Getting Started Guide enables

developers to quickly get up-to-speed and enhances out-of-box

experience. In addition to hardcopy, all manuals are available in HTML

and PDF formats online.

�

Project Manager

The CodeWarrior Development Studio Project Manager provides a powerful framework to simplify
organizing, configuring and building complex development projects and automating many aspects
of managing a project.

The project manager performs automatic dependency analysis and generates the appropriate
project context. The powerful graphical user interface (GUI) enables the user to configure a project
by selecting from menus, the options covering everything from optimization level, debugging level
and language-specific features to target type (executable or library). It takes the developer
step-by-step through a series of questions to create a project and includes example stationery
(a template) as a starting place for the application. The stationery includes a linker command file
and project files that make it possible to associate debug connections easily and is provided for
every CPU and programming language supported by the CodeWarrior compiler.

Hardware Debug Probe

CodeWarrior® USB TAP, Ethernet TAP, Third Party Probes

CodeWarrior IDE Environment
Compilers, Linkers, Libraries, Debuggers, Emulators, Instrumentation Tools, Device Initialization, Multi-Language, Muti-Target

Value-Add Extensions
OSEK and Linux Awareness Plug-Ins, Drivers, Stacks, Processors Expert, PC-Lint,

Third Party RTOS Plug-Ins, Version Control, Professional Services

HC(S)08/RS08
56800/E

DSC
HSC12(x) 68K

Power™

Architectures
ColdFire® StarCore®

CodeWarrior Product Diagram

�

Text Editor

CodeWarrior Development Studio includes a full-featured, user-configurable, windowed text editor with
features such as syntax coloring and auto-indenting. Syntax coloring helps quickly identify language
keywords and constructs, including comments, strings, constants and more. The CodeWarrior text
editor implements all of the standard functions that are expected from an editor, including a powerful
search feature that can find values within multiple files. It is fully configurable, so the developer can
change the key bindings, font type, font size, color scheme, syntax coloring and provides a single,
consistent editor interface for all host and target development combinations. The text editor is an
integral part of the overall CodeWarrior Development Studio and can be invoked and controlled as an
object from other components within the CodeWarrior Development Studio.

Search Engine
Industry observers estimate that software developers spend nearly half their time searching for basic
information buried in application code. As applications grow in complexity, the time required to find,
analyze and modify code grows as a proportion of total engineering effort. The search engine reduces
this largely unproductive time by integrating code browsing and searching into a single tool. It is fast
and provides emantic code navigation to make it possible to find specific code structures, symbols or
pattern among hundreds of directories.

The seamless integration between the search engine and the text editor means all changes in the code
are immediately reflected in the browser without any recompilation. With the search engine, the mouse
can be used to navigate between the different symbols by placing the mouse cursor on a symbol
and right-click to invoke the text editor. This will open the file and highlight the exact location of the
selected symbol.

Freescale® and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007

Document Number: CODEWARRIORPRDS
REV 0

 Learn More: For current information about Freescale
products and documentation, please visit
www.freescale.com/codewarrior.

Product Name	 Supports Freescale Device Family

Software Development Tools

CodeWarrior® Development Studio for Microcontrollers RS08, HC(S)08, ColdFire® V1

CodeWarrior Development Studio for HCS12(X) Microcontrollers HCS12 or HCS12X/XGATE

CodeWarrior Development Studio for ColdFire Architectures ColdFire Architectures (V2, V3, V4)

CodeWarrior Development Studio for
Power Architecture™ Processors

Power Architecture Technologies for Networking Applications

CodeWarrior Development Studio for mobileGT
Power Architecture Technologies for Information
and Multimedia Applications

CodeWarrior Development Studio for MPC55xx Power Architecture Technologies for Telematics Applications

CodeWarrior Development Studio for MPC5xx MPC5xx Processors

CodeWarrior Development Studio for StarCore® DSP MSC81xx Processors

CodeWarrior Development Studio for StarCore and SDMA i.300, MXC300, MXC275 Multi-Core Architectures

CodeWarrior Development Studio for
56800/E Digital Signal Controllers

56F80x/2x, 56F85x, 56F81xx, 56F83xx, 56F801x, 56F802x/3x Digital

Signal Controllers

CodeWarrior Development Studio for 68K 68K Embedded Systems

Value-Added Extensions

OSEKturbo OSEK/VDX™ Compatible

Processor Expert™ Integration, Configuration and LLD

Version Control Integrated VCS for Check-In/Check-Out

Hardware Debug Probe

CodeWarrior Ethernet TAP

CodeWarrior USB TAP

9

