Инв. №

Для служебного пользования

Экз. №

КОНДЕНСАТОРЫ

ГРУППЫ 6154, 6161, 6181, 6271 СБОРНИК СПРАВОЧНЫХ ЛИСТОВ

PM 11 0285.2 - 87

Издание официальное

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ «ЭЛЕКТРОНСТАНДАРТ»

1988

Настоящий сборник является продукцией производственно-технического назначения для предприятий и организаций промышленности, разрабатывающих, изготавливающих и эксплуатирующих аппаратуру и оборудование, в которой применяются конденсаторы.

Помещаемые в сборник сведения основаны на данных соответствующих документов на поставку и других нормативно-технических документов.

Для определения разрешенных к применению конденсаторов при проектировании аппаратуры необходимо пользоваться соответствующим ограничительным перечнем.

Сборник периодически пополняется сзедениями на новые конденсаторы и корректируется в соответствии с изменениями документов на поставку или других нормативно-технических документов.

Сборник не является документом для предъявления рекламаций.

Запросы, пожелания и замечания по сборнику следует направлять в адрес ВНИИ «Электронстандарт».

Ответственный редактоэ Л. И. Туманова

Редактор Т. А. Миньковская

Технический редактор	Н. И. Михайлова	Корректор	Т. В. Белова
Сдано в набор 24.04.87	Подписано к печати	14.11.88	Печ. л. 26,75
Учизд. л. 22,91	Цена 16 руб. 10 кэп.	Изд. № 52	Зак. 061
	Розничной продаже не подл	ежит	
(C	ВНИИ «Электронстандарт»,	1988	

ПЕРЕЧЕНЬ КОНДЕНСАТОРОВ, ПОМЕЩЕННЫХ В СБОРНИКЕ, Т. 2

Наименование	Обозначение документа на поставку	Обозначение основного конструкторского документа	Особые отметки
Конденсат	оры постоянной е	мкости	
Конденсаторы с	с оксидным диэлектрі	łkom	
Конденсаторы с оксид	ным диэлектриком а.	люминие вы е	
Конденсаторы оксидно-электро- литические алюминиевые K50-15	ТУ 11—86 ОЖ0.464.103 ТУ		
Конденсаторы электролитиче- ские фольговые K50-21	ТУ 11—86 ОЖ0.464.126 ТУ		
Конденсаторы оксидные алюми- ниевые K50-24	ТУ 11—76 ОЖ0.464.161 ТУ		
Конденсаторы электролитиче- ские фольговые K50-24	ТУ 11—73 ОЖ0.464.137 ТУ		
Конденсаторы оксидные алю- миниевые K50-27	ТУ 11—77 ОЖ0.464.147 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-27	ТУ 11—84 ОЖ0.464.127 ТУ		
Конденсаторы оксидные алюми- ниевые K50-29	ТУ 11—77 ОЖ0.464.156 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-32, K50-32A	ТУ 11—86 ОЖ0.464.198 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-32, K50-32A	ТУ 11—86 ОЖ0.464.198 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-33	ТУ 11—86 ОЖ0.464.222 ТУ		
Конденсаторы оксидные алюминиевые K50-34	ТУ 11—81 ОЖ0.464.223 ТУ		

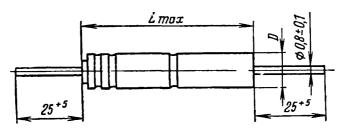
Продолжение

Наименование	Обозначение документа г.а поставку	Обозначение основного конструкторского документа	Особые отметки
Конденсаторы оксидно-электро- литические алюминиевые К50-35, К50-35A, К50-35Б	ТУ 11—85 ОЖ0.464.214 ТУ		
Конденсаторы постоянной емко- сти оксидные алюминиевые K50-37	ТУ 11—81 ОЖ0 464.224 ТУ		
Конденсаторы оксидные алюми- ниевые K50-37	ТУ 11—83 ОЖ0 464.239 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-38	ТУ 11—81 ОЖ0 464.229 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-40	ТУ 11-—83 ОЖ0 464.242 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-41	ТУ 11—-87 ОЖ0 464.265 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-43	ТУ 11—85 ОЖ0 464.253 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-45	ТУ 11—86 ОЖ0 464.261 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-46	ТУ 11—86 ОЖ0 464.257 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-47	ТУ 11—86 ОЖ0 464.258 ТУ		
Конденсаторы оксидно-электро- литические алюминиевые K50-48	АЖЯР 673541 000 TV		
Конденсаторы с окси	дным диэлектриком та	инталов ы е	
Конденсаторы электролитиче- ские танталовые K52-8	ТУ 1 1— 76 ОЖ0 464.171 ТУ		
Конденсаторы объемно-пористые танталовые К52-9	ТУ 1 1 —80 ОЖ0 464 213 ТУ	ļ	
Қонденсаторы объемно-пористые танталовые Қ52-11	ТУ 1 —82 ОЖ0.464.234 ТУ		
К онденсаторы объемно-пористые танталовые K52-12	ТУ 11—85 ОЖ0 464 251 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-7	ТУ 11—76 ОЖ0 464.043 ТУ		
Қонденсаторы оксидно-полупро- водниковые Қ53-14	ТУ 1.—84 ОЖ0 464.139 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-15	ТУ 1.—76 ОЖ0 464 121 ТУ		
Конденсаторы оксидно-полупро- водниковые K53-16	ТУ 1 —76 ОЖ0.464.114 ТУ		

Продолжение

Наименование	Обозначение документа на поставку	Обозначение эсновного конструкторского документа	Особые отметки
Конденсаторы оксидно-полупро- водинковые K53-16A	ТУ 11—76 ОЖ0.464.173 ТУ		
Конденсаторы оксидно-полупро- водинковые К53-18	ТУ 11—86 ОЖ0.464.136 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-19	ТУ 11—83 ОЖ0.464.133 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-21	ТУ 11—88 ОЖ0.464.157 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-22	ТУ 11—85 ОЖ0.464.158 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-25	ТУ 11—86 ОЖ0.464.189 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-28	ТУ 11—80 ОЖ0.464.216 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-29	ТУ 1181 ОЖ0 464 221 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-30	ТУ 11—85 ОЖ0.464.219 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-30	ТУ 11—85 ОЖ0.464.225 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-34	ОЖ0 461.238 ТУ		
Конденсаторы оксидно-полупро- водниковые K53-36	ТУ 11—85 ОЖ0.461.249 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-37	ТУ 11—86 ОЖ0.464.260 ТУ		•
Конденсаторы оксидно-полупро- водниковые К53-40	ОЖ0.464.264 ТУ		
Конденсаторы с окс	идным диэлектриком	ниобиевые	
Конденсаторы оксидно-полупро- водниковые К53-4А	ТУ 11—74 ОЖ0.464.149 ТУ		
Конденсаторы оксидно-полупро- водниковые K53-31	ТУ 11—82 ОЖ0.464.233 ТУ		
Конденсаторы оксидно-полупро- водниковые К53-35	ОЖ0.464.256 ТУ		
		<u> </u>	1

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


K50-15

Конденсаторы К50-15 оксидно-электролитические алюминиевые уплогненные неизолированные постоянной емкоста предназначены для работы в цепях постоянного и пульсирующего токов

Конденсаторы изготавливают одного типа двух видов: полярные и непоиярные.

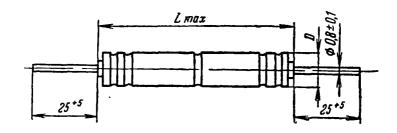
Конденсаторы изготавливают в двух глиматических исполнениях: в исполнении для учеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Конденсатор полярный

			Размеры, м	м	Macca,	г, не более
Номинальное	Помин ільнал		<u> </u>		Исполне	
напражение, В	емкость, икФ	Номин	Пред откл	Linas	нче УХЛ	Исполнение В
	68	9		28	4,0	5,0
	150	9		35	4,5	6,5
6,3	220	9		50	6,0	7,5
	330	9		60	7,0	8,5
	680	12	+ 0,7 0,5	60	11,0	13,0
	47	9	-0,5	28	4,0	5,0
	100	9		35	4,5	6,5
16	220	9		60	7,0	8,5
	470	12		60	11,0	13,0
	680	12		70	13,0	15,0

Февраль 1987 Лист 1

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

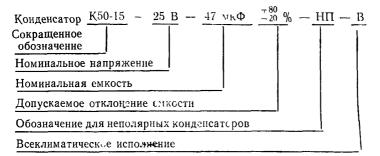

Продолжени

		I	азмеры, мь		Macca, I	, же более
Немишальнее	Неминальная емкость,	D			Исполне-	
напряжение, В	мкФ	Немин.	Пред. ●ткл.	Lmax	ние УХЛ	Исполнение В
	33	9		.28	4,0	5,0
	47	9		35	4,5	6,5
25	100	9		60	7,0	8,5
	220	12		60	11,0	13,0
	330	12		70	13,0	15,0
	10	9		28	4,0	5,0
50	22	9		50	6,0	7,5
00	47	9		60	7,0	8,5
	100	12		70	13,0	15,0
	4,7	9		28	4,0	5,0
100	15	9	+0.7 -0.5	50	6,0	7,5
100	33	12	0,0	60	11,0	13,0
	47	12		70	13,0	15,0
	4,7	9		35	4,5	6,5
160	10	9		60	7,0	8,5
100	22	12		60	11,0	13,0
	33	12		70	13,0	15,0
	2,2	9		35	4,5	6,5
250	4,7	9		50	6,0	7,5
200	10	12	1	60	11,0	13,0
	22	12	1	70	13,0	15,0

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-15

Конденсатор неполярный



		1	Размеры, мі	м	Macca,	г, не более
Номинальное напряжение,	Номинальная емкость,	1			Исполне-	Всеклимати-
напряжение, В	мкФ	Номин.	Пред откл	L _{max}	ние УХЛ	ческое исполнение В
	22	9		38	5	6,5
25	47	9		52	6	7,5
20	68	9		63	7	8,5
	100	12		63	11	13,0
	10	9		52	6	7,5
50	22	9	+0,7	63	7	8,5
00	33	12	+0,7 -0,5	63	11	13,0
	47	12	•	73	13	15,0
	4,7	9	-	52	6	7,5
100	6,8	9		63 -	7	8,5
	22	12	1	73	13	15,0
	!		1			1

Февраль 1987 Лист 2

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

 Π р и м е р записи условного обозвачения при заказе и в конструкторской документации:

Обозначени документа на поставку

внешние воздеиствующие факторы

Синусоидальная вибрация:	
диапазон часгот, Гц	1 - 3000
амплитуда ускорения, м \cdot с $^{-2}$ (g)	200 (20)
Акустический шум:	•
диапазон частот, Гц	50 - 10000
уровень звукового давления, дБ	150
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м с-2 (g)	10 000 (1000)
длительность действия ударного ускорения, мс	0,1-2
многократного действия	
пиковое ударное ускорение, м·с-2 (g)	1500 (150)
длительность действия ударного ускорения, мс	15
Линейное ускорение, м \cdot с $^{-2}$ (g)	1000 (100)
Атмосферное пониженное давление, Па (мм рт. ст.)	133 (1)
Атмосферное повышенное давление, Па (кгс см-2)	294 000 (3)
Повышенная температура среды, °С	125
Пониженная температура среды, С	минус 60
Смена температур, °C:	
от повышенной температуры среды	125
до пониженной » »	минус 60
Повышенная относительная влажность, %:	
для исполнения В при t до 35° С	98
» » УХЛ при t до 25°C	98

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ **АЛЮМИНИЕВЫЕ**

K50-15

Атмосферные конденсированные осадки (роса, иней). Соляной туман (для исполнения В). Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкостя, %:

Тангенс угла потерь:

Номинальное напряжение, В	Тангенс угла потерь, %, не более
6,3	25
16,0	20
25,0	15
50—250	10
<u> </u>	

Ток утечки не более значений, вычисленных по формуле:

$$J_{yr} = 0.005 \quad U_{\text{HOM}} \cdot C_{\text{HOM}} + m,$$

где т -- коэффициент, равный:

10 — при $U_{\text{ном}} \cdot C_{\text{пом}} \leqslant 1000$;

 $\begin{array}{lll} 8 - & * & 1000 < U_{\text{HOM}} \cdot C_{\text{HOM}} \leq 1500; \\ 5 - & * & 1500 < U_{\text{HOM}} \cdot C_{\text{HOM}} \leq 2500; \end{array}$

 $0 - W_{\text{HOM}} \cdot C_{\text{HOM}} > 2500.$

Полное сопротивление конденсаторов:

Номинальное папряжение, В	Номинальная емкость, мкФ	Полнос сопротивление, Ом, не более	Поминальное напряжение, В	Помиц ільная емкость, мкФ	Полное сопротивление, Ом, не более
6,3	68 150 220 330 680	7 3 2 1,5	16	47 100 220 470 680	8,5 4 2 1

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

Номинальное напряжение, В	Номинальная емкость, мкФ	Полнос сопротивление, Ом, нс более	Номинальное напряжение, В	Номинальная емкость, мкФ	Полное сопроти вление, Ом, не более
	33	5		2,2	13
	47	3,5	050	4,7	6
25	100	1,5	250	10	2,5
	220	1		22	2
-	330	1		22 НП	7
	10	9	25	47 HΠ	3,5
	22	2,5		68 HП	2,5
50	47	2		100 НП	1
	100	1		10 НП	4
	4,7	8		22 HΠ	3
	15	4	50	33 НП	2
100	33	1,5		47 HΠ	1,5
	47	1		\ <u></u>	ļ
	- 	<u>-</u>	•		
1	4,7	5	100	4,7 HΠ	7,5
160	10	3,5	100	6,8 НП	11
	22	2		22 HΠ	2
	33	1,5			}

надежность

минимальная наработка, ч, не менее:	
для полярных конденсаторов	1000
» неполярных конденсаторов	500
Срок сохраняемости, лет	15
95%-ный ресурс, ч:	
для полярных конденсаторов	2000
» неполярных конденсаторов	1000

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-15

Изменение электрических параметров: в течение минимальной наработки
емкости, %, не более минус 50
(в сторону увеличения не ограничивается)
тангенса угла потерь и тока утечки не
5-кратных значений, ука- более занных в разделе «Основ- ные технические данные»
полного сопротивления не бслее
в течение срока сохраняемости
емкости, %, не более ±30
тангенса угла потерь не более 3-кратных значений, ука- занных в разделе «Основ- ные технические данные»
тока утечки не более
полного сопротивления не бслее 10-кратных значений, ука- занных в разделе «Основ- ные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0027—84 с дополнениями и уточнениями, изложенными в настоящем разделе.

При монтаже конденсаторов в аппаратуру с помощью пайки рекомендуется применять припой марок ПОССу-61-05, ПОС-61 (ГОСТ 21930—76).

Температура припоя 260±5°C.

Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и из 75% по массе изопропилсвого (ГОСТ 9805—76) или этилового (ГОСТ 18300—72) спирта.

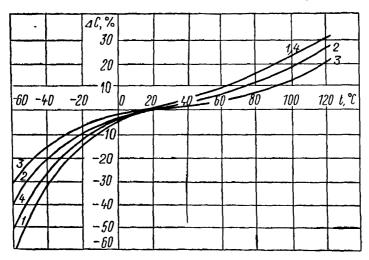
Время пайки не более 4 с.

Расстояние от корпуса (грамицы компаунда) до места пайки вывода не менее 5 мм.

При монтаже конденсаторов изгиб выводов следует производить на расстоянии не менее 2,5 мм от границы компаунда.

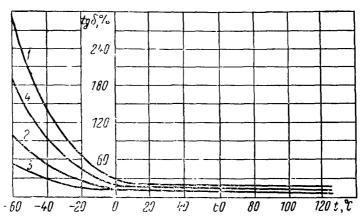
Значение растягивающей силы должно быть 10 Н (1 кгс). Угол поворота 80°, допустимое число поворотов 3.

Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 месяцев.

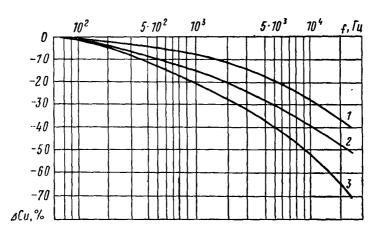

Верхняя частота диапазона, в котором должны отсутствовать резонансные цастоты, 3000 Гц.

Способ крепления конденсаторов — за корпус.

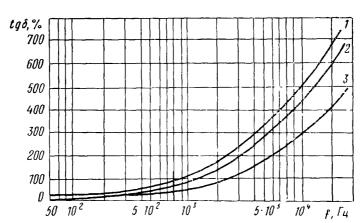
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

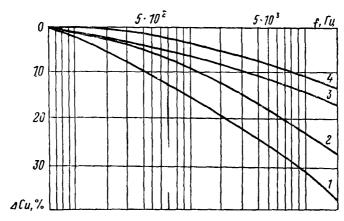

 $I; 2; 3; 4 - U_{\text{пом}} = 6,3; 25-50; 100-250; 16 В соответственно$

Зависимость тангенса угла потерь от температуры

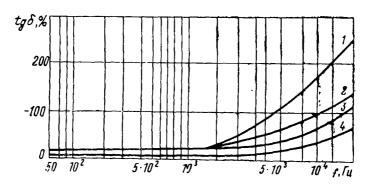

 $I; 2; 3; 4 - U_{\text{ном}} = 6,3; 50; 100-250; 16-25 В соответственно$

Зависимость изменения емкости от частоты

1; 2; 3 — $U_{\text{HOM}} = 25$; 16; 6,3 B соответственно

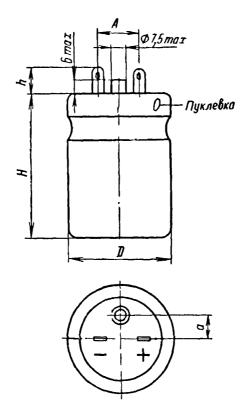

Зависимость тангенса угла потерь от частоты

1; 2; 3 — $U_{\text{ном}} = 6,3$; 16; 25 В соответственно


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Зависимость изменения емкости от частоты

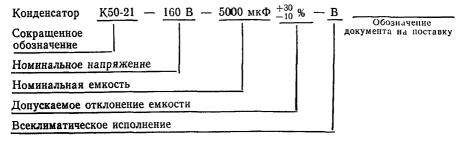
1; 2; 3; 4 — $U_{\text{ном}} = 50$; 100; 160; 250 В соответственно


Зависимость тангенса угла потерь от частоты

1; 2; 3; $4 - U_{\text{ном}} = 50$; 100; 160; 250 В соответственно

K50-21

Конденсаторы Қ50-21 электролитические фольговые алюминиевые накопительные постоянной емкости предназначены для работы в импульсном режиме. Конденсаторы изготавливают в двух климатических исполнениях: в исполении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).



Примечание. Количество зигов и пуклевок не регламентируется.

КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ФОЛЬГОВЫЕ

1			Размеры, мм									
Номиналь-	Номи-		D		l	Н	 	Α		а		
ная ем- кость, мкФ	нальное напря- жение, В	Номин.	Пред Испол нение УХЛ	откл Испол нение В	Номпп	Пред	Номин.	Пред. откл.	Номин.	Пред. откл.	<i>h</i> , ке бо лее	Масса г, не более
1000	250	40			50		15		8	±0,15	11	120
5000 15 000	160	55 95	+1,0 -0,5	+1,5 $-0,5$	140	±2	25 50	±0,5	10 15	±0,2 ±0,24	12	600 1750

Пример записи условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
для конденсаторов с $C = 1000$ мк Φ	
диапазон частот, Гц	1-2000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	196 (20)
для конденсаторов с $C = 5000$, 15000 мкФ	
диапазон частот, Гц	1-2000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	98,1 (10)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления, дБ, не более	140
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g) ·	1471 (150)
длительность действия ударного ускорения, мс	13

K50-21

многократного действия	
для конденсаторов с $C=1000$ мкФ	000 440)
пиковое ударное ускорение м·с-2 (g)	392 (40)
длительность действия удагного ускорения, мо	
для конденсаторов с $C = 5000$ и 15 000 мкФ	
пиковое ударное ускорение м·с-2 (g)	147 (15)
Линейное ускорение, м·с-2 (g);	*
для конденсаторов с $C=1000$ мк Φ	491 (50)
» » $C = 5000 \text{ m} \ 15\ 000 \text{ MK}\Phi$. , ,
Атмосферное пониженное давление, Па (мм рт. ст.)	
Атмосферное повышенное давление, Π а (кгс \cdot см $^{-2}$	
Повышенная температура среды, °С	
Пониженная температура среды, °С	минус 10
Смена температур, °C:	
от повышенной температуры среды	50
до пониженной » »	минус 10
Повышенная относительная влажность, %:	
для исполнения В при t до 35^{∞}	до 98
»	
Атмосферные конденсированные осадки (роса, иней).
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАІ	нные ' '
Допускаемое отклонение емкости, %	+30 -10
Тангенс угла потерь, %, не более:	-10
для конденсаторов с $C = 1000$ мк Φ	. 10
» » C=5000 мкФ	15
» » $C = 15000 \text{ MK}\Phi$. 25
Ток утечки, мА, не более:	
для конденсаторов с $C = 1000$ мк Φ	. 1
» » $C=5000 \text{ MK}\Phi$. 2
» » $C=15000\mathrm{mk}\Phi$. 2,5
Внутреннее сопротивление, Ом, не более:	•
для конденсаторов с $C\!=\!1000$ г 5000 мк Φ	. 0,06
» » $C=15000\mathrm{mk}\Phi$	0,11
" " " O=10 000 MAP	. 0,11

НАДЕЖНОСТЬ

Миним	иальная нарабо	TK	ı, имп.:		
для	конденсаторов	c	$C = 1000 \text{ MK} \bullet$		100 000
*	»	>>	C = 5000 и 15 000 мкФ		10 000
Срок	сохраняемости,	ле	т		12
95%-н	ый ресурс, имп	.:			
для	конденсаторов	c	C = 1000 MKQ		200 000
>	»	>	C=5000 и 15 000 мкФ		20 000

Изменение электрических параметров:

Номинальная емкость, мкФ	Емкости, %, не более	Тока утечки, мА, не бэлее	Внутреннего сопротивления, Ом, не более	Тангенса угла потерь, %, не более					
	В течени	е минимальной н	наработки						
1000		6	0,12	20					
5000	±25	6	0,12	25					
15 000	7,5		0,22	35					
	В течение срокс сохраняемости								
1000	f	6	0,1	20					
5000	±20	ϵ	0,1	20					
15 000		7,5	0,2	35					

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

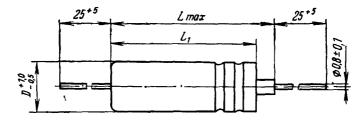
При применении, монтаже и эксплуатации конденсаторов следует пользоваться указаниями, приведенными в ОСТ 11 074.011—79.

При хранении конденсаторов (до монтажа в аппаратуру) допускается потемнение покрытия выводов при условии сохранения способности их к пайке.

Способ монтажа не должен препятствовать возможному срабатыванию клапана, обеспечивающего вэрывобезопасность.

Выводы, включая места их присоединения к корпусу конденсатора, долживыдерживать без механических повреждений воздействия: растягивающей си. 19,61 Н (2 кгс) и изгибающей силы.

Конденсаторы должны выдерживать пайку выводов в предназначенных для пайки местах.


Крепление конденсаторов — за корпус.

Конденсаторы должны быть уплотненными.

Конденсаторы K50-24 оксидные алюминиевые фольговые уплотненные полярные с жидким электролитом постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

Кондеисаторы изготавливают в двух климатических исполнениях: в исполении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Конденсаторы в исполнении УХЛ изготавливают в двух конструктивных исполнениях: изолированные уплотненные и уплотненные.

Примечание. Количество зигов не регламентируется.

Номинальная емкость, мкФ	Номинальное напряжение,		1	L ₁	1	Масса, г, не
	В	D	Номин.	Пред. откл.	Lmax	более
220		6	28		30	2,5
470		9	24	+0,5 1,0	26	3,0
1000	6,3	9	40	-1,0	42	6,5
2200		12	40		42	10
4700		16	42	+0,5 -2,0	44	25
10 000		21	50		52	40
47		6	17		19	1,5
100		6	24	+0.5 -1.0	26	1,8
470		9	28		30	4,0
1000	16	12	34		36	7,0
2200		12	50	+0,5	52	12
4700		16	48	-2,0	50	30
10 000		21	58		60	45

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Продолжен

	Размеры, мм					
Номинальная	омкость миф напряжение,		L_1		,	Масса, г, не более
emrocib, mr	В	D	Номин.	Пред. откл.	Lmax	более
22		6	17		19	1,5
47		6	24		26	1,8
100		6	28	+0,5 -1,0	30	2,5
220		9	24	-,0	26	3,0
470	25	9	40		42	6,5
1000		12	50		52	12
2200		16	42	+0,5 2,0	44	25
4700		21	50	2,0	52	40
100			24		26	3,0
150	40	9	28	+0,5 1,0	30	4,0
330			40	1,0	42	6,5
1000		12		+0.5	CO	12
2200		16	58	+0,5 2,0	60	35
10		6	17		19	1,5
22		6	24		26	1,8
47		6	28	+0,5 -1,0	30	2,5
100		9	34		36	5.0
220	63	9	40		42	6,5
470		12	50		52	12
1000	İ	16	42	+0,5 2,0	44	25
2200		21	50	_,,	52	40
4,7		6	17		19	1,5
10	100	6	24	+0,5	26	1,8
22		9	24	-1,0	26	3,0
47		9	28		30	4,0
100		12	34	+0,5	36	7,0
220		12	50	-2,0	52	12

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Акустический шум: диапазон частот, Гц	50—10 000 140
пиковое ударное ускорение, м·с-2 (g), не более длительность действия ударного ускорения, мс многократного действия	735 (75) 2—6
пиковое ударное ускорение, $\mathbf{M} \cdot \mathbf{c}^{-2}$ (g), не более	147 (15)
длительность действия ударного ускорения, мс	2—15
Линейное ускорение, м·с-2 (g), нэ более	491 (50)
Атмосферное пониженное давление Па (мм рт. ст.)	106 700—133,32
	(800—1)
Атмосферное повышенное давление, Па (кгс·см-2) Повышенная температура среды, °С:	до 297 198 (3)
товышенная температура среды, С: для конденсаторов на $U_{\text{ном}} = 6.3$ и 16 В	70
* * $U_{\text{Hom}} = 25 \div 160 \text{ B} \dots$	70 70
Пониженная температура среды, °С:	70
для конденсаторов на $U_{\text{ном}} = 6.3$ и 16 В	минус 25
\star	минус 40
Смена температур, °C:	•
от повышенной температуры среды	70
до пониженной температуры среды	
для конденсаторов на $U_{\rm HOM} = 3.3$ и 16 В	минус 25
» » $U_{\text{\tiny HOM}}=25\div 160~{ m B}$	минус 40
Повышенная относительная влажнесть, %:	
для исполнения В при t до $35^{\circ}\mathrm{C}$	до 98
»	до 98
Атмосферные конденсированные оседки (роса, иней).	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
основные технические данны	E
Допускаемое отклонение емкости, %	+50 —20

Тангенс угла потерь:

для конденсаторов с $C \leqslant 1000$ мкФ

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

K50-24

	Номинальное напряжение, В	Тангенс угла потерь, %, не более	Номинальное напряжение, В	Тангенс угла потерь, %, не более
	6,3	35	40	20
Ī	16	27	63	17
	25	25	100, 160	14

для конденсаторов с $C{>}1000$ мк Φ	, увеличивается на 1% на каждую полную 1000 миФ
Ток утечки, мкА, не более:	namajio nomijio roto iliro
для конденсаторов с зарядом <i>CU</i> ном до 10 ³ мкК	л 0,05 <i>CU</i> _{ном}
» » » СU _{ном} св. 10 ⁵ мкК	л $0.02 CU_{\text{ном}}$
» » » СU _{ном} св. 10 ⁹ мкК	л
$H U_{HOM} = 160 B \dots \dots$	
для конденсаторов с зарядом $CU_{\text{ном}} = 10^3 \div 10^5$ мкК	
и $U_{\mathtt{ном}}$ до 100 В	. $0.02 CU_{\text{HOM}}$
НАДЕЖНОСТЬ	
Минимальная наработка, ч	. 10 000
Срок сохраняемости, лет	
95%-ный ресурс, ч	. 20 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %	чения не ограничивается)
тангенса угла потерь и тока утечки не более	занных в разделе «Основ-
в течение срока сохраняемости:	ные технические данные»
емкости, %, не более	. ±30
тока утечки и тангенса угла потерь не более	. 3-кратных значений, ука- занных в разделе «Освов- ные технические данные»

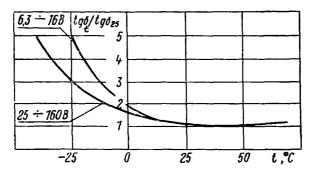
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ГОСТ В 21738—76 с дополпениями, изложенными в настоящем разделе.

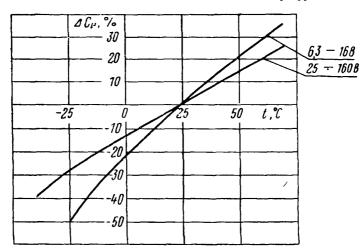
Руководство по применению — ОСТ 11 074.011—79.

В аппаратуре, могущей подвергаться воздействию относительной влажности воздуха до 98% при температуре до 40°С, следует применять:

а) для аппаратуры в нетропическом исполнении — конденсаторы в исполнении для эксплуатации только в районах с умеренным и холодным климатом;

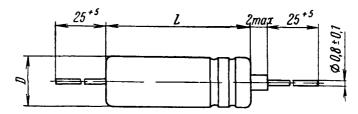

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

б) для аппаратуры в тропическом исполнении — конденсаторы в исполнении для эксплуатации во всех климатических районах, включая районы с тропическим климатом (всеклиматическое исполнение).


Конденсаторы выдерживают возникающее в результате воздействия элект ромагнитного импульса импульсное напряжение 1,1 $U_{\rm ном}$ при длительностимпульса до 5 10^{-2} с Форма импульса прямоугольная. Кратность воздействия 15.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость тангенса угла потерь от температуры


Зависимость изменения емкости от температуры

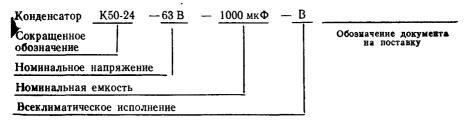
K50-24

Конденсаторы K50-24 электролитические фольговые алюминиевые постоянной емкости предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры (в кожухе комплектного изделия) в цепях постояного и пульсирующего токов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом ислолнении (В).

Примечание. Конфигурация торцов конденсатора и количество зигов не регламентируется

Номинальная емкость, мкФ	Номинальное напряжение,	напряжение, Д		L		Масса, г, не бо лее	
	В	Номин.	Пред. откл.	Номин	Пред. откл.		
2,2	160		1				
4,7	100			:			
10	63			17		1,5	
22	25						
47	16						
4,7	160						
10	100	6			. 0 .		
22	63		+1,0 0,5	24	+0,5 —1,0	1,8	
47	25				1,5		
100	16						
47	63						
100	25			28		2,5	
220	6,3						
10	160			04			
22	100	9	1	24	1	3	


КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ФОЛЬГОВЫЕ

Продолжени

	Номинальное						
Номинальная емкость, мкФ	напряжение,	D		1		Масса, г, не более	
	В	Номин.	Пред. откл.	Номин.	Пред. откл.		
220	25		ti	24		3	
470	6,3			21		"	
47	100			28		4	
470	16				+0,5		
22	160	9		34	-1,0	5	
100	63	'					
220	63					l	
470	25			40		6,5	
1000	6,3	<u> </u>					
100	100			34		7	
1000	16		Ì	31			
2200	6,3	12		40	-	10	
47	160		+1.0 0,5				
220	100		0,5		1		
470	63		ľ	50		12	
1000	25		l			ĺ	
2200	16				,		
100	160				1+0,5 -2,0		
1000	63			42		25	
2200	25	16					
4700	6,3	21					
4700	16 ·			48		30	
220	160						
2200	63		1	1	50	1	40
4700	25			""		"	
10000	6,3		1		_		
10000	16	1		58	1	45	

K50-24

Пример записи полного условного обозначения при заказе и в конструкторской документации:

внешние воздействующие факторы

Синусоидальная вибрация: днапазон частот, Гц	1—1 96 9 98,1 (10)
одиночного действия пиковое ударное ускорение м·с-2 (g), не более	735 (75) 2—6
пиковое ударное ускорение, $\mathbf{m} \cdot \mathbf{c}^{-2}$ (g), не более	147 (15) 2—15 491 (50) 666—106 700
Атмосферное повышенное давление, Па (кгс-см-2). Повышенная температура среды, °C:	(5— 8 00) 297 198 (3).
для конденсаторов на $U_{\text{ном}} = 6,3$ и $16 \text{ B} \dots$	70
для конденсаторов на $U_{\text{ном}}=6,3$ и 16 В	минус 25. минус 40
от повышенной температуры среды	70 минус 25
» » $U_{\text{HOM}} = 25 \div 160 \text{ B} \dots$	минус 40

КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ФОЛЬГОВЫЕ

Повышенная относительная влажность, %:

для исполнения В при $t=35^{\circ}\mathrm{C}$ до 98 > УХЛ при $t=25^{\circ}\mathrm{C}$ до 98

Атмосферные конденсированные осадки (роса, иней).

Плесневые грибы (для исполнения В ..

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Тангенс угла потерь:

для конденсаторов с С ≤ 1000 мкФ

Номинальное напряжение, В	Тангенс угла потерь, %, не более
6,3	35
16	' 27
25	25
63	17
100, 160	14

для конденсаторов с $C > 1000\,$ мк Φ увеличивается на 1% на каждую 1000 мк Φ

Ток утечки конденсаторов должен быть вычислен по формуле $I = k \cdot C \cdot U_{\text{ном}}.$

 τ де I — ток утечки, мкA;

k — коэффициент, равный:

0,05 — при $CU_{\mathrm{Hom}} \leqslant$ 1000 мкКл, 0,02 — » $CU_{\mathrm{Hom}} >$ 1000 мкКл.

Полное сопротивление (импеданс) конденсаторов на $f = 100 \, \Gamma$ ц:

Номинальная емкость, мкФ	Полное сопротив- ление, Ом, не более	Номинальная емкость, мкФ	Полное сопротив- ление, Ом, не более
2,2	800	220	12
4,7	500	470	8
10	150	1 000	3
22	90	2 200	1,5
47	40	4 700	1
100	35	10,000	0,3

K50-24

Сопротивление изоляции изолирующего покрытия	
корпуса конденсатора, МОм, не менее	10
Перенапряжение, В	1,15 <i>U</i> _{ном}
	B0=
НАДЕЖНОСТЬ	
Наработка, ч, не менее	5000
• • •	
Интенсивность отказов, 1/ч, не более	$2 \cdot 10^{-5}$
Срок сохраняемости, лет	5
Изменение электрических параметров в течение	
наработки и срока сохраняемости:	
емкости, %, не более	минус 50
тангенса угла потерь	'
для конденсаторов с С≤1000 мкФ	

Номинальное напряжение, В	Тангенс угла потерь, %, не более		
6,3	105		
16	81		
25	75		
63	51		
100, 160	42		

для конденсаторов с $C{>}100{>}$ мк Φ	увеличивается на 3% на каждую 1000 мкФ
тока утечки не более	3-кратных значений, указанных в разделе «Основные технические ланные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При монтаже, хранении и эксплуатации конденсаторов следует руководствоваться указаниями, изложенными в НПО.465.000.

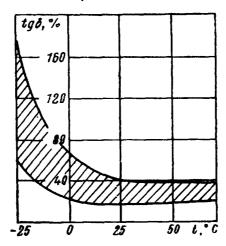
Крепление конденсаторов при воздействии механических нагрузок:

за корпус — для конденсаторов Ø 12, 16, 21 мм:

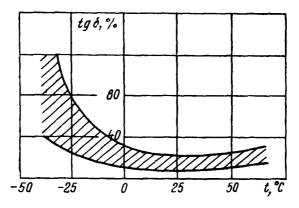
за выводы — для конденсаторсв Ø 6 и 9 мм.

Выводы, включая места их приссединения к корпусу конденсатора, должны выдерживать воздействия: растягивающей силы 1 Н (9,806 кгс), изгибающей силы и скручивания.

КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ФОЛЬГОВЫЕ

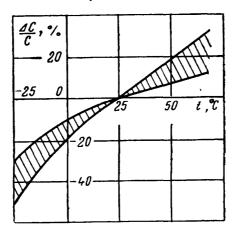

Пайку выводов конденсатора производить на расстоянии не менее 5 мм от места приварки вывода ко дну корпуса или изолятору конденсатора.

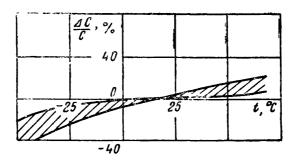
Конденсаторы должны быть уплотненными.


ТИПОВЫЕ ХАРАКТЕРИСТИКИ

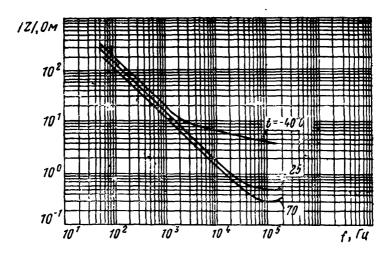
Зависимость тангенса угла потерь от температуры

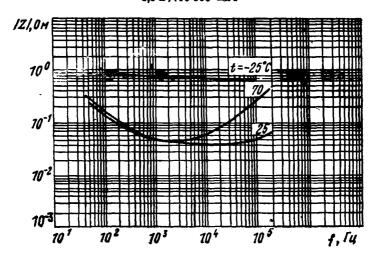
 $U_{pa6} = 6.3 \div 16 B$

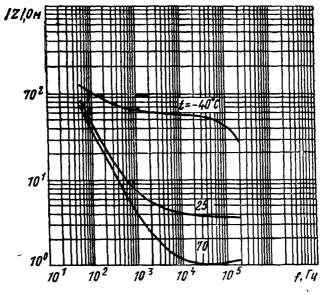

$$U_{pa6} = 25 \div 160 \text{ B}$$

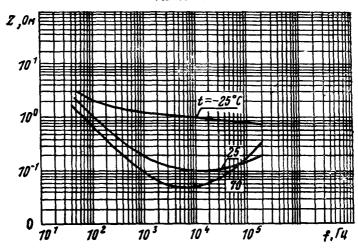

K50-24

Зависимость изменения емкости от температуры

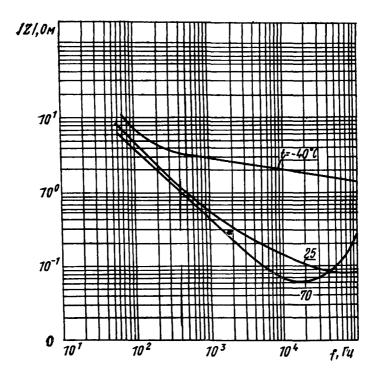

$$U_{pa6} = 6.3 \div 16 B$$


$$U_{\text{pa5}} = 25 \div 16 \text{ B}$$


Зависимость полного сопротивления от частоты и температуры $160~{\rm B}{\times}10~{\rm mk}\Phi$

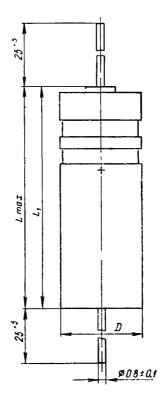

6,3 B×10 000 MKP

Зависимость полного сопротивления от частоты и температуры $25~B{\times}22~{\rm MK}\Phi$



16 B×2200 MKΦ

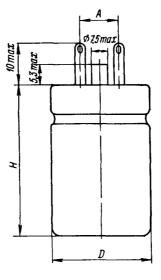
КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ФОЛЬГОВЫЕ

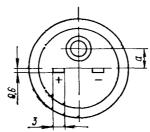

Зависимость полного сопротивления от частоты и температуры $63~B{\times}470~{\rm MK}\Phi$

Конденсаторы K50-27 оксидно-электролитические алюминиевые уплотненные полярные постоянной емкости предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры (в кожухе комплектного издешия) в цепях постоянного и пульсирующего токов.

Конденсаторы изготавливают в дзух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Конденсаторы в исполнении УХЛ изготавливают в двух конструктивных **ис**-полнениях: изолированные и неизолированные; конденсаторы в исполнении В изготавливают одного конструктивного исполнения— неизолированные.


Примечание. Количество зигов не регламентируется.


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

	[[Pa	змеры,	мм		Удельная	
Номинальное напряжение, В	Номинальная емкость, мкФ	D		L_1			матернало- емкость,	Масса, г, не
		Но- мин	Пред. откл.	Но- мин.	Пред. откя.	L _{max}	г/мкКл·ч·108, не более	более
	10	9		40	+0,5 -1.0	42	24,0	6
250	22	12		40		42	18,1	10
	47	16		34		36	17,0	20
	10	12		34	+0,5	36	23,3	7
300	22	12		50	-2,0	52	18,1	12
000	47	16	<u> </u>	42		44	17,7	25
	100	21		58		60	14,0	42
	4,7	9	+1,0	40	+0,5 -1,0	42	36,5	6
350	10	12	-0,5	40		42	28,6	10
	22	16		34	+0,5	36	25,9	20
	47	16		48	-2,0	50	18,2	30
450	2,2	9		34	+0,5 -1,0	36	50,5	5
	4,7	12		34		36	33,1	7
	10	12		50	+0,5	52	26,7	12
	22	16	1	42	-2,0	44	25,2	25
	47	21		50	}	52	18,9	40

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-27

K50-27

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Номи-	Номи-		Размеры, мм								
нальное нальная напря- емкость			D	Н		/	1		a	Удельная материало- емкость,	Масса, г, не
жение, В	мкФ	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.		Пред. откл.	г/мкКл·ч 10 ⁸ , не более	более
160	470	30		62						10,6	80
100	1000	34		92		13	,	6		8,8	140
250	220	24	}	62 77		10		5,5		10,9	60
200	470	30				13		6		10,1	120
300	220	30	+1,0	62	 + 0,5	_				12,1	80
300	470	34	-0,5	92	<u>—ĭ,ö</u>		±0,5	6	±0,15 	10,0	140
350	100	24		62		10	}	5,5		17,1	60
350	220	30		77	1	13		6		15,6	120
450	100	30	}	62			1	_		17,8	80
450	220	34		92		13		6	}	14,1	140

Пример записи полного условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:		
диапазон частот, Гц	1-20	0(
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	50 (5	5)

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-27

Механический удар многократного действия:	
пиковое ударное ускорение, м с-2 (g)	400 (40)
Атмосферное пониженное давлениз, кПа (мм рт. ст.)	0,67 (5)
■ Повышенная рабочая температура среды, °C	85
Пониженная рабочая температура среды, °C	минус 40
Пониженная предельная температура среды, °C	минус 60
Смена температур, °C:	
от повышенной температуры среды	85
до пониженной »	минус 60
Повышенная относительная влажность, %:	
для исполнения В при t до $35^{\circ}\mathrm{C}$	до 98
» » УХЛ при t до 25° С	до 98
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы (для исполнения В).	
основные технические данні	-IE
Основные технические данни	ЯС
Допускаемые отклонения емкости, %	+30 . +50
Тангенс угла потерь, %, не более	$^{-10}$, $^{-20}$
Ток утечки, мкА, не более:	
для конденсаторов с зарядом $CU_{ ext{hom}} \! \leqslant \! 10^3 $ мкКл	$0.05 CU_{\text{Hom}}$
\sim	$(0.03 CU_{HOM} + 20)$
Сопротивление изоляции изолирующей трубки,	nom.
МОм, не менее	100
Перенапряжение (кратковременное) в течение не	
более 10 с, В:	
для конденсаторов на $U_{ ext{ t Hom}} \leqslant 300 \; ext{ ext{ iny B}} \ldots \ldots$	$1,15~U_{_{ m HOM}}$
\sim	$1,1 U_{\text{HOM}}^{\text{HOM}}$
НАДЕЖНОСТЬ	
Наработка при значениях рабочей температуры от	
минус 40 до +85°С, ч	5000
Интенсивность отказов, 1/ч, не более	5·10-8
95%-ный срок сохраняемости, лет	12
Изменение электрических параметров:	14
в течение наработки	
емкости, %, не более	минус 50
тангенса угла потерь не более	3-кратных значений,
	указанных значения, указанных в разделе «Основные технические данные»

K50-27

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

	тока утечки не более		•	•	•	5-кратных значений, указанных в разделе «Основные технические данные»
В	течение 95%-ного срока	сохраняемости:				
	емкости, %, не более					±30
	тангенса угла потерь не	более	•	•	•	3-кратных значений, указанных в разделе «Основные технические данные»
	тока утечки не более	• • • • • • • •	•	•	•	5-кратных значений, указанных в разделе «Основные технические ланные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При хранении, монтаже и эксплуатации конденсаторов необходимо руководствоваться указаниями, изложенным в ОСТ 11 074.011—79, а также указаниями, изложенными в настоящем разделе.

Допускается использовать конденсаторы в исполнении, пригодном для эксплуатации только в районах с умеренным и холодным климатом, в аппаратуре, эксплуатируемой во всех климатических районах моря и суши при применении средств защиты этих конденсаторов от воздействия повышенной влажности, соляного тумана и поражения плеснавыми грибами.

Для защиты могут быть использованы следующие средства:

- а) герметизация блоков или всей аппаратуры;
- б) заливка конденсаторов в блоках аппаратуры влагозащитными покрытиями. Эффективность защиты должна подтверждаться проведением соответствующих испытаний аппаратуры или ее блоков на соответствие предъявляемым к ним требованиям.

В процессе эксплуатации на поверхности уплотненных конденсаторов в местах уплотнения возможно появление следов электролита в виде влажного пятна или сухого остатка.

Значение низшей резонансной частоты 950 Гц.

Конденсаторы пригодны для монтажа в аппаратуре методом групповой пайки или паяльником.

При монтаже конденсаторов рексмендуется использовать припой марки ПОС-61 (ГОСТ 21930 — 76) с применением спирто-канифольного флюса.

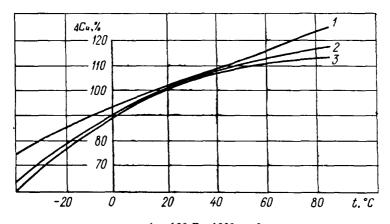
Температура припоя или жала паяльника 260±5°С, время пайки не более 4с. Выводы конденсаторов должны выдерживать без механических повреждений воздействие изгибающей силы.

Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздействия:

а) растягивающей силы 10,0 Н (1 кгс) — для проволочных выводов и
 40,0 Н (4 кгс) — для лепестковых выводов;

б) скручивания — для проволочных выводов.

Выводы конденсаторов должны обладать способностью к пайке без дополнительного облуживания в течение 12 месяцев с даты изготовления. Минимальное расстояние от корпуса конденсатора до места пайки вывода должно ыть 5 мм.


Конденсаторы должны быть теплостойкими при пайке, а также уплотненными.

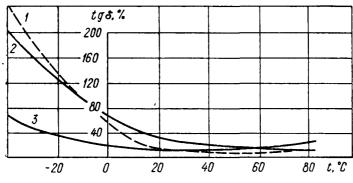
Конденсаторы не должны иметь резонансных частот в диапазоне до 200 Гц.

Крепление конденсаторов — за корпус.

типовые характеристики

Зависимость изменения ем'кости от температуры

 $1 - 160 \text{ B} \times 1000 \text{ мк}\Phi;$


2 - 450 В×100 мкФ;

 $3-350~\mathrm{B}\times47~\mathrm{mk}\Phi$

K50-27

КОНДЕНСАТОРЫ оксидно-электролитические **АЛЮМИНИЕВЫЕ**

Зависимость тангенса угла потерь от температуры

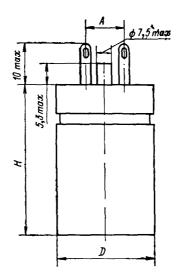
 $1 - 160 \text{ B} \times 1000 \text{ mkΦ};$ $2 - 450 \text{ B} \times 100 \text{ mkΦ};$ $3 - 350 \text{ B} \times 47 \text{ mkΦ}$

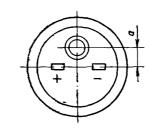
Конденсаторы K50-27 оксидные алюминиевые фольговые полярные с жидким электролитом постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают одного типа двух видов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного елимата (УХЛ) и во всеклиматическом исполнении (В).

Конденсаторы в исполнении УХЛ изготавливают в двух конструктивных исполнениях: уплотненные и изолированные уплотненные.

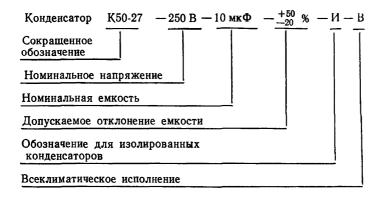

Конденсаторы в исполнении В изготавливают уплотненные.



Примечание. Количество зигов не регламентируется.

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

			Размеры, мм						
Номинальное напряжение, В	Номинальная емкость, мкФ	D .			L	Масса, г, не более			
·		<u>_</u>	Номин.	Пред. откл.	max				
	10	9	40	+0,5 —1,0	42	6			
250	22	12	40		42	10			
	47	16	34		36	20			
	10	12	34	+0,5	36	7			
000	22	12	50	-2,0	52	12			
300	47	16	42		44	25			
	100	21	58		60	42			
	4,7	9	40	+0,5 -1,0	42	6			
350	10,0	12	40		42	10			
	22.0	16	34	+0,5 -2,0	36	20			
	47,0	16	48		50	30 _			
	2,2	9	34	+0,5 -1,0	36	5			
450	4,7	12	34		36	7			
100	10,0	12	50	+0.5	52	12			
	22,0	16	42	-2,0	44	25			
	47,0	21	50		52	40			



КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Номи-	Номи-				Размер	ы, мм				
нальное	нальная	D			<i>f</i>		1		Масса, г, не	
напря- жение В	емкость, мкФ	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	более
	470	30	1	62	,	10				80
160	1000	34	1	92		13		6		140
950	220	24	l I	62		10	· }	5,5		60
250	470	30	!	77		13		6		120
300	220	30	+1,0	62	+0,5	13	±0,5	6	±0,15	80
300	470	34	—0,5	92	—1,0		1 0,0	"		140
350	100	24		62	,	10		5,5		60
330	220	30	1	77		13		6		120
450	100	30		62		13		6		80
	220	34	<u> </u>	92						140

Пример записи условного обозначения при заказе и в конструкторской документации:

Обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Диаметр конд	енсаторов, мм
Воздействующие факторы	9—21	24—34
Синусоидальная вибрация: диапазон частот, Гц	1—2000 196 (20) 50—10 000 150	1—2000 98,1 (10) 50—10 000 140
пиковое ударное ускорение, м·с-2 (g), не более	9810 (1000) 0,2—1	4905 (500) 1—2
лее	1471 (150) 1—3 981 (100)	392 (40) 2—10 245 (25)

Атмосферное пониженное давление, Па (мм рт.ст.)	106 700—0,00013 (800—10 ⁻⁶)
Атмосферное повышенное давление, Па (кгс см-2)	до 297 198 (3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 40
Смена температур, °C:	
от повышенной температуры среды	85
до пониженной »	минус 40
Повышенная относительная влажность, %:	
для исполнения В при $t = 35^{\circ}$ С	до 98
» » УХЛ при $t=25^{\circ}$ С	. до 98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	

основные технические данные

6 1	Допускаемые	отклонения	емкости,	% .				$^{+30}_{-10}$ $^{\mu}$ $^{+50}_{-20}$
D'	Тангенс угла	потерь, %, н	не более.					15

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Ток утечки, мкА, не более:

для конденсаторов с зарядом $CU_{\text{ном}} \! \leq \! 10^3$ мкКл для конденсаторов с зарядом $CU_{\text{ном}} \! = \! 10^3 \div 3 \cdot 10^3$ мкКл и св. 10^5 мкКл для конденсаторов с зарядом $CU_{\text{ном}} \! = \! 3 \cdot 10^3 \div 10^5$ мкКл и $U_{\text{ном}}$ св. 100 В

 $0.05\ CU_{
m hom}$

0,03 CU HOM

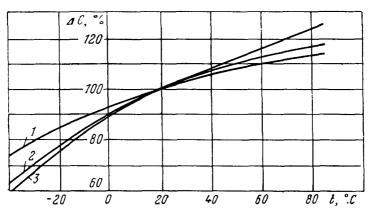
 $0,03 \ CU_{\text{HOM}} + 20$

Полное сопротивление (импеданс) на частоте 100 Гц:

Номинальная емкость, мкФ	Полное сопротивление, Ом, не более	Номинальная емкость, мкФ	Полное сопротивление, Ом, не более
2,2	1000	100	25
4,7	350	220	12
10	200	470	6
22	100	1000	3
47	60		

надежность

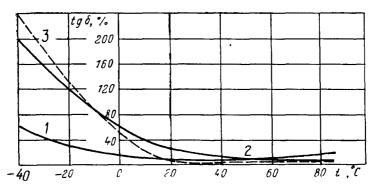
Минимальная наработка, ч	5000
Срок сохраняемости, лет	12
95 %-ный ресурс, ч	10 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	минус 50
тангенса угла потерь не более	3-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	5-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	•••
емкости, %, не более	±30
тока утечки не более	5-кратных значений, указанных в разделе «Основные технические данные»
тангенса угла потерь не болев	3-кратных значений, указанных в разделе «Основные технические


УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

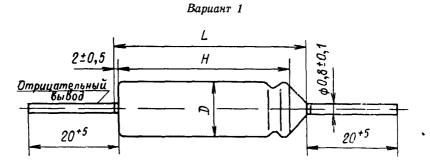
Указания по применению и эксплуатации по ГОСТ В 21738—76. Руковоство по применению — ОСТ 11 074.011 — 79.

ланные»

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры

 $I - 160 \text{ B} \times 1000 \text{ MKΦ};$ $2 - 450 \text{ B} \times 100 \text{ MKΦ};$

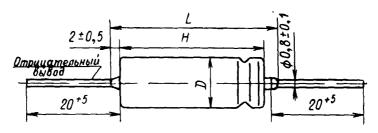

3 — 350 $B \times 47$ мк Φ .

Зависимость тангенса угла потерь от температуры

 $1 - 160 \text{ B} \times 1000 \text{ мк}\Phi;$ $2 - 450 \text{ B} \times 100 \text{ мк}\Phi;$ $3 - 350 \text{ B} \times 47 \text{ мк}\Phi.$ Конденсаторы K50-29 оксидные алюминиевые фольговые уплотненные полярные с жидким электролитом постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов.

Конденсаторы изготавливают одного типа двух вариантов: 1 и 2. Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Номинальная емкость, мкФ	Номинальное напряжение,			F	1		Масса, г, не более	
CHROCIB, MR	В	Но- мин	Пред откл	Но- мин.	Пред откл	Но- мин.	Пред. откл.	ne oonee
1,0	160			17		22		1,5
2,2	100 160	6	+0,3	17 22		22 27		1,5 2,0
4,7	63 , 100			17 22	$\begin{array}{c c} +1 \\ -2 \end{array}$	22 27	+1 -2	1,5 2,0
	160	8,5	+0,5	22	-2	27		3,2
	25			17		22		1,5
	63	6	+0,3	22	1	27		2,0
10,0	100	l '		27		32		2,5
	160	8,5	+0,5	27		32		4,0


K50-29

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Продолжени

{								
Номинальная емкость, мкФ	Номинальное напряжение,	ие,		H		L		Масса, г, не более
emrocis, mrv	В	Но- мин,	Пред. огкл.	Но- мин,	Пред. откл.	Но- мин,	Пред. откл.	inc double
	16			17		22		1,5
	25	6	+ 0,3	22		27		2,0
22,0	63			27		32		2,5
	100	8,5	+0,5	27		32		4.0
	6,3			17		22		1,5
İ	16	6	+0,3	22		27		2,0
47,0	25			27		32		2,5
	63	8,5	. 0.5	22		27		3,2
]	100	0,0	+0,5	37	·	42	+1 -2	5,0
	6,3	6	6 +0,3	22	+1	27		2
100	16			27	-2	32		2,5
100	25	8,5		22		27		3,2
	63	0,0	+0,5	32		37		4,5
	6,3	6	+0,3	27		32		2,5
220	16	}		27		32		4,0
	25			32		37		4,5
470	6,3	8,5	+0,5	27		32		4,0
470	16			37	-	42		5,0
1000	6,3			37		42		5,0

Вариант 2

		Размеры, мм						
Номинальная емкость, мкФ	Номинальное напряжение,	D		H		L		Масса, г, не более
emrocis, mrv	В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	
2,2	350 450			22		29		5,5
4,7	300 350 450	12		22 27 32		29 34 39		5,5 6,5 7,5
10	300 350		ļ	27 42		34 49		6,5 9,5
	450	17	ŀ	28		35		12,5
22	160 300 350 450	12 12 17 17	+0,5	27 42 38 48	+1 -2	34 49 45 55	+1 -2	6,5 9,5 20,0 22,5
47	160 300	12 17		42 48		49 55		9,5 22,5
100	100	12		37		44		8,5
220	63	12		32		39		7,5
470	25 63	12 17		37 38		44 45		8,5 20,0

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Продолжение

		Размеры, мм						
Номинальная емкость, мкФ	Номинальное напряжение.		D		H		L	Масса, г, не более
emkocis, mku	В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	ne conee.
	16	12		42		49		9,5
1000	25	17		33		40		15,0
	63	17		53		60		25,0
	6,3	12	+0,5	42	+1 2	49	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9,5
2200	16	17		38	_	45] -	20,0
	2 5	17		48		55		22,5
4700	6,3	17		38		45		20,0

Пример записи условного обоєначения при заказе и в конструкторской документации:

Конденсатор $K50-29 - 25 B - 10 00 мкФ$	- <u>B</u>
Сокращенное обозначение	Обозначение документа на поставку
Номинальное напряжение	·
Номинальная емкость	
Всеклиматическое исполнение	

внешние воздействующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	13000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	196 (20)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления, дЕ, не более	150
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g), не более	9810 (1000)
длительность действия ударного ускорения, мс многократного действия	0,2—1
пиковое ударное ускорение, м·с-2 (g), не более	1471 (150)
длительность действия ударного ускорения, мс	1—3

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

K50-29

	1000 (000)
Линейное ускорение, м·с-2 (g), не более	1962 (200)
Атмосферное пониженное давление, Па (мм рт. ст.)	133,32 (1)
Атмосферное повышенное давление, Па (кгс см-2)	до 297 198
	(до 3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, °С:	
от повышенной температуры среды	85
до пониженной » »	минус 60
Повышенная относительная влажность, %:	
для исполнения В при t до $35^{\circ}\mathrm{C}$	до 98
»	до 98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения Б).	
Плесневые грибы (для исполнения В).	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допус	каемое отклоне	ние	емкости, %	+50 20
Танген	іс угла потерь,	%, I	ие более:	- 20
ДЛЯ	конденсаторов	на	$U_{\text{HOM}} = 6.3 \div 63 \text{B} \dots \dots$	20
»	»	>>	$U_{\text{mon}} = 100 \text{ B} \dots \dots$	15
>>	>>	*	$U_{\text{HOM}}^{\text{HOM}} = 160 \div 450 \text{B} \dots$	10
Ток ут	гечки:			

Номинальное напряжение, В	Заряд, микл	Ток утечки, мкА, не более
До 100	≤10 ³ и менее Св. 10 ³ до 4·10 ⁴ Св. 4·10 ⁴	$\begin{array}{c c} 0,02 & CU_{\text{HOM}} + 10 \\ 0,01CU_{\text{HOM}} + 10 \\ 2\sqrt{CU_{\text{HOM}}} \end{array}$
Св. 100	≪10 ³ и менее Св. 10 ³	$0.03CU_{\text{HOM}} + 20$ $4\sqrt{CU_{\text{HOM}}}$

Полное сопротивление на частоте 50 Гц:

Номинальная емкость, мкФ			Полное сопротивление, Ом		
1	4000	100	40		
2,2	1900	220	19		
4,7	900	470	9		
10	400	1000	4		
22	190	2200	1,9		
47	90	4700	0,9		

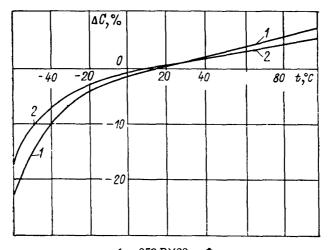
надежность

Минимальная наработка, ч	2000
Срок сохраняемости, лет	15
95%-ный ресурс, ч	5000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %	минус 50
тангенса угла потерь не более	5-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	3-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	
емкости, %, не более	±30
тока утечки и тангенса угла потерь не более	3-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ГОСТ В 21738-76. Руководство по применению — ОСТ $11\ 074.011-79$.

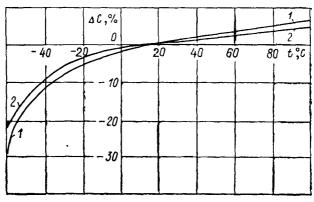
В процессе эксплуатации на повержности конденсаторов в местах уплотнения возможно появление следов электролита в виде сухого остатка или влажного пятна.


При эксплуатации конденсаторов возможно выделение паров диметилформамила.

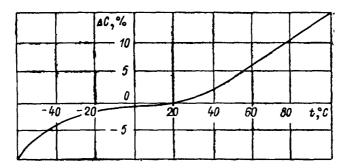
Для поддержания концентрации этих паров на уровне, не превышающем предельно допустимую концентрацию, для конкретных условий применения конденсаторов должны быть приняты соэтветствующие меры при разработке аппаратуры.

Способ крепления конденсаторов — за корпус.

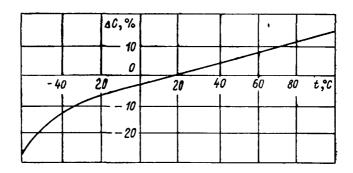
ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры

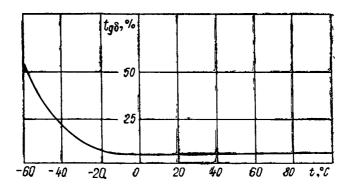
 $1 - 350 \text{ B} \times 22 \text{ мк} \Phi$;


2 — 100 В×100 мкФ

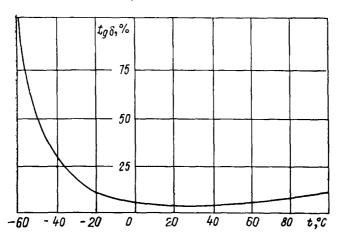
Зависимость изменения емкости от температуры


 $1 - 300 \text{ B} \times 47 \text{ mk} \Phi$; $2 - 450 \text{ B} \times 22 \text{ mk} \Phi$

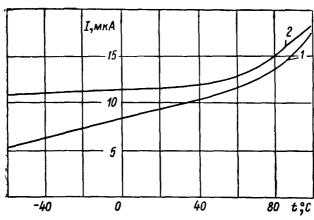
 $25 \text{ B} \times 2200 \text{ MK}\Phi$


Зависимость изменения емкости от температуры

` 6,3 В×4700 мкФ

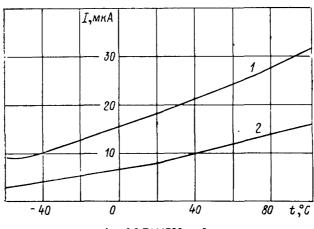

Зависимость тангенса угла потерь от температуры

25 В × 2200 мкФ

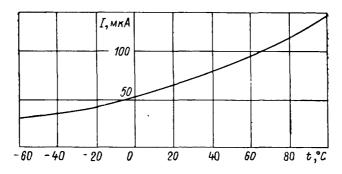


Зависимость тангенса угла потерь от температуры

6,3 В × 4700 мкФ

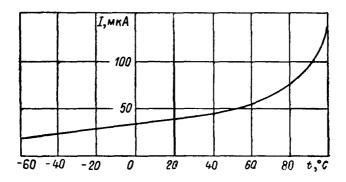

Зависимость тока утечки от температуры

 $1 - 350 \text{ B} \times 22 \text{ мк} \Phi$;


 $2 - 300 \text{ B} \times 47 \text{ мк} \Phi$

Зависимость тока утечки от температуры

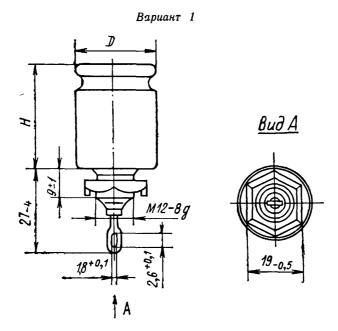
 $1 - 6,3 \text{ B} \times 4700 \text{ мк}\Phi;$ $2 - 100 \text{ B} \times 100 \text{ мк}\Phi$


450 B×22 mkΦ

K50-29

КОНДЕНСАТОРЫ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

Зависимость тока утечки от температуры $25~{\rm B}{\times}2500~{\rm mk}{\Phi}$


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-32 K50-32**A**

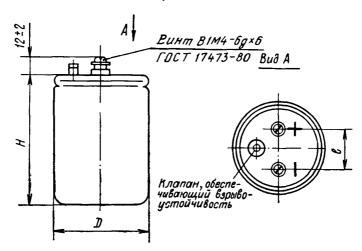
Конденсаторы K50-32, K50-32A эксидно-электролитические алюминиевые уплотненные неизолированные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсарующего токов.

Конденсаторы изготавливают двух типов Қ50-32 и Қ50-32А, двух вариантов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Примечание Отрицательным выводом является корпус конденсатора и гайка—в исполнении УХЛ, гайка— в исполнении З.

K50-32 K50-32A


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Тип конденсатора	Номинальная емкость,	Номинальное напряжение,		D	H		Масса, г, не более
	мкФ	В	Но- мин	Прец. откл.	Но- мин.	Пред. откл.	
	15 000	16			67		95
	22 000	10			86		120
K50-32A	4 700		32		47		70
	10 000	40			72		105
	15 000				99		165
	1 000	160	32		102		150
	100		25	ļ	40		40
	220	250	32	}	47		70
	330		32	+0,8	62	-4	90
	470		32		77		110
	47		25		40		40
K50-32	100	1	25		50	<u> </u>	50
•	220	350	32		67	{	95
	330	}	32		86	1	120
•	470		32		106		165
	47		25		45		45
	100	450	32	{	62		90
	220		32	1	92		130

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-32 K50-32A

Вариант 2

Примечание. Корпус конденсатора не изолирован от отрицательного вывода.

	Номи-	Номи-		Размеры, мм					
Тип нальная конденсатора емкость,		ное напря-		5		Н		!	Масса, г. не более
	мкФ	жение, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл	Но- мин	Пред. откл.	
	33 000	16	40		92		18		180
	47 000		50		82		25		300
K50-32A	22 000	40	50		00				000
	15 000	63	65		82				300
	2 200				92		25		320
	3 300	160 65 82 19			400				
	4 700			+1	106	$\begin{vmatrix} +2\\ -4 \end{vmatrix}$		<u>±</u> 1	550
	1 000	250	40		92		18		200
K50-32	2 200	200	65		87		25	450	
	1 000	350	50		106		25		350
	330	450	40		92		18		200
	470	450	50		82		2 5		300

K50-32 K50-32A

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Пример записи условного обозначения при заказе и в конструкторской документации:

Конденсатор К50-32 — 160 В — 4700 мкФ — В

Сокращенное обозначение

Номинальное напряжение

Номинальная емкость

Всеклиматическое исполнение

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Варианты	
Воздействующие факторы	I	II
Синусоидальная вибрация:		
диапазон частот, Гц	12000	180
амплитуда ускорения, м·с−² (g), не более	100 (10)	50 (5)
Акустический шум: диапазон частот, Гц	50—10 000	
уровень звукового давления, дБ	140	
Механический удар: одиночного действия		
пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не более	5000 (500)	200 (20)
длительность действия ударного ускорения, мс	0,12	250
многократного действия		
пиковое ударное ускорение, м·c-2 (g), не бо-		
лее	400 (40)	150 (15)
длительность действия ударного ускорения, мс	2—10	2—20
Линейное ускорение, м·с $^{-2}$ (g), не более	250	(25)

Атмосферное пониженное давление Па (мм рт. ст.)	133 (1)
Атмосферное повышенное давлениє, Па (кгс см-2)	294 000 (3)
Повышенная температура среды, ℃	85
Пониженная температура среды, ℃	минус 60
Смена температур, °С:	
от повышенной температуры среды	85
до пониженной »	минус 60

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-32 K50-32A

Повышенная относительная	влажность, %:
для исполнения ${f B}$ при t	до 35°C 98
» » УХЛ пр	и <i>t</i> до 25°C 98
Атмосферные конденсирова:	ные осадки (роса, иней).
Соляной туман (для исполн	ения В).
Плесневые грибы (для испо	лнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальная емкость, мкФ	Номинальное напряжение, В	Тангенс угла потерь, %, не более
15 000, 22 000, 33 000 4700	16	40 50
4700, 10 000, 15 000, 22 000	40	30
15 000	63	30
1000, 2200, 3300, 4700	160	20
100, 220, 330 470, 1000, 2200	250	15 20
47 , 100, 220 330, 47 0, 1000	350	15 20
47, 100, 220 330, 470	450	15 20

Ток утечки, мкА, не более:	/
K50-32	$4VU_{\text{Hom}}C_{\text{Hom}}$
K50-32A	$2\sqrt{U_{\text{HOM}} C_{\text{NOM}}}$
НАДЕЖНОСТЬ	

 K50-32 K50-32A

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Минимальный срок сохраняемости, лет 95%-ный ресурс, ч:	15
K50-32	3000
K50-32A	20 000
Изменение электрических параметров.	
в течение минимальной наработки	
емкости, %, не более	минус 50
тангенса угла потерь и тока угечки не более.	(в сторону увеличения не ограничивается) З кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	
емкости, %, не более	±30
тангенса угла потерь и тока у-ечки не более.	3 кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0027—84 с дополнениями и уточнениями, изложенными в настоящем разделе.

Для конденсаторов всеклиматического исполнения резьбовая часть корпуса, гайка и вывод конденсатора варианта 1, винты, шайбы и конгактные буксы конденсатора варианта 2 при эксплуатации в условиях воздействия соляного тумана должны быть защищены лаком, например, АК 113Ф по ГОСТ 23832—79.

При монтаже конденсаторов варианта 1 в аппаратуру следует применять припой марки ПОС-61 или ПОССу-61-0,5 (ГОСТ 21930 — 76). Температура жала паяльника 350±10°С. Применяемый флюс должен состоять из 25 — 60% по массе канифоли с основой марки А или В (ГОСТ 19113—73) и 75—40% по массе спирта этилового технического (ГОСТ 18300 — 72). Время пайки не более 4 с. Пайку производят с применением теплоотвода, например, в виде пинцета с медными губками шириной 4 мм.

Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1 по объему.

При монтаже в аппаратуру рекомендуется устанавливать конденсаторы варианта 2 в вертикальном положении клапаном вверх.

Значения низших резонансных частот:

2061 Гц — для конденсаторов вагианта 1;

551 Гц— » » 2.

При эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде сухого остатка или влажно

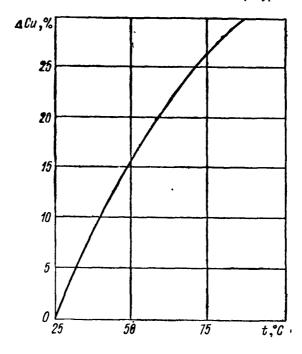
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-32 K50-32A

пятна. Следы электролита не ухудшают электрические параметры и не снижают надежность конденсаторов.

Крутящий момент должен быть 1,20 $\text{H}\cdot\text{M}$ (0,120 кгс·м) — для конденсатов в варианта 2.

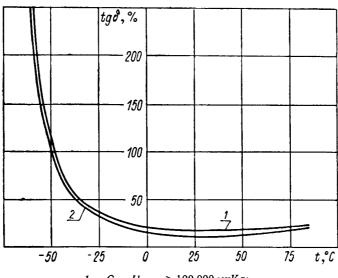
Верхняя частота диапазона, в кстором должны отсутствовать резонансные частоты:


2000 Гц — для конденсаторов варианта 1

100 Γų — » » 2

Способ крепления конденсаторов — за корпус.

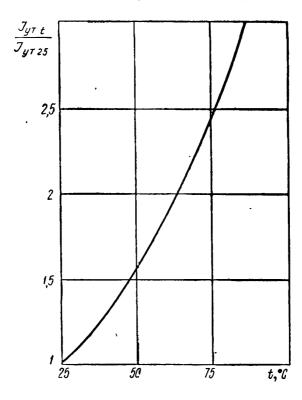
ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры

K50-32 K50-32A

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Зависимость тангенса угла потерь от температуры



$$1-C_{\mathrm{Hom}}U_{\mathrm{Hom}}>$$
100 000 мкКл; $2-C_{\mathrm{Hom}}U_{\mathrm{Hom}}\leqslant$ 100 000 мкКл

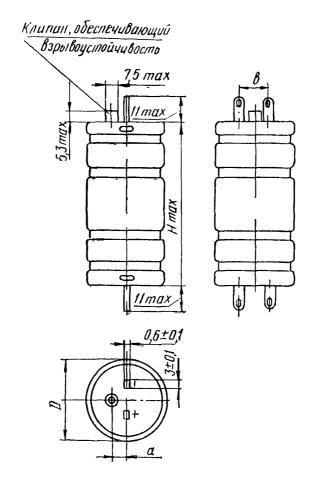
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-32 K50-32A

Зависимость тока утечки от температуры

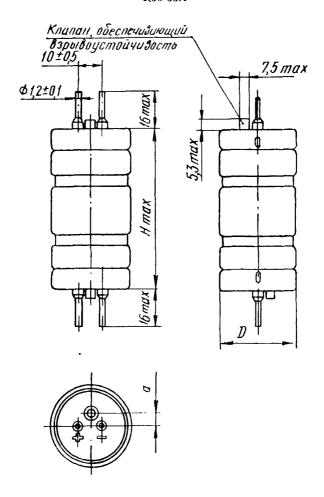
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-33


Конденсаторы K50-33 оксидно-электролитические алюминиевые уплотненные неизолированные полярные с жидким электролитом постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

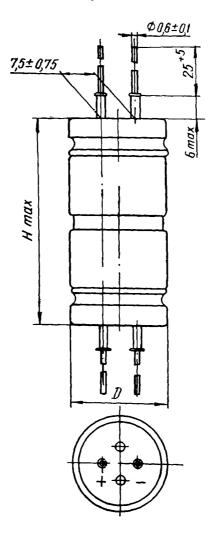
Конденсаторы изготавливают одного типа трех вариантов: K50-33, K50-33A, K50-33B.


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-33

K50-33

K50-33A

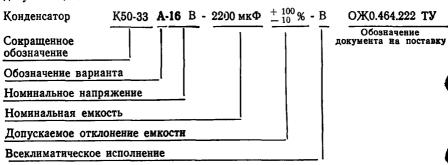


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

	Ĭ_			Размер	ры, мм			
Номинальная емкость, мкФ	Номиналь-		D	H		b		Масса, г, не более
emrocib, mr	жение, В	Но- мин.	Пред. откл.	H _{max}	Но- Пред. мин. откл.		a	lie obsiec
3 300				60				50
4 700		26		60	10		4,7	50
6 800	6,3			70		l		60
10 000	0,5	30		70				90
15 000		34		70	12,5		6	110
22 000		34		90				140
2 200				60				50
3 300		26		60	10		4,7	50
4 700	16			70				60
6 800	10	30		70				90
10 000		34		70	12,5		6	110
15 000		34		90				140
2 200		26		60	10		4,7	50
3 300				70		ĺ		60
4 700	25	30	+1,5	70				90
6 800		34	0,5	70	12,5	±0,5	6	110
10 000		34		90				140
1 000		26		60	10		4,7	50
1 500				70				60
2 200	63	30		70				90
3 300		34		70	12,5		6	110
4 700		34		90				140
470		26		50	10		4,7	50
680				70				60
1 000	100	30		70				90
1 500		34		70				110
2 200		34		90	12,5		6	140
470		30		70	14,0		O	90
680	160	34		70				110
1 000		34		90				140

K50-33


К50-33Б


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Номинальная емкость, мкФ	Номинальное напряжение,		D	н	Масса, г, не более
	В	Номин.	Пред. откл.	H _{niax}	
1 000	6,3	16	<u>±0,9</u>	40	20
2 200	0,0	21	<u>±1,05</u>	48	30
680	16			40	20
1 000		16	±0,9	48	25
470	25			40	20
<u> </u>	25	16	土0,9		25
3 30	63			48	25
639		21	±1,05		30
68	100	16	±0,9	40	20
220	100	21	<u>±1,05</u>		30
47	160	16	±0,9	48	25
100	100	21	±1,05		30

Электрическая схема

Пример записи условного обозначения при заказе и в конструкторской документации:

внешние воздеиствующие факторы

		Ba	риант конденс	атора
	Воздействующие факторы	K50-33	K50-33A	К50-33Б
	Синусоидальная вибрация: диапазон частот, Гц		1—2 000 100 (10)	
	Акустический шум: диапазон частот, Гц		50—10 000	
	уровень звукового давления (относительно $2 \cdot 10^{-5}$ Па), дБ		150	
	Механический удар: одиночного действия			
	пиковое ударное ускорение, м·с-2 (g)	10 000 (1000)	5000 (500)	10 000 (1000)
	длительность действия ударного ускорения, мс		0,1-2	
	многократного действия			
	пиковое ударное ускорение, $M \cdot C^{-2}$	1500 (150)	400 (40)	1500 (150)
	длительность действия ударного ускорения, мс	1—5	2	<u></u> 10
	Линейное ускорение, м·с-2 (g)	250 (25) 200 (20)		
10	Атмосферное пониженное давление, Па мм рт. ст.)		133 (1)	
(Атмосферное повышенное давление, Па кгс·см-2)		294 000 (3)
c	Повышенная рабочая температура реды, °C	85		100
Д	Пониженная рабочая температура сре- ы, °C	минус 40	WR	нус 60
	Смена температур, °C: от рабочей повышенной	85		100
Ί	до предельной пониженной	ļ	минус 60)
1,	Повышенная относительная влажность, %:			
	для исполнения В при 35°C	1	98	
H	» » УХЛ » 25°C	<u> </u>	98	

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Атмосферные конденсированные осадки (роса, иней). Соляной туман (для исполнения В). Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальная емкость, мкФ	Номи- наль- ное напря- жение, В	· · · · ·	ингенс у потерь, не боле К50-33А	%, e	Номинальная ємкость, мкФ	Номи- наль- ное напря- жение, В		ангенс у потерь, не боле K50-33A	%, e
1000			-	20	2200: 3300; 4700	25	26	20	
2200		_		25		20			
3300; 4700		38	30	<u>-</u>	€800; 10 000		3 0	25	
6 800	6,3	38	35	_	330; 680				15
10 000	•	44	35		1000; 1500;	63	20	20	
15 000	1	44	40	<u> </u>	2200	03			
22 000		55	50	_	3300; 4700		23	20	
680; 1000			_	20	68; 220		_	-	15
2200; 3300		28	20	_	470; 680;	100	15	15	_
4 700	16	30	20	_	1000; 1500;	100	10		
6800; 10 000		30	25	_	2200				
15 000		40	3 0	_	47; 100		_		15
470; 680	25		_	15	470; 680; 1000	160	15	15	-
i		l							

Ток утечки

	Номи-	Ток утечки, мкА, не более					
Номинальная Фим , строиме	наль- ное на- пряже- ние, В	e- K50-33 K50-33A		Қ50-33Б			
1000			_	$0,02C_{\text{hom}}U_{\text{hom}}$			
2200	6,3	-		$2\sqrt{C_{HOM}U_{HOM}}$			

K50-33

Продолжение

				Продолжение
Howano	Номи- наль-	To	ок утечки, мкА, не бол	tee
Номинальная емкость, мкФ	ное на- пряже- ние, В	K50-33	K50-33A	Қ50-33Б
3300; 4700; 6800; 10 000	6,3	$0.02C_{\text{HOM}}U_{\text{HOM}}$ $2\sqrt{C_{\text{HOM}}U_{\text{HOM}}}$		_
15 000; 22 000	-	$0,03C_{ ext{Hom}}U_{ ext{Hom}}$, , , , , , , , , , , , , , , , , , , ,	_
680; 1000	-	_		$2\sqrt{C_{\text{hom}}U_{\text{hom}}}$
2200; 3300; 4700	16	$0.02C_{ ext{hom}}U_{ ext{fom}}$	07/	_
6800; 10 000; 15 000		0,03C _{HOM} U _{FOM}	$2\sqrt{C_{HOM}U_{HOM}}$	
470; 680				$2\sqrt{C_{\text{hom}}U_{\text{hom}}}$
2200; 3300	25	$0.02C_{\mathtt{Hom}}U_{\mathtt{Hom}}$		
4700; 6800; 10 000		$0,03C_{\mathtt{HOM}}U_{\mathtt{HOM}}$	2V C _{HOM} U _{HOM}	_
330; 680		_	_	$2\sqrt{C_{\text{HOM}}U_{\text{HOM}}}$
1000; 1500	63	0,02C _{HOM} U _{1OM}		-
2200; 3300; 4700		0,03C _{HOM} U _{10M}	$2\sqrt{C_{HOM}U_{HOM}}$	_
68		_	_	$0,02C_{\mathtt{HOM}}U_{\mathtt{BOM}}$
220	100	_	_	2 √ C _{nom} U _{nom}
470; 680; 1000 1500; 2200		0,02 $C_{\text{ном}}U_{\text{ном}}$ 0,03 $C_{\text{ном}}U_{\text{ном}}$	2V C _{HOM} U _{ROM}	
47; 100		_	_	0,03Спом Uпом
470; 680; 1000	160	0,03Свом Свом	4√C _{пом} U _{пом}	_

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Полное сопротивление

			Полное соп	ротивление, Ом, не более на частоте			
напря-	Номин. Номин. напря- емкость, жение. В мкФ		кГц		5 МГц		
жение, В	мкФ	K50-33	K50-33A	Қ 50-33	K50-33A	Қ50-33Б	K50-33A
	1 000	_	_		_	0,15	
	2 200	_	_ !	_	_	0,15	
	3 300	0,1	0,08	0,1	0,06	_	0,30
6.0	4 700	0,1	0,06	0,1	0,03	-	0,30
6,3	6 800	0,08	0,05	0,08	0,015		0,15
	10 000	0,06	0,05	0,06	0,015	_	0,15
	15 000	0,04	0,03	0,04	0,015	_	0,15
	22 000	0,0 3	0,02	0,03	0,005		0,06
	680	_		-		0,15	
	1 000	-	_		-	0,15	-
	2 200	0,1	0,08	0,1	0,06	} →	0,30
16	3 300	0,08	0,07	0,08	0,05	 	0,30
10	4 700	0,07	0,07	0,07	0,05	_	0,30
	6 800	0,06	0,04	0,06	0,04		0,20
	10 000	0,04	0,04	0,04	0,04	-	0,20
	15 000	0,03	0,03	0,03	0,01		0,10
	470				_	0,20	
	680				-	0,15	
	2 200	0,1	0,06	Э,1	0,03	_	0,30
25	3 300	0,08	0,05	ე,08	0,015	-	0,15
	4 700	0,07	0,05	3,07	0,015	_	0,15
	6 800	0,06	0,05	ე,06	0,015	_	0,15
	10 000	0,03	0,03	2,03	0,01		0,06
	330	-				0,25	_
	680	-		-	-	0,20	
63	1 000	0,1	0,06	0,1	0,03	_	0,15
	1 500	0,09	0,05	0,09	0,02	_	0,10

K50-33

Продолжение

		1	Полное соп	ротивление,	Ом, не бо	лее на част	оте
Номин. напря-	Номин. емкость,		кГц		5 МГц		
жение, В	мкФ	K50-33	K50-33A	K50-33	K50-33A	К50-33Б	K50-33A
	2 200	0,08	0,05	0,08	0,02	_	0,10
63	3 300	0,07	0,05	0,07	0,02		0,10
!	4 700	0,06	0,05	0,06	0,015	_	0,10
	68	_	-	_		1,0	
	220	_	_		- 1	0,5	_
	470	0,1	0,1	0,1	0,08	_	0,25
100	680	0,1	0,1	0,1	0,08	_	0,25
	1 000	0,09	0,08	0,09	0,06	_	0,20
	1 500	0,08	0,03	0,08	0,06	_	0,20
	2 200	0,07	0,07	0,07	0,05	_	0,15
	47					1,0	
	100	_	l _	_		0,5	
160	470	0,1	0,1	0,1	0,08	<u> </u>	0,25
	680	0,08	0,08	0,08	0,06	_	0,20
	1 000	0,07	0,C7	0,07	0,05	-	0,15

надежность

Минимальная наработка

Вариант Номинальго конденсатора напряжение,		Интервал температур, °С	Наработка, ч
K50-33	От 6,3 до 160	От минус 40 до 85 От минус 40 до 70	2000 5000
K50-33A	От 63 до 160 От 6,3 до 25	От минус 60 до 100	500 1000
1,00°00A	От 6,3 до 160 От 6,3 до 160	От минус 60 до 85 От минус 60 до 70	2000 5000

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

Вариант конденсатора	Номинальное напряжение, В	Интервал температур, °С	Наработка, ч
Қ50-33Б	От 6,3 до 160	От минус 60 до 100	500
	От 6,3 до 160	От минус 60 до 85	2000
	От 6,3 до 160	От минус 60 до 70	5000

Минимальный срок сохраняемости, лет 15 95%-ный ресурс:

Вариант Номинальное конденсатора напряжение, В		Интервал температур, °С	Наработка, ч
K50-33	От 6,3 до 160	От минус 40 до 85	5 000
	От 0,3 до 100	От минус 40 до 70	10 000
	От 63 до 160	От минус 60 до 100	1 000
K50-33A	От 6,3 до 25	От минус об до 100	2 000
NO0-35A	От 6,3 до 160	От минус 60 до 85	5 000
	От 6,3 до 160	От минус 60 до 70	10 000
	От 6,3 до 160	От минус 60 до 100	1 000
К50-33Б	От 6,3 до 160	От минус 60 до 85	4 000
	От 6,3 до 160	От минус 60 до 70	10 000

Изменение электрических параметров в течение: минимальной наработки +100емкости, %, не более . . . --50 5-кратных значений, тангенса угла потерь не более указанных в разделе «Основные технические данные» 3-кратных значений, указанных в разделе «Основные технические тока утечки и полного сопротивления не более данные» срока сохраняемости емкости, %, не более . . ±30 тока утечки и тангенса угла потерь не более 3-кратных значений, указанных в разделе «Основные технические данные»

K50-33

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 0027-84.

Способ монтажа конденсатора не должен препятствовать возможному срабатыванию клапана, обеспечивающего взрывоустойчивость.

При монтаже конденсаторов в аппаратуру рекомендуется применять припой ПОС-61 по ГОСТ 21930—76.

Температура припоя 260±5°С. Применяемый флюс состоит из 25% по массе канифоли по ГОСТ 19113—73 и 75% по массе изопропилового (ГОСТ 9805—76) или этилового (ГОСТ 18300—72) спирта. Время пайки не более 4 с. Минимальное расстояние от основания вывода не менее 3 мм для конденсаторов K50-33A и 5 мм для конденсаторов K50-33Б.

При монтаже конденсаторов изгиб выводов конденсаторов **K50-33A и K50-33B** следует производить на разстоянии не менее 2,5 мм от основания вывода конденсатора.

В процессе эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде влажного пятна или сухого остатка. Следы электролита не ухудшают электрические параметры и не снижают надежности конденсаторов.

Значение низшей резонансной частоты:

2820 Гц — для конденсаторов Қ50-33;

2060 Гц — для конденсаторов К50-33А;

2173 Гц — для конденсаторов К50-33Б.

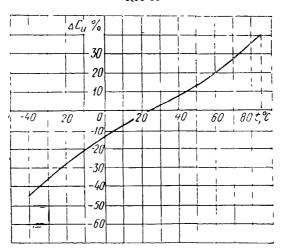
Значение растягивающей силы:

40 Н (4 кгс) — для конденсатогов К50-33;

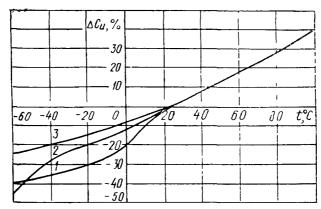
20 H (2 Krc) — » K50-33A;

10 H (1 krc) — > K50-33B.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 2000 Гц.


Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 месяцев.

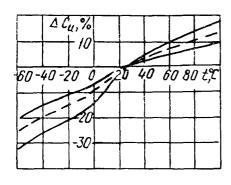
Способ крепления конденсаторов — за корпус.

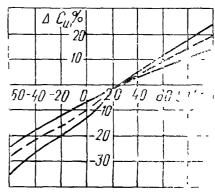

типовые характеристики

Зависимость изменения емкости от температуры

K50-33

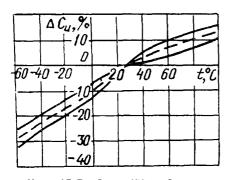
K50-33A

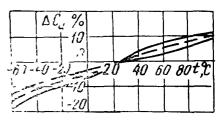

 $1 - U_{\text{HOM}} = 6.3$; 16; 25 B


 $2 - U_{\text{HOM}} = 100$; 160 B

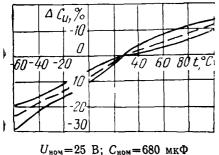
 $3 - U_{\text{HOM}} = 63 \text{ B}$

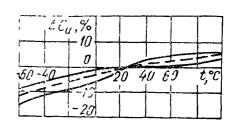
K50-33


К50-33Б

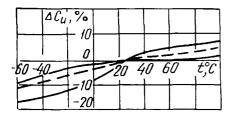


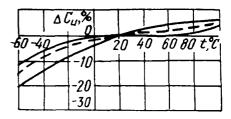
 $U_{\text{ном}} = 6.3 \text{ B}; C_{\text{ном}} = 1000 \text{ мк}\Phi$





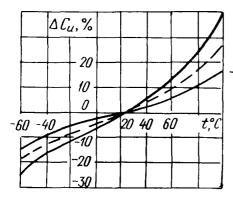
 $U_{\text{ном}} = 16 \text{ B}; C_{\text{ном}} = 1000 \text{ мк}\Phi$



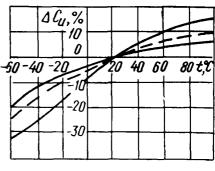

 $U_{\text{ном}} = 63 \text{ B}; C_{\text{ном}} = 330 \text{ мк}\Phi$

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

К50-33Б

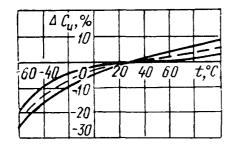


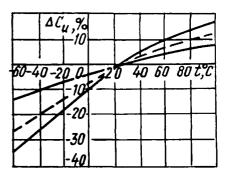
 $U_{\text{ном}} = 63 \text{ B}; C_{\text{ном}} = 680 \text{ мк}\Phi$



 $U_{\text{ном}} = 100 \text{ B}$; $C_{\text{ном}} = 220 \text{ мк}\Phi$

К50-33Б

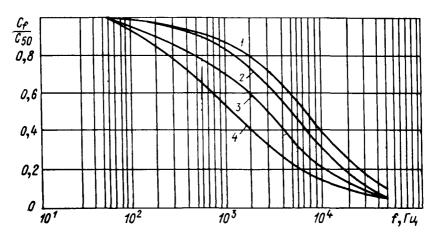

 $U_{\text{ном}} = 63 \text{ B}; C_{\text{ном}} = 2200 \text{ мк}\Phi$



 $U_{\text{ном}} = 160 \text{ B}; C_{\text{ном}} = 47 \text{ мк}$ Ф

K50-33

К50-33Б



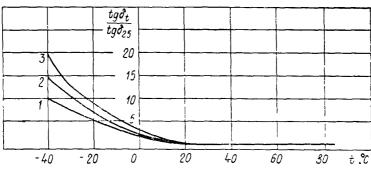
 $U_{\text{ном}} = 100 \text{ B}; C_{\text{ном}} = 68 \text{ мк}\Phi$

 $U_{\text{ном}} = 160 \text{ B}; C_{\text{ном}} = 100 \text{ мк}\Phi$

Зависимость изменения емкости от частоты

K50-33

$$I - U_{\text{нон}} = 100; 160 \text{ B}$$

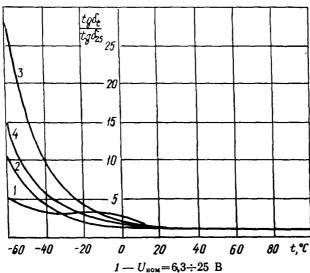

$$2 - U_{Hod} = 25$$
; 63 B

$$3 - U_{\text{HOM}} = 16 \text{ B}$$

$$4 - U_{\text{HOM}} = 6.3 \text{ B}$$

Зависимость изменения тангенса угла потерь от температуры

K50-33



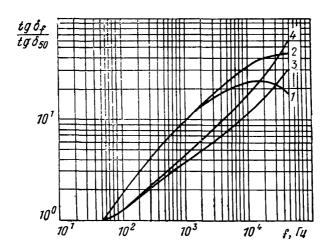
$$1 - U_{\text{Hom}} = 160 \text{ B}$$

$$2 - U_{\text{HoM}} = 6.3 \div 25$$
; 100 B

$$3 - U_{\text{HOM}} = 63 \text{ P}$$

K50-33A

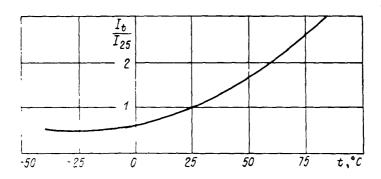
$$I - U_{\text{HOM}} = 0.3 \div 25 \text{ f}$$

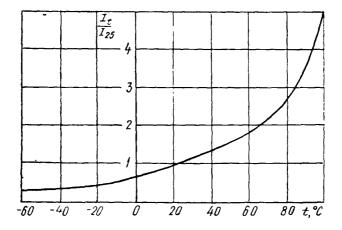

$$2 - U_{\text{HOM}} = 63 \text{ B}$$

$$3 - U_{\text{HOM}} = 100 \text{ B}$$

$$4 - U_{\text{HOM}} = 150 \text{ B}$$

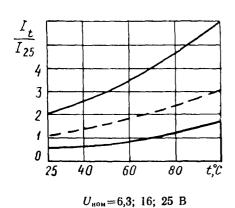
Зависимость изменения тангенса угла потерь от частоты

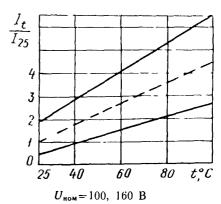

K50-33

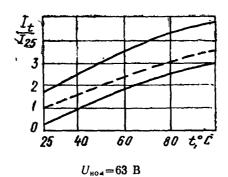

Номер кривой	$C_{ ext{вом}}\! imes\!U_{ ext{вом}}$, мк $\Phi\! imes\! ext{В}$		Номер кривой	$C_{\text{HOM}} \times U_{\text{HO}}$	_м , мкФХВ
1	3 300×6,3; 2 200×16; 4 700×16; 3 300×25;	4 700×6,5; 3 300×16. 2 200×25; 4 700×25	3	1000×100; 2200×100;	1500×100; 1000×160
2	1 000×63; 2 200×63; 4 700×63; 10 000×6,3; 22 000×6,3; 10 000×16; 6 800×25;	1 500×63; 3 300×63; 6 800×63; 15 000×6,3; 6 800×16; 15 000×15; 10 000×25	4	680×100; 680×160;	470×100; 470×160

Зависимость изменения тока утечки от температуры

K50-33




K50-33A

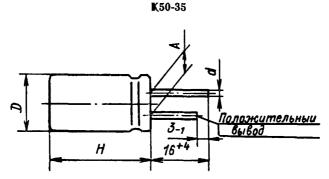


K50-33

К50-33Б

К50-35 К50-35А К50-35Б

Конденсаторы Қ50-35, Қ50-35А, Қ50-35Б оксидно-электролитические алюминиевые уплотненные полярные постоявной емкости предназначены для работы в качестве встроенных элементов внутри комплектных изделий в цепях постояного и пульсирующего токов.


Конденсаторы изготавливают трех типов: Қ50-35, Қ50-35А, Қ50-35Б.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В) (при температуре среды от минус 40°C).

Конденсаторы в исполнении УХЛ изготавливают: изолированные и неизолированные.

Конденсаторы в исполнении В изготавливают неизолированные.

Изолированные конденсаторы в корпусах диаметром 6,3—12 мм изготавливают в исполнении, предназначенном для неавтоматизированной и автоматизированной сборки аппаратуры. Остальные конденсаторы изготавливают в исполнении, предназначенном для неавтоматизированной сборки аппаратуры.

Примечание Допускается изготавливать конденсаторы с длиной отрицательного вывода 25 $^{+5}$ мм, при этом длина положительного вывода должна быть меньше длины отрицательного вывода на 6 мм.

1						Размер	ы, мм					V
1	Номиналь- ная ем-	ное на-		D		4	A	1		d	Macca,	Удельная материало-
	кость, мкФ	пряжение, В	Но- мин.	Пред. откл.		Пред. сткл.		Пред. откл.		Пред. откл.	г, не более	емкость, г/Кл·ч, не более
1	1	160			12						0,8	1,0
	2,2	100 160	6,3	±0,45	12 14	±0,55	2,5	±0,5	0,6	±0,06	0,8 1,0	0,73 0,56

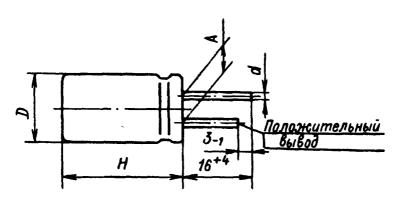
K50-35 K50-35А K50-35Б

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжен

											одолжен
Номиналь.	Номиналь-				Размер						Удельная
ная ем- кость.	ное на- пряжение.		D	H			<u> </u>		<u> </u>	Масса, г, не	матернало емкость.
мкФ	В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.		Пред. откл.	более	г/Кл·ч, не более
3,3	100	6.3		12						0,8	0,48
4,7	100	0,0		12	±,0.55				ł	0,8	0,34
4 ,1	160	_8_	±0,45	14		2,5		0,6		1,4	0,37
	63 100	6,3 8,0		12 14	±0 45		 			0,8 1,4	0, 25 0,28
10	160	10		19		5		0,8		3,3	0,41
	315	14	+1,0 -0,5	24	+1,0 -0,5	5		0,8		7,0	0,44
	25	6,3		12		2,5		0,6		0,8	0,29
	40	6,3	±0,45	14	±0,55	2,5		0,6		1,0	0,23
	63	8,0		12		2,5		0,6		1,2	0,17
22	100	10		16		5,0		0,8		3,0	0,27
	160	14		19		5,0		0,8		5,5	0,31
	250	14	+1,0 -0,5	24	+1,0 -C.5	5,0		0,8		7,0	0,25
	315	16	<u></u>	30		7,5	±0,5	0,8	≄0,06	12,0	0,35
33	16	6,3		12		2,5		0,6		0,8	0,30
	6,3	6,3		12		2,5		0,6		0,8	0,54
	16	6,3	±0,4 5	12	±0,55		İ	0,6		0,8	0,21
	25	8,0	1	12		2,5		0,6		1,2	0,20
	40	8,0		14	ļ	2,5	<u> </u>	0,6		1,4	0,14
47	63	10		14		5,0	<u> </u>	0,8		2,8	0,19
	100	12	±0,55	19		5,0		0,8		4,5	0,19
	160	16		25	.,,	7,5		0,8		10,0	0,26
	250	18	+1,0 -0,5	30	+1,0 -0,5	7,5		0,8		15,0	0,26
	315	18		40		7,5		0,8	ł	20,0	0,27
100	6, 3	6,3	±0,45	14	±0,55	2,5		0,6		1,0	0,32
- 00	16	8,0	3,10	14	1-0,50	2,5		0,6	1	1,4	0,17

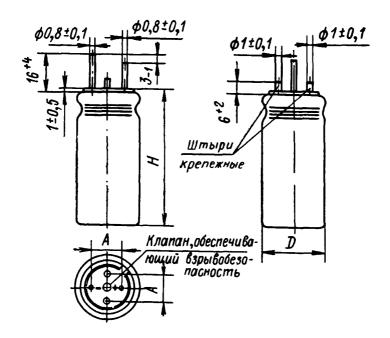
K50-35 K50-35А K50-35Б


Продолжение

										<u>-</u> -	ОДОЛЖЕНИ
				Pa	азмеры,	мм					Удельная
Номиналь- ная ем-	Номиналь- ное на-	D		E			<u> </u>		<u>d</u>	Масса, г, не	материало- емкость,
кость, мкФ	пряжение, В	Но- мин.	Пред. откл.	Но- мин,	Пред. откл.	Но- мин	Пред. отк л .	Но- мин.	Пред. откл.	более	г/Кл·ч, не более
	25	10		14	ارم	5,0				2,8	0,22
	40 ₺	10	$\pm 0,45$	16	±0,55	5,0			1	3,0	0,15
100	63	10		19		5,0				3,3	0,10
	100	14	+1,0	24	+1,0	5,0				7,0	0,14
	160	18	-0,5	35	-0,5	7,5				17,0	0,20
		21	+1.0	42		7,5				30,0	0,24
	6,3	10	0,5	14		5,0				2,8	0,40
	16	10	$\pm 0,45$	16_	$\pm 0,55$	5,0				3,0	0,17
220	25	12	±0,55	16		5,0				4,0	0,14
	40	12		19		5,0				4,5	0,10
	63	14	+1,0	19	+1,0	5,0		Ì .		5,5	0,08
	100	18	-0,5	30	-0,5	7,5	1]	15,0	0,14
	6,3	12	 ± 0,55	16	 =0,55	5				4,0	0,27
	16	12		19	<u> </u>	5	±0,5	0,8	±0,06	4,5	0,12
470	25	14	ļ	19	Ì	5	1 20,0	0,6	- 0,00	5,5	0,093
	40	14	1	24		5		ł		7,0	0,074
	63	16		30	}	7,5				12,0	0,08
	6,3	14		19		5				5,5	0,17
	16	14	}	24	Ì	5			l	7,0	0,087
1000	25	16	+1,0	30						12,0	0,096
	40	18	-0,5	30	+1,0 -0,5		-		ł	15,0	0,075
	63	18		40			1			20,0	0,063
)	6,3	16		25						10,0	0,14
2200	16	16		30		7,5				12,0	0,068
	25	18		40	_[1		}	20,0	0,072
4700	6,3			30						15,0	0,10
4700	16	18		45						23,0	0,062

K50-35 K50-35А K50-35Б

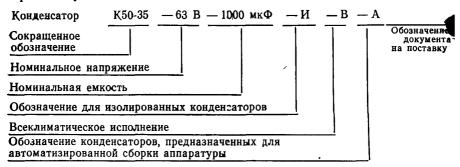
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


K50-35A

Ī					Pa	змеры,	мм					
1	Номиналь- ная ем-	Номиналь- ное на-	D		<i>E</i>	<u></u>	A			d	Macca,	Удельная материало-
	кость, мкФ	пряжение, В	Но- мнн.	Пред. от кл.	Но- мин.	Пред отка.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	г, не более	емкость, г/Кл·ч, не более
	100 220	16	8,0 10	±0,45	12	±0,55	2,5 5 ,0	±0,5	0,6 0,8	±0,1	1,2 2,4	0,15 0,136

K50-35 K50-35А K50-35Б

К50-35Б



1					Размер	ы, мм			V	
	Номиналь- ная ем-	Номиналь- ное на-		D		H		A	Удельная материало-	riacca, i,
	кость, мкФ	пряжение, В	Но- мин.	Пред. откл.	но- нин.	Пред. откл.	Но- мин.	Пред откл.	емкость, г/Кл·ч, не более	не более
	220	250	25		56		12,5		0,164	45
	100 220 330	350	25 32 32	+1	56 6? 8?	+1 -3	12,5 20 20	±0,5	0,257 0,234 0,225	45 90 130

K50-35 K50-35А K50-35Б

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Пример записи полного условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕИСТВУЮЩИЕ ФАКТОРЫ

		Способ в	срепления	
	за ко	рпус	за выводь стоянии 1, корпу	5 мм от
Воздействующие факторы	K50-35 K50-35A	K50-35B	К50-35 с высотой корпуса до 19 мм, К50-35А	К50-35Б о высотой корпуса до 67 мм вкл.
Синусоидальная вибрация: диапазон частот, Гц	1—500 100 (10)	1—80 50 (5)	1—80 50 (5)	1—35 5 (0,5)
пиковое ударное ускорение, м·с-2 (g)	1500 (150)	_	_	_
многократного действия пиковое ударное ускорение, м·с-2 (g)	400 (40)	150 (15)	150 (15)	150 (15)

Атмосферное пониженное давление, кПа (мм рт. ст.)	53,3 (400)
Атмосферное повышенное давление, кПа (кгс · см-2)	294 (3)
Повышенная температура среды:	
рабочая. °С	85

Февраль 1987

КОНДЕНСАТОРЫ
оксидно-электролитические
АЛЮМИНИЕВЫЕ

К50-35 К50-35А К50-35Б

Пониженная температура среды, 'С:	
рабочая	минус 40
предельная	минус 60
Смена температур, °C:	
от рабочей повышенной температуры среды	85
до предельной пониженной температуры среды.	минус 60
Повышенная относительная влажность, %:	
для исполнения В при $t=35^{\circ}$ С	98
 УХЛ при t=25°C	98
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы (для исполнения В).	
основные технические данн	PIE
	+50
Допускаемое отклонение емкости, %	 20
Тангенс угла потерь, %, не болеє:	
для конденсаторов на $U_{\text{ном}} = 6.3 \div 16 \ \mathbf{B} \cdot \cdot \cdot \cdot$	39
\star \star \star \star \star \star \star \star \star \star	20
$ > U_{\text{HoM}} = 100 \text{ B} \dots \dots $	15
\star \star \star \star \star \star \star \star \star \star	10
Сопротивление изоляции изолирующей трубки кон-	
денсатора, МОм, не менее	100
Ток утечки, мкА, не более:	0.00 0 11 10
для конденсаторов на $U_{\text{HOM}} = 6.3 \div 100 \text{ B}$	0,02 C _{HOM} U _{HOM} +3
> > U _{HOM} = 100 ÷ 315 B	$U_{1}U_{1}U_{1}U_{1}U_{1}U_{1}U_{1}U_{1}$
• • $U_{\text{HOM}} = 350 \text{ B} \dots \dots$	$0,006 C_{\text{nom}} U_{\text{nom}}$
* a — коэффициент, равный: $20 - \text{при } C$ U O O мкКл; O — * C O O O O O O O O O O	
HOM HOM 1000 MKKAI,	
HOM HOM TOOL MAKAI.	
НАДЕЖНОСТЬ	
Наработка при рабочей температуре среды от ми-	
нус 40 до 85°С, ч	1000
Интенсивность отказов, 1/ч, не более	5·10 ⁻⁸
95%-ный срок сохраняемости, лет, не менее	10
Изменение электрических параметров:	,
в течение наработки	•
уменьшение емкости, %, не более	минус 50 (в сторону увели- чения не ограничивается)
тангенса угла потерь и тока утечки не более.	-
	M

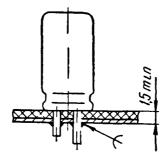
К50-35 К50-35А К50-35Б

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

в течение срока сохраняемости уменьшение емкости, %, не более минус 30 (в сторону увеличения не ограничнвается) тангенса угла потерь и тока утечки не более . З-кратных значений, указаных в разделе «Основны технические данные»

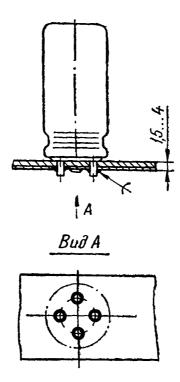
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 074.011—79, с доплинениями, приведенными ниже.


Допускается использовать конденсаторы в исполнении УХЛ в а гаратуре общеклиматического исполнения при условии их дополнительной защиты от воздействия влаги и плесневых грибов.

Эффективность защиты должна псдтверждаться проведением соответствующих испытаний аппаратуры или ее блоков на соответствие предъявленным к ним требованиям.

Конденсаторы пригодны для монтажа в аппаратуре методом групповой пайки или паяльником и должны выдерживать трехкратное воздействие групповой пайки и лужение выводов горячим способом без применения теплоотвода при температуре не выше 265°С не более 4 с. Расстояние от корпуса до места пайки не менее 1,5 мм. При пайке паяльником рекомендуется применение теплоотвода, например, в виде плоскогубцев с шириной губок 1,5 мм, на которых закреплены медные накладки.


Между последовательными приложениями паяльника к различным выводам одного и того же конденсатора следует соблюдать интервал 5—10 с.

Крепление конденсаторов K50-35 с высотой корпуса до 19 мм и K50-35A — за выводы:

K50-35 K50-35A K50-35B

Крепление конденсаторов К50-35Б с высотой корпуса до 67 мм включительно:

При монтаже конденсаторов с целью защиты мест крепления выводов изгиб выводов следует производить на расстоянии не менее 1,5 мм от корпуса.

Ключом для ориентации и контрсля правильности установки конденсаторов при выполнении монтажно-сборочных работ служат монтажные выводы и знак «+» на боковой поверхности конденсатора.

У конденсаторов, предназначенных для автоматизированной сборки, отклонение от перпендикулярности оси вывода относительно основания корпуса в пределах ±0,3 мм обеспечивается при упаковке конденсаторов в однорядную липкую ленту.

К50-35 К50-35А К50-35Б

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Значения низших резонансных частот при способе крепления конденсаторов:

							за	выв	оды	32	корпус	_
K50-35, K50 35A								140	Гц	1250	Гц 1	
К50-35Б	•			٠				64	Гц	1356	Гц	- 2
							(с выс	сотой	корпу-			
							са до	67 M	м вкл.)			

Покрытия выводов, кроме торцов, не должны иметь просветов основного металла, коррозионных поражений, пузырей, отслаивания и шелушения.

Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздействия следующих механических факторов:

растягивающей силы, направленной вдоль оси вывода, 10 Н (1 кгс); 3-кратное воздействие изгибающей силы.

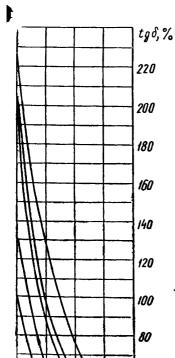
Выводы конденсаторов всех типов и штыри крепежные конденсаторов К50-35Б должны обладать паяемостью без дополнительного облуживания в течение 12 месяцев с даты изготовления.

Конденсаторы должны быть теплостойкими при пайке.

Конденсаторы К50-35, К50-35A не должны иметь резонансных частот в диапазоне с верхней частотой 100 Γ ц.

Конденсаторы К50-35Б не должны иметь резонансных частот при креплении: за корпус — в диапазоне с верхней частотой 100 Γ ц,

за выводы — в диапазоне с верхней частотой 40 Гц


Конденсаторы должны быть уплотненными. Конденсаторы должны обладать коррозионной стойкостью и должны быть трудногорючими.

Лист 8

K50-35 K50-35А K50-35Б

типовые характеристики

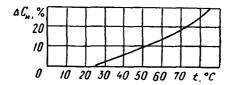
Зависимость тангенса угла потерь от температуры

60

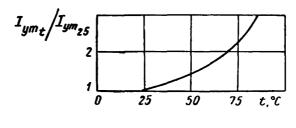
10

20

70

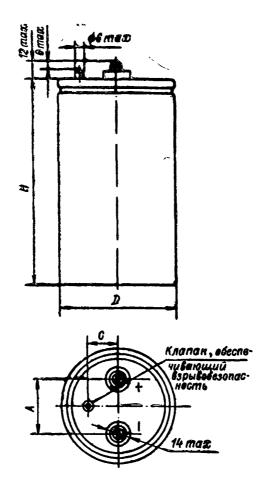

Номер кривой	$U_{\text{HOM}} \times C_{\text{HOM}}$, BXMK Φ
1	6,3×4700
2	16×470
· 3	6,3×47
4	25×220
5	100×47
6	160×1

-40 -30 -20 -10


K50-35 K50-35А K50-35Б

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

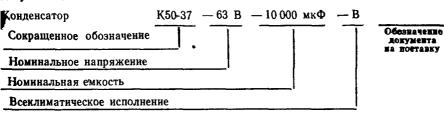
Зависимость изменения емкости от температуры



Зависимость тока утечки от температуры

Конденсаторы K50-37 оксидные алюминиевые фольговые уплотненные полярные с жидким электролитом постоянной емкости предназначены для работ в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают в двух климатических исполнениях: всеклиматическое исполнение (В) и исполнение для умеренного и холодного климата (УХЛ).


КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

				Разм	еры, ма	(
Номинальное напряжение.	Номиналь- ная ем-		D	Н		A			Macca.
В	кость, мкФ	Номия.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.	С	г, не боле
3,2	470 000	65		142					850
6,3	100 000 220 000	50 65		32 102		25		12	300 615
16	22 000 68 000 100 000	40 50 50		57 92 122		18 25 25		10 12 12	140 340 450
25	15 000 33 000 100 000	40 50 65		67 82 132		18 25 25		10 12 12	160 300 790
40	10 000 15 000 22 000 33 000 47 000	40 40 50 50 65	+0,8		_4	18 18 25 25 25	±0,1	10 10 12 12 12	150 230 270 380 520
63	4700 10 000 15 000 22 000	40 50		52 87 72 97		18 18 25 25		10 10 12 12	130 240 270 360
100	2200 4700 10 000 15 000	40 50		57 97 122 122		18 18 25 25		10 10 12 12	140 260 450 735
250	1000		- 1	92 142	-	18 25	ł	10 12	250 850

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИННЕВЫЕ

K50-37

Пример записи условного обозначения при заказе и в конструкторской документации:

внешние возделствующие факторы

Синусондальная вибрация:	
диапазон частот, Гц	1—80
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	49,1 (5)
Акустический шум:	
диапазон частот, Гц	5010 000
уровень звукового давления, дБ, не более	140
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·c-2 (g), не бо-	
лее	735 (75)
длительность действия ударного ускорения, мс	2—6
многократного действия	
пиковое ударное ускорение, м·с-2 (g), не более	147 (15)
длительность действия ударного ускорения, мс	2—15
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700—133,32
	(800—1)
Атмосферное повышенное давление, Па (кгс см-2)	до 297 198 (до 3)
Повышенная температура среды, °С	70
Пониженная температура среды °С	минус 25
Смена температур, °C:	
от повышенной температуры среды	70
до пониженной » »	минус 25
Повышенная относительная влажность, %:	
для исполнения В при t до 35° С	до 98
УХЛ при t до 25°C	до 98
Атмосферные конденсированные осадки (роса, иней)	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальное напряжение, В	Тангенс угла потерь, %, не более
3,2	120
6,3	80
16	60
25	40
40	35
63	25
100, 250	15

Ток утечки:

Номинальное напряжение, В	Ток утечки, мкА, не более
3,2—100	0,002 CU _{ном}
250	0,005 <i>CU</i> _{ном} при <i>CU</i> _{ном} >10 ⁶ мкКл
	0,01 <i>CU</i> _{ном} при <i>CU</i> _{ном} ≤10 ⁶ мкКл

надежность

Минимальная наработка, ч	10 000
Срок сохраняемости, лет	15
95%-ный ресурс, ч	20 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	минус 50
тангенса угла потерь	

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

K50-37

Номинальное напряжение, В	Тангенс угла потерь, %, не более
3,2	360
6,3	240
16	180
25	120
40	105
63	75
100, 250	45

тока утечки

Номинальное напряжение, В	Ток утечки, мкА, не более
3,2—100	0,006 <i>CU</i> _{ном}
250	0,015 <i>CU</i> _{ном} при <i>CU</i> _{ном} >10 ⁶ мкКл
	0,03 <i>CU</i> _{ном} при <i>CU</i> _{ном} ≪ 10 ⁶ мкКл

Номинальное напряжение, В	Ток утечки, мкА, не более
От 3,2 до 100	0,006 CU _{HOM}
250	0,015 <i>CU</i> _{ном} при <i>CU</i> _{ном} >10 ⁶ мкКл
	0,03 <i>CU</i> _{ном} при <i>CU</i> _{ном} ≤106 мкКл

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

тангенса угла потерь

Номинальное напряжение, В	Тангенс угла потерь, %, не более	
3,2	360	
6,3	240	
16	180	
25	120	
40	105	
63	75	
100, 250	45	

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ГОСТ В 21738—76 с дополнениями, изложенными в настоящем разделе.

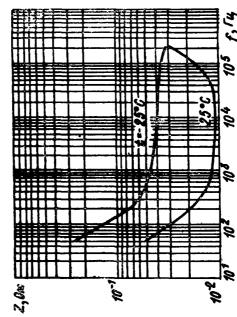
При применении, монтаже и эксплуатации конденсаторов следует пользоваться указаниями, приведенными в руководстве по применению конденсаторов ОСТ 11 074.011—79.

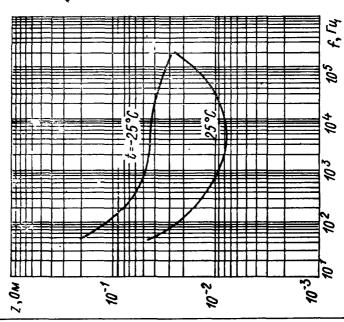
В процессе эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде сухого остатка или влажного пятна, которые не ухудшают электрические параметры и не снижают эксплуатационную надежность конденсаторов.

При монтаже в аппаратуру рекомендуется устанавливать конденсаторы в вертикальном положении клапаном вверх. Способ монтажа не должен препятствовать возможному срабатыванию клапана, обеспечивающего варывобезопасность.

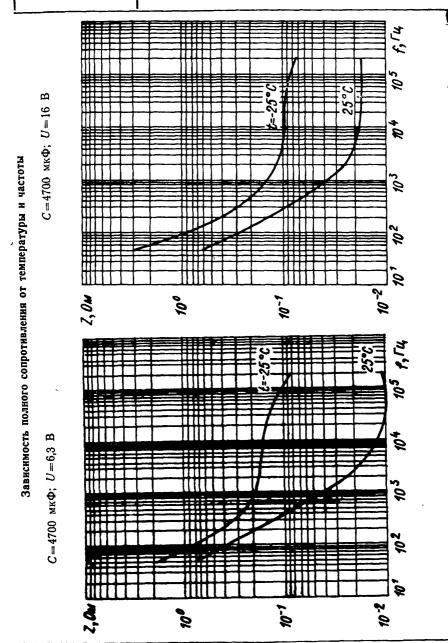
После монтажа в аппаратуру конденсаторов всеклиматического исполнения следует покрыть лаком, пригодным для эксплуатации во всеклиматических условиях, все незакрашенные металлические поверхности конденсаторов.

Способ крепления конденсаторов — за корпус.

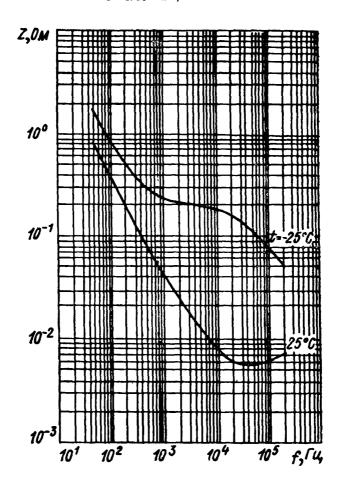

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ


K50-37

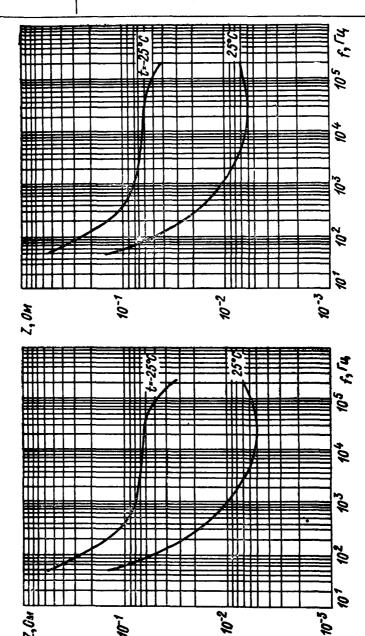
ТИПОВЫЕ ХАРАКТЕРИСТИКИ


 $C = 100\ 000\ \text{MK}$ Φ ; $U = 6,3\ \text{B}$ Зависимость полного сопротивления от температуры и частоты

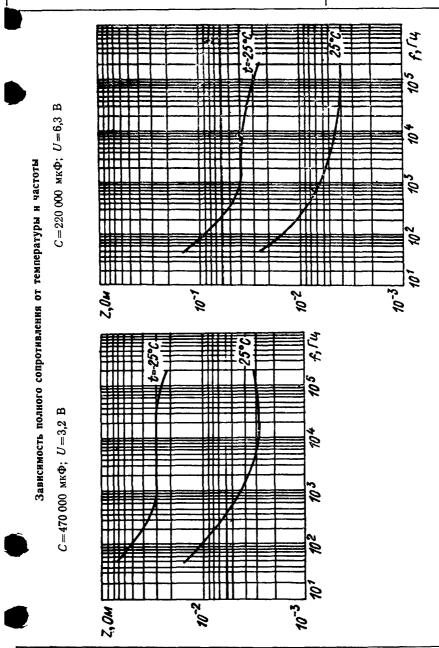
Ω $C = 100\ 000\ \text{MK}\Phi;\ U = 16,\ 25$

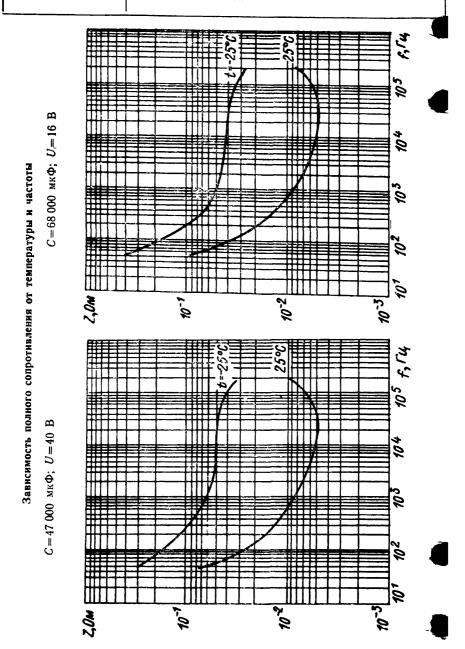


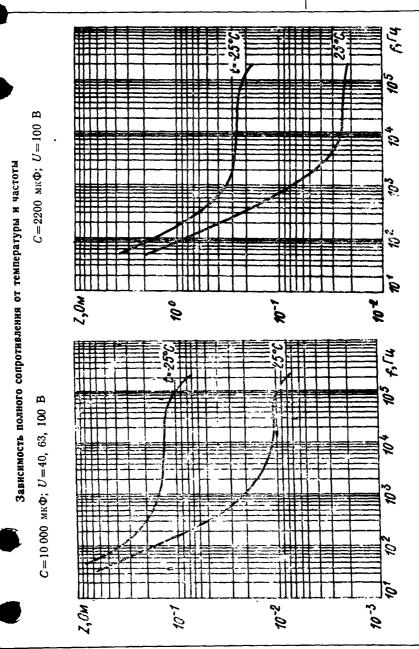
КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ



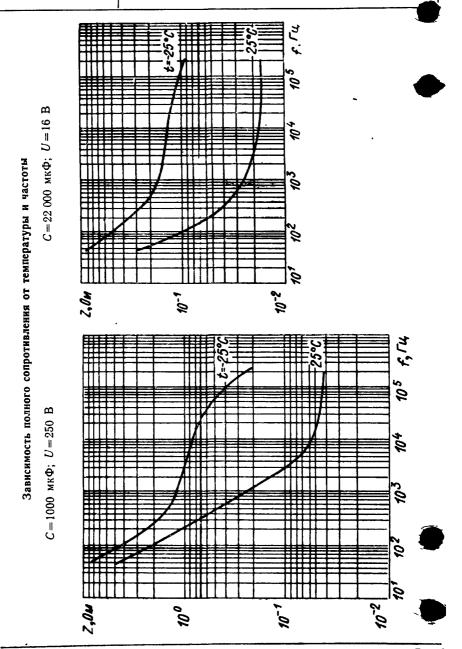
Зависимость полного сопротивления от температуры и частоты $C\!=\!4700\,$ мк $\Phi;\;U\!=\!25\,$ В

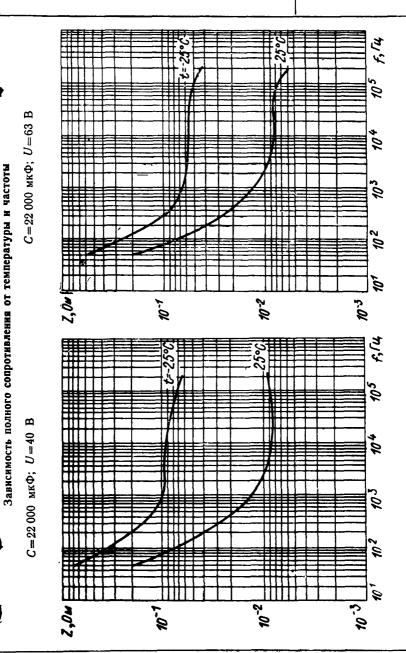

Ø

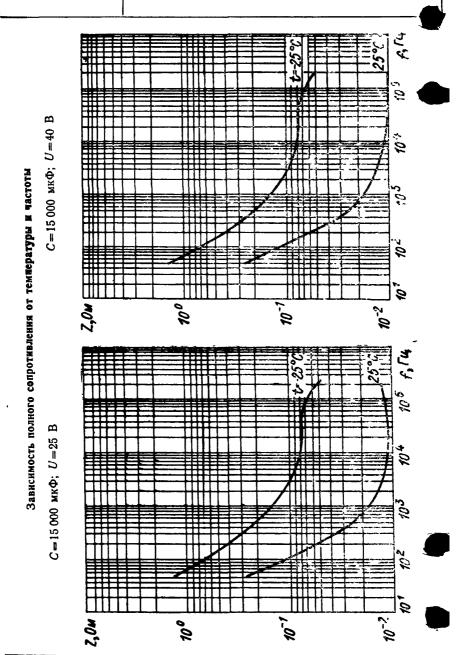


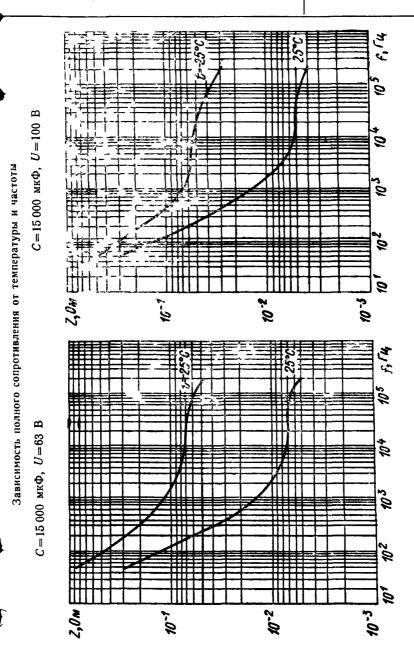

КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

K50-37

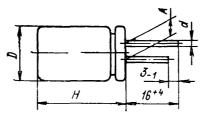



КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ




КОНДЕНСАТОРЫ ПОСТОЯННОЙ ЕМКОСТИ ОКСИДНЫЕ АЛЮМИНИЕВЫЕ

конденсаторы постоянной емкости оксидные алюминиевые


K50-38

Конденсаторы К50-38 оксидно-электролитические алюминиевые фольговые уплотненные полярные с жидким электролитом постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных ежимах.

Кондепсаторы изголавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Конденсаторы в исполнении УХЛ изготавливают в двух конструктивных испольениях: уплотненные и изолирозанные уплотненные.

Конденсаторы в исполнении В испотавливают уплотненные.

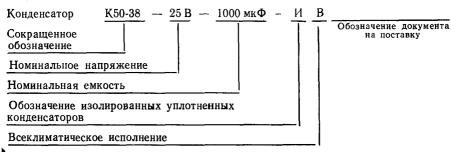
Примечание. Допускается изготавливать конденсаторы с длиной отрицательного вывода 25^{-5} мм, при этом длина положительного вывода должна быть меньше длины отрицательного вывода на 5_{-2} мм.

Ĩ	Номи-	Номи-				Размер:	ы, мм				M
	нальное напря-	нальная емкость,	1	0		Н		4		d	Масса, г, не
	жение, В	мкФ	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин	Пред. откл.	Но- мин.	Пред. от кл.	более
		47	6		13,5		2,5		0,6		1,2
	•	100	6		15,5		2,5		0,6	!	1,4
		220	10		14		5				2,8
	6,3	470	12		16		5				3,5
	0,0	1 000	14	+1,0	19	+1,0	5		0,8		5,5
١		2 200	16	-0.5	25	 0,5	7,5	±0,5	0,0	士0,1	10
N		4 700	18		3:)		7,5				15
7		10 000	21		47		7,5				33
		47	6		13,5		2,5	ļ.	0,6		1,2
	16	100	7,5	1	15,5		2,5		0,6		1,8
	· · · · · · · · · · · · · · · · · · ·		l]		<u> </u>	

Лист 1

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение


	Тродо									
Номи-	Номи-				Размерт	ы, мм				Macca,
нальное напря-	нальная емкость, мкФ	Ho-	D Пред.	Ho-	Прод	IIo-	<u>Л</u> Пред.	Ho-	d Пред	г, не более
жение, В	MKT	MИН.	откл.	ИИН.	Пред. 01 кл.	MIH.	огкл.	иин.	откл	
	220	10		16	1	5				3
· -	470	12		19		5				4,5
	1000	14		24		5		0,8		7
16	2200	16		30		7,5		0,6		12
	4700	18		45		7,5				23
	10 000	21		57		7,5				40
	22	6		13,5		2,5		0,6		1,2
	47	7,5		13,5		2,5		0,6		1,5
	100	10		14	,	5				2,6
25	220	12		16		5		,		3,5
	470	14		19		5		0,8		5,5
	1 000	16	Ì	30		7,5				12
	2 200	18		40		7,5				20
	22	6	+1,0 -0,5	15,5	+1,0 0,5	2,5	±0,5	0,6	±0,1	1,4
	47	7,5		15,5		2,5		0,6		1,8
	100	10		16		5	ļ	0,8		3
40	220	12		19		5		0,8		4,5
	470	14		24		5,0		0,8		7
	1000	18		30		7,5		0,8		15
	2200	21		42		7,5		0,8		30
	10	6		13,5	1	2,5		0,6		1,2
	22	7,5		13,5		2,5		0,6		1,5
	47	10		14		5				2,8
63	100	12		19		5				3,3
1 30	220	14		24	1	5				5,5
	470	16		35		7,5		0,8		12
	1000	18		40	1	7,5				20
	2200	21		57		7,5				40 1

K50-38

Продолжение

Номи-	Номи-				Размер	ы, мм				
нальное напря-	нальная емкость,		D		Н		4		d	Масса, г. не
жение, В	мкФ	Но- мин.	Пред. откл.	Fo- м и.	Пред. откл.	Но- мин.	Пред. откл.	110- ынн.	Пред. откл.	более
1	4,7	6		13,5		2,5		0,6		1,2
	10	7,5		15,5		2,5		0,6		1,8
100	22	10	1	i 6		5		0,8		3
100	47	12]	19		5		0,8		4,5
	100	14		24		5		0,8		7
	220	18		30	. 10	7,5		0,8		15
	1	6	+1,0 -0,5	13,5	+1,0 $-0,5$	2,5	±0,5	0,6	±0,1	1,2
Ì	2,2	6		15,5		2,5		0,6		1,4
1	4,7	7,5	ļ	15,5		2,5		0,6		1,8
160	10	10		:9		5,0		0,8		3,3
	22	14		<u>:</u> 9		5,0		0,8		5,5
	47	16		25	1	7,5		0,8		10
	100	18		35		7,5		0,8		17

Пример записи условного обозначения при заказе и в конструкт рской документации:

внешние воздействующие факторы

	Способ в	крепления 🧸
Воздействующие факторы	за корпус	за выводы
Синусоидальная вибрация: диапазон частот, Гц	1—3000	1—80
амплитуда ускорения, м·с-2 (g), не более	196 (20)	49,1 (5)
Акустический шум: диапазон частот, Гц	50—10 000	
уровень звукового давления, дБ, не более	150	
Механический удар: одиночного действия		
пиковое ударное ускорение, м·с-2 (g), не бо- лее	9810 (1000)	4905 (500)
длительность действия ударного ускорения, мс	0,2—1	1—2
многократного действия		
пиковое ударное ускорение, м·с-2 (g), не бо- лее	1471 (150)	392 (40)
длительность действия ударного ускорения, мс	1-3	2-10
Линейное ускорение, м·с-2 (g), не более	1962 (200)	981 (100)

Атмосферное пониженное	давление, Па (мм рт. ст.)	133,32—106 700 (1—800)
Атмосферное повышенное	давление, Па (кгс·см-²)	до 297 198 (до 3)
Повышенная температура	среды, °С	85
Пониженная температура	среды, °С	минус 40
Смена температур, °C:	-	·
от повышенной температ	уры среды	85
до пониженной »	•	минус 40
Повышенная относительная	н влажность, %:	
для исполнения В при t	до 35°C	до 98
» » УХЛ при	<i>t</i> до 25℃	до 98
Атмосферные конденсирова		
Соляной (морской) туман ((для исполнения В).	
Плесневые грибы (для испо	•	

K50-38

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

для конденсаторов на $U_{co.}$ <100 В

Номинальная емкость, миФ	Номинальное напряжение, В	Тангенс угла потерь, ⁰ 0, не более при температуре минус 40°C
10—1000	6,3; 10; 12,5	35
	16	27
1,5—1000	25	25
1,5—1000	40; 50; 63	20
	100	15

Починальная емкость, мкФ	Номинальное напряжение, В	Тангенс угла потерь, %
22; 47; 100; 220; 470; 1000	6,3—25	20

Примечание. Для конденсаторов емкостью более 1000 мк Φ тангеис угла потерь увеличивается на 1% на каждые 1000 мк Φ .

Ток утечки, мкА, не более 0,005 $CU_{\text{ном}}$ +5

надежность

Минимальная наработка и 95%-ный ресурс при t до 85°C.

<u> </u>	Диаметр корпуса конденсатора, мм	Минимальная наработка, ч	95%-ный ресурс, ч
	6 и 7,5	2000	3000
	10—21	30 00	5000

Февраль 1987 Лист 3

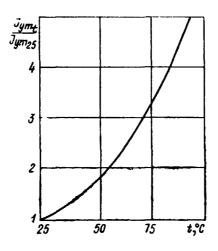
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

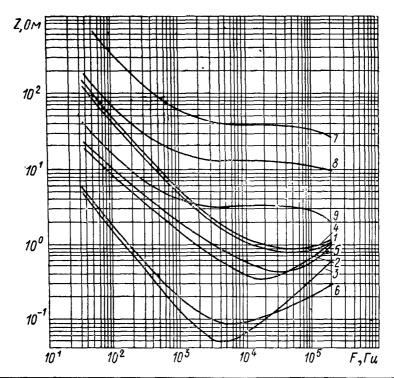
Срок сохраняемости, лет	15
емкости, %	минус 50 (в сторону увеличения- не ограничивается)
тангенса угла потерь не более	5-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	3-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	
емкости, %, не более	± 30
тангенса угла потерь и тока утечки не более	3-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ГОСТ В 21738—76 с дополнениями, изложенными в настоящем разделе.

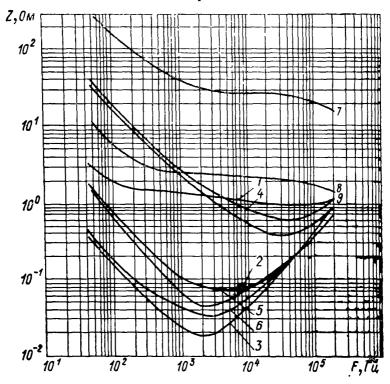
Руководство по применению ОСТ 11 074.011—79. Длительность тренировки 2 ч.

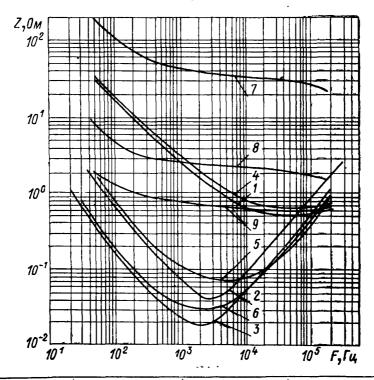

В процессе эксплуатации на поверх юсти конденсаторов в местах уплотнения возможно появление следов электролита в виде сухого остатка или влажного пятна, которые не ухудшают электрические параметры и не снижают эксплуатационную надежность конденсаторов.


Конденсаторы выдерживают возникающее в результате воздействия электромагнитного импульса импульсное напряжение 1,2 $U_{\rm ном}$ при длительности импульса до $5\cdot 10^{-2}$ с. Форма импульса прямоугольная. Кратность воздействия 15.

K50-38

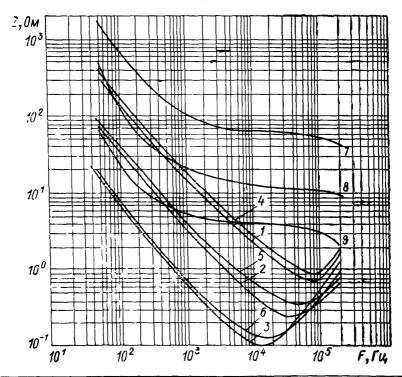
ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость тока утечки от температуры

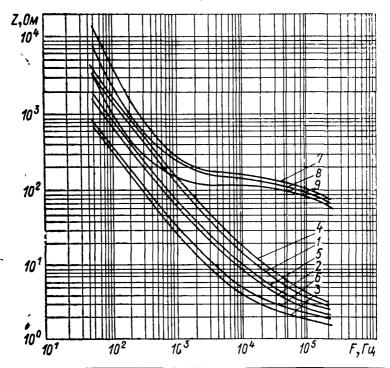


Номер кривой	<i>U</i> , B	С, мкФ	t, °C
1 2 3		47 220 1000	85
4 5 6	6,3	47 220 1000	25
7 8 9		47 220 1000	минус 40°С

K50-38



Номер кривой	<i>U</i> , B	С, мкФ	• <i>t</i> , °C
1		100	
2		2 200	85
3		10 000	
4		100	
5	6,3	2 200	25
6		10 000	
7		100	
8		2 200	минус 40
9		10 000	


Номер кривой	<i>U</i> , B	С, мкФ	t, °C
1		100	
2		2 200	85
3		10 000	
4		100	
5	16	2 200	25
6		10 000	
7		100	
8		2 200	минус 40
9		10 000	

K50-38

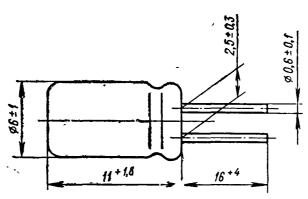
Номер кривой	<i>U</i> , В	С, мкФ	<i>t</i> , *C
1	63	10	
2	25, 40, 63	47	85
3	25, 40, 63	220	
4	63	10	
5	25, 40, 63	47	25
6	25, 40, 63	220	
7	63	10	
8	25, 40 , 63	47	минус 40
9	25, 40 , 63	220	

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Номер кривой	<i>U</i> , B	С, мкФ	t, °C
1		1	0.5
2 3		2,2 4,7	85
4		1	
5	160	2,2	25
6		4,7	
7		1 1	
8		2,2	минус 40
9		4,7	

Конденсаторы Қ50-40 оксидно-электролитические алюминиевые уплотненные полярные и неполярные постоянной емкости предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры (в кожухе компного изделия) в цепях постоянного и пульсирующего токов.

Конденсаторы изготавливают в корпусах незащищенных изолирующей трубкой и защищенных изолирующей трубкой.

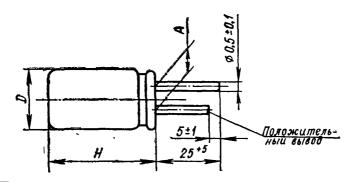

Конденсаторы изготавливают двух видов: полярные и неполярные.

Конденсаторы изготавливают в деух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Конденсаторы в исполнении УХЛ 4зготавливают изолированные и неизолированные, конденсаторы в исполнении В — неизолированные.

Изолированные конденсаторы изготавливают в исполнении, предназначенном для ручной и автоматизированной сборки аппаратуры, неизолированные — в исполнении, предназначенном для ручной сборки аппаратуры.

Неполярные конденсаторы



	Номинальная емкость, мкФ	Номинальное напряжение, В	Удельная материалоемкость, г/Кл·ч	Масса, г. не более
Ų	2,2	50	7,7	
ı	10	16	5,3	0,85
-	22	16	2,4	0,00
	47	6,3	2,9	

Февраль 1987 Лист 1

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Полярные конденсаторы

Номи-	Номи-		Размеры, мм				Удельная		
нальная емкость,	нальное напря-		D		н		A	материа лоемкость	Масса, г, не более
мкФ	жение, В	Но- мин	Пред откл	Но- мин	Пред откл	Но мин	Пред 01 КЛ	г/Клч, не более	
22		4		?		1,25		2,53	0,35
33		ົ ວີ		?		1,25		2,17	0,45
47	6,3	5		7		1,25		1,52	0,55
100		6		7		2,5		0,87	0,55
220		7,5		12		2,5		0,87	1,2
10		4				1,25		2,19	0,35
22	10	5				1,25		1,28	0,45
33	16	6				2,5		1,04	0,55
47		6	$\begin{array}{c c} +1,0 \\ -0,5 \end{array}$		+1,0 $-0,5$	2,5	±0,5	0,73	0,55
4,7		4	0,5			1,25		2,98	0,35
10	0.5	5		7		1,25		1,8	0,45
22	25	6		'		2,5		1,0	0,55
33	ļ	6				2,5		0,67	0,55
2,2		4						3,98	0,35
3,3		4				1.05		2,63	0,35
4,7	40	4				1,25		1,86	0,35
10		5						1,13	0,45

K50-40

Продолжение

Номи-	Номи-			Разме	ры, мм			Удельная	
нальная емкость,	нальное напря-		D		Н		4	материа- лоемкость,	Масса, г, не более
мкФ	жение, В	Но- мин.	Пред. огкл.	HC-	Пред. откл.	Но- мин.	Пред. откл.	г/Кл·ч, не более	
0,1	•							55,55	
0,22								25,25	
0,33			'					16,84	
0,47		4	410	7	±10	1.05		11,82	0,35
1,0	63		+1,0 0,5	•	+1,0 -0,5	.1,25	±0,5	5,56	
2,2						İ		2,53	
3,3						}		1,68	ļ
4,7		5						1,52	0,45

П р и м е р записи полного условного обозначения при заказе и в конструкторской документации:

внешние воздсиствующие факторы

L	іннусоидальная вибрация:	
	диапазон частот, Гц	18
	амплитуда ускорения, м·с $^{-2}$ (g)	50 (5

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Механический удар многократного действия: $$	150 (15)	
Атмосферное пониженное давление, кПа (мм рт.	150 (15)	
ст.)	0,67 (5) 8 5	(
рабочая	минус 45 минус 60	
Смена температур, °С: от повышенной рабочей температуры среды до пониженной предельной температуры среды	85 минус 60	
Повышенная относительная влажность, %: для исполнения В при t 35°C	98 98	
Атмосферные конденсированные осадки (роса, иней). Плееневые грибы (для исполнения В).		_
основные технические данные		
Допускаемое отклонение емкости, % Тангенс угла потерь:	+50 -20	

Вид конденсатора	Номинальное напряжение, В	Тангенс угла потерь, %, не более
	6,3	30
	13	20
Полярные	25; 40	15
	63	12
	6,3	24
Неполярные	13	16
- I	50	12

Ток утечки, мкА, не более:	
для неполярных конденсаторов	$0,03~C_{_{ m HOM}}U_{ m HOM}$
полярных конденсаторов	$0,01 C_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$
	$0,01 C_{\text{HOM}} U_{\text{HOM}} < 3$
Сопротивление изоляции изолирующей трубки кон-	
денсатора, МОм, не менее	100

K50-40

надежность

Наработка:

Вид конденсаторов	Рабочая тємпература, °С	Наработка, ч
	От минус 45 до +85	500
TT	От минус 45 до +70	1 000
Неполярные	От минус 45 до +55	5 000
	От минус 45 до +35	10 000
	От минус 45 до +85	1 000
	От минус 45 до +70	2 000
Полярные	От минус 45 до +50	5 000
	От минус 45 до +40	7 500
	От минус 45 до +35	10 000

Вид конденсатора	Емкости, %, не более	Тангенс угла потерь не более	Тока утечки не более		
	В течели	е наработки			
Неполярные	30	2-кратных значений указанных в разделе «Основные техниче- ские данные»	3-кратных зна- чений, указанных		
Полярные	чения не ограничи-	3 кратных значений, указанных в разделе «Основные техниче- ские данные»	данные»		
В течение 95%-ного срока сохраняемости					
Неполярные	±20	2-кратных значений, указанных в разделе	чении, указанных		
Полярные	±30	«Основные техниче- ские данные»			

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При хранении, монтаже и эксплуатации конденсаторов необходимо руководствоваться указаниями, изложенными в ОСТ 11 074.011—79, а также указаниями, изложенными в настоящем разделе.

При монтаже конденсаторов в аппаратуру (с помощью пайки) примсняют припой ПОС-61 или ПОССу-61-0,5 в соответствии с ГОСТ 21930—76. Температура припоя $260\pm5^{\circ}$ С. Время пайки не более 4 с.

Допускается использовать конденсэторы в исполнении, пригодном для эксплуатации только в районах с умеренным и холодным климатом, в аппаратуре, эксплуатируемой во всех климатических районах суши и моря, при применении средств защиты этих конденсаторов от воздействия повышенной влажности и поражения плесневыми грибами.

Для защиты могут быть использованы следующие средства:

герметизация блоков или всей аппаратуры;

заливка конденсаторов в блоках аппаратуры влагозащитными компаундами.

Применяемые влагозащигные компаунды должны соответствовать требованиям, изложенным в утвержденной технической документации по применению конденсаторов.

В процессе эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде влажного пятна или сухого остатка.

После монтажа кондепсаторов все «лиматического исполнения в аппаратуру выводы кондепсаторов следует покрыгь лаком, пригодным для эксплуатации во всеклиматических условиях.

При использовании полярных конденсаторов в цепях и схемах, критичных к увеличению токов утечки за пределы порм, необходимо производить тренировку конденсаторов, вмонтированных в аппаратуру, максимальным рабочим напряжением, при котором эксплуатируется конденсатор в аппаратуре, в течение 30 мин не реже 1 раза в 6 месяцев.

Допускается производить тренировку конденсаторов непосредственно в аппаратуре максимальным рабочим папряжением, при котором они будут эксплуатироваться.

Длительность тренировки в этом случае определяется временем, необходимым для снижения токов утечки до значений, обеспечивающих нормальносту аппаратуры.

Крепление конденсаторов в аппаратуре производится на выводы на расстоянии 1,5 мм от корпуса.

Неполярные конденсаторы применяются в цепях, где полярность неизвестна или допускается изредка смена полярности.

Февраль 1987 Лист 3

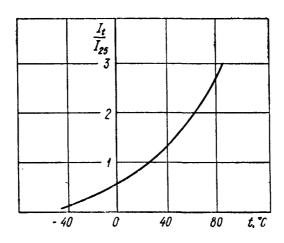
K50-40

Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздействия следующих факторов:

растягивающей силы, направленной вдоль оси вывода, 10 Н (1 кгс) для неполярных конденсаторов и 5,0 Н (0,5 кгс) для полярных конденсаторов; 3-кратное воздействие изгибающей силы.

Выводы конденсаторов должны обладать паяемостью бсз дополнительного облуживания в течение 12 месяцев с даты изготовления.

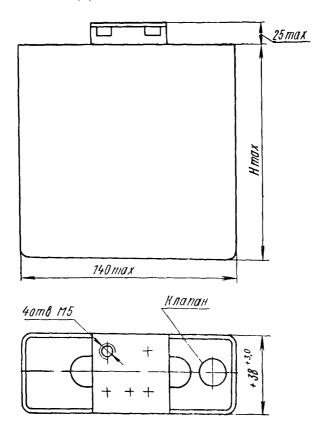
Конденсаторы должны быть теплостойкими при пайке при условии соблюдешия режимов и правил выполнения пайки. Мишимальное расстояние от корпуса конденсатора до места пайки должно быть 1,5 мм.


Кондепсаторы не должны иметь резонапсных частот в диапазоне с верхней частотой 100 Ги.

Конденсаторы должны быть углотненными, обладать коррозионной стой-костью, быть трудногорючими.

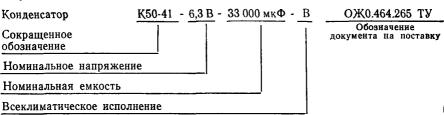
Изделия пригодны для монтажа в аппаратуре методом групповой найки.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость тока утечки от температуры

K50-41

Конденсаторы Қ50-41 оксидно-электролитические алюминиевые уплотненные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.


Конденсаторы изготавливают одного типа в двух климатических исполнениях: в исполнении для умеренного ν холодного климата (УХЛ) и во всеклиматическом исполнении (В).

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Номинальная емкость, мкФ	Номинальное напряжение, В	H _{max} , mm	Масса, г, не более
3 300		85	600
68 000	6,3		700
150 000		120	1000
22 000		O.F.	600
47 000	16	85	700
100 000		120	1000
15 000		05	600
33 000	25	85	700
68 000		120	1000
10 000		85	600
22 000	40		700
47 000		120	1000
6 800		95	600
10 000	63	85	700
22 000		120	1000

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1-200
амплитуда ускорения, м·с $^{-2}$ (g)	50 (5)

K50-41

Акустический шум:	
диапазон частот, Гц	50—10 000
2·10—5 Па), дБ	150
Механический удар многократного действия:	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g)	150 (15)
длительность действия ударного ускорения, мс	2-20
Атмосферное пониженное давление, Па (мм рт. ст.):	
рабочее	133 (1)
предельное	12 000 (90)
Атмосферное повышенное давление:	
рабочее, Па (кгс·см-²)	294 000 (3)
Повышенная температура среды, °C:	
рабочая	85
предельная	70
Пониженная температура среды, °C:	
рабочая	минус 40
предельная	минус 60
Смена температур, °C:	
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность, %:	
для исполнения В при температуре 35°C	98
» » УХЛ » » 25°C	98
Соляной (морской) туман (для исполнения В).	
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы (для исполнения В).	

Номинальная емкость, мкФ	Номинальное напряжение, В	Таягенс угла потерь, %, ше более	Ток утечки, мкА, не более	Полное сопротивление, Ом, не более
33 000			1,5	0,010
68 000	6,3	45	3,0	0,008
150 000			7,5	0,001

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемое отклонение емкости, %

Тангенс угла потерь, ток утечки, полное сопротивление

+50

%, не более:

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

Номинальная емкость, мкФ	Номинальное напряжение, В	Тангенс угла потерь, %, не более	Ток утечки, мкА, не более	Полное сопротивление, Ом, не более
22 000			3,0	0,010
47 000	16	35	6,0	0,008
100 000			7,5	0,006
15 000			3,0	0,010
33 000	25	25	4,5	0,008
68 000			7,5	0,007
10 000	1		4,5	0,010
22 000	40		6,0	0,008
47 000		20	7,5	0,007
6 800		20		0,010
10 000	63		4,5	0,008
22 000				0,005

	для	конденсат	горов на	$U_{\scriptscriptstyle{HOM}}$	не бол	ee 25 B		300
	>	>	*	$U_{\mathtt{HOM}}$	более	25 B		250
	Полн	ое сопроти	вление г	іри те	мперат	ype 60°C	, не бо-	
лее		. <i>.</i>				• • •	· • • •	3-кратных значений, указанных в вышеприве- денной таблице

Тангенс угла потерь при температуре минус 40°C,

надежность

Минимальная наработка, ч, при температуре	
от минус 40 до +85°C	500
от минус 40 до +70°C	5 000
от минус 40 до +60°C	10 000
Срок сохраняемости, лет	15
95%-ный ресурс, ч, при температуре:	
от минус 40 до +85°C	1 000
от минус 40 до +75°C	10 000
от минус 40 до +60°C , , , ,	20 000

K50-41

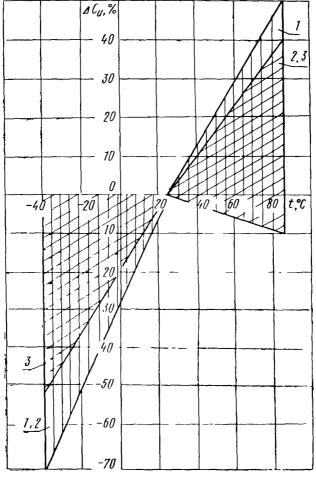
Изменение электрических параметров в течение: минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь не более	3-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	
для конденсаторов $6.3~{ m B}{ imes}15000~{ m mk}$ Ф,	
25 B \times 68 000 мκΦ, 40 B \times 47 000 мκΦ,	
16 B×100 000 мкФ, мА	20
для остальных конденсаторов	3-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не более	5-кратных значений, указанных в разделе «Основные технические данные»
срока сохраняемости	
емкости, %, не более	±30
тангенса угла потерь не более	3-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	A
для конденсаторов $6,3 \text{ B} \times 150000 \text{ мк}$ Ф,	
$16 \text{ B} \times 1\ 000\ 000$ мκΦ, $25 \text{ B} \times 68\ 000$ мκΦ,	
40 B×47 000 мкФ, мА	20
для остальных конденсатсров	3-кратных значений, указанных в разделе «Основные технические
полного сопротивления не более	данные» 4-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 0027-84.

Резьбовые детали конденсаторов при эксплуатации в условиях воздействия повышенной влажности, соляного тумана должны быть защищены лаком, например, УР-231.

Расконсервацию деталей, покрытых смазкой, производят бензином или спирто-бензиновой смесью в соотношении 1:1 по объему.

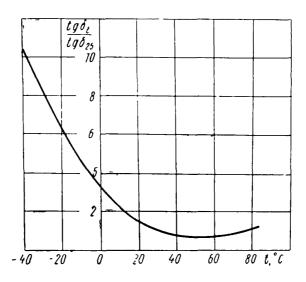

Способ монтажа конденсатора не должен препятствовать возможному срабатыванию клапана, обеспечивающего взрывоустойчивость,

Значение низшей резонансной частоты 320 Гц.

Крутящий момент должен быть 2 Н м (0,2 кгс м).

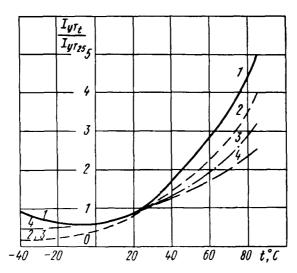
типовые характеристики

Зависимость изменения еикости от температуры


 $1 - U_{\text{HOM}} = 6,3; 16 \text{ B}$

 $2 - U_{\text{HOM}} = 25 \text{ B},$

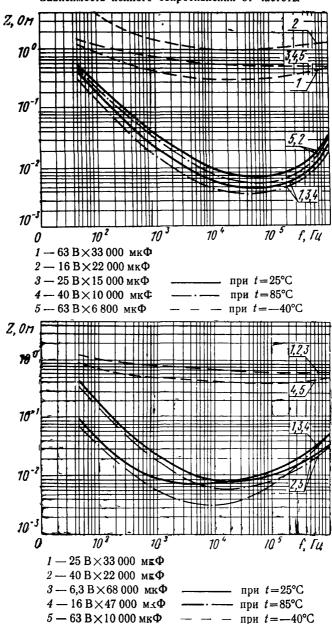
 $3 - U_{\text{HOM}} = 40$; 63 B

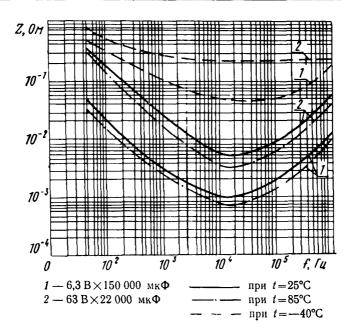

K50-41

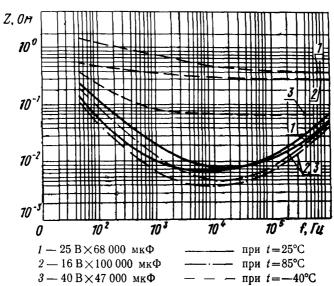
Зависимость изменения тангенса угла потерь от температуры

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

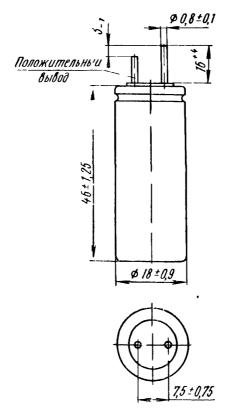
Зависимость изменения тока утечки от температуры




1-6,3 В \times 33 000 мкФ 6,3 В \times 68 000 мкФ 16 В \times 22 000 мкФ 25 В \times 15 000 мкФ 25 В \times 33 000 мкФ 2-6,3 В \times 150 000 мкФ 16 В \times 100 000 мкФ 25 В \times 68 000 мкФ


 $40 \text{ B} \times 47 000 \text{ MK} \Phi$

3-16 B \times 47 000 мкФ 40 B \times 22 000 мкФ 4 — 40 B \times 10 000 мкФ 63 B \times 6 800 мкФ 63 B \times 10 000 мкФ 63 B \times 22 000 мкФ



K50-43

Конденсаторы Қ50-43 оксидно-электролитические алюминиевые уплотненные полярные постоянной емкости предназначены для работы в качестве встроенных элементов внутри комплектных изделий (в малогабаритных автоматических электронных фотовспышках «Электроника Ф-29») в импульсных режимах.

Конденсаторы изготавливают изолированные и неизолированные в двух климатических исполнениях изолированные— в исполнении для умеренного и холодного климата (УХЛ) и неизолированные во всеклиматическом исполнении (В).

Масса не более 27 г

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

Конденсатор	K50-43	В	ОЖ0.464.253 ТУ
Сокращенное обозначение		Ī	Обозначение документа на поставку
Всеклиматическое исполнение			

ВНЕШНИЕ ВОЗДЕЙСТЬУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1—80
амплитуда ускорения, м·с $^{-2}$ (g)	50 (5)
Механический удар многократного действия:	• •
пиковое ударное ускорение, м·с-2 (д)	150 (15)
Атмосферное пониженное давление, кПа (мм рт. ст.):	, ,
рабочее	53,3 (400)
предельное	19,4 (145)
Повышенная температура среды, °С:	, , ,
рабочая	45
предельная	60
Пониженная температура среды, °С:	
рабочая	минус 25
предельная	минус 60
Смена температур, °C:	,
от предельной повышенной	60
до предельной пониженной	минус 60
Повышенная относительная влажность, %:	,
для исполнения В при температуре 35°С	98
для исполнения УХЛ при температуре 25°C	98
Атмосферные конденсированные осадки (роса, иней).	•
Плесневые грибы (для исполнения В).	
плесневые гриом (для исполнения в).	
основные технические данные	· •
Номинальная емкость, мкФ	180
	+30
Допускаемое отклонение емкости, %	-10
Номинальное напряжение, В	330
Тангенс угла потерь, %	10
Ток утечки, мкА	180
Сопротивление изоляции изолирующей грубки, МОм,	
менее	100

не

K50-43

Внутреннее сопротивление конденсатора, Ом, не бо-	
лее	0,15
Параметры импульсного режима:	
частота следования импульсов, Гц, не более	1/10
время непрерывной работы, с, не более	500
время отдыха, мин, не менее	10
величина разрядного сопротивления, Ом	$0,18 \pm 0,02$
НАД ЕЖ НОСТЬ	
Наработка, имп	5000
Интенсивность отказов, 1/имп, не более	3.10^{-7}
95%-ный срок сохраняемости, лет, не менее	10
Изменение электрических параметров в течение:	10
наработки	
емкости, %, не более	20
* ***	20
тангенса угла потерь, %, не более	720
тока утечки, мкА, не более	
внутреннего сопротивления, Ом, не более	0,45
95%-ного срока сохраняемости	10
емкости, %, не более	18
тангенса угла потерь, %, не более	18
тока утечки, мкА, не более	540
внутреннего сопротивления, Ом, не более	0,3

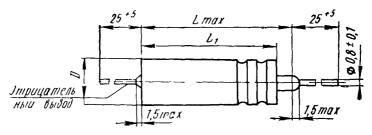
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ 11 0518-87.

Допускается использовать конденсаторы в исполнении УХЛ в аппаратуре общеклиматического исполнения при условии их дополнительной защиты от воздействия влаги и плесневых грибов.

При монтаже конденсаторов в аппаратуре следует применять припой марки ПОС 61 по ГОСТ 21930—76.

Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113-73) и 75% по массе изопропилового (ГОСТ 9805-76) или этилового (ГОСТ 18300-72) спирта. Время пайки не более 4 с. Расстояние от корпуса до места пайки 3 мм.


Конденсаторы допускают эксплуатацию при разряде их на разрядное сопротивление 0,16—5 Ом.

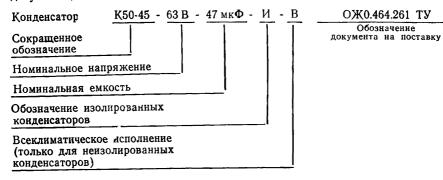
При хранении конденсаторов в течение 1,5 года ток утечки конденсаторов не превышает 270 мкА.

Конденсаторы K50-45 оксидно-электролитические алюминиевые уплотненные постоянной емкости предназначаны для работы в качестве встроенетту элементов внутри комплектных изделий в цепях постоянного, пульсирующего токов и в импульсных режимах при повышенной переменной составляющей напряжения звуковых частот.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

В исполнении УХЛ конденсаторь изготавливают изолированные и неизоли рованные, во всеклиматическом — неизолированные.

Примечание. Количество зигсв не регламентируется.


Ī		Номи-		Размеры, мм							
١	Номиналь- ная ем-	нальное напря-		1	1		,	Масса, г не более			
	кость, мкФ	жение, В	Номин	Пред. откл.	Номин	Пред откл.	L _{max}				
1	15		9		40		42	6,5			
1	22		12		34		36	6, 5			
1	33	40	12		40	}	42	8,0			
1	68		16		42		44	13,5			
	100		16		48		50	17,0			
	6,8		9	+1,0 0,5	40	+0,5 -2,0	42	6,5			
	10	<u> </u>	12	0,5	34	-2,0	36	6,5			
	15	}	12		40	;	42	8,0			
	33	63	16		42		44	16,0			
	47	1	16	ļ	58	<u> </u>	60	20,0			
	68		21	}	50	1	52	30,0			
	100		21		58		60	34,0			

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

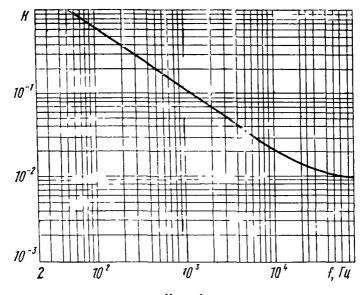
	Номи-							
Номиналь- ная ем-	нальное напря-		D	}	L ₁	١,	Масса, г, не более	
кость, мкФ	жение, В	Номин.	Пред. откл.	Номин.	Пред. откл.	L _{max}	ne ooviee	
2,2		9		34		36	5,5	
4,7		9		40		42	6,5	
10	100	12	+1,0	40	+0,5	42	8,0	
22	100	16	+1,0 0,5	48	+0,5 2,0	50	16,0	
47		21		50		52	28,0	
68		21		58		60	34,0	
00				30		30	51,0	

 $\Pi \, p \, u \, m \, e \, p$ записи условного обозначения при заказе и в конструкторской документации:

внешние воздействующие факторы

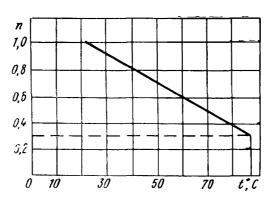
Синусоидальная вибрация:	
диапазон частот, Гц	1—80
амплитуда ускорения, м·с-2 (g)	50 (5)
Механический удар многократного действия:	
пиковое ударное ускорение, м·c-2 (g)	150 (5)
Атмосферное пониженное давление, кПа (мм рт. ст.):	
рабочее	53,3 (400)
предельное	294 (3)
Повышенная рабочая температура среды, °С	85
Пониженная температура среды, °C:	
рабочая	минус 45
предельная	минус 60

K50-45


ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ Допускаемое отклонение емкости, %	Смена температур, °C: от повышенной рабочей	85 минус 60 98 98
Тангенс утла потерь, %, не более	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ	
2,2 мкФ 2,0 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,8 для конденсаторов с номинальной емкостью 0,4 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения Uf, В, не	Тангенс угла потерь, %, не более	10
для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,8 для конденсаторов с номинальной емкостью 0,4 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U_f , B, не		20
4,7 мкФ 1,0 для конденсаторов с номинальной омкостью 0,8 для конденсаторов с номинальной емкостью 0,4 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U_f , B, не		2,0
для конденсаторов с номинальной емкостью 0,8 для конденсаторов с номинальной емкостью 0,4 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U_f , B, не		1.0
6,8 мкФ 0,8 для конденсаторов с номинальной емкостью 0,4 для конденсаторов с номинальной емкостью 1,0 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U, В, не	для конденсаторов с номинальной омкостью	1,0
для конденсаторов с номинальной емкостью 10 мкФ		0.8
10 мкФ	для конденсаторов с номинальной емкостью	
15 мкФ		0,4
для конденсаторов с номинальной емкостью 22 мкФ	для конденсаторов с номинальной емкостью	·
22 мкФ 0,3 для конденсаторов с номинальной емкостью 0,2 для конденсаторов с номинальной емкостью 0,15 Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее 0,15 Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U, В, не	15 мкФ	1,0
для конденсаторов с номинальной емкостью 33 мкФ	для конденсаторов с номингльной емкостью	
33 мкФ	22 мкФ	0,3
для конденсаторов с номинальной емкостью 47 мкФ		
47 мкФ	33 мкФ	0,2
для конденсаторов с номинальной емкостью 68 мкФ		
68 мкФ		0,15
для конденсаторов с номинальной емкостью 100 мкФ		
100 мкФ		0,15
Сопротивление изоляции изолирующей трубки конденсаторов, МОм, не менее		
денсаторов, МОм, не менее		0,15
Допускаемая амплитуда переменной синусондальной составляющей пульсирующего напряжения U_f , B, не	Сопротивление изоляции изолирующей трубки кон-	
составляющей пульсирующего напряжения $U_{m{f}},$ B, не	денсаторов, МОм, не менее	100
более		
	более	$0,3U_{\mathtt{HOM}}$

 $U_f = U_{f50}kn$,

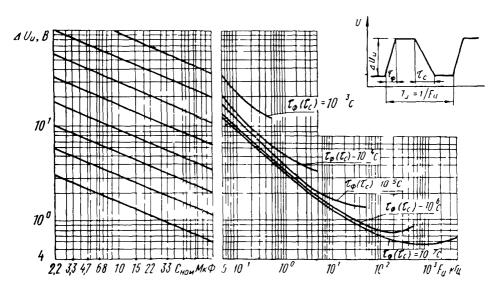
где U_{f50} — амплитуда переменной синусоидальной составляющей пульсирующего напряжения на частоте 50 Γ д, определяемая по таблице


Амплитуда переменной синусоидальной составляющей пульсирующего напряжения для конденсаторов с номинальной емкостью									
напряжение 2,2 4,7 6,8 10 15 22 33 47 68							68	100	
_		-	_	48	46,9	41	_	31,4	26,2
	-	100	85,5	72	-	56,5	39,5	39	38,3
142	116	_	87,5	–	51,5	_	51	50	_
	2,2	пульсирую 2,2 4,7 — — — —	пульсирующего на 2,2 4,7 6,8 —	пульсирующего напряжен 2,2 4,7 6,8 10 — — — — — — — — — — — — 100 85,5	пульсирующего напряженгя для емко 2,2 4,7 6,8 10 15 — — — 48 — 100 85,5 72	пульсирующего напряжентя для конденс емкостью 2,2 4,7 6,8 10 15 22 — — — 48 46,9 — 100 85,5 72 —	пульсирующего напряжентя для конденсаторов с емкостью 2,2 4,7 6,8 10 15 22 33 — — — — 48 46,9 41 — — 100 85,5 72 — 56,5	пульсирующего напряженгя для конденсаторов с номин. 2,2 4,7 6,8 10 15 22 33 47 — — — 48 46,9 41 — — 100 85,5 72 — 56,5 39,5	пульсирующего напряженгя для конденсаторов с номинальной емкостью 2,2 4,7 6,8 10 15 22 33 47 68 — — — — 48 46,9 41 — 31,4 — — 100 85,5 72 — 56,5 39,5 39

k — коэффициент снижения в зависимости от частоты, определяемый графически по черт. 1;

K50-45

n — коэффициент снижения в зависимости от температуры, определяемый графически по черт. 2.


Черт. 2

Допускаемый размах импульсного напряжения $\Delta U_{\rm m}$ (определяется по черт. 3) не более

 $U_{\mathtt{HOM}}$

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Зависимость допускаемого размаха импульсного напряжения $\Delta U_{\rm H}$ от частоты следования импульсов напряжения $F_{\rm H}$ и длительности наименьшего из временных интервалов, соответствующих фронту $\tau_{\rm \Phi}$ или спаду импульса $\tau_{\rm e}$ и номинальной емкости $C_{\rm HOM}$. при температуре $25\pm10^{\circ}{\rm C}$

Черт. 3

НАДЕЖНОСТЬ

при рабочей температуре от минус 45 до +50°C	10 000
при рабочей температуре от минус 45 до +85°C	2000
Интенсивность отказов, 1/ч, не более	5·10-8
95%-ный срок сохраняемости, лет, не менее	12
Изменение электрических параметров в течение:	
наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	30
тока утечки, мкА, не более	$0.09C_{\mathtt{hom}}U_{\mathtt{hom}}$
полного сопротивления, Ом, не более	9-кратных значений, указанных в разделе «Основные технические данные»

Наработка, ч:

K50-45

95%-ного срока сохраняемости	
емкости, %, не более	±30
тангенса угла потерь, %, не более	30
тока утечки, мкА, не более	$0.09C_{\mathtt{Hom}}U_{\mathtt{Hom}}$
полного сопротивления, Ом, не более	6-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 074.011—79 с дополнениями, изложенными ниже.

Допускается использовать конденсаторы в исполнении УХЛ в аппаратуре всеклиматического исполнения при условии их дополнительной защиты от воздействия влаги и плесневых грибов.

Допускается эксплуатация конденсаторов в течение 1000 ч при переменном синусоидальном напряжении с амплитудой, не превышающей значений, указанных в разделе «Основные технические данные» для переменной синусоидальной составляющей пульсирующего напряжения.

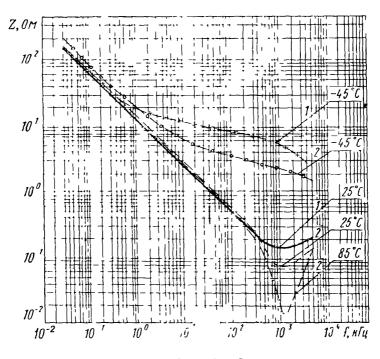
Конденсаторы должны выдерживать кратковременное перенапряжение в течение не более $10\,\mathrm{c}$, равное $1.15\,U_{\mathrm{Hob}}$.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС 61 по ГОСТ 21930—76. Температура припоя 260±5°С.

Применяемый флюс спирто-канифольный, состоящий из 25% по массе канифоли (ГОСТ 19113—84) и 75% по массе изопропилового (ГОСТ 9805—84) или этилового (ГОСТ 18300—72) спирта Время пайки не более 4 с.

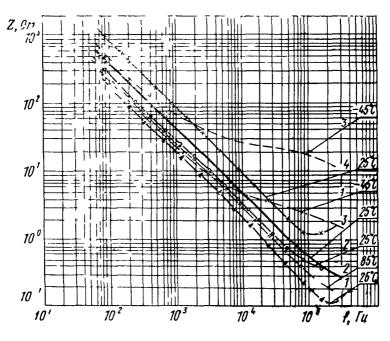
Расстояние от корпуса до места пайки не менее 5 мм.

При монтаже конденсаторов с целью защиты мест крепления выводов изгиб выводов следует производить на расстоянии не менее 2,5 мм от корпуса,


Значение низшей резонансной частоты 1500 Гц.

Способ крепления конденсаторов — за корпус.

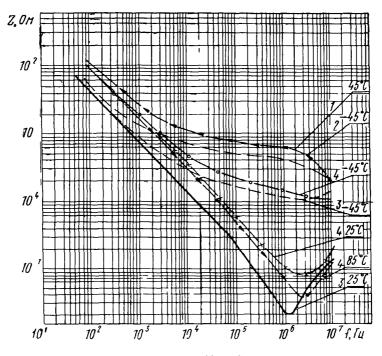
В процессе эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде влажного пятна или сухого остатка


ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость полного сопротивления от частоты и температуры

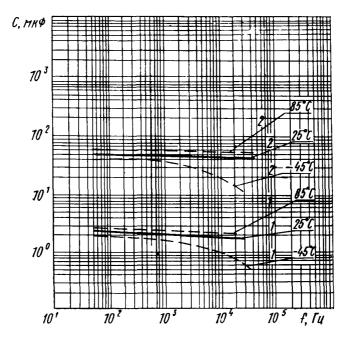
 $1 - 63 \text{ B} \times 15 \text{ мк} \Phi$ $2 - 40 \text{ B} \times 22 \text{ мк} \Phi$

K50-45

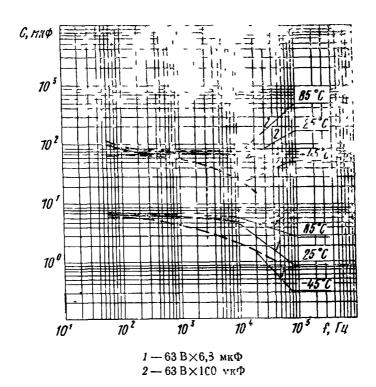

1 — 100 В×10 мкФ

2 — 63 В×68 мкФ

 $3 - 100 \, \text{B} \, \times \, 4.7 \, \text{мк} \Phi$


4 - 100 E + 22 MKΦ

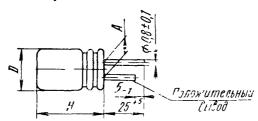
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


- 1 40 В×33 мкФ
- 2-40 B×68 мкФ
- 3 100 В×68 мкФ
- $4 63 \,\mathrm{B} \times 33 \,\mathrm{mk}\Phi$

Зависимость емкости конденсаторов от частоты и температуры

 $1 - 100 \,\mathrm{B} \times 2.2 \,\mathrm{mk}\Phi$ $2 - 100 \,\mathrm{B} \times 68 \,\mathrm{mk}\Phi$

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

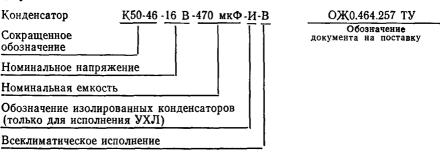

K50-46

Конденсаторы К50-46 оксидно-электролитические алюминиевые уплотненные изолированные и неизолированные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсых режимах.

Конденсаторы изготавливают во всеклиматическом исполнении (В) и в исполнении для умеренного и холодного климата (УХЛ).

Конденсаторы изолированные изготавливают в исполнении УХЛ.

Конденсаторы неизолированные кзгогавливают в исполнении В и УХЛ.


	1	Размеры, мм							
Номинальная емкость, мкФ	Номинальное напряжение,	D		H		A		Масса, г, не более	
	В	Но- мин.	Прєд. откл.	Но- мин.	Пред. эткл.	Но- мин.	Пред. откл.		
22	100			14				2,8	
47		10						3,3	
100	63		_	19	ŀ			3,3	
100 	100	14		l		5		5,5	
	25	10		16				3,0	
220	40		- - + ,0	19				3,3	
1	63	14			_			5,5	
	100	_16	0,5	25	±2,0	7,5	$\pm 0,5$	10	
	6,3	10	İ	14	_			2,8	
	16		_[5		3,3	
470	25	12	_	19		້		4,5	
470	40	14	_		_	\		5,5	
	63	16	_	25	_			10	
	100	18	<u> </u>	35	<u> </u>	7,5		17	

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

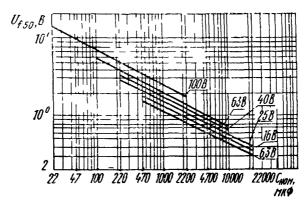
		Размеры, мм						
Номинальная емкость, мкФ	Номинальное напряжение,	D		Н		A		Масса, г не более
CMROCIB, MRT	В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	
	6,3	12	1	 19				4,5
	16	14	1			5		5,5
1000	25	14		24	}	<u> </u>		7,0
1000	40	16		25	l .			10
	63	18		_ 35		7,5		17
	100	21		_46			} }	33
	6,3	14		_24	l	5		7,0
	16	16		25				10
2200	25	18	1.10	_30	}	•	[15
	40	18	+1,0 -0,5	40	±2,0		±0,5	20
	63	21		46				33
	6,3	16	_[_30		ļ		12
4700	16	18	_	35		7,5		17
4700	25	21	}	_42		1,0	i	30
 	40		_	46		ļ		33
10 000	6,3	18	_	45			<u> </u>	23
10 000	16			42				30
15 000	- 6,3	21		46	.	1		33
22 000	<u> </u>	<u> </u>	<u> </u>	56	<u> </u>	<u> </u>		40

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

K50-46

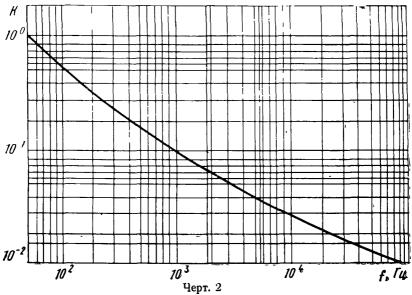
ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1-2000
амплитуда ускорения, м \cdot с $^{-2}$ (g)	200 (20)
Акустический шум:	
днапазон частот, Гц	50—10 000
уровень звукового давления (относительно	
2.10—5 Па), дБ	160
Механический удар:	
одиночного действия	
пиковое ударное ускорение, и с-2 (g)	15 000 (1500)
длительность действия, мс	0,1—2
многократного действия	1500 (150)
пиковое ударное ускорение, м·c-2 (g)	1500 (150)
длительность действия, мс	1—5
Линейное ускорение, м·с-2 (g)	1000 (100)
pasouee	133 (1)
предельное	12 000 (90)
Атмосферное повышенное давление	12 000 (50)
рабочее, Па (кгс/см²)	294 000 (3)
Повышенная температура среды, °С:	` '
* **	85
предельная	70
Пониженная температура среды, °C:	
рабочая	минус 40
предельная	минус 60
Смена температур, °С:	
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность, %:	
для исполнения В при температуре 35°C	98
» » УХЛ» » 25°C	98
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы (для исполнения В).	

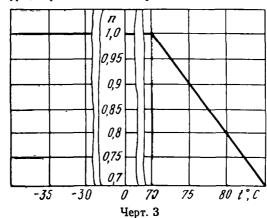

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальное напряжение, В	Номинальная емкость, мкФ	Тангенс угла потерь, %, не более	Номинальное напряжение, В	Поминальная емкость, мкФ	Тангенс угла потерь, %, не более
	470, 1000	35	25	от 220 до	25
	2200	36,2		1000	
	4700	38,7		2200	26,2
6,3				4700	28,7
	10 000	44	40	от 220 до 1000	20
	15 000	49			20
	22 000	56		2200	21,2
	470, 1000	27		4700	23,7
16	2200	28,2	63	от 100 до 1000	20
	4700	30,7		2200	21,2
	10 000	36	100	от 22 до 1000	15

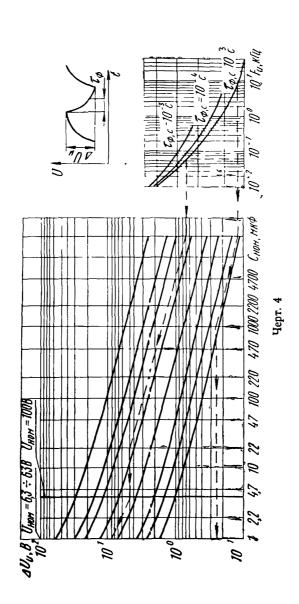

для к	онденсато	ровс ног	минальной	емкостью 22 мкФ	200
*	*	>	>	> 47 мкФ	100
»	*	*	>	» 100 мкФ	50
*	>	>	*	> 220 мкФ	25
>	*	*	*	> 470 мкФ	10
>	*	*	*	» 1000 мкФ	5
*	>	>	>	» 2200 мкФ	2,5
*	*	*	>	» 4700 мкФ	1,0
»	>	>	>	» 10 000 мкФ	0,5
*	>	>	>	» 15 000 мк Ф	0,35
*	>	>	>	» 22 000 мкФ	0,25

K50-46



Черт. 1

 К — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт. 2;



 п — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от температуры, определяемый по черг. 3.

Допускаемый размах импульсного напряжения ΔU_{B} (определяется по черт. 4) не более

 U_{HOM}

k

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛГКТРОЛИТИЧЕСКИЕ АЛЮМИНИІ ВЫЕ

Амплитудное значение импульсного тока на еди-	•
ницу емкости, А/мкФ, не более:	
для конденсаторов с номинальной смкостью	•
от 22 до 220 мкФ	0,01
для конденсаторов с номинальной енкостыс	
от 470 до 2200 мкФ	0,002
для конденсаторов с номинальной емкостью	•
от 4700 до 10000 мкФ	0.001
для конденсаторов с номинальной смкостьк)
от 15 000 до 22 000 мкФ	0,0005
114 #1537-10-071	
НАДЕЖНОСТЬ	
Минимальная наработка, ч:	
при температуре от минус 40 до +85°C	3000
» » минус 40 » +70°С	10 000
Минимальный срок сохраняемости, лет	20
95%-ный ресурс, ч:	20
при температуре от минус 40 до +85°С	500 0
» » минус 40 » +70°С	20 000
Изменение электрических параметрсв в течение.	20 000
минимальной наработки	
емкости, %, не более	-50 (в сторону увеличения
,	не ограничивается) 5-кратиых заачении, ука-
тангенса угла потерь, %, не более	занных в раздель «Основ-
тока утечки, мкА, не более	пы т уначеские дантые» -
Tona fromin, mary no conce i i i i i i i i i i i i i i i i i i i	занных в разделе «Основ- ные технические данные»
полного сопротивления, Ом, не более	5 кратигу зизчении, ука-
•	занных в раздел «Основ ные технические данные»
минимального срока сохраняемости	, , , , , , , , , , , , , , , , , , ,
емкости, %, не более	±30
тангенса угла потерь, тока утечки, полного)
сопротивления не более	3-кратных значений, ука- занных в разделе «Основ- ные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

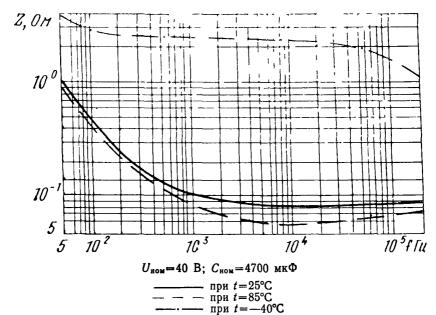
Указания по применению и эксплуатации по ОСТ В 11 0027-84.

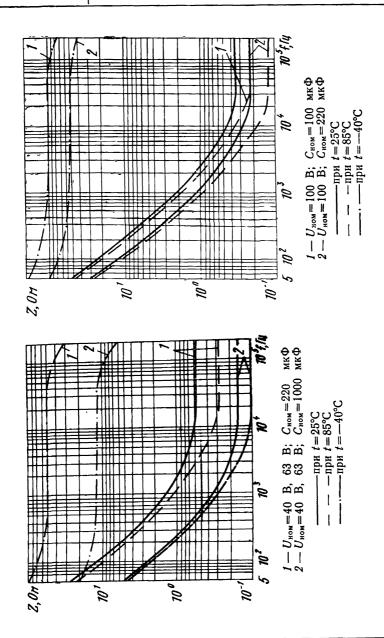
При монтаже конденсаторов в аппаратуру следует применять припой марки. ПОС-61 или ПОССу-61-0,5 по ГОСТ 21930—76. Температура жала паяльника 260±5°С. Применяемый флюс должен состоять из 25—60% по массе канифоли

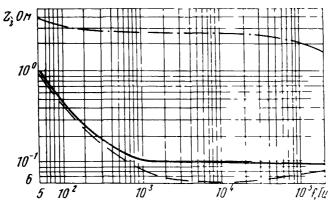
сосновой марки А или В по ГОСТ 18113—73 и 75—40% по массе спирта этилового технического по ГОСТ 18300—72 Время пайки не более 4 с. Расстояние от корпуса до места пайки вывода не менее 1,5 мм. Допускается промывка конденстгоров в спирто-бензиновой смеси в соотношении 1:1. При монтаже конденсаторов изгиб выводов следует производить на расстоянии не менее 2,5 мм от корпуса конденсатора.

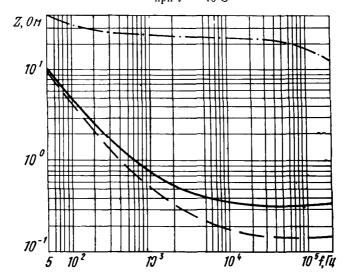
Трепировку конденсаторов перед установкой их в аппаратуру или перед измерением параметров производят в течение 2 ч; тренировку конденсаторов, вмонтированных в анпаратуру, происводят периодически один раз в год.

Значение низшей резонансной частоты 590 Гц

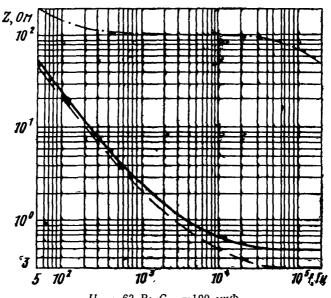

Верхияя частота диапазона, в котором должны отсутствовать резонансные частоты — 200 Γ ц.

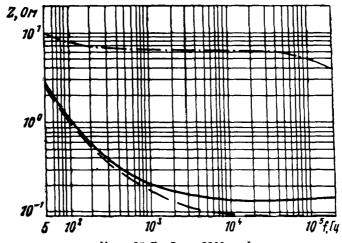

Значение растягивающей силы 20 Н (2,0 кгс).

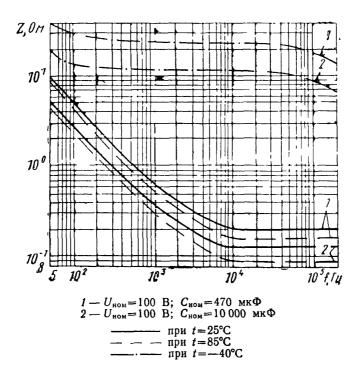

Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 мес. Способ крепления конденсаторов — за корпус.

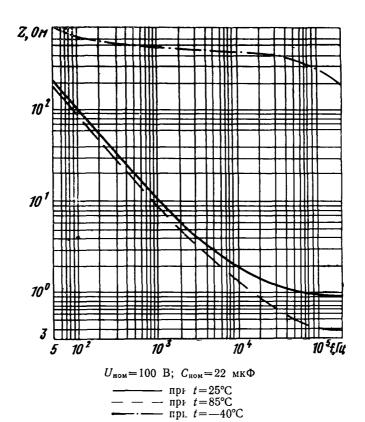

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

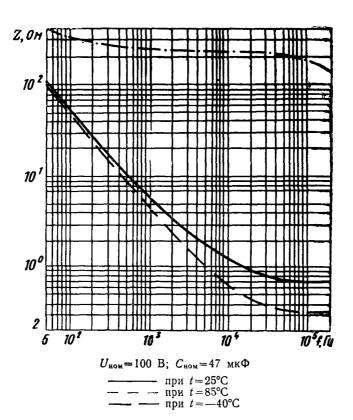
Зависимость полного сопротавления от температуры и частоты





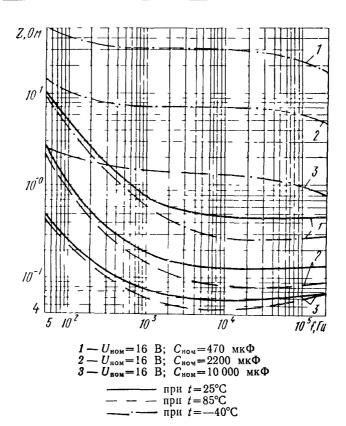

 $U_{\text{ном}} = 25 \text{ B}; \ C_{\text{ном}} = 470 \text{ мк}\Phi$

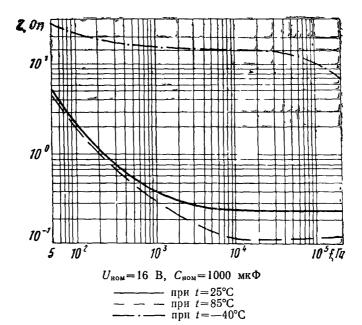

——— при t=25°C — — при t=85°С ——— при t=—40°С



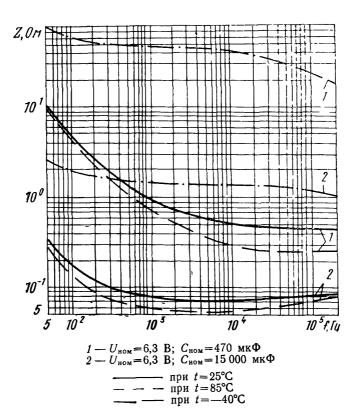
U_{ном}=25 В; С_{ном}=2200 мкФ —— при t=25°С —— при t=85°С —— при t=-40°С

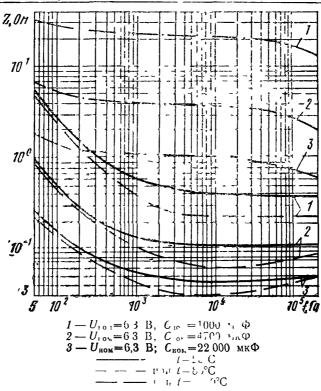


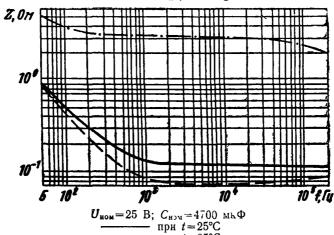




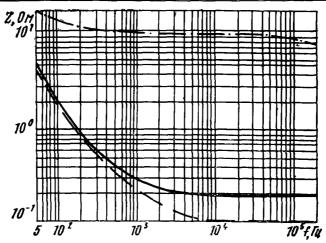
Инструкция № 3, июль 1989

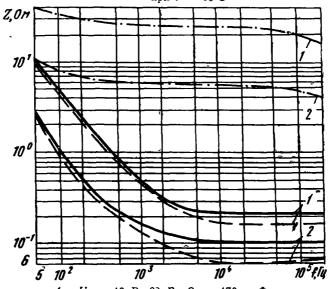

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКГРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ



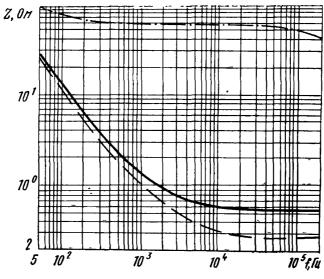


K50-46


КОНДЕНСАТОРЫ ОКСИДИС-ЭЛІ КТРОЛИТИЧЕСКИЕ АЛЮМИНИ: БІЛЕ

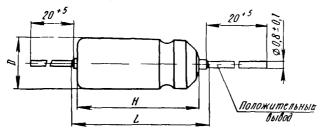


— при $t = 85^{\circ}$ C — при $t = -40^{\circ}$ C


K50-46

 $1-U_{\text{ном}} = 40\,$ В, 63 В; $C_{\text{ном}} = 470\,$ мкФ $2-U_{\text{ном}} = 40\,$ В, 63 В; $C_{\text{ном}} = 2200\,$ мкФ $\frac{1}{2000} = \frac{1}{2000}

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ **АЛЮМИНИЕВЫЕ**



$$U_{\text{ном}} = 25 \text{ B}; \ C_{\text{EOM}} = 220 \text{ мк}\Phi$$

$$-$$
 — при $t = 85$ °C — при $t = -40$ °C

Конденсаторы K50-47 оксидно-электролитические алюминиевые уплотненные неизолированные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают в двух климатических исполнениях: для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В)

		Размеры, мм						
Номинальная емкость, мкФ	Номинальное напряжение, В		D		Н		L	Масса, г, не более
	В	Но. мин.	Пред. откл.	Но- мин.	Пред. огкл.	llo- мин.	Пред. отк л.	
4,7	160							
10	100	10		23		30		5,5
10	160	10		23		30		ე,ე
22	100	 	_					
	160	12	_	_28		35		8
	63	10	_	23	_	30		5,5
47	100	12		28_		35	.)	8
	160	12	_	44	_	51		11
	40	10	+05	23	±2	30	±2	5,5
100	63	12			_	30		7
Į.	100	12	_	44	_	51	_	11
	160	17	_	45	_	52		25
	16	10	_	23		30		5,5
	25	}			_			7
220	40	12		_28	_	35	_	8
220	63		_	38	_	45	_	10
	100	17		45		52		25

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

			Размеры, мм								
Номинальная емкость, мкФ	Номинальное напряжение,	D		Н		L		Масса, г, не болес			
	В	Но- мин.	Пред откл.	Но- мин.	Пред откл.	Но- мин.	Пред. откл.				
	6,3	10		23		30		5,5			
	16			28		32		8			
470	25	12		38		_45_		10			
	40			44		51		11			
	63	17	+0,5	40		47	±2	22			
	6,3	12		28_		35 51		8			
	16			44				11			
1000	25	17		40	±2	47		22			
	40			45	2	_52_		25			
	63			-	55		_62_		30		
	6,3	12				_	_	44		51	
2200	16	17		_40_		47		22			
2200	25			_ 55	.]	62		30			
	40	_21		_50		_57		45			
1700	6,3	17	_	45		52		25			
4700	16	21		50		57		45			

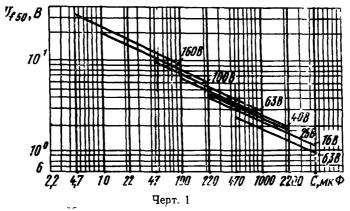
Пример записи условного обозначения при заказе и в конструкторской документации:

K50-47

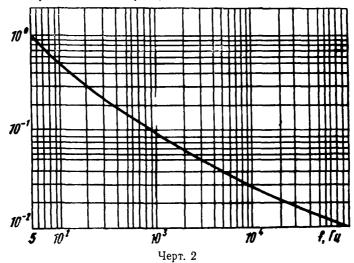
ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация	
диапазон частот, Гц	1-2000
ускорение, м \cdot с $^{-2}$ (g), не болєе	100 (10)
Акустический шум:	
диапазон частот, Гц	5010 000
уровень звукового давления (относительно	
$2 \cdot 10^{-5}$ Па), дБ	150
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g)	10 000 (1000)
длительность действия, мс	1 ± 0.3
многократного действия	
пиковое ударное ускорение, м·c-2 (g)	1500 (150)
длительность действия, мс	$1\pm0,3$
Линейное ускорение, м \cdot с $^{-2}$ (g)	200 (20)
Атмосферное пониженное давление, кПа (мм рт. ст.):	
рабочее	0,67 (5)
предельное	12 (90)
Атмосферное повышенное давление	
рабочее, кПа (кгс/см²)	294 (3)
Повышенная температура среды, °С	
рабочая	85
предельная	70
Пониженная температура среды, °С:	
рабочая	минус 60
предельная	минус 60
Смена температур, °C:	
от рабочей повышенной	85
	минус 60
до предельной пониженной	минус оо
Повышенная относительная влажность, %:	
для исполнения В при температуре 35°C	98
» » УХЛ » » 25°C	98
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы.	
Морской туман.	
- * · · · · · · · · · · · · · · · ·	

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

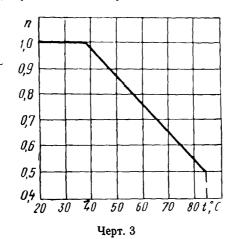

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальное напряжение, В	Номинальная емкость, мкФ	Тангенс угла потерь, %, не более	Номинальное чапряжение, В	Номинальная емкость, мкФ	Тангенс угла потерь, %, не более
6,3	470, 1000 2200 4700	30 31,2 33,7	40	От 100 до 1000 2200	20 21,2
16	От 220 до 1000	20	63	От 47 до 1000	20
	2200 4700	21,2 23,7	100	От 10 до 220	15
25	От 220 до 1000	20		от 4,7 до 100	15
	2200	21,2			

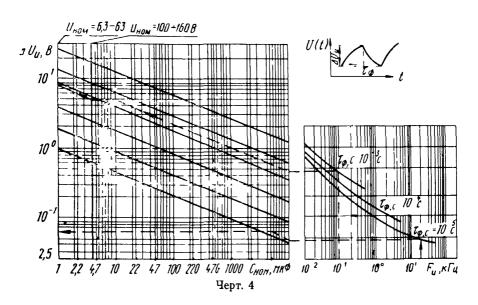

Ток утечки, мкА, не более	$0.05 C_{\text{HOM}} U_{\text{HOM}}$
Полное сопротивление, Ом, не более:	
для конденсаторов с номинальной емкостью	
4,7 мкФ	900
для конденсаторов с номинальной емкостью	
10 мкФ	450
для конденсаторов с поминальной емкостью	
22 мкФ	200
для конденсаторов с номинальной емкостью	
47 мкФ	90
для конденсаторов с номинальной емкостью	••
100 мкФ	45
для конденсаторов с номинальной емкостью	.0
220 мкФ	20
для конденсаторов с номинальной емкостью	20
470 мкФ	10
для конденсаторов с поминальной емкостью	10
1000 мкФ	4,5
для конденсаторов с номинальной емкостью	4,0
2200 мкФ	2.0
для конденсаторов с номинальной емкостью	2,0
4700	1.0
4700 MKΨ	1,0

K50-47

Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего папряжения U_f , B,



 К — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт 2;



КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

n — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от температуры, определяемый по черт 3;

Допускаемый размах импульсного напряжения	
$\Delta U_{\rm H}$ (определяется по черт. 4), B, не более	$U_{\mathtt{HOM}}$
Амплитудное значение импульсного тока на еди-	
ницу емкости, А/мкФ, не болєе:	
для конденсаторов с номпнальной емкостью	
от 4,7 до 220 мкФ	0,01
для конденсаторов с чоминальной емкостью	
от 470 до 2200 мкФ	0,002
для конденсаторов с поминальной емкостью	
4700 мкФ	0,001

надежность

Минимальная наработка, ч.	
при температуре от минус 60 до +85°C	10 000
» » » минус 60 до +70°C .	20 000
Минимальный срок сохраняемости, лет	20
95%-ный ресурс, ч.	
при температуре от минус 60 до +85°C	20 000
» » минус 60 до +70°C	30 000
Изменение электрических параметров в гечение:	
минимальной наработки	-50 (в сторону увеличения
емкости, %, не более	не ограничивается) 5 кратных значений, ука-
тангенса угла потерь, %, не боле≏	5 кратных значений, ука- занных в разделе «Основ- ные технические данные»
тока утсчки, мкА, не более	3 кратных значений, ука- занных в разделе «Основ-
полного сопротивления, Ом, не более	ные технические данные» 5 кратных значений, ука- занных в разделе «Основ- ные технические данные»
минимального срока сохраняемости	.,
емкости, %, не более	
тангенса угла потерь, това утечки, полног	0
сопротивления, не более	3-кратных значений, указан- ных в разделе «Основные технические данные»

КОНДЕНСАТОРЫ ОКСИДЧО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

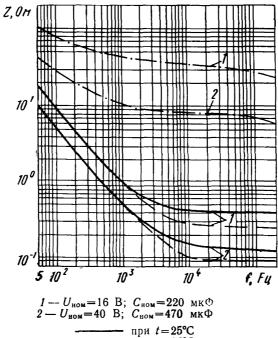
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатъции по ОСТ В 11 0027-84.

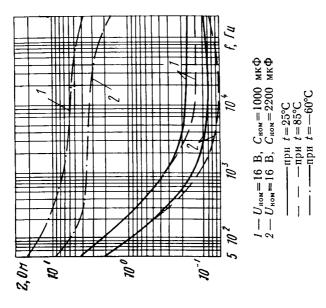
При монтаже кондесаторов в аппаратуру следует применять припой марки ПОС-61 или ПОССу-61-0,5 по ГОСТ 21930—76 Температура жала паяльника 260±5°С. Применяемый флюс должен состоять из 25—60% по массе канифоли сосновой марки А или В по ГОСТ 19113—73 и 75—40% по массе спирта этилового технического по ГОСТ 18300—72.

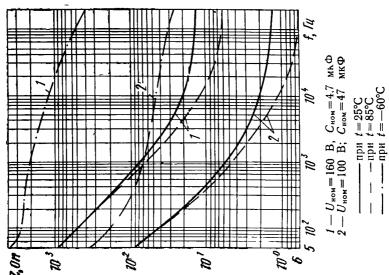
Время пайки не более 4 с. Расстояние от корпуса до места пайки вывода не менее 5 мм.

Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1. При монтаже конденсаторов взгиб выводов следует производить на расстоянии не менее 2,5 мм от места сварьи

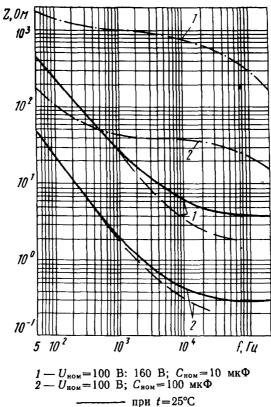

Тренировку конде**п**саторов перед установкой их в аппаратуру или перед измерением параметров производят в течение 2 ч, тренировку конденсаторов, вмонтированных в аппаратуру, производят периодически один раз в год.

Значение низшей резонансной частоты 1360 Гц.

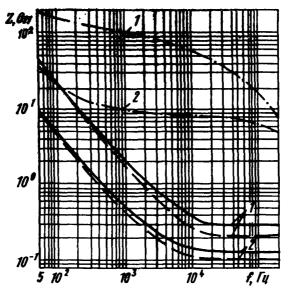

При эксплуатации на поверхности конденсаторов в местах уплотнения возможно появление следов электролита в виде сухого остатка или влажного пятна. Следы электролита не ухудшают электрические параметры и не снижают надежность конденсаторов.


ТИПОВЫЕ ХАРАКТЕРИСТИКИ

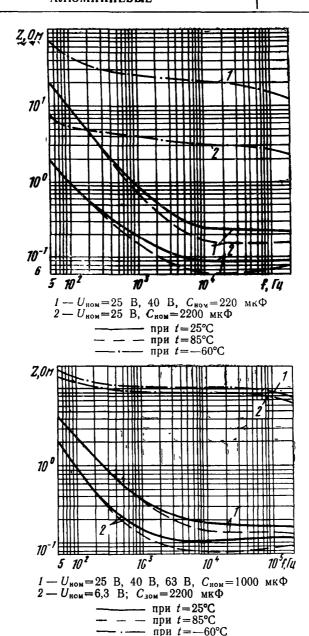
Зависимость полного сопротизления от температуры и частоты

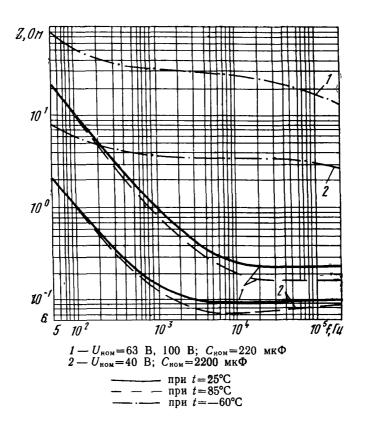


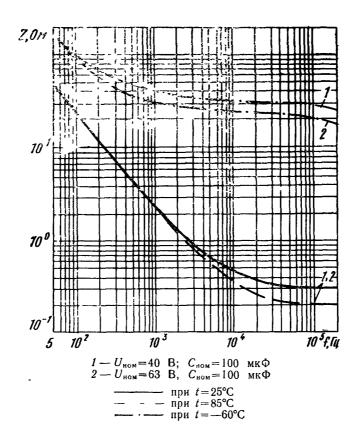
- — при t = 85°C — при t = -60°C

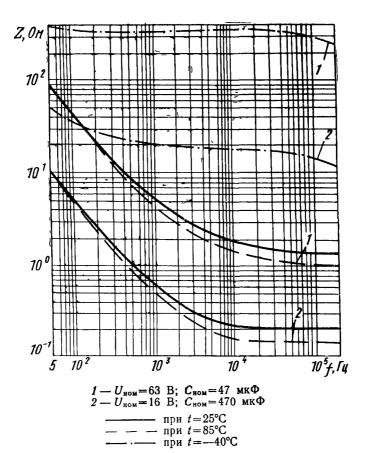


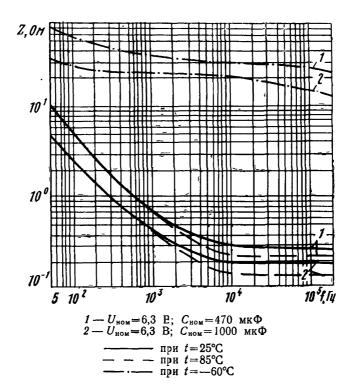
K50-47

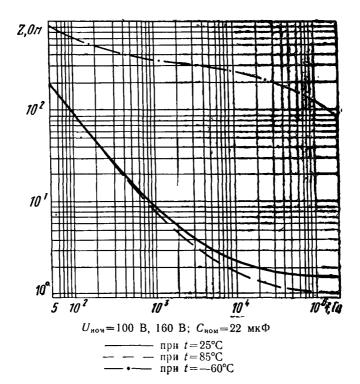

- при t=25°C — — при t=85°C

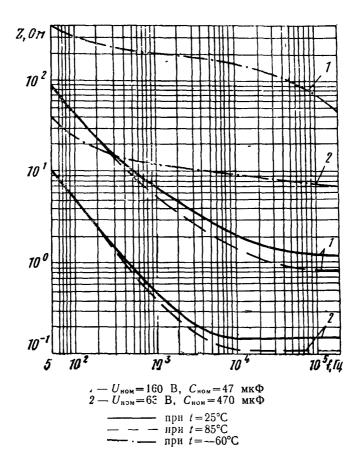

при t = -60°C

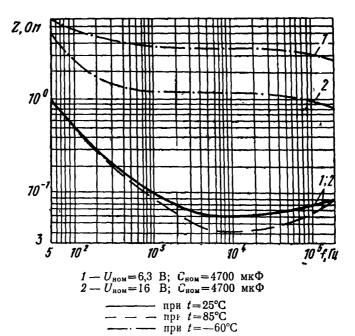

$$1-U_{\text{ном}}{=}160~\text{B};~C_{\text{ном}}{=}100~\text{мк}\Phi$$
 $2-U_{\text{ном}}{=}25~\text{B};~C_{\text{ном}}{=}470~\text{мк}\Phi$


—— при t=25°С — — при t=85°С — при t=−60°С

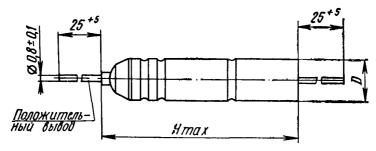



K50-47





K50-47



K50-48

Конденсаторы оксидно-электролитические алюминиевые полярные неизолированные постоянной емкости K50-48 предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Примечание. Количество зигов не регламентируется.

Номинальная	Номинальное	D, mm_		H _{max} , мм	Масса, г.
емкость, мкФ	напряжение, В	Номин.	Пред. откл.	max, mm	не более
220		9	±0,75	45	6,5
470	6,3			67	8,5
1000	0,0	12	±0,9	55	12,0
1500				75	15,5
100		9	±0,75	36	5,0
220	16			45	6,5
470		12	±0,9	55	12,0
1000				75	15,5
47				36	5,0
100	25	9	±0,75	45	6,5
220	20			67	8,5
470		12	<u>±0,9</u>	55	12,0
47		9	±0,75	45	6,5
100	40			67	8,5
220	40	12	±0,9	55	12,0
330		14	10,0	75	15,5

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Продолжение

Номинальная	Номинальное	D,	мм	H W	Macca, r,
емкость, мкФ	напряжение, В	Помин	Пред 01 кл	H _{max} , mm	не более
22		9	±0,75	36	5,0
47	63	9	±0,73	67	8,5
100		12	±0,9	55	12,0
220	-	12	Ξ0,9	75	15,5

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации

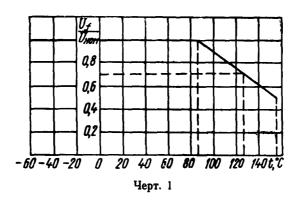
Конденсатор	K50-48 - 63 B - 22 мкФ - В
Сокращенное обозначени	1e
Номинальное напряжени	se
Номинальная емкость	
Всеклиматическое испол	нение

АЖЯР.673541.000 ТУ

обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная виорация.	
диапазон частот, Гц	1-2000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	200 (20)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления (относительно	
2·10 Па), дБ	160
Механический удар.	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g)	15 000 (1500)
длительность действия ударного ускорения, мс	0,1-2
многократного действия	
пиковое ударное ускорение, м·c-² (g)	1500 (150)
длительность действия ударного ускорения, мс	15
Линейное ускорение, м·с-2 (g)	1000 (100)
Атмосферное пониженное давление, Па (мм рт. ст):	
рабочее	133 (1)
предельное	12 000 (90)

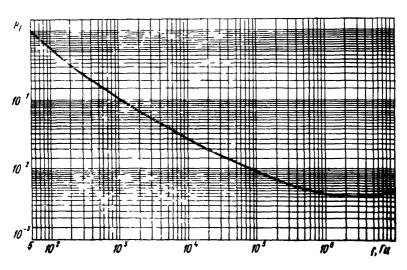

K50-48

Anyondonyon Honiyyoyyon nofoyon Honiyoy Ho	
Атмосферное повышенное рабочее давление, Па	004.000 (2)
(кгс/см²)	294 000 (3)
Повышенная рабочая температура среды, °С	155
Пониженная рабочая температура среды, °С	минус 60
Смена температур, °C:	
от рабочей повышенной	155
до предельной пониженной	минус 60
Повышенная относительная влажность для испол-	
нения В при t до 35°C, для исполнения УХЛ при	
<i>t</i> до 25°C, %	98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ	
Допускаемое отклонение емкости, %	+80 —20
Тангенс угла потерь, %, не более:	
для конденсаторов на $U_{\text{ном}} = 63 \text{ B} \dots \dots$	25
» » $U_{\text{ном}}$ от 16 до 40 В	20
» » $U_{\text{HOM}} = 63 \text{ B} \dots \dots$	15
Ток утечки, мкА, не более:	
для конденсаторов с зарядом $C_{ном}U_{ном}$	
до 104 мкКл	$0,02C_{ exttt{hom}} \cdot U_{ exttt{hom}}$
св. 10 ⁴ мкКл	$2\sqrt{C_{\text{HOM}}U_{\text{HOM}}}$
Полное сопротивление, Ом, не более:	ZV CrowCross

Номинальная	Номинальное напряжение, В						
емкость, мкФ	6,3	16	25	40	63		
22	_		_		6,0		
47	_	<u> </u>	4,0	3,5	3,0		
100		3,0	2,0	1,8	1,5		
220	2,0	1,8	1,5	1,2	0,8		
330	_	_	_	1,0	_		
470	1,2	1,0	0,8	_			
1000	0,8	0,7	_	_	_		
1500	0,5			_			

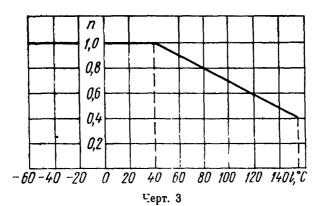
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Допускаемое постоянное или пульсирующее напряжение определяется по черт. 1:


Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения определяется по формуле:

$$U_f = U_{f \in 0} K_f n$$
,

где U_{f50} — амплитуда переменной синусондальной составляющей пульсирующего напряжения на частоте 50 Γ ц, определяемая по табл. 1, B;


 K_f — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт. 2;

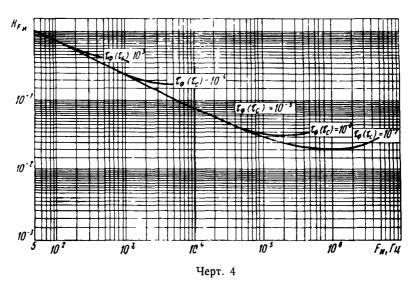
K50-48

Серт. 2

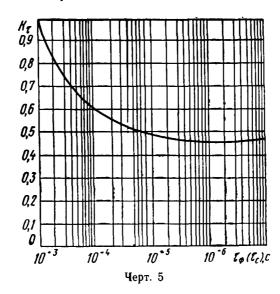
п— коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от температуры, определяемый по черт. 3.

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Таблица 1


				Номин	гльное	напряже	ние, В			
Номинальная емкость, мкФ	6,	,3		16		25		40		53
	U_{f50}	$\Delta U_{\mu 50}$	U_{f50}	$\Delta U_{\mu 50}$	U_{f50}	$\Delta U_{\mu 50}$	U_{f50}	ΔU _{н50}	U ₁₅₀	ΔU _{#50}
22		_		_					21,4	40,0
47		_	-	_	13,5	24,0	15,5	28,0	15,5	28,0
100		_	9,2	17,5	9,2	17,5	11,2	20,0	11,2	20,0
220	5,9	10,5	5,9	10,5	7,2	12,5	8,5	14,5	8,5	14,5
330		-	-	\	-		7,0	12,0	\	-
470	4,3	7,6	5,0	8,7	5,0	8,7		-	_	-
1000	3,1	5,5	3,6	6,5			_	-	_	_
1500	2,6	4,7		-	-	_	-	-	-	-

Допускаемый размах импульсного напряжения $\Delta U_{\tt H}, \; {\sf B}, \; {\sf не} \; {\sf более} \; \ldots \ldots \ldots \ldots \ldots \ldots \qquad U_t \; ({\tt черт.} \; 1)$


 $\Delta U_{\rm H} = \Delta U_{\rm H50} K_{\rm FH} K_{\rm I} ,$

где $\Delta U_{\text{и50}}$ — размах импульсного напряжения на частоте 50 Γ ц, определяемый по табл. 1, B;

К_{Fн} — коэффициент снижения размаха импульсного напряжения в зависимости от частоты следования импульсов, определяемый по черт. 4:

 K_{τ} — коэффициент снижения размаха импульсного напряжения в зависимости от длительности фронта (спада) импульса, определяемый по черт. 5:

Ì

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

НАДЕЖНОСТЬ

Наработка, ч	500
Минимальный срок сохраняемости, лет	20
Изменение электрических параметров	
в течение наработки:	
емкости, %, не более	минус 50,
	в сторону увеличения
	не ограничивается
тангенса угла потерь, не более	5-кратных значений,
	указанных в разделе
	«Основные технические
	данные»
тока утечки, не более	5 кратных значений,
	указанных в разделе
	«Основные технические
	данные»
полного сопротивления, не более	7-кратных значений,
	указанных в разделе
	«Основные технические
	данные»
в течение минимального срока сохраняемости:	
в течение минимального срока сохраняемости: емкости, %, не более	±30
• •	±30 — 3-кратных значений,
емкости, %, не более	— • •
емкости, %, не более	——3-кратных значений,
емкости, %, не более	3-кратных значений, указанных в разделе
емкости, %, не более	3-кратных значений, указанных в разделе «Основные технические
емкости, %, не более	3-кратных значений, указанных в разделе «Основные технические данные»
емкости, %, не более	3-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений,
емкости, %, не более	3-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений, указанных в разделе
емкости, %, не более	З-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений, указанных в разделе «Основные технические
емкости, %, не более	З-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений, указанных в разделе «Основные технические данные»
емкости, %, не более	З-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений, указанных в разделе «Основные технические данные» 3-кратных значений,
емкости, %, не более	З-кратных значений, указанных в разделе «Основные технические данные» 5-кратных значений, указанных в разделе «Основные технические данные» 3-кратных значений, указанных в разделе

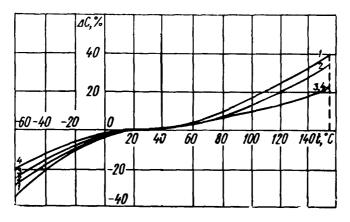
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ В 11 0027—84.

При монтаже конденсаторов в аппаратуру применяют припой марки ПОС-61 или ПОССу 61-0,5 по ГОСТ 21930—76. Температура жала паяльника

K50-48

350±10°С Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—84) и 75% по массе изопропилового (ГОСТ 9805—89) или этилового (ГОСТ 18300—87) спирта Время пайки не более 4 с. Расстояние от корпуса (узла сварки) до места пайки вывода 5 мм


При монтаже конденсаторов изгиб выводов следует производить на расстоянии не менее 2,5 мм от корпуса (узла сварки).

После длительного хранения конденсаторов (1 год и **более**) тренировку конденсаторов перед установкой их в аппаратуру или измерением параметров производят в течение 1 ч. Тренировку конденсаторов, вмонтированных в аппаратуру, производят периодически один раз в 2 года

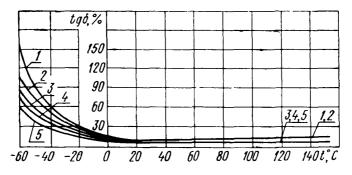
Значение низшей резонансной частоты 2660 Гц Значение растягивающей силы должно быть 10 Н (1 кгс). Угол поворота 180°, допускаемое число поворотов 3 Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 мес.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

$$1 - U_{\text{HOM}} = 6.3 \text{ B}$$

$$2 - U_{\text{HOM}} = 16 \text{ B}$$


$$3 - U_{\text{HOM}} = 25 \text{ B}$$

$$4 - U_{\text{HOM}} = 40$$
; 63 B

Ł

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

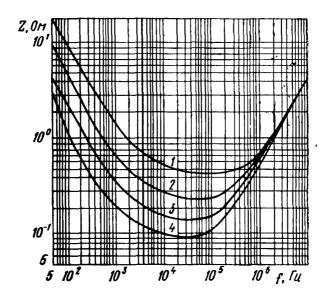
Зависимость тангенса угла потерь от температуры

$$1 - U_{\text{HOM}} = 6.3 \text{ B}$$

$$2 - U_{\text{HOM}} = 16 \text{ B}$$

$$3-U_{\text{HOM}}=25~\text{B}$$

$$4 - U_{\text{HOM}} = 40 \text{ B}$$


КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

K50-48

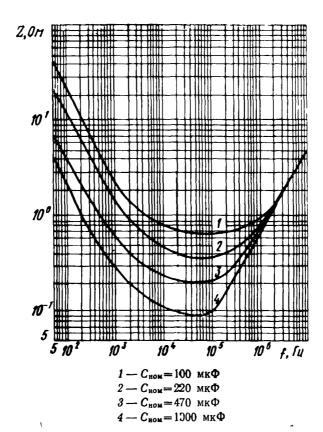
ĩ

Зависимость полного сопротивления от частоты

$$U_{\text{HOM}} = 6.3 \text{ B}$$

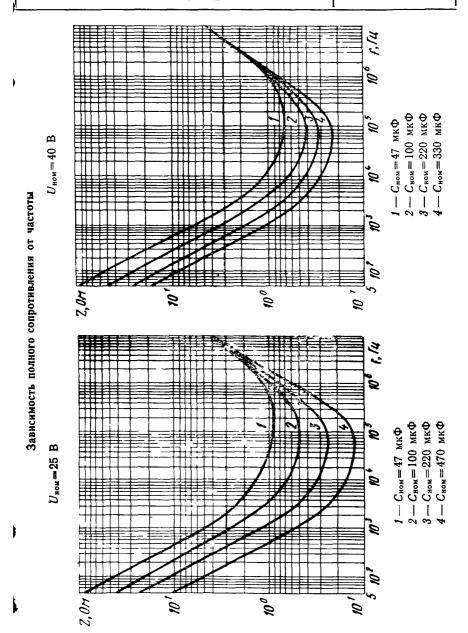
$$1 - C_{\text{ном}} = 220$$
 мкФ

$$2 - C_{\text{ном}} = 470 \text{ мк}$$
Ф


$$3 - C_{\text{ном}} = 1000 \text{ мк}\Phi$$

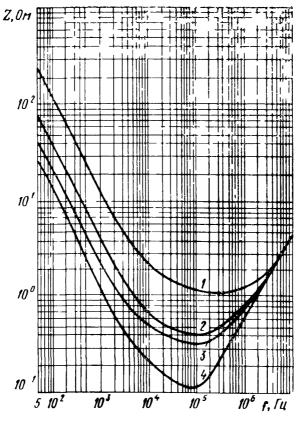
$$4 - C_{\text{ном}} = 1500 \text{ мк} \Phi$$

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


Зависимость полного сопротивления от частоты

$$U_{\text{BOM}} = .6 \text{ B}$$

КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ


K50-48

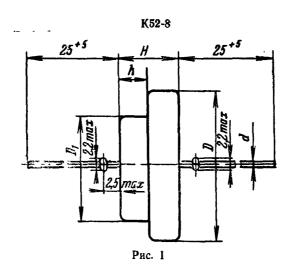
КОНДЕНСАТОРЫ ОКСИДНО-ЭЛЕКТРОЛИТИЧЕСКИЕ АЛЮМИНИЕВЫЕ

Зависимость полного сопротивления от частоты

$$U_{\text{\tiny BOM}} = 63~\text{B}$$

$$1 - C_{\text{ном}} = 22$$
 мкФ

$$2 - C_{\text{HOM}} = 47 \text{ MK}\Phi$$

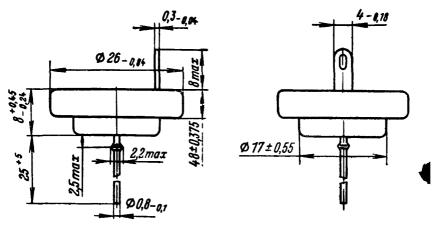

$$3 - C_{\text{ном}} = 100 \text{ мк}\Phi$$

$$4 - C_{\text{ном}} = 220 \text{ мк}\Phi$$

K52-8

Конденсаторы K52-8 уплотненные неполярные предназначены для работы в цепях со сменой полярности напряжения постоянного, пульсирующего и импульсного токов, а также в цепях переменного токов.

Конденсаторы изготавливают во всеклиматическом исполнении (В). Конденсаторы изготавливают одного типа двух вариантов: K52-8 и K52-8-2.


Ī	Номи-	Номи-					Разме	еры, мм					, 1
	нальная емкость, мкФ	нальное напря- жение, В	Но- мин.	<i>D</i> Пред. откл.		D _t Пред о~кл	Но- мин.	Пред. откл.		<i>h</i> Пред откл.		<i>d</i> Пред огкл.	Масса, г, не более
	33	6,3	13 26	$+1 \\ +0.5 \\ -1.2$	7,1		6,3 9	$\begin{array}{r} +0.7 \\ -0.5 \\ \hline +0.8 \\ -0.7 \end{array}$	3,4	$\pm 0.4 \\ \pm 0.5$	1		4,5 28
	15 150	16	13 26	$+1 \\ +0.5 \\ -1.2$	7,1	±0,5	6,3 9	$ \begin{array}{r} +0.7 \\ -0.5 \\ +0.8 \\ -0.7 \end{array} $	3,4 4,8	<u>±0,4</u> ±0,5	ing	±0,1	4,5
	100	25	13 26	+1 $+0,5$ $-1,2$	7,1		6,3	$ \begin{vmatrix} +0.7 \\ -0.5 \\ +0.8 \\ -0.7 \end{vmatrix} $	3,4 4,8	$\pm 0,4$ $\pm 0,5$	ì		4,5 28

КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ТАНТАЛОВЫЕ

Продолжени

Номи-	Номи-					Разм	еры, мм					
нальная емкость, мкФ	н ільное напря женле,	Ho-	<i>D</i> Пред	Но	<i>D</i> 1 [Пред	Но	<i>Н</i> Пред		<i>h</i> Пред	Ho-	<i>d</i> Пред	Масса, г, не болес
	В	МИН	откл	иин н	отел	мин	откл	МИН	откл	мин	откл.	
6,8	50	13	+1	7,1		6,3	+0,7 -0,5	3,4	±0,4			4,5
68		26	$^{+0,5}_{-1,2}$	17		9	+0,8 0,7	4,8	±0,5			28
4,7	63	13	+1	7,1	±0,5	6,3	+0,7 -0,5	3,4	±0,4	0.8	±0,1	4,5
47		26	+0,5 -1,2	17		9	+0,8 -0,7	4,8	±0,5			28
3,3	100	13	+1	7,1		6,3	+0,7 -0,5	3,4	±0,4			4,5
33	100	26	+0.5 -1.2	17		9	+0,8 -0,7	4,8	±0,5			28

K52-8-2

Pac. 2

Масса не более 17

K52-8

Номинальное напряжение В	Номпадльная емкось, мкФ	Номинальное папряжение, В	Номинальная емкость, мкФ
6,3	330	50	68
16	150	6 3	47
25	100	100	33

Пример записи условного обозначения при заказе и в конструкторской документации:

~	
Конденсатор $K52-8$ — 2 — $63 \mathrm{B}$ — $47 \mathrm{mk} \Phi$ $\pm 20 \%$ — B	
Сокращенное обозначение	Обозначение документа на постажку
Обозначение варианта (для конденсаторов по рис. 2)	
Номинальное напряжение	
Номинальная емкость	
Допускаемое отклонение емкости	
Всеклиматическое исполнение	•

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	15000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	392 (40)
Акустический шум:	
диапазон частот, Гц	50-10 000
уровень звукового давления, дБ, не более	160
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g), не бо-	
лее	9810 (1000)
длительность действия ударного ускорения, мс	0,2—1
многократного действия	
пиковое ударное ускорение, м·с-2 (g), не бо-	
, лее	1471 (150)
длительность действия ударного ускорения, мс	13
Линейное ускорение, м \cdot с $^{-2}$ (g), не более	4905 (500)

КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ · ТАНТАЛОВЫЕ

Атмосферное пониженное давление, Па (мм рт. ст.)	106 700—133,32 ¹ (800—1)
Атмосферное повышенное давление, Па (кгс·см-2)	до 297 198 (до 3)
Повышенная температура среды, °С	125
Понижениая температура среды, °С	минус 60
Смена температур, °C:	
от повышенной температуры среды	125
до пониженной » »	минус 60
Повышенная относительная влажность для испол-	
нения В при t до 35°C, %	до 98
Атмосферные конденсированные осадки (роса, иней).	
Соляной (морской) туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
• • • • • • • • • • • • • • • • • • • •	•

основные технические данные

Допускаемые отклонения емкости, % $\pm 10; \pm 20; \pm 30$ Тангенс угла потерь, ток утечки, полное сопротивление:

<i>U</i> 110M , B	С _{ном} , мкФ	tg δ, %. не более	I, MKA,	Z, O m , i	е более	
ilom , B	ном, мк т	не более	/ _{ут} , мкА, не более	рис. 1	рис. 2	
6,3	33	20	2	15		
0,5	330	40	20	3	1,5	
10	15	15	2	15		
16	150	30	20	4	1,5	
OF	10	8	2	25		
25	100	20	20	5	2,5	
50	6,8	8	3	30		
ĐU	68	15	30	5	2,5	
60	4,7	5	3	40		
63	47	10	30	5	2,5	
100	3,3	5	3	40	_	
100	33	10	30	8	2,5	

K52-8

НАДЕЖНОСТЬ

Минимальная наработка, ч:	
при t от минус 60 до $+70^{\circ}$ С	10 000
» t от минус 60 до +85°C	5 000
» t от минус 60 до $+125^{\circ}\mathrm{C}$	7 50
Срок сохраняемости, лет	15
95%-ный ресурс, ч:	
при t от минус 60 до $+70^{\circ}$ С	20 000
» t от минус 60 до $+85^{\circ}$ С	10 000
» t от минус 60 до +125°C	1 500
Изменения электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	250
тока утсчки, мкА, не более	
для конденсаторов Ø 26 мм	500
» » Ø 13 мм	100
полного сопротивления не более	3-кратных (рис. 2) и 10-кратных (рис. 1) значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	~
емкости, %, не более	±45
тангенса угла потерь и тока утечки не более	5-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не более	2-кратных (рис. 2) и 8-крат- ных (рис. 1) значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и эксплуатации конденсаторов следует пользоваться указаниями, приведенными в ОСТ 11 074.011—79 и ОСТ В 11 464 001—74.

Допускается промывка конденсаторов в спирто-бензиновой смеси в пропорции 1:1 при одновременном воздействии ультразвуковых колебаний частотой 18—20 кГц, время промывки не бслее 2 мин при температуре не более 35°C.

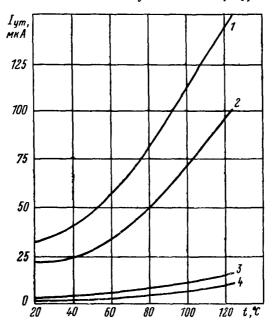
Допускается эксплуатация конденсаторов при пониженном давлении 10^{-6} мм рт. ст. в течение 24 ч, при этом амплитуда переменной составляющей должна быть снижена до значения 3,45~U .

При монтаже конденсаторов необходимо учитывать, что выводы конденсатора состоят из танталовой и никелевой проволоки, узлы сварки которых имеют

утолщение. Изгиб вывода следует прочзводить на расстоянии не менес 2,5 мм от места сварки.

При эксплуатации конденсаторы те допускают касания корпусом конденсатора шасси или токоведущих частей аппаратуры.

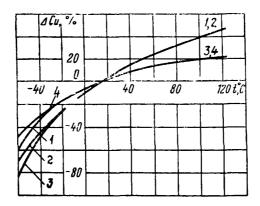
Конденсаторы допускают пайку в зодов при защите контактного узла и покрытия конденсатора от перстрева и повреждений на расстоянии не менее 3,5 мм от корпуса конденсатора.


В процессе воздействия вибрации возможно кратковременное увеличение - тока утечки конденсаторов до 500 мкА.

Конденсаторы выдерживают возникающее в результате воздействия электромагнитного импульса импульсное напряжение $1.2\ U_{\rm ном}$ при длительности импульса напряжения до $5\cdot 10^{-2}$ с. Фсрма импульса прямоугольная. Кратность воздействия 15.

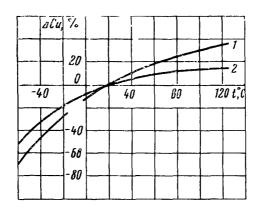
Допускается эксплуатация конденсаторов в течение $25\,000$ ч при температуре от минус 60 до $+70^{\circ}$ С и напряжении 0.2-0.7 $U_{\text{ном}}$, но не ниже $3\,$ В.

Способ крепления конденсаторов — за корпус.

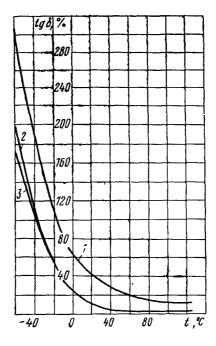

ТИПОВЫЕ ХАРАКТЕРИСТИКИ Зависимость тока утечки от температуры

K52-8

Помер кривой	$U_{ extbf{HOM}}\! imes\!C_{ extbf{HOM}}$, В $ extbf{X}$ мк Φ
1	100×33; 63×47; 50×68
2	25×100; 16×150; 6,3×330
3	$63\times4,7$; $100\times3,3$; $50\times6,8$
4	25×10 ; 16×15 ; $6,3 \times 33$

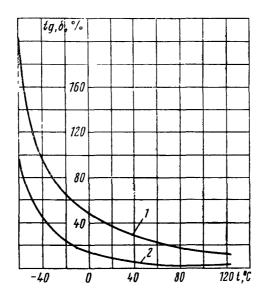

Зависимость изменения емкости от температуры

Номер кривой	$U_{\mathtt{HOM}}\! imes\!C_{\mathtt{HOM}}$, В $\! imes\!$ мк $\!\Phi$
1	6,3×330; 16×150; 25×100
2	6,3×33; 16×15; 25×10
3	50×68; 63×47; 1C0×33
4	50×6,8; 63×4,7; _00×3,3


Февраль 1987 Лист 4

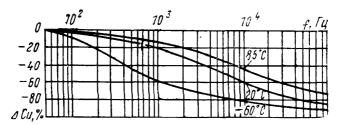
Зависимость изменения емкости от температуры

Номер кривой	$oldsymbol{U}_{ exttt{HOM}}\! imes\! C_{ exttt{HOM}}$, $ exttt{B}\! imes\! exttt{mk}\Phi$
1	6.3×330 ; 16×150 ; 25×100
2	50×68 ; 63×47 ; 100×33

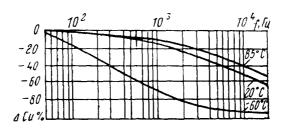

Зависимость тангенса угла потерь от температуры

Номер кривой	$U_{ ext{H@M}}\! imes\!C_{ ext{HOM}}$, В $ imes$ мк Φ
1	$6.3 \times 330, 6.3 \times 33; 16 \times 150; 16 \times 15; 25 \times 100; 25 \times 10$
2	50×68 ; 63×47 ; 100×33
3	$50 \times 6.8, 63 \times 4.7 100 \times 3.3$

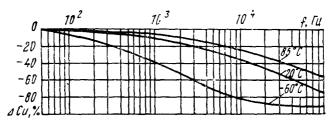
КОНДЕНСАТОРЫ ЭЛЕКТРОЛИТИЧЕСКИЕ ТАНТАЛОВЫЕ

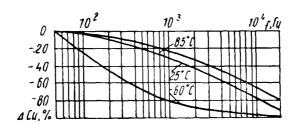

Зависимость тангенса угла потерь от температуры

Номер кривой	$U_{\text{IOM}} \times C_{\text{HOM}}$, $B \times_{Mk} \Phi$
1	6,3×330; 16×150; 25×100
2	50×68; 63×47; 100×33

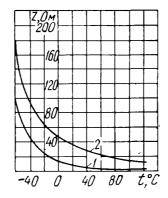

Зависимость изменения емкости от частоты

$$U_{\text{ном}} = 6,3; 16$$
 и 25 В

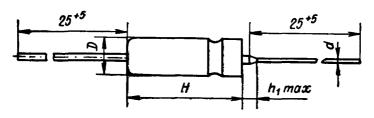



Зависимость изменения емкости от частоты

 $U_{\text{ном}} = 6,3$: 16 и 25 В



 $U_{\text{ном}} = 50$, 63 и 100 В


Зависимость полного сопротивления от температуры на частоте 10 кГц

Номер кривой	${\it U}_{\sf HOM}\! imes\!{\it C}_{\sf HOM}$, В $ imes$ мк Φ
1	$6,3\times330; 16\times150$
2	$25\times100; 50\times68; 63\times47; 100\times33$

Конденсаторы K52-9 объемно-пористые танталовые герметизированные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме.

Конденсаторы изготавливают во всеклиматическом исполнении (В).

	Номи-	Размеры, мм							(
Номинальная емкость, мкФ	нальное напря-	D		Н		h.		d	Macca,
	жение, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	^h lmax	Но- мин.	Пред. откл.	более
68		4,8	±0,375	18		6,5	0,6		3,5
150, 220	6,3	6,0				5,0			6,5
330, 470		7,5	±0,45	22		5,0	0,8		10
47		4,8	±0,375	18		6,5	0,6	}	3,5
100	16	6,0		20		5,0	0,0		6,5
220		7,5	±0,45	22_		5,0	0,8	į	10
33		4,8	±0,375	18		6,5	0,6		3,5
68	25	6,0	1.0,070	20		5,0			6,5
150		7,5	±0,45	22	. 0 55	5,0	0,8_		10
22'	Į	4,8	±0,375	18	±0,55	6,5	0,6	±0,1	3,5
47	32	6,0		20		5,0	0,0		6,5
100		7,5	±0,45	22	}	5,0	0,8		10
15		4,8	主0,375	18		6,5	0,6		3,5
33	50	6,0_	1	20		5,0	0,8		6,5
68		7,5	土0,45	22		5,0		1	10
10		4,8	±0,375	18		6,5	0.6		3,5
22	63	6,0	750,073	20		5,0	0,6		6,5
47		7,5	±0,45	22		5,0	0,8		10

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

Продолжение

Номинальная емкость, мкФ	Номи-	Размеры, мм							
	нальное напря-		D	Н		,		Масса, г, не	
	жение, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	h Imax	Ho∙ мин.	Пред. откл.	более
6,8		4,8	±0,375	18		6,5	0,6		3,5
15	100	6,0		20		5,0	0,8		6,5
33		7,5	±0,45	22		5,0			10
1,5; 2,2		4,8		18	±0,55	6,5		±0,1	3,5
3,3; 4,7	125	4,8	±0,375	18		5,0	0,6	1	3,5
10		6,0		20	[5,0			6,5
22		7,5	±0,45	22		5,0	0,8		10

Пример записи условного обозначения при заказе и в конструкторской документации:

Обозначение документа на поставку

внешние воздействующие факторы

1-3000
50-10 000
160
15 000 (1500)
0,12
1500 (150)
15

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

K52-9

•	Линейное ускорение, м·с-2 (g)	1000 (100) 133 (1) 294 000 (3) 125 минус 60
	от повышенной температуры среды до пониженной температуры среды	125 минус 60
яния	Повышенная относительная влажность для исполне-В при $t\!=\!35^{\circ}\text{C},~\%$	98

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номи- нальная емкость, мкФ	Номи- нальное напря- жение, В	Тангенс угла по- терь, %, не более	Полно∋ сопротив- ление, См, ие более	Номи- нальная емкость, мкФ	Номи- нальное напря- жение, В	Тангенс угла по- терь, %, не более	Полное сопротив- ление, Ом, не более
68	1	10	3	15		5	8
150, 220	6,3	15	2	33	50	8	5
330, 470		25	1,5	68	! !	8	4
47		10	4	10		5	10
100	16	15	3	22	63	8	6
220		15	2	47	1	8	4
33		10	5	6,8		5	15
68	25	15	3	15	100	8	8
150		15	2	33		10	5
22		10	6	1,5; 2,2			50
47	32	10	4	3,3; 4,7	125	8	30
100		15	3	10	120	Ì	15
				22			10

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

НАДЕЖНОСТЬ

Минимальная наработка, ч	
Минимальный срок сохраняемости, лет 20	•
95%-ный ресурс, ч	,
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	
тангенса угла потерь, %, не более	
полного сопротивления не более 10-кратных значений, указанных в разделе «Основные техвические давные»	
в течение срока сохраняемости	
емкости, %, не более ±20	
тангенса угла потерь, не более 10-кратных значений, указанных в разделе «Основные технические давные»	
полного сопротивления не бол∋е 8-кратных значений, указанных в разделе «Основные технические давные»	

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0026—84 с дополнениями и уточнениями, изложенными в настоящем разделе.

Допускается эксплуатация конденсаторов при напряжении обратной полярности не более 0,5 В, при этом суммарное время воздействия напряжения обратной полярности не должно превышать 1000 ч в пределах установленной минимальной наработки.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 (ГОСТ 21930—76). Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе изопропилового (ГОСТ 9805—76) или этилового спирта (ГОСТ 18300—72). Время пайки не более 4 с. Расстояние от ксрпуса (узла сварки) до места пайки вывода не менее 5 мм. Пайку производят с применением теплоотвода в виде пинцета с медными губками шириной 3 мм.

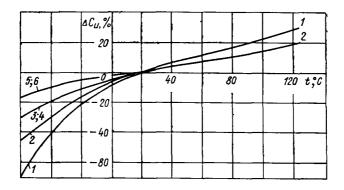
При монтаже конденсаторов изгиб выводов следует производить на рас-, стоянии не менее 2,5 мм от корпуса (узла сварки).

Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1 по объему при одновременном воздействии ультразвуковых колебаний частотой 18—20 кГп, время промывки не более 2 мин при температуре не более 35°С.

Тренировку конденсаторов, вмонтированных в аппаратуру, проводят перводически один раз в год.

Значение низшей резонансной частоты превышает 5000 Гц.

Значение растягивающей силы должно быть 10,0 Н (1 кгс). Угол поворота 180°С, допустимое число поворотов 3.

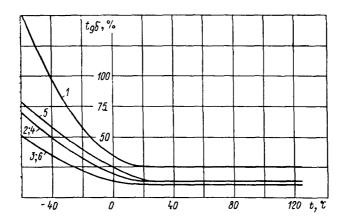

Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 месяцев.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 3000 Гц.

Конденсаторы должны быть герметичными.

Способ крепления конденсаторов — за корпус.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ Зависимость изменения емкости от гемпературы

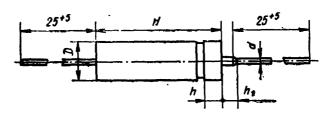


Номер кривой	$U_{\text{HOM}} \! imes \! C_{\text{HOM}}$, В $ imes$ мк Φ							
1	6,3×68; 6,3×330; 6,3×150; 6,3×470; 6,3×220							
2	$63\times22;\ 50\times68;\ 50\times33;\ 32\times47;\ 25\times68;\ 16\times100;\ 25\times150;$							
3	32×100 ; 16×220 63×47 ; 100×15 ; 100×33 ; 125×10 ; 125×22							
4	16×47; 25×33							
5 6	50×15 ; 63×10 ; 100×6 ,8 125×4 ,7; 125×3 ,3; 125×2 ,2; 125×1 ,5							

Февраль 1987

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

Зависимость тангенса угла потерь от температуры

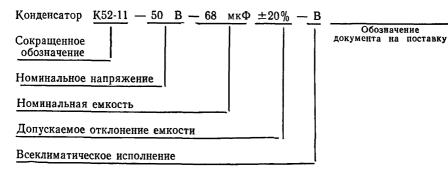

Номер кривой	$U_{HOM} \times C_{HOM}$, $\mathbf{B} \times MK \Phi$							
1	6,3×68; 6,3×330; 6,3×150; 6,3×470; 6,3×220							
2	63×22 ; 50×68 ; 50×33 ; 32×47 ; 25×68 ; 16×100 ; 25×150 ; 32×100 ; 16×220							
3	63×47 ; 100×15 ; 100×33 ; 125×10 ; 125×22							
4	$16\times47;\ 25\times33$							
5	50×15; 63×10; 100×6,8							
6	$125\times4,7;\ 125\times3,3;\ 125\times2,2;\ 125\times1,5$							

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

K52-11

Конденсаторы K52-11 электролитические танталовые герметизированные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме.

Конденсаторы изготавливают во всеклиматическом исполнении (В).


Номи- Номи- Размеры, мм												
ная ем-	ное	D		Н				. .		d		Масса, г, не
кость, мкФ	ряже- ние, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	h	h _i	Но- мин.	Пред. откл.	более		
150		4,8	±0,375	18		3,5	6,5	0,6		3,5		
330	6,3	6,0				5,0	5,0			6,5		
680		7,5	±0,45	22		5,0	5,0	0,8		10,0		
100		4,8	±0,375	18		3,5	6,5	0,6		3,5		
220	16	6,0		20		5,0	5,0			6,5		
470		7,5	±0,45	22		5,0	5,0	0,8	 	10,0		
68		4,8	±0,375	18		3,5	6,5	0,6		3,5		
150	25	6,0		20	±0,55	5,0	5,0	0,0	±0,1	6,5		
330		7,5	±0,45	22	,	5,0	5,0	0,8		10,0		
47		4,8	±0,375	18	i	3,5	6,5	0,6		3,5		
100	32	6,0		20		5,0	5,0			6,5		
220		7,5	±0,45	22		5,0	5,0	0,8		10,0		
33		4,8	±0,375	18		3,5	6,5	0,6	1	3,5		
68	50	6,0		20		5,0	5,0	, 0,0	ļ	6,5		
150		7,5	±0,45	22		5,0	5,0	0,8		10,0		

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

Продолже

Номи-	Номи-	Газмеры, мм								
ная ем-	ная ное		D	Б		i . i			d	Масса, г, не
кость, мкФ	ряже- ние, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	h	h ₁	Но- мин.	Пред. откл.	более
22		4,8	±0,375	18	!	3,5	6,5	0,6		3,5
47	63	6,0	10,373	20		5,0	5,0			6,5
100		7,5	±0,45	22	±0,55	5,0	5,0	0,8	±0,1	10,0
15		4,8	±0.275	18	±0,00	3,5	6,5	0.0	1 = 0,1	3,5
33	100	6,0	$\pm 0,375$	20	İ	5,0	5,0	0,6		6,5
68		7,5	±0,45	22		5,0	5,0	0,8		10,0

Пример записи условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЛСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:		
диапазон частот, Гц	1-3000	
амплитуда ускорения, м·с $^{-2}$ (g)	200 (20)	
Акустический шум:	, ,	
диапазон частот, Гц	50-10 000	
уровень звукового давления (относительно		4
2·10-5 Па), дБ , , ,	160	
Механический удар: одиночного действия		
пиковое ударное ускорение, м·с-2 (g)	15 000 (1500)	

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

K52-11

длительность действия ударного ускорения, мс многократного действия	0,12
пиковое ударное ускорение, м·с-2 (g)	1500 (150)
длительность действия ударного ускорения, мс	1—5
Линейное ускорение, $\mathbf{M} \cdot \mathbf{C}^{-2}$ (g)	2000 (200)
Атмосферное пониженное давление, Па (мм рт. ст.)	$133 \cdot 10^{-6} (10^{-6})$
Атмосферное повышенное давление, Па (кгс см-2)	294 000 (3)
Повышенная температура среды, С	85
Пониженная температура среды, С	минус 60
Смена температур, °С:	•
от повышенной температуры ср∋ды	85
до пониженной »	минус 60
Повышенная относительная влажность для ис-	•
полнения В при t=35°C, %	98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В і.	
Плесневые грибы (для исполнения В).	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкости, % $\pm 10; \pm 20; \pm 30$ Тангенс угла потерь:

Номинальная	Тангенс угла потерь, %, не более и полное сопротивление, Ом, не более при номинальном напряжении, В								
емкость, мкФ	6,3	16	25	32	50	63	100		
15	_		_	_	_		8(10)		
22	_	_	_	-		8(8)			
33	-	_	- ,		8(8)		8(6)		
47	_	_	_	10(6)	_	8(5)			
68	_	_	10(4)	_	8(6)	-	15(4)		
100	_	15(4)	_	15(4)	_	15 (3)			
150	20 (4)	_	15(3)	_	20(2)	_	[-		
220	_	15(3)	_	20(2)	_		_		
330	30 (3)	_	20(_,5)		 				
470	_	20(1,5)	_		_		_		
680	30(1,5)]		

Примечание. В	скобках указаны	отонкоп кинерыне	сопротивления.
Ток утечки, мкА,	не более		. $(0,002 \ CU_{HOM} + 1)$

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

надежность

Минимальная наработка, ч	5000 15 10 000
в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	300
	тных значений, ука- к в разделе «Основ- технические данные»
в течение срока сохраняемости	
емкости, %, не более	土20
	тных значений, ука- к в разделе «Основ- технические данные»
	ных значений, ука- к в разделе «Основ- технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 0026-84.

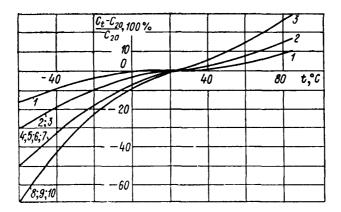
Допускается промывка конденсаторов в спирто-бензиновой смеси в пропорции 1:1 по объему при одновременном воздействии ультразвуковых колебаний частотой 18—20 кГц, время промывки не более 2 мин при температуре не более 35°C.

При монтаже конденсаторов в аппаратуру рекомендуется применять припой марки ПОС-61 по ГОСТ 21930—76. Температура припоя 260±5°С. Применяемый флюс состоит из 25% по массе канифоли ГОСТ 19113—73 и 75% по массе изопропилового ГОСТ 9805—76 или этилового спирта ГОСТ 18300—72. Время пайки не более 4 с. Расстояние от корпуса (узла сварки) до места пайки вывода не менее 5 мм.

Пайку производят с применением теплоотвода в виде пинцета с медными губками шириной 3 мм.

При монтаже конденсаторов изгиб выводов следует производить на расстоянии не менее 2,5 мм от корпуса (узла сварки).

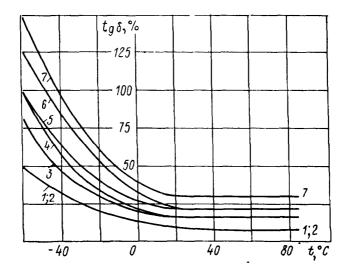
Значение растягивающей силы должно быть 10,0 Н (1 кгс). Угол поворот 180°, допустимое число поворотов 3.

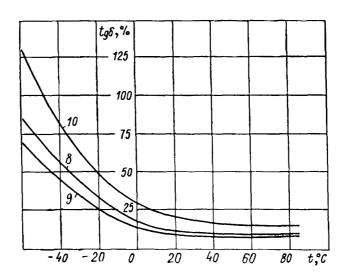

Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 месяцев.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 3000 Гц.

Конденсаторы должны быть герметичными.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

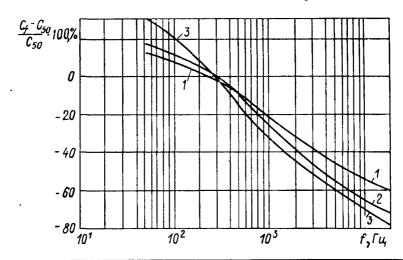

Зависимость изменения емкости от температуры



Номер	U _{HOM} ×C _{HO}	$U_{\text{HOM}} \times C_{\text{HOM}}$, $B \times MK\Phi$								
кривой	t=20+85°C	t=минус 60+:+20°С								
1	50×33 ; 63×22 ; 100×15	63 × 22								
2	6,3 × 150; 16 × 100; 32 × 47; 50 × 6,8; 50 × 150; 63 × 47; 63 × 100; 100 × 33; 100 × 68	50×33 ; 63×47 ; 100×15								
3	$6.3 \times 330; 6.3 \times 680; 16 \times 220; 16 \times 470; 25 \times 68; 25 \times 150; 25 \times 330; 32 \times 100; 32 \times 220$									
4	-	100 × 33								
5	-	$32 \times 100; 50 \times 68$								
6	-	16×100 ; 63×100 ; 100×68								
7		25×150 ; 25×68								
8	-	$32 \times 220; 50 \times 150$								
9		$6,3 \times 150; 16 \times 220$								
10	-	6,3 × 330; 6,3 × 680; 16 × 470; 25 × 330								

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

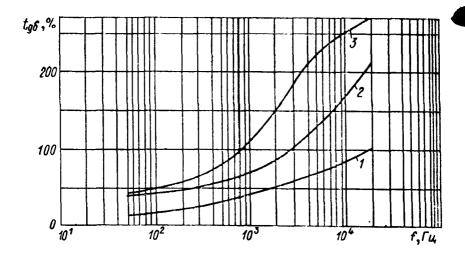
Зависимость тангенса угла потерь от температуры



КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

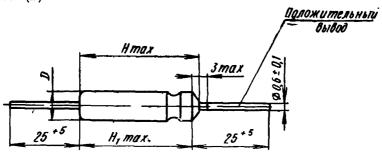
K52-11

Номер кривой	$U_{\text{HOM}} \times C_{\text{HOM}}, \text{ B} \times \text{MK}\Phi$	Номер кривой	$U_{\text{HOM}} \times C_{\text{HOM}}$, $B \times MK\Phi$
1	63 × 22	5	$32 \times 220; 50 \times 150$
2	50×33 ; 63×47 ;	6	$6,3 \times 150; 16 \times 220$
3	100×15 32 × 100; 50 × 68	7	$6,3 \times 330; 6,3 \times 680;$ $16 \times 470; 25 \times 330$
4	$16 \times 100; 63 \times 100;$	8	32×47
	100 × 68	9	100×33
		10	$25 \times 68; 25 \times 150$


Зависимость изменения емкости от частоты при $t\!=\!85^{\circ}\mathrm{C}$

Номер кривой	$U_{\text{HOM}} \times C_{\text{HOM}}$, B	× мкФ		
1	50×33 ; 63×22 ; 100×15			
2	6,3 × 150; 16 × 100; 32 × 47; 63 × 100; 100 × 33; 100 × 68	50×68 ;	50×150 ;	63×47 ;
3	$\begin{array}{c} 6,3 \times 330; 6,3 \times 680; 16 \times 220; \\ 25 \times 330; 32 \times 100; 32 \times 220 \end{array}$	16×470 ;	$25 \times 68;$	$25 \times 150;$

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ


Зависимость тангенса угла потерь от частоты при $t\!=\!85^{\circ}\mathrm{C}$

Номер кривой	$U_{ ext{ hom}} imes C_{ ext{ hom}}$, В $ imes$ мк Φ								
1	50 × 33; 63 × 22; 100 × 15								
2	$6,3 \times 150; 16 \times 100; 32 \times 47;$ $63 \times 100; 100 \times 33; 100 \times 68$	50×68 ;	50×150 ;	63×47 ;					
3	$\begin{array}{c} 6,3 \times 330; 6,3 \times 680; 16 \times 220; \\ 25 \times 330; 32 \times 100; 32 \times 220 \end{array}$	$16 \times 470;$	25×68 ;	$25 \times 150;$					

Конденсаторы K52-12 объемно-гористые танталовые уплотненные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Номинальная емкость, мьФ	Номинальное напряжение,	E.		H _{mlax}	н.	Масса, г, не более
	В	Номин.	Пред. откл	'' miax	H _{I max}	
100		3		11	9,4	0,8
220	6,3	4		14,5	12,9	1,5
470		4,6	±0,3	17,5	15,9	2,2
68		3	±0,5	11	9,4	0,8
150	10	4		14,5	12,9	1,5
330	10	4,6		17,5	15,9	2,2
680		6	±0,5	20	18,3	3,5
47		3		11	9,4	0,8
100	16	44	±0,3	14,5	12,9	1,5
220	10	4,6		17,5	15,9	2,2
470		6	±0,5		18,3	3,5
33		3			9,4	0,8
68	}	4	±0,3	14,5	12,9	1,5
150	25	4,6		17,5	15,9	2,2
330		6	±0,5	20	18,3	3,5

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

Продолжение

			i				
Номинальная емкость, мкФ	Номинальное напряжение,	D		H rax	н.	Масса, г, не более	
	В	Номин	Пред отел.	" rax	H _{I max}		
22		3		11	9,4	0,8	
47	32	4	±0,3	14,5	12,9	1,5	
100	92	4,6		17,5	15,9	2,2	
220		6	±0,5	20	18,3	3,5	
15		3		11	9,4	0,8	
33	50	44	±),3	14,5	12,9	1,5	
68	50	4,6		17,5	15,9	2,2	
150		6	±),5		18,3	3,5	
10	·	3)	11	9,4	0,8	
22		4	± 3,3	14,5	12,9	1,5	
47	63	63 4,6 6		17,5	15,9	2,2	
100				20	18,3	3,5	
[<u> </u>	<u> </u>	1	1	1	<u> </u>	

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

ОЖ0.464.251 ТУ Обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОР!

Синусоидальная вибрация:

диапазон	частот,	Γц						13000
амплитуда	а ускоре	ния,	$M \cdot C^{-2}$	(g)				200 (20)

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

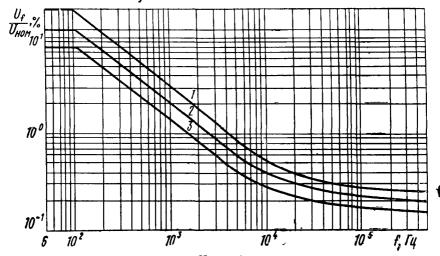
K52-12

Акустический шум:	
диапазон частот, Гц	5010 000
уровень звукового давления (относительно	
2.10-5 Па), дБ	160
Механический удар:	
одиночного действия	
пиковое ударное ускорение, $\mathbf{m} \cdot \mathbf{c}^{-2}$ (g)	15 000 (1500)
длительность действия ударного ускорения, мс	0,12
многократного действия	
пиковое ударное ускорение, $M \cdot c^{-2}$ (g)	1500 (150)
длительность действия, мс	1—5
Линейное ускорение, м \cdot с $^{-2}$ (g)	1000 (100)
Атмосферное пониженное давление, Па (мм рт. ст.):	
рабочее	133 (1)
предельное	12 000 (90)
Атмосферное рабочее повышенное давление, Па	
(Krc/cm ²)	294 000 (3)
Повышенная рабочая температура среды, °C	85
Пониженная рабочая температура среды, °C	минус 60
Смена температур, °С:	
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность, %:	
для исполнения В при температуре 35°C	98
» » УХЛ» » 25°С	98
Атмосферные конденсированные осадки.	
Соляной туман (для исполнения В)	
Плесневые грибы (для исполнения В).	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальная емкость, мкФ	Номи- наль- ное напря- же- нис, В	Тангенс угла по- терь, %, не более	Полное сопротив- ление, Ом, не более	Номинальная емкость, мкФ	Номи- наль- ное папря- же- ние, В	Тангенс угла по- торь, %, не более	Полное сопротив- ление, Ом, не более
100		10	4	68		10	4 2
220 470	6,3	25 30	1	150 330	10	20 30	1
	l.			680		30	1

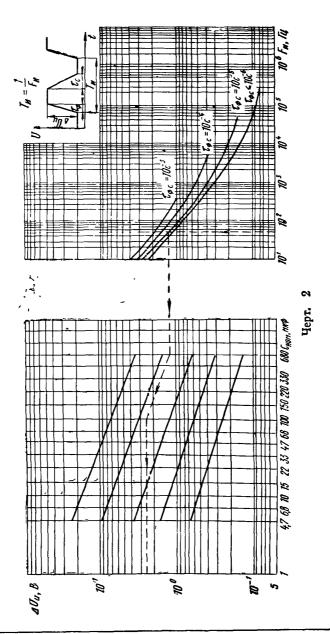
КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ


Продолжение

Номинальная емкость, мкФ	Номи- наль- ное напря- же- ние, В	Тангенс угла по- терь, %, не более	Полное сопротив- ление, Ом, не более	Номинальная емкость, мкФ	Номи- наль- ное напря- же- ние	Тангенс угла по- терь, %, не более	Полное сопротив- ление, Ом, не более
47		10	4	100	32	15	2
100	16	15	3	220	02	20	1,5
220		25	1,5	15		8	6
470		25	1	33	50	8	4
33	25	10	6	68	00	8	2
68		15	3	150		15	1,5
150		15	1,5	10		5	10
330		20	11	22	63	8	4
22		10	6	47	"	8	2
47		10	3	100		10	2

Ток утечки, мкА, не более:

для конденсаторов диаметром 3; 4; 4,6 мм . . 0,02 $C_{\text{ном}}$ $U_{\text{ном}}+1$ для конденсаторов диаметром 6 мм 0,003 $C_{\text{ном}}$ $U_{\text{ном}}+1$


Допускаемая амплитуда переменной синусоидальной сопротивляющей пульсирующего напряжения \boldsymbol{U}_f определяется по черт. 1:

Черт. 1 $1 - U_{\text{ном}} = 6,3 \text{ B}$ $2 - U_{\text{ном}} = 10; 16; 25 \text{ B}$ $3 - U_{\text{ном}} = 32; 50, 63 \text{ B}$

Допускаемый размах импульсного напряжения $\Delta U_{\rm H}$ (определяется по чер г. 2), В, не более

 $U_{\mathtt{HOM}}$

КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

надежность

Минимальная наработка, ч:	1
при температуре от минус 60 до +85°C 5000	•
» » от минус 60 до +70°C 15 000	
Минимальный срок сохраняемости, лет	
95%-ный ресурс, ч:	
при температуре от минус 60 до +85°C 10 000	
» » от минус 60 до +70°C 30 000	
Изменение электрических параметров в течение: минимальной наработки	
емкости, %, не более ±50	
тангенса угла потерь, %, не более	
тока утечки не более	-
полного сопротивления не более	-
минимального срока сохраняемости	
емкости, $\%$, не более ± 20	
тангенса угла потерь и тока утечки но 6 10 кратных значений, ука занных в разделе «Основ полного сопротивления не более	-

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0026—84.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 по ГОСТ 21930—76.

Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе изопропилового (ГОСТ 9805—76) или этилового (ГОСТ 18300—72) спирта.

Время пайки не более 4 с. Расстояние от корпуса (узла сварки) до места пайки вывода не менее 5 мм. Пайку производят с применением теплоотвода на виде пинцета с медными губками шириной 3 мм.

При монтаже конденсаторов изгиб выводов следует производить на расстоянии не менее 2,5 мм от корпуса (узла сварки).

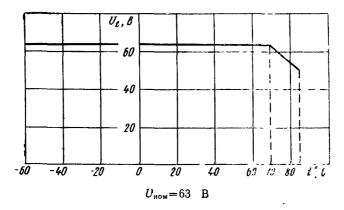
Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1 по объему.

Тренировку конденсаторов, вмонтированных в аппаратуру, проводят периодически один раз в год.

Значение низшей резонансной частоты превышает 5000 Гц.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 3000 Гц.

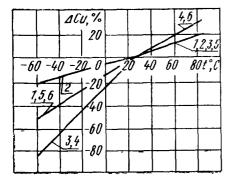
Значение растятивающей силы 10 Н (1 кгс).

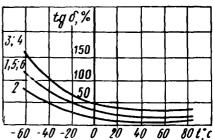

Угол поворота 180°, допустимое число погоротов 3.

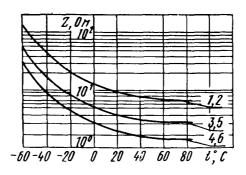
Время сохранения паяемости выводов без дополнительного облуживания 12 месяцев.

Способ крепления конденсаторов — за корпус

типовые характеристики

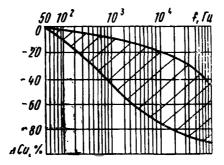

Зависимость допускаемого посточнного или пульсирующего напряжения на конденсаторе от температуры

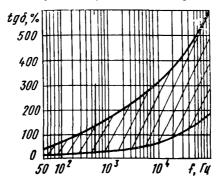



K52-12

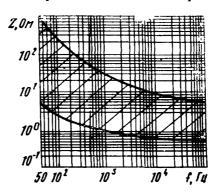
КОНДЕНСАТОРЫ ОБЪЕМНО-ПОРИСТЫЕ ТАНТАЛОВЫЕ

Зависимость изменения емкости, тангенса угла потерь, полного сопротивления от температуры



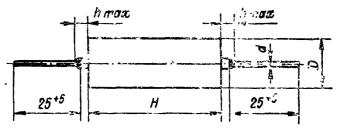


Но- мер кри- вой	$U_{ ext{HOM}}\! imes\!C_{ ext{HOM}}$, В $ ext{MK}$ Ф	Но- мер кри- вой	$U_{ m HOM} imes C_{ m HOM}$, В $ imes$ мк Φ
1	6,3×100; 10×68; 16×47; 25×33; 32×22	4	6,3×470; 10×330; 10×680; 16×220; 16×470; 25×330; 32×
2	50×15; 63×10	_	×220
3	6,3×220; 10×150; 16×100; 50×150	5	25×68; 32×47; 50×33; 50× ×68; 63×22; 63×47; 63×100
		6	25×150; 32×100


Зависимость изменения емкости от частоты при температуре 25°C

Зависимость тангенса угла потерь от частоты при температуре 25°C

Зависимость полного сопротивления от частоты при температуре 25°C

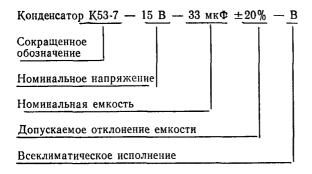


КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ ТАНТАЛОВЫЕ

K53-7

Конденсаторы K53-7 оксидно-полупроводниковые танталовые герметизированные неполярные постоянной емкости предназначены для работы в цепях достоянного, пульсирующего, знакопеременного и переменного токов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).


	Номи-		Размеры, мм							
Номинальная емкость,	нальное напряже-	D H			d			Масса, г, не		
мкФ	ние, В	Но- мин.	Пред. откл.	Но- мин.	Пред. огкл.	Ho- Miih.	Пред. откл.	h	более	
• 1		3,2		18					2	
1,5							1			
2,2				20		0,6				
8,3		4		20				3,5	2,5	
4,7	į			25					-,-	
6,8	15			_30						
10				20						
15		7		20						
22			±0,5	27	±0,5	0,8	±0,1		11	
33					30		-,-			•
47	ĺ	7,8		30				5,5	i	
0,1		3,2		18					2,5	
0,47	ļ			10					2	
1	30			20		0,6		3,5		
1,5		4		20					2,5	
2,2	ŀ	*		25					2,0	
3,3	l		l	30]	<u> </u>		l		

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ ТАНТАЛОВЫЕ

Продолжение

Номинальная емкость, мкФ	Номиналь-		Размеры, мм						
	ное на- пряжение,		D		H		d		Масса, г. не
	В	Но- мин.	Пред. откл	Но- мин.	Пред. огкл	Но- мин.	Пред. откл	ħ	более
4,7				20					
6,8		_		20				0.5	
10	30	7	$\pm 0,5$	27	$\pm 0,5$	0,8	±0,1	3,5	11
15			_ ,,	30	_ /	, ,	- ,-		
22		7,8		30				5,5	

Пример записи условного обозначения при заказе и в конструкторской документации:

Обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1-3000
амплитуда ускорения, м c^{-2} (g), не более	196 (20)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления, дБ, не более	150
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не более	9810 (1000)
длительность действия ударного ускорения, мс	0,2—1

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ ТАНТАЛОВЫЕ

K53-7

многократного действия	
пиковое ударное ускорение, м·с-2 (g), не более	1471 (150)
длительность действия ударного ускорения, мс	1—3
Линейное ускорение, м·с-2 (g), ге более	1962 (200)
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700—0,00013
	$(800-10^{-6})$
Атмосферное повышенное давление, Па (кгс см-2)	до 297 198 (до 3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, ℃:	
от повышенной температуры среды	85
до пониженной » »	минус 60
Повышенная относительная влажность, %:	
для исполнения В при t до 35° С	до 98
» » УХЛ при <i>t</i> до 25°С	до 98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННІ	DIE .
Допускаемые отклонения емкости, %	土10; 土20; 土30
Тангенс угла потерь, %, не болеє	6

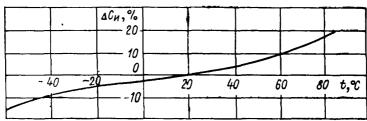
Номинальная емкость, мкФ	Номинальное напряжение, В	Ток утечки, мкА	Номинальная емкость, мкФ	Номинальное напряжение. В	Ток угечки, мкА
1—6,8 10; 15 22; 33 47	15	2 4,5 6 7	0,1; 0,47 1—3,3 4,7; 6,8 10—22	30	2 2 6 7

	НАДЕЖНОСТЬ	
	Минимальная наработка, ч	15 000
	Срок сохраняемости, лет	20
	95%-ный ресурс, ч	40 000
	Изменение электрических параметров:	
b	в течение минимальной наработки	
	емкости, %, не более	±50

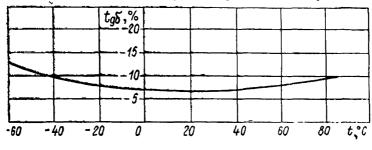
Ток утечки:

В

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ ТАНТАЛОВЫЕ

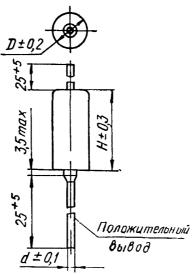

	тангенса угла потерь	не более	•	• •	•	• •	•	10 кратных значений, указанных в разделе «Основные технические данные»
	тока утечки не более				•	• •	•	30 кратных значений, ука- занных в разделе «Основ- ные технические данные»
3	течение срока сохраня	емости						
	емкости, %, не более							
								5 кратных значений, ука- занных в разделе «Основ- ные технические данные»
	тока утечки не более	• • • •			•	• •	•	10 кратных значений, ука- занных в разделе «Основ- ные те\нические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ


Указания по применению и эксплуатации по ОСТ В 11 464.002—74. **Сп**особ крепления конденсаторов — за корпус.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры



Зависимость тангенса угла потерь от температуры

Конденсаторы К53-14 оксидно-полупроводниковые герметичные полярные постоянной емкости предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры в цепях постоянного и пульсирующего ков.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Ì				Размеры, м	4 M		Удельная
	Номинальное напряжение, В	Номинальная емкость, мкФ	D H d		Масса, г, не более	материало- емкость, г/Кл ч, не более	
		0,1		1			95,23
		0,15					63,49
		0,22			0,6		43,29
ı		0,33				0,6	28,86
	6,3	0,47	3,2	7,5			20,26
		0,68					14,00
		1,0	ļ		ļ		9,52
ш		1,5				}	6,35
		2,2			Į		4,33

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжен

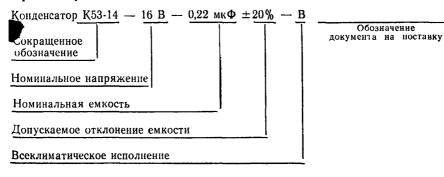
		Pas	мєры, мм			Удельная
Номинальное напряжение, В	Номинальная емкость, мкФ	D D	Н	d	Масса, г, не более	материало- емкость, г/Кл·ч, не более
6,3	3,3 4,7 6,8 10,0	4,0	1,0	0.6	0,85	4,09 2,87 1,98 1,35
·	15,0 22,0 33,0 47,0	7,2	12 12 16 16	0,8	2,5 2,5 3,0 3,0	2,64 1,80 1,44 1,01
	68,0 100,0	9,0	16,5		5,0	1,17 0,79
	0,1 0,15 0,22 0,33 0,47 0,68 1,0 1,5	3,2	7,5	0,6	0,6	60,00 40,00 27,27 18,18 12,76 8,82 6,00 4,00
10	2,2 3,3 4,7 6,8	4,0	10		0,85	3,86 2,58 1,81 1,25
	10,0 15,0		12		2,5	2,50 1,67
	22,0 33,0 47,0	7,2	16	0,8	3,0	1,36 0,91 0,64

K53-14

Продолжение

						тродолжение,
Номинальное	Размеры, мм					Удельная
напряжение, В	емкость, мкФ	D	D H d		Масса, г, не более	материало- емкость, г/Кл·ч, не более
	0,068					55,15
	0,1		İ			37,50
	0,15	ļ				25,00
	0,22	3,2	7,5		0,6	17,04
Ĭ	0,33	0,2	7,0		0,0	11,36
	0,47					7,98
16	0,68			0,6		5,52
10	1,0					3,75
	1,5					3,54
	2,2	4,0	10		0,85	2,41
	3,3					1,61
	4,7					1,13
	6,8		12		2,5	2,30
	10,0	7,2	12	0,8	2,0	1,56
	15,0		16			1,25
1	22,0				3,0	0,85
	33,0					0,57
	0,047				_	63,83
1	0,068					44,12
	0,1			İ		30,00
	0,15					20,00
	0,22	3,2	7,5		0,6	13,64
20	0,33	-,-		0,6		9,09
20	0,47					6,38
·	0,68					4,41
	1,0				1	4,25
	1,5	4,0	10	1	0,85	2,83
*	2,2 3,3		10			1,93 1,29
Z	1 0,0		<u>' </u>	<u> </u>	<u> </u>	1,23

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ


Продолжени

	1,7		Размеры, м	м		Удельная
Номинальное напряжение, В	Номинальная емкость, мкФ	D	Н	d	Масса, г, не более	матернало- емкость, г/Кл·ч, не более
20	4,7 6,8		12		2,5	2,66 1,84
	10,0 15,0 22,0	7,2	16	0,8	3,0	1,50 1,00 0,68
30	0,033 0,047 0,068 0,1 0,15 0,22 0,33 0,47 0,68	3,2	7,5	0,6	0,6 60,61 42,55 29,41 20,00 13,33 9,09 6,06 4,26 2,94	
	1,0 1,5 2,2 3,3	4,0	10		0,85	2,83 1,89 1,29 0,86
	4,7 6,8 10,0 15,0	7,2	12 12 16 16	0,8	2,5 2,5 3,0 3,0	1,77 1,22 1,0 0,67

Февраль 1987 Лист 2

K53-14

Пример записи полного условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Сипусоидальная вибрация:	
диапазон частот, Гц	1-500
амплитуда ускорения, м \cdot с $^{-2}$ (g $\dot{\cdot}$, не более	100 (10)
Механический удар:	• •
одиночного действия	
пиковое ударное ускорение, $M \cdot C^{-2}$ (g)	1500 (150)
многократного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g)	400 (40)
Атмосферное пониженное давление, кПа (мм рт. ст.)	$0,133 \cdot 10^{-6} \ (10^{-6})$
Атмосферное повышенное давление, кПа (кгс см-2)	до 291 (до 3)
Повышенная рабочая температура среды, °С	85
Пониженная рабочая температура среды, °С	минус 60
Смена температур, °С:	
от повышенной температуры среды	85
до пониженной » »	минус 60
Повышенная относительная влажность, %:	
для исполнения В при $t = 35^{\circ}$ С	98
» » УХЛ при $t=25$ °С	. 98
Атмосферные конденсированные осадки (роса, иней).	
Плесневые грибы (для исполнения В).	
• • • •	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДЛННЫЕ

Допускаемые отклонения емкости, % ±10; ±20; ±30 Примечание. Конденсаторы с догускаемыми отклонениями ±10; ±20% поставляют в количествах, согласованных между изготовителем и потребителем.

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Тангенс угла потерь и ток утечки:

Номинальное напряжение, В	Номинальная емкость, мкФ	Іок утечки, мкА, не более	Тангенс угла погерь, %, не более
6,3	0,1—2,2		
10,0	0,1—1,5		
16,0	0,068—1,0	5	
20,0	0,047-0,68		}
30,0	0,033—0,68		25
6,3	3,3—22,0		20
10,0	2,2—22,0		
16,0	1,5—22,0	$0.1 C_{\text{HOM}} U_{\text{HOM}} + 10$	
20,0	1,0—15,0		
30,0	1,0—6,8		
6,3	33,0—100,0		
10,0	33,0—47,0	0.15.0 17 .00	00
16,0	33,0	$0.15 C_{\text{HOM}} U_{\text{HOM}} + 20$	30
20,0	22,0		<u>'</u>
30,0	10,0; 15,0		

надежность

Наработка, ч	10 000
Интенсивность отказов, 1/ч, не более	1 · 10 - 7
95%-ный срок сохраняемости, лет	12
Изменение электрических параметрсв:	
в течение наработки	
емкости, %, не более	± 30
тангенса угла потерь, %, не солее	45
тока утечки не более	10-кратных значений, ука- занных в разделе «Основ- ные технические данные»
в течение 95%-ного срока сохраняемости	
емкости, %, не более	±25
тангенса угла потерь, %, не более	40
тока утечки не более	10-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При хранении, монтаже и эксплуатации конденсаторов необходимо рукодствоваться указаниями, изложенными в ОСТ 11 074.011—79, а также указаниями, изложенными ниже.

Допускается одноразовый изгиб выводов конденсаторов на расстоянии 1,5 мм при радиусе изгиба, равном полуторам диаметрам вывода.

Значения низших резонансных частот конденсаторов при креплении за корпус превышает $10\,000\,\Gamma$ ц; при креплении за выводы на расстоянии $6\pm1\,$ мм от торца корпуса (трубочки изолятора) конденсаторов диаметром $4,0\,$ мм — $1227\,$ Γ ц; диаметром $7,2\,$ мм — $1142\,$ Γ ц; диаметром $9,0\,$ мм — $929\,$ Γ ц.

Конденсаторы пригодны для мо тажа в аппаратуре методом групповой пайки или паяльником.

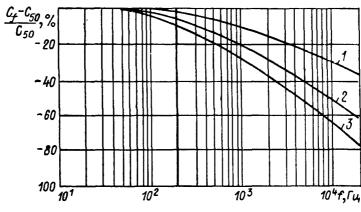
При групповой пайке марка припоя ПОС-61 или ПОССу-61-0,5 (ГОСТ 21930—76), применяемый флюс активированный ЛТИ-120 (ТУ 84-406—73), температура припоя $260\pm5^{\circ}$ С, продолжительность пайки не более 10 с.

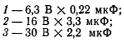
При пайке паяльником марка припоя ПОС-61 или ПОССу-61-0,5 (ГОСТ 21930—76), применяемый флюс активированный ЛТИ-120 (ТУ 84-406—73), температура паяльника не более 330°С, продолжительность пайки не более 10 с.

При пайке паяльником рекомендуєтся применение теплоотвода.

Выводы кондепсаторов, включая места их присоединения к корпусу (трубочке изолятора) должны выдержигать без механических повреждений воздействия:

- а) изгибающей силы;
- б) скручивания;
- в) растягивающей силы 10 Н (1 кгс).

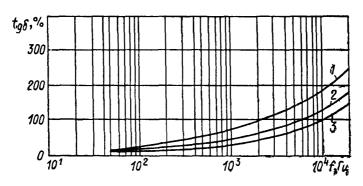

Выводы конденсаторов, подлежащие электрическому соединению пайкой, должны обладать паяемостью без дополнительного облуживания в течение 6 месяцев с даты изготовления.


Минимальное расстояние от торца корпуса (трубочки изолятора) до места пайки вывода должно быть 5 мм. Почрытия выводов, кроме торцов, не должны иметь просветов основного металла, коррозионных поражений, пузырей, отслаивания и шелушения. Конденсаторы должны быть теплостойкими, герметичными. Конденсаторы не должны иметь резонансных частот в диапазоне до 500 Гц.

Февраль 1987

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от частоты

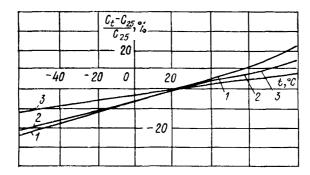


 $1-16~{\rm B}\times 10~{\rm mk\Phi}; \ 2-30~{\rm B}\times 6.8~{\rm mk\Phi}; \ 3-6.3~{\rm B}\times 22~{\rm mk\Phi}$


КОНДЕНСАТОРЫ оксидно-полупроводниковые

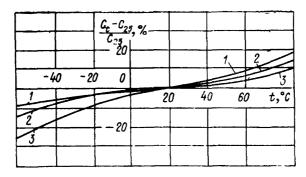
K53-14

Зависимость тангенся угла потерь от частоты



 $1-30~{\rm B} \times 2.2~{\rm mk}\Phi, 2-16~{\rm B} \times 3.3~{\rm mk}\Phi; 3-6.5~{\rm B} \times 0.22~{\rm mk}\Phi$

 $1-6,3~{
m B} imes 22~{
m mk}\Phi; 2-16~{
m B} imes 10~{
m mk}\Phi; 3-30~{
m B} imes 6,8~{
m mk}\Phi$

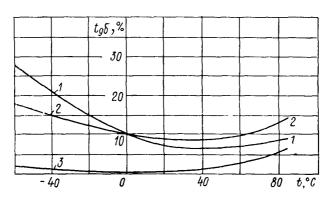

Зависимость изменения емкости от температуры

$$1-30~{\rm B} \times 2,2~{\rm mk}\Phi; \ 2-16~{\rm B} \times 3,3~{\rm mk}\Phi; \ 3-6,3~3\times 0,22~{\rm mk}\Phi$$

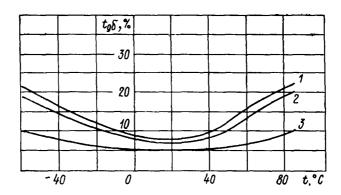
$$2 - 16 \text{ B} \times 3,3 \text{ мк}\Phi$$
;

$$3 - 6,3 \ 3 \times 0,22$$
 мк Φ

$$1-6,3$$
 3 \times 2,2 mkΦ;
2-16 B \times 10 mkΦ;
3-30 B \times 6,8 mkΦ


$$2-16~\mathrm{B} imes 10~\mathrm{mk}$$
Ф;

$$3 - 30 \text{ B} \times 6.8 \text{ мк}$$
Ф


КОНДЕНСАТОРЫ оксидно-полупроводниковые

K53-14

Зависимость тангенса угла потерь от температуры

 $1-30~{\rm B} \times 2.2~{\rm mk}\Phi; \ 2-16~{\rm B} \times 3.3~{\rm mk}\Phi; \ 3-6.3~{\rm B} \times 0.22~{\rm mk}\Phi$

 $1-30~{\rm B} \times 6.8~{\rm mk}\Phi; \ 2-6.3~{\rm B} \times 2.2~{\rm mk}\Phi; \ 3-16~{\rm B} \times 10~{\rm mk}\Phi$

Конденсаторы Қ53-15 оксидно-полупроводниковые танталовые полярные постоянной емкости предназначены для работы в составе аппаратуры в цепях постоянного, пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают двух видов: К53-15 и К53-15А.

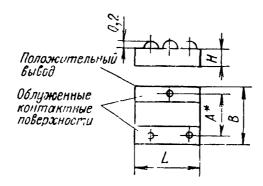
Конденсаторы изготавливают в исполнении для умеренного и холодного климата (УХЛ).

Конденсаторы К53-15A на номинальное напряжение 30 В емкостью 0,1 мкФ изготавливают двух вариантов.

Положительный Е выбод Облуженные контактные поверхности

K53-15, K53-15A

Примечание. Положительный вывод обозначен красной краской.

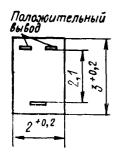

_	Номи-		Размеры, мм							
!ом лидльная емкость.	напряже-	1		4	В		H		Масса, г, не	
мкФ	ние, В	Но- мин.	Пред. откл.	Но- мин.	Пред. огкл	По- мин.	Пред. огкл.	A	более	
2,2; 3,3		2,5		4				2,3	0,15	
4,7; 6,8	3	5	5	4				2,3	0,25	
10; 15	,	5		3	,			5,5	0,65	
22; 33		10,0		3				5,5	1,5	
1,5; 2,2		2,5	+0,5	1	±0,5	2	+0,3	2,3	0,15	
3,3; 4,7	6,3	5,0	0,2	4	1		-0,5	2,3	0,25	
6,8	0,3	5,0		3				5,5	0,65	
10; 15		10,0		3				5,5	1,5	
1,0; 1,5	10	2,5		4				2,3	0,15	
,2; 3,3		5,0])]			2,3	0,25	

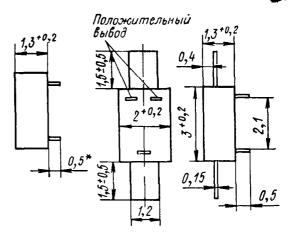
КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

	Номи		Размеры, мм									
Номинальная емкость. мьФ	нальное напряже- ние, В	Но Пред По- Пред Но		Н Пред откл	Λ	Масса, г. не болес						
0,68; 1,0 1,5; 2,2 3,3; 4,7	16	2,5 5,0 5,0	5,0 5,0 0,0 2,5 5,0 0,0 2,5 -0,2 2,5 5,0				4 4 8 8				2,3 2,3 5,5	0,15 0,25 0,65
6,8; 10 0,47; 0,68 1,0; 1,5 2,2; 3,3 4,7; 6,8	20	2,5 5,0 5,0 10,0		4 4 8 8	±0,5	2	+0,3	2,3 2,3 5,5 5,5	1,5 0,15 0,25 0,65 1,5			
0,1; 0,15; 0,22 0,33; 0,47 0,68; 1 1,5; 2,2 3,3; 4,7	30	2,5 2,5 5,0 5,0		4 4 8 8		1,5 2 2 2 2		2,3 2,3 2,3 5,5 5,5	0,12 0,15 0,25 0,65 1,5			

K53-15A

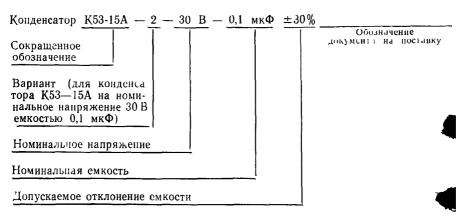

	Номи-			1	азмеры,	мм		Ì	
Номинальная емкость,	нальное напряже-		L B H				Н		Масса, г, не
мкф	ние, В	Но- мин.	Пред. откл.	Но- м ин.	Пред. огкл.	Ho- мин.	Пред. откл.	A	более
3,3; 4,7		2,5		4				2,3	0,15
6,8; 10	3	5		4				2,3	0,25
15; 22		5		8				5,5	0,65
33; 47		10	8			1	5,5	1,5	
2,2; 3,3		2,5	2,5	4		Ì		2,3	0,15
4,7; 6,8	6,3	5		4				2,3	0,25
10; 15	0,3	5		8				5,5	0,65
22; 33		10		8				5,5	1,5
1,5; 2,2		2,5		4		2		2,3	0,15
3,3; 4,7	10	5		4				2,3	0,25
6,8; 10	10	5		8				5,5	0,65
15; 22		10	,	8			+0,3 -0,5	5,5	1,5
1,0; 1,5		2,5	+0.5 -0.2	4	± 0.5			2,3	0,15
2,2; 3,3	16	5	-0,2	4				2,3	0,25
4,7; 6,8	10	5		8				5,5	0,65
10; 15	1	10		8				5,5	1,5
0,68; 1,0		2,5		4				2,3	0,15
1,5; 2,2	20	5		4				2,3	0,25
3,3; 4,7	20	5		8				5,5	0,65
6,8; 10; 15		10		8		l		5,5	1,5
0,15; 0,22;		2,5		4		1,5		2,3	0,12
0,33					[
0,47; 0,68		2,5		4		2		2,3	0,15
1,0; 1,5	30	5	1 1	4		2		2,3	0,25
2,2; 3,3		5		8		2		5,5	0,65
4,7; 6,8; 10		10		8		2		5,5	1,5


K53-15A

30 В < 0,1 мкФ

Вариант 1

Вариант 2



Масса не более 0,12 г

Примечание Сторона расположения моложительных гызодов обозначена краснои краской.

Пример записи условного обозначения при заказе и в коне рукторской документации

K53-15

ВНЕШНИЕ ВОЗДЕИСТВУЮЩИЕ ФАКТОРЫ

Сипусоидальная вибрация:	
дианазон частот, Гц	1-2000
амплитуда ускорения, м c^{-2} (g), не более	98,1 (10)
Акустический шум:	, ,
диапазон частот, Гц	50-10 000
уровень звукового давления, дБ, не более	140
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g), не более	4905 (500)
длительность действия ударного ускорения, мс	1—2
многократного действия	
пиковое ударное ускорение, м·с-2 (g), не более	392 (40)
длительность действия ударного ускорения, мс	2—10
Линейное ускорение, м c^{-2} (g), не более	245 (25)
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700—0,00013
	$(800-10^{-6})$
Атмосферное повышенное давление, Па (кгс·см-2)	до 297 198 (де 3)
Повышениая температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, °C:	
от повышенной температуры среды	8 5
до пониженной » »	минус 60
Повышенная относительная влажность для испол-	
нения УХЛ при t до 25°С, $\%$	до 98
Атмосферные понденсированные озадки (роса, иней).	
основные технические дань	НЫЕ
T	. 00 . 20
Допускаемые отклонения емкости, %	$\pm 20, \pm 30$
Тангенс угла потерь, %, не более:	12
для конденсаторов на $U_{\text{чом}} = 3 \text{ B} \dots \dots$	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
v v v v v v v v v v	•
Ток утечки, мкА, не более	$0.02\ CU_{ m HOM}$ или 2, если $0.02\ CU_{ m HOM}$ <2
надэжность	
Минимальная наработка, ч:	
для конденсаторов К53-15	10 000
» » K53-15A	15 000
w 1\00°10/1	10 000

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Срок сохраняемости, лет	15
95%-ный ресурс. ч	30 000
Изменение электрических параметров:	•
в течение минимальной наработки:	_
емкости, %, не более	±50
тангенса угла потерь, %, не более	
для конденсаторов на $U_{HOM} = 3$ и 6,3 В	100
» » $U_{\text{HOM}}^{\text{nom}}$ cb. 6,3 B	80
тока утечки, мА, не более	0,1
в течение срока сохраняемости:	
емкости, %, не более	±20
тангенса угла потерь не более	5 кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	10-кратных значений, ука- занных в разделе «Основ- ные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 464.002—74 с дополнениями, изложенными в настоящем разделе.

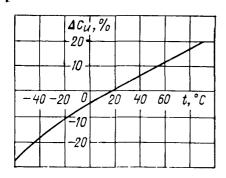
Конденсаторы допускают эксплуатацию при температуре 125°C при напряжении, равном 0,7 $U_{\scriptscriptstyle \mathrm{HOM}}$.

При температуре 125°C изменение емкости не более 30%, ток утечки не должен превышать всличин, вычисленных по формуле

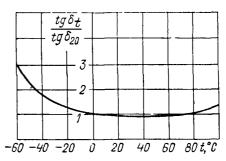
 $I_{yr} = 0.375 CU_{\text{110M}}$.

Конденсаторы разрешается применять в герметизированных объемах (микромодулях, микросхемах, блоках аппаратуры и т. п.), могущих подвергаться воздействию относительной влажности воздуха до 98% при температуре до 40°C.

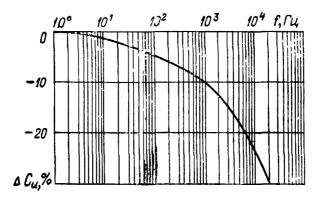
Способ крепления конденсаторов — за корпус приклейкой.

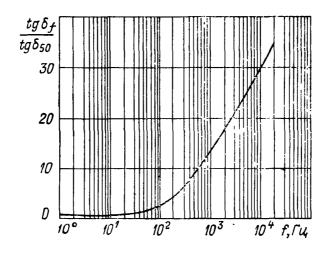

Слвигающая сила:

Сдвигающая сила, кгс (Н)	Размер конденсатора, мм
0,25 (2,3)	$ \begin{array}{c} 2 \times 3 \times 1,3 \\ 2,5 \times 4 \times 1,5 \\ 2,5 \times 4 \times 2 \end{array} $
0,65 (6,3)	$\begin{array}{c} 5\times4\times2\\ 5\times6\times2 \end{array}$
1,5 (14,2)	10×8×2


K53-15

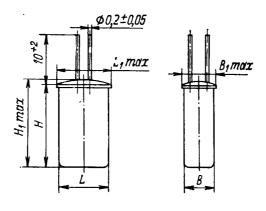
ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры


Зависимость тангенса угла потерь от температуры

Зависиместь изменения емкости от частоты

Зависимость тангенса угла потерь от частоты


K53-16

Конденсаторы K53-16 оксидно-полупроводниковые танталовые полярные постоянной емкости предназначены для работы в цепях постоянного, пульсирующего токов.

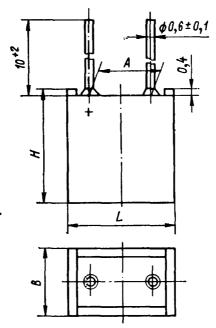
Конденсаторы изготавливают в двух конструктивных исполнениях: незащищенные и в оболочках из органического материала.

Конденсаторы в оболочках из органического материала изготавливают в двух климатических исполнениях: во всеклиматическом исполнении (В) и исполнении для умеренного и холодного климата (УХЛ).

Незащищенные конденсаторы

	Поминальная	Помпиальное		Раз	меры,	мм, не	более		Масса, г,
1	емкость, мкФ	напряжение, В	L	L, max	В	B max	Н	H max	не более
	1,5; 2,2		1,9	2,1	1,2	1,4	3,4	3,6	0,05
	4,7	1,6	2,3	2,5	1,6	1,8	3,7	3,9	0,075
	6,8; 10		2,3	٤,5	1,6	1,8	5,0	5,2	0,1
	1,0		1,9	2,1	1,2	1,4	3,4	3,6	0,05
	3,3	3	2,3	2,5	1,6	1,8	3,7	3,9	0,075
	4,7		2.3	2,5	1,6	1,8	5,0	5,2	0,1
	2,2		2,3	2,5	1,6	1,8	3,7	3,9	0,075
	3,3	4	2,3	2,5	1,6	1,8	5,0	5,2	0,1
	10		3,1	3,3	2,2	2,3	6,0	6,3	0,3

Февраль 1987 Лист 1


КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ ·

Продолжени

Поминальная	Помпнальное		Par	меры,	мм, пс	болсе		Масса, г,
емкость, мкФ	напряжение В	L L mix		В	B_{max}	11	H max	не более
0,68		1,9	2,1	1,2	1,4	3,4	3,6	0,05
1,5	6,3	2,3	2,5	1,6	1,8	3,7	3,9	0,075
2,2	0,3	2,3	2,5	1,6	1,8	5,0	5,2	0,1
6,8		3,1	3,3	2,2	2,3	6.0	6,3	0,3
0,47		1,9	2,1	1,2	1,1	3,4	3,6	0,05
1,0	10	2,3	2,5	1,6	1,8	3,7	3,9	0,075
1,5	10	2,3	2,5	1,6	1,8	5,0	5,2	0,1
4,7]	3,1	3,3	2,2	2,3	6,0	6,3	0,3
0,33	\ <u></u>	1,9	2,1	1,2	1,4	3,4	3,6	0,05
0,68		2,3	2,5	1,6	1,8	3,7	3,9	0,075
1,0	16	2,3	2,5	1,6	1,8	5,0	5,2	0,1
3,3		3,1	3,3	2,2	2,3	6,0	6,3	0,3
0,22		1,9	2,1	1,2	1 4	3,4	3,6	0,05
0,47	00	2,3	2,5	1,6	1,8	3,7	3,9	0,075
0,68	20	2,3	2,5	1,6	1,8	5,0	5,2	0,1
2,2		3,1	3,3	2,2	2,3	6,0	6,3	0,3
0,01; 0,015; 0,022; 0,033; 0,047; 0,068; 0,1; 0,15		1,9	2,1	1,2	1,4	3,4	3,6	0,05
0,22; 0,33	30	2,3	2,5	1,6	1,8	3,7	3,9	0,075
0,47		2,3	2,5	1,6	1,8	5,0	5,2	0,1
1,0; 1,5		3,1	3,3	2,2	2,3	6,0	6,3	0,3
0,68	40	3,1	3,3	2,2	2,3	6,0	6,3	0,3
0,47	50	'	''		-,-	","	"	3,5

Февраль 1987 Лист 1

Конденсаторы в оболочках из органического материала

Номи-	1-Томи-				Разм	еры, мі	м			
нальная емкость,	нальное напряже-		L.	F	1	1	3		A	Масса, г, не
мкФ	mie, B	Но- мин.	Пред. огкл.	Пэ- м и н.	Пред. откл.	Но- мин.	Пред. откл.	По- мин.	Пред. откл.	более
22		7,5))		3,6				0,6
47	4	8,5		10,0		3,8	}			1,0
100	4	8,5		10,0	1	5,0				1,5
220		9,5		13,5		5,0	1	_	1,	2,5
15		7,5	±0,5	9,0	±0,3	3,6	±0,4	5	±0,5	0,6
33		8,5		10,0		3,8				1,0
68	6,3	8,5	}	10,0		5,0	,	}	}	1,5
150		9,5		13,5		5,0				2,5
330		13		13,5		5,6		10	Ì	5,0

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

	Размеры им						лжение 1						
Номи- пальная	нальное		L	/	<u>'</u>	1	В		A				
емкость, мкФ	напряже- нне. В	По- мин.	Пред. откл	Но-	Пред откл.	llo- мин.	Пред. откл.	Но- мин.	Пред. откл.	г, не более			
10	1	7,5		0,0		3,6			1	0,6			
22		8,5		10,0		3,8		5		1,0			
47	10	8,5		10,0		5,0)	İ	1,5			
100		9,5		13,5		5,0				2,5			
220		13		16,5		5,6		10		5,0			
6,8		7,5		9		3,6				0,6			
15	İ	8,5		10		3,8		5] ;	1,0			
33	16	8,5		10		5,0			Э	3	Э	İ	1,5
68		9,5		13,5		5,0				2,5			
150		13		16,5		5,6	•	10		5,0			
4,7		7,5		9		3,6	1			0,6			
10		8,5		10		3,8		_		1,0			
22	20	8,5		10		5,0		5		1,5			
47		9,5		13,5		5,0	l			2,5			
100		13	±0,5	16,5	±0,3	5,6	±0,4	10	±0,5	5,0			
2,2 3,3		7,5		9		3,6				0,6			
4,7]	3,8			1,0				
6,8		8,5		10		3,8		5		1,0			
10 15	30	,				5,0 5,0						1,5 1,5	
33	-	9,5		13,5		5,0				2,5			
68	-	13	1	16,5		5,6		10	ļ	5,0			
1,5	 	7,5	1	9		3,6			İ	0,6			
3,3	40	8,5		10		3,8				1,0			
6,8		8,5		10		5,0		5		1,5			
1,0		7,5		9		3,6		Ĭ		0,6			
2,2	50	8,5		10		3,8				1,0			
4,7	<u> </u>	8,5	1	10	·	5,0	<u> </u>		<u> </u>	1,5			

K53-16

Пример записи условного оболначения при заказе и в конструкторской документации:

don's mentagan.		
Конденсатор К53-16 — 3 В — 3,3 меФ	$\pm 20\%$ — B	
сокращенное обозначение		Обозначение документа на поставку
Номинальное напряжение		
Номинальная емкость		
Допускаемое отклонение емкости		
Всеклиматическое исполнение		

ВНЕШНИЕ ВОЗДЕНСТВУЮЩИЕ ФАКТОРЫ

	Синусондальная вибрация:	
	диапазон частот	15000
	амплитуда ускорения, м \cdot с $^{-2}$, (g), не более	392 (40)
	Акустический шум:	, ,
	диапазон частот, Гц	5010 000
	уровень звукового давления, дБ, не более	160
	Механический удар:	
	одиночного действия	
	пиковое ударное ускорение, м·с-2 (g), не более	9810 (1000)
	длительность действия ударного ускорения, мс	0,2—1
	многократного действия	
	пиковое ударноє ускорение, м·с-2 (g), не более	1471 (150)
	длительность действия ударного ускорения, мс	1-3
	Линейное ускорение, $\mathbf{M} \cdot \mathbf{c}^{-2}$ (g), не более	4905 (500)
	Атмосферное пониженное давление Па, (мм рт. ст.):	
	для незащищенных конденсатогов	106 700—0,00013
	·	$(800-10^{-6})$
	для конденсаторов в оболочке из органического	,
	материала	
	в исполнении УХЛ	106 7000,00013
د-		$(800-10^{-6})$
	» » B	106 700—133,32
	•	(800—1)
	Атмосферное повышенное давление Π а, (кгс·см $^{-2}$)	•
	Повышенная температура среды, °С	85
P	Пониженная температура среды, °С	минус 60
	and the other street, and the street	, ,

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Смена температур, "С:	
от повышенной температуры среды	85
до пониженной » »	минус 60
Повышенная относительная влажность, %:	
для исполнения УХЛ при t до $25^{\circ}\mathrm{C}$	до 98
» » В при <i>t</i> до 35°С	до 98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкости, % ±20; ±30 Тангенс угла потерь:

Вид конденсаторов	Номи гальное напряжение, В	Поминальная емкость, мкФ	Тангенс угла потерь, %, не более
Пезащищенные	4	_	12
	40, 50		8
	30	0,01-0,068	8
	1,63	0,1—33	12
	3,3	0,1—33	10
	10	4,7—33	10
	10	0,13,3	10
	16—30	0,1—33	8
В оболочке из органического	4		12
материала	6,5; 10		10
	16—50	_	8

Ток утечки, мкА, не более:

для конденсаторов с зарядом $CU_{\text{ном}}$ до 500 мкКл

» » » СU _{том} св. 500 мкКл
 » » СU_{ном} св. 1000 мкКл

 $0.02\ CU_{
m H}$ или 2, ecли $0.02\ CU_{
m HOM} < 2$ $0.01\ CU_{
m HOM} + 1$ $0.01\ CU_{
m HOM}$

K53-16

Полное сопротивление на частоте 100 кГц:

Номиналь н ая емкость, мкФ		Полное сопротивление, Ом, не более при номинальном напряжении, В							
Callotte, Mr.	4	6,5	10	16	20	30	40	50	
1,0	-	-	_	_		_		11	
1,5	-	-		-		-	9,5	_	
2,2	1 - 1	-]		-	7,0		6,5	
3,3	-		-			5,3	4,5	_	
4,7	-	_	_	-	4,0	3,5	_	3,3	
6,8	_	-		3,5		2,9	2,6	_	
10	!	-	2,9		2,3	2,2		-	
15		2,7	_	2,0	-	2,0		-	
22	2,7		1,8	_	1,6	-	-	-	
33		1,8	_	1,6		1,4	_		
47	1,8	_	1,3		1,4	_	-	_	
68	-	1,3		1,4	_	0,8		-	
100	1,3	_	1,0	-	0,8	_			
130	-	1,0		0,8	_	_	_	-	
220	1,0	_	0,6	_	-	_	_	_	
339	_	0.6	-		-	_	_	_	

надежность

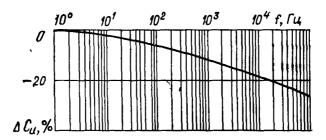
Минимальная наработка, ч	30 OGO
Срок сохраняемости, лет	15
95%-ный ресурс, ч	60 00%
Изменение электрических парамстров:	
в течение минимальной наработки	
емкости, %, не более	± 50
· тангенса угла потерь, %, не более	
для незащищенных конденсаторов, кроме кон-	
денсаторов $4\mathrm{B}{ imes}10\mathrm{mk}\Phi$ и $6,3\mathrm{B}{ imes}6,8$ мк Φ	~
и для конденсаторов в сболочках из ор-	
ганического материала на $U_{ exttt{HOM}}$ св. $10~\mathrm{B}$	80

для остальных конденсаторов в оболочках	
из органического материала и для незащи-	
щенных конденсаторов 4 $\mathrm{B} imes 10$ мк Φ и	
6,3 В × 6,8 мкФ	100
нь	-кратных значений, ука- ниных в разделе «Основ- ые технические данные», о не более 600 мкА
полного сопротивления на час-оте 100 кГц не	
38	кратных значений, ука- анных в разделе «Основ- ые технические данные»-
в течение срока сохраняемости	
емкости, %, не более	
для незащищенных конденсаторов	±30
для конденсаторов в оболочках из органичес-	
кого материала	±20
тангенса угла потерь не более 5 заг	кратных значений, ука- нных в разделе «Основ- ые технические данные»
тока утечки не более	-кратных значений, ука- нных в разделе «Основ- ые технические данные»
полного сопротивления на частоте 100 кГц не	
3al	5-кратных значений, ука- нных в разделе «Основ- ые технические данные»

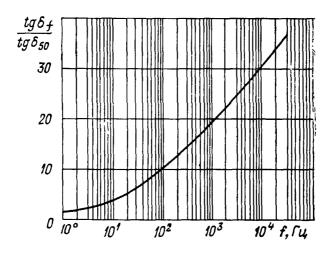
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 464.002—74 с дополнениями, изложенными в настоящем разделе.

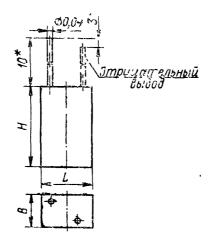
Конденсаторы незащищенные разрешается применять в герметизированных объемах (микромодулях, микросхемах, блоках аппаратуры и т. п.), могущих подвергаться воздействию относительно∴ влажности воздуха до 98% при температуре до 40°С.


Способ крепления конденсаторов — за корпус.

Растягивающая сила для конденсаторов с диаметром вывода 0,2 мм — 0,3 кгс (2,94 H).


Расстояние места пайки от торца корпуса конденсатора не менее 2 ми для конденсаторов с диаметром выводов — 0,6 мм.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от частоты

Зависимость тангенса угла потерь от частоты

Конденсаторы К53-16А оксидно-полупроводниковые танталовые незащищенные полярные постоянной емкости предназначены для работы в составе герметизированных узлов (блоков) аппаратуры в цепях постоянного и пульсируютого токов

Примечание. Положительный вывод обозначен красной точкой, нанесенной на корпусе со стороны положительного вывода

ī			\		Разме	ры, мм				
1	Номипаль-		L		H		В			
	ное напряжение, В	I Іоминальная емкость, мкФ	Но- мин.	Пред сткл.	Но- мин.	Пред. откл.	Но- мин	Пред. откл.	Масса, г. не более	
	1,6	1,5; 2,2 1,7 4,7 1,9 6,8; 10 1,9	1,9		2,7 3,0 4,0		1,2 1,6 1,6		0,05 0,075 0,1	
	3	1 3,3 4,7	1,9 +0,2	2,7 3,0 4,0	+0,2	1,2 1,6 1,6	+0,2	0,05 0,075 0,1		
	4	2,2 3,3	1,9	9	3,0 4,0		1,6		0,075 0,1	

K53-16A

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

	l			Разме	ры, мм			
Номиналь-					<u> </u>	B		
ное напря- жение, В	Номинальная емкость, мкФ	Но- мин.	Пгед. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Macca,ir; не болеге
6,3	0,68 1,5	1,7		2,7 3,0		1,2 1,6		0,05 0,075
	2,2	1,9		4,0		1,6		0,1
10	0,47 1,0 1,5	1,7 1,9 1,9		2,7 3,0 4,0	+0,2	1,2 1,6 1,6		0,05 0,075 0,1
16	0,33 0,68 1,0	1,7 1,9 1,9		2,7 3,0 4,0		1,2 1,6 1,6		0,05 0,075 0,1
20	0,22 0,47 0,68	1,7 1,9 1,9	+0,2	2,7 3,0 4,0		1,2 1,6 1,6	+0,2	0,05 0,075 0,1
30	0,01; 0,015; 0,022; 0,033; 0,047; 0,068; 0,10; 0,15	1,7		2,7		1,2		0,05
	0,22; 0,33 0,47	1,9 1,9		3,0 4,0		1,6 1,6		0,075 0, 1

Синусоидальная вибрация:

K53-16A

Пример записи условного обозначения при заказе и в конструкторской документации:

Конденсатор K53-16A — 3 В — 3,3 мкФ ±20%

Сокращенное обозначение

Номинальное напряжение

Номинальная емкость

Допускаемое отклонение емкости

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

отпусондальная впорация.	
диапазон частот, Гц	1—5000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	392 (40)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления, дБ, не более	160
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·с-2 (g), не бо-	
лее	9810 (1000)
длительность действия ударного ускорения, мс	0,2—1
многократного действия	
пиковое ударное ускорение, м·с-2 (g), не бо-	
лее	1471 (150)
длительность действия ударного ускорения, мс	1-3
Линейное ускорение, м \cdot с $^{-2}$ (g), не более	4905 (500)
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700-0,00013
	$(800-10^{-6})$
Атмосферное повышенное давление, Па (кгс-см-2)	до 297 198 (до 3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, °C:	•
от повышенной температуры среды	85
от пониженной » »	минус 60
Относительная влажность воздуха при t до 25°C, %	до 80
• • · · · · · · · · · · · · · · · · · ·	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкости, % ± 20 и ± 30 Тангенс угла потерь:

Номинальное напряжение, В	Гангенс угла потерь, %
4	12
30	8
1 6-3	12
6,3	10
10	10
10	8
1630	8
	4 30 16—3 6,3 10 10

Ток утечки, мкА, не более 0,02 $CU_{\text{пом}}$ или 2, если 0,02 $CU_{\text{ном}}$ <2

НАДЕЖНОСТЬ

Минимальная наработка, ч	5 000
Срок сохраняемости, лет	15
	0000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	
для конденсаторов на $U_{\text{ном}} = 1,6 \div 6,3 \text{ B}$. 1	00
» » U ном св. 6,3 В	80
	0,1
в течение срока сохраняемости	
емкости, %, не более	±30
указанны «Основны да	ых значений, ых в разделе е технические инные»
указанны «Основны	ых зна чений, ых в разд еле е технические ч а нные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуагации по ОСТ В 11 464.002—74 с дозанениями, изложенными в настоящем разделе.

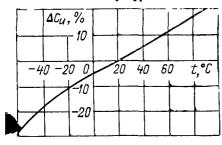
Руководство по применению конденсаторов — ОСТ 11 074.011—79.

Конденсаторы разрешается применять в герметизированных объемах (микромодулях, микросхемах, блоках аппаратуры и т. п.), могущих подвергаться воздействию относительной влажности воздуха до 98% при температуре до 40°C.

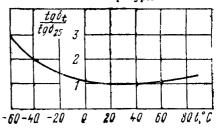
При монтаже конденсаторов в аппаратуру должны быть приняты меры предосторожности, исключающие повреждение выводов.

При сварке выводов должны быть приняты меры, исключающие нагрев конденсатора более, чем на 85°С.

Допускается эксплуатация конденсаторов в течение $100\,000$ ч при температуре от минус 60 до $+50^{\circ}$ С и напряжении 0.2—0.6 $U_{\text{ном}}$, но не ниже 0.8 B.


Способ крепления конденсаторов — за корпус с помощью заливки эластичным компаундом.

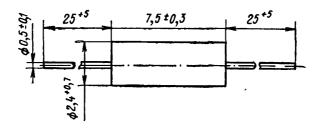
Растягивающая сила 0,006 кгс (0,0588 Н).


Конденсаторы должны выдерживать одностороннюю контактную сварку выводов на расстоянии не менее 1,5 мм от корпуса конденсатора.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

Зависимость тангенса угла потерь от температуры



Февраль 1987 Лист 3

Конденсаторы K53-18 оксидно-пслупроводниковые танталовые герметизированные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах.

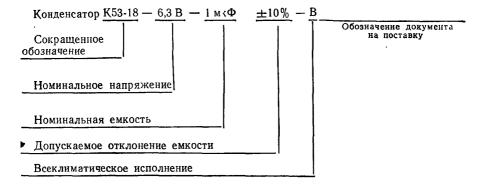
В зависимости от конструкции конденсаторы изготавливают одного типа зух видов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Черт. 1

Номинальная емкость, мкФ	Номинальное напряжение, В	Масса, г, не более
1,0; 1,5; 2,2; 3,3	6,3	
0,68; 1,0; 1,5; 2,2	16	
0,47; 0,68; 1,0; 1,5	20	0,8
0,33; 0,47; 0,68; 1,0	30	
0,033; 0,047; 0,068; 0,1; 0,15;	40	
0,22; 0,33; 0,47; 0,68		

Черт. 2


				Размер	ы, мм				
Номинальная	Номи- нальное	D		<u>d</u>		L		· .	Macca,
емкость, мкФ	напря- жение, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	По- мин.	Пред. откл.	l max	г, не более
4,7; 6,8; 10	6,3								
3,3; 4,7; 6,8	16								
2,2; 3,3; 4,7	20	3,2				7,5		4 %	1,0
1,5; 2,2; 3,3	30								
1,0; 1,5; 2,2	40								
15; 22	6,3								
10; 15	16								
6,8; 10	20			0,6		10		ļ	1,2
4,7; 6,8	30					'			1,2
33; 47	40	4	+0,5		±0,1				
33; 47	6,3	-	-0,1		10,1		±0,3	3,5	
22; 33	16		1						
15; 22	20					13			1,8
10; 15	30							١.	
6,8; 10	40								
68; 100	6,3								
47; 68	16								`
33; 47	20	7		0,8		12			4,5
22; 33	30								4,0
15; 22	40								

K53-18

Продолжение

				Разме	ры, мм				
	Номи- нальное	D		d		L			Масса,
Номингльная емкость, мкФ	напря- жение, В	По- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- ыин.	Пред. откл.	lmax	г, не более
150; 220; 330 100; 150 68; 100 47; 68	6,3 16 20 30	7	+C,5 0,1	0.0		16		3,5	6,0
470; 680; 1000 220; 330; 150; 220 100	6,3 6,3 16 20 30	9	±0,5	0,8	±0,1	21	±0,3	6,0	11

Пример записи условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Сп	особ крепления			
Воздействующие факторы		за выводы на расстоян 5—7 мм от корпуса ко денсаторов			
	за корпус	Ø7 мм	Ø4 мм и менее		
Синусоидальная вибрация:					
диапазон частот, Γ ц амплитуда ускорения, м \cdot с $^{-2}$ (g)	1—5000 400 (40)	1—200 50 (5)	1—600 100 (10)		
Акустический шум:]]		
диапазон частот, Гц	5010 000	50—10 000	50—10 000		
уровень звукового давления (относительно $2\cdot 10^{-5}$ Па), дБ	170	130	130		
Механический удар:		1			
одиночного действия пиковое ударное ускорение, $\mathbf{m} \cdot \mathbf{c}^{-2}$ (g)	15 000 (1500)	1500 (150)	5000 (500)		
длительность действия удар- ного ускорения, мс многократного действия	0,1—2	1-3	1—2		
пиковое ударное ускорение, м·с-2 (g)	1500 (150)	400 (40)	400 (40)		
длительность действия ударного ускорения, мс Линейное ускорение, м \cdot с $^{-2}$ (g)	1—5 5000 (500)	2—10 2000 (200)	2—10 2000 (200)		

Атмосферное пониженное давление, Па (мм рт. ст.)	133.10-6 (10-6)	
Атмосферное повышенное давление, Па (кгс см-2)	294 000 (3)	
Повышенная температура среды, °С:		
для конденсаторов Ø9мм	85	
» остальных конденсаторов	125	
Пониженная температура среды, °С	минус 80	
Смена температур, °С:		
от повышенной температуры среды		
для конденсаторов Ø 9 мм	85 ◀	(
» остальных конденсаторов	125	
до пониженной температуры среды	минус 80	
Повышенная относительная влажность, %:		
для исполнения В при t 35°C \cdots	98	
» » УХЛ при <i>t</i> 25°C	98	

Атмосферн - энденсированные ссадки (роса, иней). Соляной ту н (для исполнения З). Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкость, % $\pm 10; \pm 20; \pm 30$ Тангенс угла потерь:

Номинальная	Та не бол	нгенс тее пр напря	угла и ном жени	иналь	ь, %, ьном	Номинальная	Тангенс угла потерь, % не более при номинальном напряжении, В				
емкость, мкФ	6,3	16	20	30	40	емкость, мкФ	6,3	16	20	30	40
0,0330,22	<u> </u>				6	68	8	8	8	8	
0,33	_	-	-	6	6	100	8	8	8	8	-
0,47			6	6	6	150	8	8	8	_	_
0,68	_	6	6	6	6	220	8	8	8	-	
1,015	6	6	6	6	6	330	8	8	-		_
22	8	6	6	8	8	470	15	-	-	-	
33	8	6	8	8	-	680	15	-	-		-
47	8	8	8	8	_	1000	15	-	-	-	-

Ĭ.	Номи- нальная	Пол		против юмина ряжени	льном	Ом,	Номи- нальная	Пол	Полное сопротивление, Ом при номинальном напряжении, В			
	мкость, мкФ	6,3	16	20	30	40	емкость, мкФ	6,3	16	20	30	40
	1,0	 _		<u> </u>	<u> </u>	60	6,8	28	25	15,5	14	11
1	1,5		_		48	44	10	25	14,0	12,5	9,5	9,0
	2,2			42	35	32	15	14	12,5	8,5	8,0	6,5
]	3,3	_	38	31	28	21	22	12,5	7,9	7,3	6,0	5,1
	4,7	38	28	2 5	18	16	33	7,9	7,3	5,4	5,1	-

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

Номи- нальная	Пол	при в	против номина ояжени	льном	Ом,	Номи- нальная	Полное сопротивление, Ом, при номинальном папряжении, В				
емкость, мкФ	6,3	16	20	30	40	емкосгь, мкФ	6,3	16	20	30	40
47	7,3	5,4	4,8	3,2		330	2,4	1,4	_		_
68	5,4	4,8	3,2	2,8		470	1,6	_			
100	4,8	3,2	2,8	1,6	_	680	1,4	-	_	_	-
150	3,2	2,8	1,6	_	_	1000	1,2	_		—	-
220	2,8	1,6	1,4							<u> </u>	•

надежность

Минимальная наработка, ч:	
для конденсаторов \varnothing менее 9 мм при t от минус	
80 до +125°C	10 000
для всех конденсаторов при t от минус 80 до	
+85°C	15 000
Минимальный срок сохраняемость, лет	20
95%-ный ресурс, ч:	
для конденсаторов \varnothing менее 9 мм при t от минус	•
80 до +125°C	20 000
для всех конденсаторов при t от минус 80 до	_
+85°C	30 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь не болєе	10-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	50-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не более	2-кратных значений, указанных в разделе «Основные технические данные»
в течение минимального срока сохраняемости	
емкости, %, не более	± 20
тангенса угла потерь и тока утечки не более	5-кратных значений, указанных в разделе «Основные технические данные»

K53-18

полного сопротивления не более . .

1,5-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 0025—84 с дополнениями, изложенными в настоящем разделе.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 или ПОССу-61-05 по ГОСТ 21930—76. Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе изопропилового (ГОСТ 9805—76) или этилового спирта (ГОСТ 18300—72). Время пайки не более 4 с.

Расстояние от корпуса (изолятора) до места пайки вывода не менее 5 мм. При монтаже конденсаторов изгиб выводов следует производить на расстоянии от корпуса не менее:

- 1,5 мм для конденсаторов Ø 2,4 мм;
- 2,5 мм для остальных конденсаторов.

Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1 по объему при одновременном воздействии ультразвуковых колебаний частотой 18-20 кГп, время промывки не более 2 мин при температуре не более 35° C.

Значения низших резонансных частот:

Способ крепления конденсаторов	Резонавсная частота, Гц	Диаметр конденсатора, мм
За выводы	780	7
1	900	4
	1190	3,2
	700	2,4
За корпус	Св. 5000	-

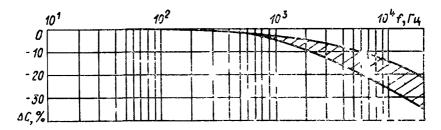
Конденсаторы $\varnothing 9$ мм допускают эксплуатацию при температуре 125°C и апряжении, равном 0,7 $U_{\text{ном}}$. Значение растягивающей силы должно быть: 5 H (0,5 кгс) — для конденсаторов по черт. 1 и 10 H (1 кгс) — для конденсаторов по черт. 2. Угол поворота 180°C, допустимое число поворотов 3.

Время сохранения паяемости вызодов конденсаторов без дополнительного облуживания 12 месяцев.

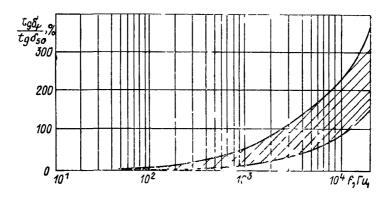
КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты

5000 Гц — при креплении за корпус,


200 Гц — » » выводы для конденсаторов Ø 7 мм,

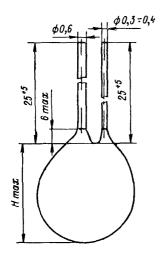
600 Гц — » » » » Ø 4 мм и мене

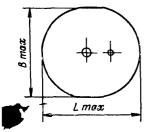

Конденсаторы должны быть герметичными

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от частоты

Зависимость тангенса угла потерь от частоты

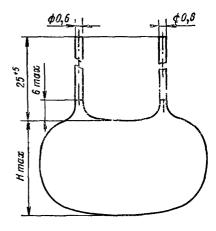

Февраль 1987 Лист 4

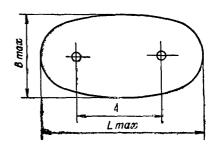

Конденсаторы К53-19 оксидно-полупроводниковые ниобиевые в оболочке из органических материалов полярные постоянной емкости предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры в нях достоянного, пульсирующего и ампульсного токов

В зависимости от конструкции гонденсаторы изготавливают двух видов: А и Б

Конденсаторы изготавливают в исполнении для умеренного и холодного климата (УХЛ).

Bu∂ A



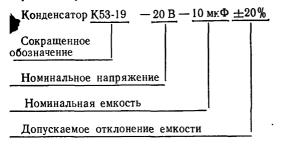


Вывод \varnothing 0,6 мм — положительный

Допускается длина чцательного вывода 2+5 мм

Вид Б

Положительный вывод обозначается на маркировке знаком +.

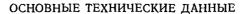

Допускается длина отрицательного вывода 32⁺⁵ мм

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

				Разме	ры, мм			V
Вид кон- ден- сатора	Номи- нальное напря- жение, В	Номинальная емкость, мкф	H _{mex}	L max	B max	A	Масса, г, не более	Удельная материало- емкость, г/м«Ктч, не более
	3 6,3 16 20	0,68; 1; 1,5 0,47; 0,68; 1 0,33; 0,47; 0,68 0,33; 0,47	7	5,8 5,8	F 0		0,3	$7,4 \cdot 10^{-6}$ $5,1 \cdot 10^{-6}$ $2,9 \cdot 10^{-6}$ $2,3 \cdot 10^{-6}$
A	3 6,3 16 20	2,2; 3,3 1,5; 2,2 1; 1,5 0,68; 1	٤	0,0	0,0		0,4	$3,0 \cdot 10^{-6}$ $2,1 \cdot 10^{-6}$ $1,25 \cdot 10^{-6}$ $1,5 \cdot 10^{-6}$
	3 6,3 16 20	4,7; 6,8; 10; 15 3,3; 4,7; 6,8; 10 2,2; 3,3; 4,7; 6,8 1,5 2,2; 3,3; 4,7;		6,7	6,7		0,6	$ 2,1 \cdot 10^{-6} \\ 1,45 \cdot 10^{-6} \\ 8,6 \cdot 10^{-6} \\ 1,0 \cdot 10^{-6} $
	6,3 16 20	15; 22 10; 15 6,8; 10	11	11	8	5.05	2,0	$ \begin{array}{c} 1,1 \cdot 10^{-6} \\ 6,3 \cdot 10^{-7} \\ 7,4 \cdot 10^{-7} \end{array} $
Б	6,3 16 20	33; 47, 22; 33 15; 22	13	•		5±0,5	2,5	$6.1 \cdot 10^{-7}$ $3.5 \cdot 10^{-7}$ $4.2 \cdot 10^{-7}$
	6,3 16 20	68; 100 47; 68 33; 47	14,5	14	8	5 ±0,5	3,5	4,1·10 ⁻⁷ 2,3·10 ⁻⁷ 2,6·10 ⁻⁷

Февраль 1987 Лист 1

Пример записи полного условного обозначения при заказе и в конструкторской документации:



Обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Спос	об креплени	Я	
диапазон частот, Гц	За корпус с закрепле- нием выводов	Пайка за выводы на расстоянии 6±1 мм от корпуса конденсаторов		
воздеиствующие факторы	на расстоянии 9±1 мм от корпуса кон- денсаторов видов А и Б	Вид А	Вид Б	
	1—3000 200 (20)	1—200 50 (5)	1—80 50 (5)	
Механический удар:	}			
пиковое ударное ускорение, м·с-2 (g)	750 (75)	150 (15)	150 (15)	
рения, мс	1±0,3	6 ± 2	11±4	
Линейное ускорение, $\mathbf{M} \cdot \mathbf{c}^{-2}$ (g)	2000,0 (200)		-	

Атмосферное пониженное давление, Па (мм рт. ст.)	670 (5)
Атмосферное повышенное давление, Па (кгс см-2)	до 29 818 (3)
Повышенная рабочая температура среды, °C	85
Пониженная рабочая температура среды, °C	минус 60
Смена температур, °C:	
от повышенной рабочей температуры среды	85
до пониженной » »	минус 60
Повышенная относительная влажность для испол-	
чия УХЛ при $t=25^{\circ}$ С, %	98
Атмосферные конденсированные ссадки (роса, иней).	

Допускаемые отклонения емкости, %	±20; ±30
для вида А	10
» » Б	15
Ток утечки:	

Номинальное напряжение, В	Номинальная емкость, мкФ	Ток утечки, мкА, не более
3	0,68—15	
6,3	0,47—22	_
16	0,33—15	5
20	0,33—6,8	
6,3	33—47	
16	22—33	15
20	10—22	
6,3	68—100]
16	47—68	20
20	33—47	

надежность

Наработка, ч, не менее	20 000
Интенсивность отказов, 1/ч, не более	$1 \cdot 10^{-7}$
95%-ный срок сохраняемости, лет	12
Изменение электрических параметров:	
в течение наработки	
емкости, %, не более	±50
тангенса угла потерь не более	3-кратных значений, указанных в разделе «Основные технические данные»
тока утечки, мкА, не более	•
для вида А	250
» » Б	750
в течение 95%-ного срока сохраняемости	
емкости, %, не более	±35

K53-19

тангенса угла потерь не более	2,5-кратных значений, указанных в разделе «Основные технические данные»
тока утечки, мкА, не более	
для вида А	100
» » Б	400

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При хранении, монтаже и эксплуатации конденсаторов необходимо руководствоваться указаниями, изложенными в ОСТ 11 074.011—79, а также указаниями, изложенными ниже.

При монтаже конденсаторов в аппаратуру применяют припой марки ПОССу-61-0,5 по ГОСТ 21930—76. Температура жала паяльника $250\pm10^{\circ}$ С. Время пайки 2—3 с.

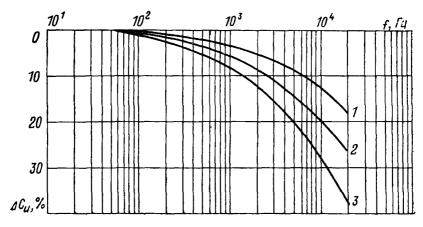
Допускается пайка конденсаторов за выводы на расстоянии 1,5 мм от места выхода вывода из влагозащитного покрытия конденсатора при условии защиты конденсатора от непосредственного нагрева.

Допускается промывка конденсаторов в спирто-бензиновой смеси в пропорции 1:1 при одновременном воздействии ультразвуковых колебаний.

Выводы конденсаторов должны выдерживать без механических повреждений воздействие изгибающей силы.

Выводы конденсаторов, включая места их присоединения к корпусу конденсатора, должны выдерживать без механических повреждений воздействия растягивающей силы:

9,8 Н (1 кгс) — для выводов Ø 0,6 мм;


 $2,54~\rm{H}~(0,25~\rm{krc})$ — для выводов Ø $0,3\div0,4~\rm{mm}$

Выводы конденсаторов должны обладать способностью к пайке.

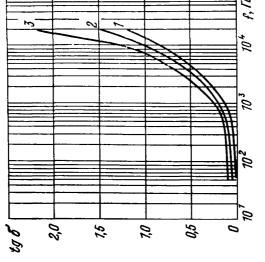
Минимальное расстояние от границы компаунда до места пайки должно быть 3 мм.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от частоты

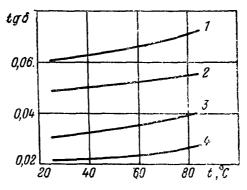
 $1-3B\times1,5$ MK Φ ;

 $2 - 6,3 \text{ B} \times 4,7 \text{ мк} \Phi$;


 $3-16\,\mathrm{B}\!\times\!33\,$ мк Φ

Зависимость изменения емкости от температуры

Зависимость тангенса угла потерь от частоты


8 80 09 16 22 4 æ

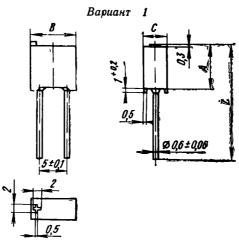
 $20 \,\mathrm{B} \times 4.7 \,\mathrm{mk} \Phi$; $I-20~\mathrm{B}\times47~\mathrm{mk}\Phi;$ $2 - 16 \, \text{B} \times 33 \, \text{мк} \Phi$; $-6,3 \,\mathrm{B}\!\times\!10\,$ мқ Φ

Зависимость тангенса угла потерь от температуры

 $1-20~\mathrm{B}{ imes}47~\mathrm{mk}\Phi;$

 $2 - 16 \text{ B} \times 33 \text{ мк} \Phi$;

 $3-20 \text{ B} \times 4,7 \text{ мк}\Phi;$


4-6,3 В $\times 10$ мк Φ

Конденсаторы Қ53-21 оксидно-полупроводниковые ниобиевые постоянной емкости предназначены для работы в качестве встроенных элементов внутри комплектных изделий в цепях постоянного и пульсирующего токов и в импульсном режиме для нужд народного хозяйства и для поставки на экспорт.

Конденсаторы изготавливают одного типа трех вариантов: 1, 2, 3 (конденсаторы вариантов 2 и 3 в новых разработках не применять).

Конденсаторы варианта 1 изготаэливают в исполнении, предназначенном для автоматизированной сборки аптаратуры, конденсаторы вариантов 2 и 3 — для ручной сборки.

Конденсаторы изготавливают в дзух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (B).

Примечание Ключ определяет положение положительного вывода.

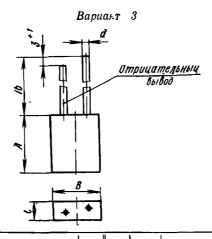
	Но- ми- наль	Но- ми- наль-	Pa	Размеры, мм		Мас- ми- ми-		Но- ми- наль-	Pa	мм	Mac-	
•	ное напря жение В	ная кость, мкФ	В	г, на ное более напр	ное напря- жение, В	ная ем- кость, мкФ	В	A	С	I, не бслее		
	6,3	0,68 1,0 1,5 2,2	7,1 _0,9	4, 5 _0,75	3 2-0,75	0,35	10	0,68 1,0 1,5	7,10,9	^{4,5} _0,75	3,2_0,75	0,35

Инструкция № 3, июль 1989

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

	11pogonia																															
Но- ми- наль-	Но- ми- наль-	Размеры, мм		и- иль- иль- иль- иль- им- иль- иль- иль- иль-		Но- ми- наль-	Размеры, мм			Mac- ca,																						
ное напря- жение, В	ная ем- кость, мкФ	В	4	с	г, не более	шое напря- жение, В	ная ем- кость, мкФ	В	A	С	г, не более																					
	0,47						4,7																									
16	0,68					20	6,8																									
10	1,0		'			10,0	7,1 _{-0,9}	7,1 _{0,9}	5,0_0,75	0,95																						
	1,5					25	6,8																									
20	0,68					32	2,2																									
	1,0						33,0																									
32	0,47					,		6.0	47,0	•																						
	3,3					6,3	68,0		İ																							
6,3	4,7						100,0																									
	6,8	_	$3,2_{-0.75}$ $3,2_{-0.75}$ $0,35$										^{3,2} –0,75	^{3,2} –0,75		0.5	1			3 3,0												
10	3,3	7.1 -0,9		1.10,9 4.50,75 3.20,75 0,35 10	4,5 -0,75	4,5 _{-0,75}	4,5 -0,75	4,5 -0,75	4,5 -0,75	4,5 -0,75	4,5 -0,75	^{4,5} -0,75			^{3,2} —0,75	^{3,2} –0,75	^{3,2} —0,75	^{3,2} —0,75	$ ^{3,2}$ -0,75	5 -0,75 3,2 -0,75	75 0,35	0,35	0,35	0,35	10	47,0						
	4,7	4,7				68,0																										
	2,2												22,0	11-1,1	11_1,1	5,6 _0,7 5	3,0															
16	3,3													16	33,0																	
	4,7														10	47,0																
	1,5					69,0	i																									
20	2,2																											15,0				
	3,3																															
	0,68					ļ! - 0	33,0																									
32	1,0						47,0		 																							
	1,5						150,0																									
	10,0				1	6,3	220,0																									
6,3	15,0						330,0																									
ļ	22,0						100,0																									
10	10,0	7.1	7.	F 0	0.05	10	150.0	12_1,1	12-1,1	11_1,1	7,0																					
	15,0	'··1 —0,9 	1,1-0,9	5,0_0,75	0,95		220,0																									
	6,8						100,0																									
16	10,0																		16	150,0												
	15,0						220,0																									
	<u> </u>		1000	·	<u> </u>	u		1	,	,	Tr. on																					


K53-21

Но- ми- наль-			Размеј	теры, мм		Мас-	Но- ми- наль-	Но- ми-		Размеј	ры, мм	_	Mac-						
на- на пря- ем же- кос	наль- ная ем- кость, мкФ	В	С	A	d	ca,	ca,	ca,	ca,	ca,	ca,	са, ное п г, не на- более пря- же- п	, не на- олее пря- же- ние,	наль- ная ем- кость, мкФ	В	С	Α		са, г, не более
10 16 20 30	1,0		2,1+0,2	6+0,3	0,4 ± 0,1	C.25	6,3 10 16 20 30	3,3 4,7 6,8 3,3 4,7 2,2 3,3 4,7 1,5 2,2 3,3 0,68 1,0 1,5		2,1+0,2	6+0,3	0.4+0.1	0,25						

Инструкция № 3, июль 1989

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Но- ми- , ль-	Но- ми-		Разме	ры, мм	(c	Mac-		Но- ми- наль-		Размеры, мм			Mac-
пое па- пря же- ние, В	наль- ная см- кость, мкФ	В	С	A	d	са, г, не бо- лее	на- пря- же- нче, В	на- пря- же- кость, няе, мкФ	В	С	A	d	са, г, не бо- лее
6,3	10 15						10	33 47					
0,0	22							68					
	10					-		22					
10	15						16	33 47	9.8 ⊦0,3	.4 +0, 3	₁₂ +0, 2		2,5
	6,8							68	0,0	""	12		_,0
16		,,2' 0,3	3,5+ 0,3	₁,5 +0,2		1		15					
	15						20	22					
	4,7				0,6±0,1			33 47				0,6±0,1	
20	6,8							150					
	_10						6,3	220					
_25	6,8						 	330	-				
30	2,2				ŀ		10	100	14+0,4	., 5+0, 3	16+0,7		7
	33					İ	10	220		,,,	"		'
6,3	47 68),8+0 ,3	4,4+0,3	12+0,2		2,5		100	Ì		 		ļ
	100		,-				16	150					
I				<u> </u>	<u> </u>	<u> </u>	}	220	1	1	<u> </u>	1	1

K53-21

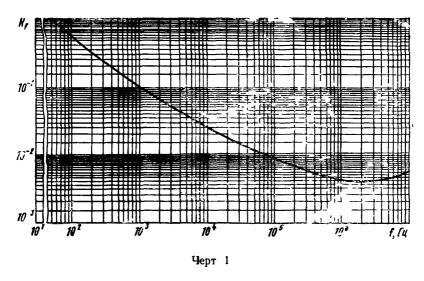
 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

Конденсатор	Қ53-21 -20 В -47 мкФ	+20% -B -A	ОЖ0.464.157 ТУ
Сокращенное обозначение			Обозначение документа на поставку
Номинальное на	пряжение		
Номинальная ем	икость		
Допускаемое от	клонение емкости		
Всеклиматическ	ое исполнение		
	ированной сборки а	азначенных ппаратуры	

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Значение характеристики при способе крепления конденсаторов								
Воздействующий фактор	за корпус	за выводь стоянии 1,5 мм от (вария	не более г корпуса	за корпус					
	(вариант 1)	габарит- ные раз- меры 12×12×11	оста льные конденса- торы	(варианты 2 и 3)					
Синусоидальная вибрация: диапазон частот, Гц	1—500	1—100	1—200	1—3000					
амплитуда ускорения, $\mathbf{m} \cdot \mathbf{c}^{-2}$ (g)	(10) סכיו	50 (5)	50 (5)	200 (20)					
Механический удар:									
одиночного действия									
пиковое ударное ускорение, $\mathbf{m} \cdot \mathbf{c}^{-2}$ (g)	1500 (150)	_		10 000 (1000)					
многократного действия									
пиковое ударное ускорение, и·с-2 (g) · · ·	430 (40)	150 (15)	400 (40)	750 (75)					
Линейное ускорение, м·с-	_	_		2000 (200)					

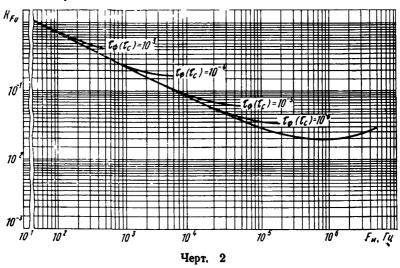
КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

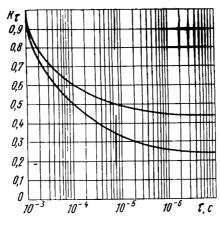

Атмосферное пониженное давление, кТа (мм рт. ст):	
рабочее	$0.133 \cdot 10^{-6} (10^{-6})$
предельное	19,3 (145)
Повышенная рабочая температура среды, °С	85
Пониженная температура, °C:	
рабочая	минус 60
предельная	минус 60
Смена температур, °С:	
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность, %:	
для исполнения В при температуре 35°C	98
» » B » » 25°C	98
Атмосферные конденсированные осадки (ичей и роса).	
Плесневые грибы (для исполнения В).	
OCHODIN IP TRANS IECULE TANK	IIC
основные технические данн	DIE
Допускаемое отклонение емкости, %:	
для конденсаторов вариантов 1 и 2	$\pm 20; \pm 30$
» » варианта 3	$\pm 10, \pm 20; \pm 30$
Тангенс угла потерь и ток улечки	

Номи- нальное напря- жение, В	Номи- нальная емкость, мкФ	Тангенс угла по- терь, %, не более	Ток утеч- ки, мкЛ	Номи- пальное напря- жение, В	Номи- нальная емкость, мкФ	Тангенс угла по- терь, %, не более	Ток утеч- ки, мкА
6,3 10 16	0,68—22 0,68—15 0,47—15	15	5	6,3 10 16 20	33—100 33—68 22—68 15—47	20	15
20 25 32	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	10 5	6,3 10 16	150—330 100—220 100—220	25	50

 $U_f = U_{f50} K_f,$

где U_{f50} — амплитуда переменной синусоидальной составляющей пульсирующего напряжения на частоте 50 Γ ц, определяемая по табл. 1;


 K_f — коэффициент снижения амплитуды переменной сипусоидальной со ставляющей пульсирующего напряжения в зависимости от часто ты, определяемый по черт. 1


Примечание Сумма амплитуды переменной и постоянной составляющих пульсирующего напряжения на должны превышать $U_{\text{ном}}$ а амплитуда переменной составляющей не должна превышать значений постоянного напряжения

іде $\Delta U_{_{{\sf M50}}}$ — размах импульсного напряжения на частоте 50 Гц, определяемый по табл. 1.

 K_{F_R} — коэффициент снижения размаха импульсного напряжения в зави симости от частоты следсвания импульсов, определяемый по черт. 2.

 K_{τ} — коэффициент снижения размаха импульсного напряжения в зависимости от длительности фронта (спада) импульса, определяемый по черт. 3.

Черт. 3

K53-21

Таблица 1

Номи-			Значен	ие <i>U</i> ₁₅₀	и Δ U	₁₅₀ для	конде	нсаторог	з на С	J _{ном} , I	3			
наль- І ная	6	,3	1	0	10	5	2	0	23	5	3	0		
ем- кость, мкФ	U f50	Δ <i>U</i> _{и50}	U _{f50}	Δ <i>U</i> ₁₂₅₀	U _{f50}	Δ <i>U</i> _{и50}	U _{[50}	Δ <i>U</i> _{и50}	U _{f50}	Δ <i>U</i> _{и50}	U _{[50}	ΔU_{1150}		
0,47		_		_	90,4	178,7		_	_	_	90,4	178,7		
0,68	75,1	148,5	75,1	148,5	75,1	148,5	75,1	148,5	—		75,1	148,5		
1,0	62,0	122,5	62,0	122,5	62,0	122,5	62,0	122,5	-		62,0	122,5		
1,5	50,6	100,0	50,6	100,0	50,6	100,0	50,6	100,0	-	-	50,6	100,0		
2,2	41,8	82,6		_	41,8	82,6	41,8	82,6			43,6	86,2		
3,3	34,1	67,4	34,1	67,4	34,1	67,4	34,1	67,4	-		-	-		
4,7	28,6	56,5	28,6	56,5	28,6	56,5	29,8	59,0	-		-			
6,8	23,8	47,0	-	-	24,8	49,1	24,8	49,1	24,8	49,1	-	-		
10	20,5	40,5	20,5	40,5	20,5	40,5	20,5	40,5	-	-	-	-		
15	16,7	26,5	16,7	26,5	16,7	26,5	15,6	28,6	-	-	-	-		
22	13,8	21,8		-	12,9	23,6	12,9	23,6	-			-		
33	10,5	19,3	10,5	19,3	10,5	19,3	10,5	19,3	-	-	-			
47	8,8	16,1	8,8	16,1	8,8		8,8	16,1	-	\ -	-	-		
68	7,3	13,4	7,3	13,4	7,3	13,4	-	-	-	1 -	-	-		
100	6,1	11,1	6,5	10,9	6,5	10,9	-	-	-	-	1 -	-		
150	5,3	8,9	5,3	8,9	5,3	8,9		-	-	1 -	-			
220	4,4	7,4	4,4	7,4	4,4	7,4	-	-	-	-	-	-		
330	3,6	3,6	6,0	_	<u> </u>	-	-	-	-	<u> </u>	-	_		

надежность

h	Наработка, ч		15 000
	Интенсивность	отказов, 1/ч, не более	5.10-8
	95%-ный срок	сохраняемости, лет, не более	10

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Изменение элек грических параметров в течение: наработки

Наработка, ч	Емкости, %, не более	Тангенса угла потерь не более	Тока утечки не более
3000	±30	занных в разделе «Ос-	30-кратных значений, указанных в разделе «Основные технические данные»
От 3000 до 15 000	±50	занных в разделе «Ос-	50-кратных значений, указанных в разделе «Основные технические данные»

95%-ного срока сохраняе	емости	
емкости, %, не болсе		 . ±30
тангенса угла потерь	не более	 . 1,6-кратных значений, ука- занных в разделе «Основ-
тока утечки не более		 ные технические данные» 40-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 074 011—079, с дополнениями и уточнениями, приведенными ниже.

Конденсаторы пригодны для монтажа в аппаратуре паяльником или групповым методом пайки и должны выдерживать трехкратное воздействие групповой пайки и лужение выводов горячим способом без применения теплоотвода при температуре не выше 265°C.

При пайке следует применять припой ПОС 61 или ПОССу 61-0,5 по ГОСТ 21930—76.

Применяемый флюс должен состоять из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе этилового спирта (ГОСТ 18300—72) Время пайки не более 4 с

Конденсаторы варианта 1 допускают промывку в моющих жидкостях в реф жимах, установленных ГОСТ 20.39.405—84:

- в спирто-хладоновой смеси при $t=20\pm2^{\circ}\mathrm{C}$ с покачиванием и последующей сушкой на воздухе в течение 2 ч;
- в спирто-хладоновой смеси при $t=45\div47^{\circ}\text{C}$ с погружением и с последующей сушкой на воздухе в течение 2 ч;
- в спирто-хладоновой смеси с наложением ультразвуковых колебаний при $t=20\pm2^{\circ}\mathrm{C}$ и с последующей сушкой на воздухе в течение 2 ч;

в спирто-бензиновой смеси вибрационная отмывка с амплитудой 0,5—0,6 мм при $t=20\pm2^{\circ}\mathrm{C}$ с последующей сушкой на воздухе в течение 2 ч; вибрационная отмывка в эмульсии (f=5 Гц, амплитуда 0,5—0,6 мм, $t=52\pm2^{\circ}\mathrm{C}$, $\tau=3$ мин) с последующей отмывкой от эмульсии проточной водой ($t=45\pm5^{\circ}\mathrm{C}$, $\tau=3$ мин, расход воды 10-12 л/мин), ополаскиванием дистиллированной водой ($t=20\pm2^{\circ}\mathrm{C}$, $\tau=1$ мян) и последующей сушкой ($t=65\pm5^{\circ}\mathrm{C}$, $\tau=2$ ч).

Значение низшей резонансной частоты при креплении за корпус превышает 5000 Гц, при креплении за выводы для конденсаторов варианта 1:

153 Γ ц — для конденсаторов с габаритными размерами $12 \times 12 \times 11$;

243 Гц — для конденсаторов остальных габаритных размеров.

Конденсаторы не должны иметь резонансных частот в диапазоне с верхней частотой при креплении за корпус:

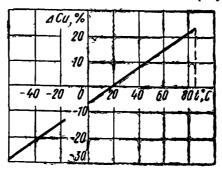
500 Гц — для конденсаторов варигнта 1,

3000 Гц — для конденсаторов варганта 2 п 3

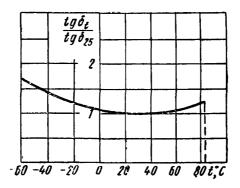
При креплении за выводы конденсаторов варианта 1:

100 Γ_H — для конденсаторов с габаритными размерами $12 \times 12 \times 11$;

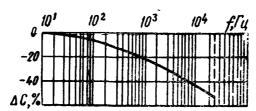
200 Гц — для остальных конденсаторов.

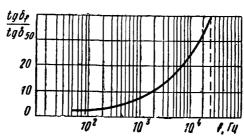

Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздейстьия растягивающей силы 10 Н (1 кгс) и 3-кратное воздействие изгибающей силы.

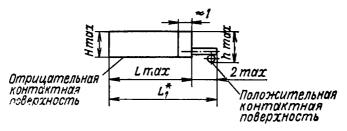
Выводы конденсаторов должны обладать паяемостью без дополнительного облуживания в течение 12 месяцев с момента изготовления.

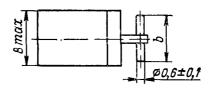

Минимальное расстояние от корпуса конденсатора до места пайки должно быть 1,5 мм для конденсаторов варианта 1 и 5 мм — для конденсаторов вариантов 2 и 3.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры


Зависимость изменения тангенса угла потерь от температуры


Зависимость изменения емкости от частоты



Зависимость изменения тангенза угла потерь от частоты

Конденсаторы K53-22 оксидно-полупроводниковые танталовые незащищенные полярные безвыводные постоянной емкости предназначены для работы в составе гермстизнрованных узлов (блоков) аппаратуры в цепях постоянного, шульсирующего токов.

		1		Pa	змеры, м	1M			
Номи- нальное	Номинальная			1 1				Macca.	
нальное напря- жение, В	емкость, мкФ	L max	B _{max}	H max	max	L_1	Но- мин.	лред. откл.	г, не более
3,2	1,5; 2,2								
6,3	1; 1,5								
10	0,68; 1								
16	0,47; 0,68	0.7		1	, ,	4.7			0.05
25	0,22; 0,33	2,7		1	1,5	4,7			0,05
32	0,15; 0,22		1						
40	0,1; 0,15		2				1,8	-0.2	
50	0,1						,		
3,2	3,3; 4,7								
6,3	2,2; 3,3								
10	1,5; 2,2	2,4		1,5	2	4,4	ļ		0,1
16	1; 1,5								
7	<u>l</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

1		Размеры, мм								
Номи-	Uovuna				<u> </u>			b	Macc	
нальное напря- жение, В	Номинальная емкость, мкФ	L max	B max	H _{max}	h max	L_1	Но- мин.	Пред. откл.	г, н более	
25	0,47; 0,68							1		
32	0,33; 0,47	2,4	2			4,4			0,1	
40	0,22; 0,33	2,4	2			7,7			0,1	
50	0,15; 0,22			ļ	<u> </u>			İ		
3,2	6,8; 10									
6,3	4,7; 6,8	1	1			6,1	1,8			
10	3,3; 4,7		2,5							
16	2,2; 3,3	4,1							0,2	
25	1; 1,5	1,1							0,2	
32	0,68; 1			1,5	2					
40	0,47; 0,68									
50	0,33; 0,47		•	ļ						
3,2	15; 22				į			_0,2		
6,3	10; 15							0,2		
10	6,8; 10	į .		1						
16	4,7; 6,8	5,6	4		,	7,6			0,4	
25	2,2; 3,3	ļ				',"	-			
32	1,5; 2,2									
40	1; 1,5					1				
50	0,68; 1						١		}	
3,2	33; 47						2,5			
6,3	22; 33			l				-		
10	15; 22	1			Ì				1	
16	10; 15	6,5	4,4	1,9	2,4	8,5			0,8	
25	4,7; 6,8					1				
32	3,3; 4,7									
40	2,2; 3,3						1		1	
50	1,5; 2,2								\	

K53-22

Продолжение

		1		Pa	змеры,	мм			
Номи- нальное	Номинальная							ь	Масса, г, не более
напря- жение, В	емкость, мкФ	L max	в _{max}	H max	h max	L_1	Но- мин.	b Пред. откл.	
3,2	68; 100								
6,3	47; 68								
10	33; 47	1		1	1]
16	22; 33	6,5	4,4	3,1	3,6	8,5	2,5	-0,2	1,5
25	10; 15								
32	6,8; 10								
40	4,7; 6,8								
50	3,3; 4,7						1		

Пример записи условного обо∈начения при заказе и в конструкторской документации:

Обозначение документа на поставку

внешние воздействующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	1-5000
амплитуда ускорения, м \cdot с $^{-2}$ (g)	400 (40)
Акустический шум:	
диапазон частот, Гц	50-10 000
уровень звукового давления, дБ	170
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g)	15 000 (1500)

длительность действия ударного ускорения, мс	0,1-2
многократного действия	
пиковое ударное ускорение, м·с-2 (g)	1500 (1 50)
длительность действия ударного ускорения, мс	15
Линейное ускорение, м·с $^{-2}$ (g)	5000 (500)
Атмосферное пониженное давление:	
рабочее, Па (мм рт. ст.)	$133 \cdot 10^{-6} (10^{-6})$
Атмосферное повышенное давление:	
рабочее, Па (кгс \cdot см $^{-2}$)	294 000 (3)
Повышенная температура среды, °С:	
рабочая	155
предельная	70
Пониженная температура среды, °С	минус 60
Смена температур, °C:	
от рабочей повышенной температуры среды	155
до предельной пониженной температуры среды	минус 60
Относительная влажность воздуха, при $t=25^{\circ}\text{C}$, %	80

основные технические данные

Допускаемые отклонения емкости, % $\pm 20; \pm 30$ Тангенс угла потерь:

Номинальное напряжение, В	Номинальная емкость, мк⊅	Тангенс угла потерь, %, не более
3,2	1,5—100	12
6,3	1,0—68	10
10	0,68-3,3	8
10	4,7—47	8
16—50	0,133	8

K53-22

надежность

Минимальная наработка, ч	20 000 15 30 000
емкости, %, не более	±50
тангенса угла потерь не более	5-кратных значений, указанных в разделе «Основные технические» данные»
тока утечки не более	50-кратных эначений, указанных в разделе «Основные технические данные»
в течение минимального срока сохраняемости	
емкости, %	±20
тангенса угла потерь и тока утечки не более	5-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов — по ОСТ В 11 0025—84 с дополнениями и уточнениями, изложенными ниже.

При монтаже конденсаторов в аппаратуру рекомендуется применять припой марки ПОС-61 или ПОССу-61-0,5 го ГОСТ 21930—76. Температура жала паяльника не более 265°C.

Применяемый флюс должен состоять из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе этилового спирта (ГОСТ 18300—72). Время пайки не более 4 с.

Между последовательными приложениями паяльника к контактным поверхностям конденсатора следует соблюдать интервал 5—10 с.

Допускается проводить пайку нагревом платы, на которую монтируется конденсатор. Температура пайки не бслее 260°С. Время пайки не более 5 с.

Заливка производится эластичным компаундом, например, типа ВГО-1.

При монтаже конденсаторов на платы с помощью пайки необходимо иметь виду следующее:

конденсатор должен располагаться на плате соприкасаясь с платой контактными поверхностями;

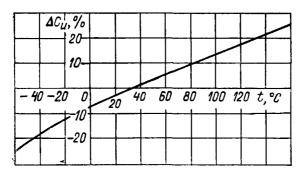
плата должна быть жесткой и не должна коробиться в процессе сборки, испытаний и эксплуатации.

Промывка конденсаторов должна производиться в этиловом спирте (ГОСТ 6300—72).

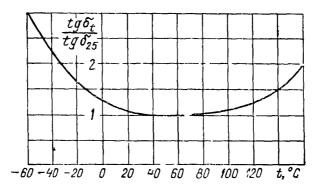
При монтаже, испытаниях и эксплуатации конденсаторов запрещается допускать механические воздействия, преводящие к изгибу или смещению положительной контактной поверхности относительно отрицательной контактной поверхности.

Конденсаторы разрешается брать только за отрицательную контактную перхность немагнитным пинцетом или специальным вакуумным присосом.

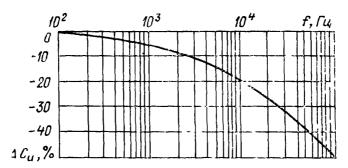
Конденсаторы разрешается применять в герметизированных объемах (микромодулях, микросхемах, блоках аппаратуры и т. п.), могущих подвергаться воздействию относительной влажности воздуха до 98% при температуре до 40°C.

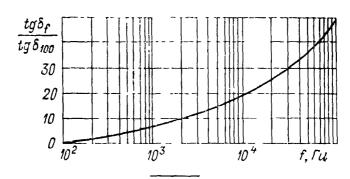

Значение низшей резонансной частсты превышает 5000 Гц. Сдвигающая сила 5 Н (0,5 кгс).

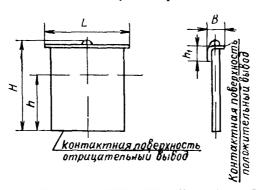
Верхияя частота диапазона, в котором должны отсутствовать резонансные частоты. 5000 Ги.


Способ крепления конденсаторов в аппаратуре — пайкой за контактные поверхности с последующей заливкой.

типовые характеристики


Зависимость изменения емкости от температуры


Зависимость тангенса угла потерь от температуры


Зависимость изменения емкости от частоты

Зависимость тангенса угла потерь от частоты

Конденсаторы Қ53-25 оксидно-полупроводниковые танталовые незащищенные полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме.

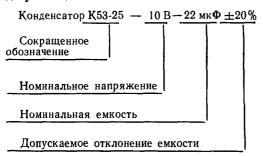
			Размеры, мм								
Номи- нальная	Номи- нальное			<u>H</u>		E				Macca,	
емкость, мкФ	напря- жение, В	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	h	h ₁	г, не более	
4,7		4,5	+0,4 0,6	4,5	$^{+0,6}_{-0,4}$	1,4	+0,2 -0,3	1,9		0,2	
6,8											
10		6,3	+0,8 0,2	6,7	±0,6			3,4	1,3	0,6	
15		'	0,2	ĺ ,				,.	1,0	0,0	
22	0.0			1		1.0	+0,3				
33	6,3					1,8	0,5				
47		11,5	+0,7	11,5	+0,9			7			
68		11,0	0,5	11,5	-0,4			,		2	
100	ĺ								2,2		
150	}	16	+1,3	17	±0,7	2	$+0.4 \\ -0.6$	12		3,5	
100			$\frac{-0,1}{+0,4}$		100						
3,3		4,5	_0,6	4,5	+0.6 -0.4	1,4	$^{+0,2}_{-0,3}$	1,9		0,2	
4,7	10						+0,3		1,3		
6,8	10	6,3	+0,8 -0,2	6,7	±0,6	1,8	-0,5	3,4	- /-	0,6	
10											

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

					Разм	еры, мм				Ī
Номи- нальная	Номи- нальное		L		Н		В			Ma
емкость, мкФ	напря- жение, В	Но- мин.	Пред. откл.	Но- мин	Пред. огкл.	Но- мин.	Пред. откл.	h	h ₁	г, более
15		6,3	$+0.8 \\ -0.2$	6,7	±0,6			3,4	1,3	0,6
22 33 47		11,5	+0,7 0,5	11,5	+0,9	1,8	+0,3 -0,5	7	2,2	2
68 100	10	16	+1,3 0,1	17	±0,7	2	+0,4 0,6	12		3,5
2,2		4,5	+0,4 0,6	4,5	+0,6 -0,4	1,4	$+0.2 \\ -0.3$	1,9		0,2
3,3 4,7 6,8 10	16	6,3	+0,8 -0,2	6,7	±0,6	1,8	+0,3	3,4	1,3	0,6
15 22 33	16	11,5	+0,7 0,5	11,5	+0,9 -0,4	1,0	0,5 	7	2,2	2
47 68		16	+1,3 -0,1	17	±0,7	2	+0,4 0,6	12	2,2	3,5
1,5		4,5	+0,4 -0,6	4,5	+0.6 -0.4	1,4	+0,2 0,3	1,9		0,2
2,2 3,3 4,7 6,8	25	6,3	+0,8 0,2	6,7	±0,6	1.0	+0,3	3,4	1,3	0,6
10 15 22	:	11,5	+0,7 0,5	11.5	+0,9 -0,4	1,8	-0,5	7	2,2	2

K53-25


Продолжение

ı			Размеры, мм										
Номи-	Номи-	1	. 1	ŀ			3			Macca,			
льная емкость, мкФ	нальное напря- жение, В	lio- мин.	Пред. откл.	1 Io- мин.	Пред. откл.	Но- мин.	Пред. откл.	h	h_1	г, не более			
33 47	25	16	+1,3 -0,1	17	±0,7	2	+0,4 -0,6	12	2,2	3,5			
1,0	32	4,5	+0,4 $-0,6$	4,5	$^{+0,6}_{-0,4}$	$\begin{array}{c c} 1,4 & +0,2 \\ -0,3 & \end{array}$		1,9		0,2			
1,5 2,2 3,3 4,7		6,3	+0,8	6,7	±0,6	1,8	+0,3 -0,5	3,4	1,3	0,6			
6,8 10 15		11,5	+0,7 0,5	11,5	+0,9 -0,4			7	2,2	2			
22 33		16	+1,3 0,1	17	±0,7	2	+0,4 -0,6	12	2,2	3,5			
0,68		4,5	+0,4 $-0,6$	4,5	+0,6 -0,4	1,4	+0,2 -0,3	1,9		0,2			
1,0 1,5 2,2 3,3	40	6,3	+0,8 0,2	6,7	±0,6	1,8	+0,3 -0,5	3,4	1,3	0,6			
4,7 6,8 10		11,5	+0,7 0,5	11,5	+0,9			7	2,2	2			
0,33 0,47 0,68 1,0		6,3	+0,8 -0,2	6,7	+0,6	1,8	+0,3 -0,5	3,4	1,3	0,6			

Продолжение

		Размеры, мм								
Номи- нальная	Номи- нальное			Н		В				Ma
емкость, мкФ	напря- жение, В	Но- мин.	Пред. откл.	Но- ми т .	Пред. откл.	Но- мин.	Пред. откл.	h	h ₁	г, более
1,5										
2,2		11,5	+0,7 -0,5	11,5	+0,9	1,8	+0,3	7		2
3,3	50		-0,5		-0,4	-,-	-0,5	·	2,2	-
4,7		16	+1,3 $-0,1$	17	±0,7	2,0	+0,4 -0,6	12		3,5

Пример записи условного обозначения при заказе и в конструкторской документации:

Обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	15000
амплитуда ускорения, м \cdot с $^{-2}$ (g)	400 (40)
Акустический шум:	
диапазон частот, Гц	50—10 000
уровень звукового давления, дБ	170
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·c-2 (g)	15 000 (1500)
длительность действия ударного ускорения, мс	0,1—2
многократного действия	
пиковое ударное ускорение, м·c-2 (g)	1500 (150)

K53-25

	длительность действия ударного ускорения, мс	1—5
	Линейное ускорение, $M \cdot C^{-2}$ (g)	5000 (500)
	Атмосферное пониженное давление, Па (мм рт. ст.)	$133 \cdot 10^{-6} (10^{-6})$
	Повышенная температура среды, °С	125
	Пониженная температура среды, °С	минус 60
	Смена температур, °С:	·
	от повышенной температуры среды	125
	до пониженной » »	минус 60
	Относительная влажность для исполнения УХЛ	
при	$t = 25$ °C, $\frac{1}{2}$ 0 · · · · · · · · · · · · · · · · · · ·	80

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допуск	аемые откло	нения емк	ости, %			•	$\pm 20, \pm 30$
Тангенс	угла потеры	, %, не бо	олее:				
для і	конденсаторо	в на $U_{ m HOM}$	₄≤10 B				8
>	*	νU_{hom}	>10 B				6
Ток уте	ечки, мкА, не	более .					$(0.01 CU_{HOM} + 1)$
							или 2, если
							$(0.01C_{\text{HOM}}U_{\text{HOM}} + 1) < 2$

Полное сопротивление:

Номи-		Полное сопротивление, Ом, не более при номинальном напряжении, В									
нальная емкость, мкФ	6,3	10	16	25	32	40	50				
0,33				_	_	_	8,0				
0,47	-	_	- 1				6,0				
0,68			_			5,5	5,0				
1,0		_	-	_	4,0	3,5	4,0				
1,5			-	3,5	2,5	2,5	2,5				
2,2			2,8	2,0	2,0	2,0	2,5				
3,3	_	2,5	18	1,8	1,8	1,8	1,5				
4,7	2,3	1,5	1,5	1,5	1,5	0,8	1,0				
6,8	1,2	1,2	1,2	1,2	0,7	0,7	_				
10	1,0	1,0	1,0	0,6	0,6	0,6	-				
15	0,8	0,8	C,4	0,4	0,4		-				
22	0,6	0,3	0,3	0,3	0,2	-	_				

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение

Номи-	Полное сопротивление, Ом, не более при номигальном напряжении, В										
нальная емкость, мкФ	6,3	10	16	25	32	40	50				
33	0,25	0,25	0,25	0,15	0,15	_	_				
47	0,2	0,2	0,12	0,12	-						
68	0,2	0,1	0,1	-		_					
100	0,09	0,09	~	-		_	_				
150	0,08	-		-	–	_	_				

надежность

Минимальная наработка, ч	15 000
Минимальный срок сохраняемости, лет	15
95%-ный ресурс, ч	30 000
Изменение электрических параметров:	•
в течение минимальной наработкы	
емкости, %, не более	±50
тангенса угла потерь не более	10-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не болсе	50-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не более	2-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	
емкости, %, не более	±30
тангенса угла потерь не болеє	5 кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	10-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не более	1,5-кратных эначений, указанных в разделе «Основные технические дарные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации кондепсаторов — по СТ В 11 0025—84 с дополнениями и уточнениями, изложенными в настоящем азделе.

При монтаже конденсаторов в аптаратуру следует применять припой марки ПОС-61 или ПОССу-61-05 по ГОСТ 21930—76. Температура паяльника 260±5°С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе изопропилового (ГОСТ 9805—76) или этилового (ГОСТ 18300—72) спирта. Время пайки не более 4 с для контактной поверхности.

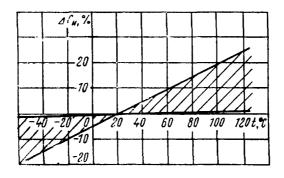
Пайку производят с применением теплоотвода в виде пинцета с медными губками шириной 1-3 мм.

Допускается промывка конденсаторов в изопропиловом (ГОСТ 9805—76) или этиловом (ГОСТ 18300—72) спирте.

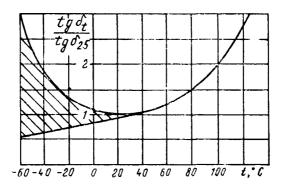
При монтаже конденсаторов в схему не допускаются механические воздействия, приводящие к нарушению контактных покрытий конденсаторов.

Значение низшей резонансной частоты превышает 7500 Гц.

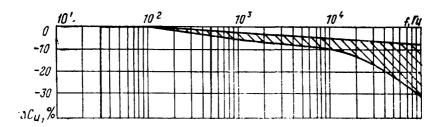
Время сохрансния паяемости контактных поверхностей конденсаторов без дополнительного облуживания 12 месяцев.

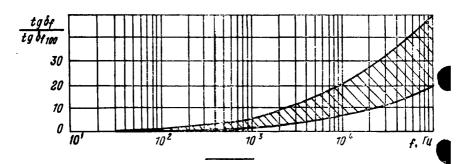

Значение сдвигающей силы должно быть 5 Н (0,5 кгс).

Верхияя частота диапазона, в когором должны отсутствовать резонаненые частоты, 5000 Гц.

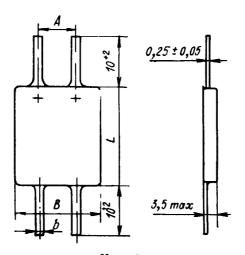

Способ крепления конденсаторов — за корпус приклейкой с последующей пайкой за контактные поверхности гли пайкой за контактные поверхности с последующей заливкой.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры


Зависимость тангенса угла потерь от температуры

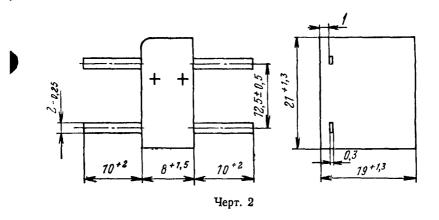
Зависимость изменения емкости от частоты


Зависимость тангенса угла потерь от частоты

Конденсаторы К53-28 оксидно-полупроводниковые танталовые в оболочках из органических материалов полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме. Конденсаторы изготавливают в соответствии с черт. 1 и 2.

Конденсаторы (черт. 1) изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

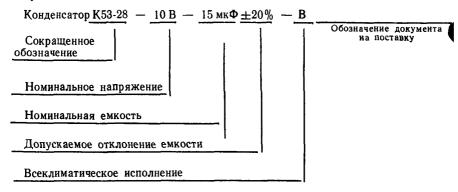
Конденсаторы (черт. 2) изготавливают во всеклиматическом исполнении (В).


Черт. 1

ĺ						Разме	ры, мм				
	Номи- нальное	Номи- нальная				3		4		Macca,	
	напря- жение, В	напря- емкость,	Но- мин.	Пред откл.	Но- мин.	Пред. откл.	Но- мин.	Пред откл.	Но- мин.	Пред. откл.	г, не более
1	6,3	6,8; 10; 15; 22							1		
	10	4,7; 6,8; 10; 15	10	+1,3 -0,2	71	$\begin{vmatrix} +1.0 \\ -0.2 \end{vmatrix}$	2,5	±0,5	1	±0,2	1,5
þ	16	3,3; 4,7; 6,8; 10									

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение


i i	1				Размер	ы, мм				
Номи- нальное	Номи- нальная			i	3		4		b	Macca
напря- жение, В	емкость, мкФ	По- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. откл.	Но- мин.	Пред. ог кл .	Масса г, не более
25	2,2; 3,3; 4,7; 6,8									
32	1,5; 2,2 3,3; 4,7	10		7,1		2,5		1		1,5
40	1,0; 1,5; 2,2; 3,3									
6,3	33; 47; 68									
10	22; 33; 47		+1,3 -0,2							
16	15; 22; 33				+1,0 -0,2		±0.5		±0,2	
25	10; 15; 22	15		12	-0,2	5		1,5	10,2	3,5
32	6,8; 10; 15									
. 40	4,7; 6,8;									•
6,3	100; 150				 					
10	68; 100				l i					
16	47; 68	20	+1,5 -0,2	17		7,5				5
25	33; 47	•								
32	22; 33									

Номинальное напряжение, В	Номингльная емкость, мкФ	Масса, г. не более
	220	12
6,3	330	13,5
	470	13,5
	150	12
10	220	13,5
	330	13,5
	100	12
16	150	13,5
	220	13,5
	68	12
25	1 0 0	13,5
	47	12
32	68	13,5
	15	12
40	22	13,5

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Пример записи условного обозначения при заказе и в конструкторской документации:

внешние воздействующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	1-3000
амплитуда ускорения, м \cdot с $^{-2}$, (g) не более	196 (20)
Акустический шум:	
диапазон частот, Гц	5010 000
уровень звукового давления, дВ, не более	150
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не бо-	
лее	9810 (1000)
длительность действия ударного ускорения, мс	0,2—1
многократного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не бо-	
лее	1471 (150)
длительность действия ударного ускорения, мс	1—3
Линейное ускорение, м c^{-2} (g), не более	1962 (200)
Атмосферное пониженное давление, Па (мм рт. ст.):	
для исполнения В	106 700—133,32
	(800—1)
» » УХЛ	106 700—0,00013
	$(800-10^{-6})$
Атмосферное повышенное давление, Па (кгс см-2)	297 198 (3)
Повышенная температура среды, °С	125
Пониженная температура среды, °С	минус 60

Полное сопротивление на частоте 100 кГц:

K53-28

Смена температур, °С:	
от повышенной температуры среды	125
до пониженной » »	минус 60
Повышенная относительная влажность, %:	minye oo
для исполнения В при t до 35°C	до 98
 » » УХЛ при t до 25°С	до 98
Атмосферные конденсированные осадки (роса, иней).	до 30
Соляной туман (для исполнения В).	
Плесневые грибы (для исполнения В).	
Throughout Through (Ann henotherm) 2/.	
OCHORULE TEVILIBLE OVIET TAND	шт
основные технические данн	IDIE
Допускаемые отклонения емкости, %	$\pm 20; \pm 30$
Тангенс угла потерь, %, не более:	
для конденсаторов на $U_{ ext{hom}}\!\leqslant\!$ 10 В	8
\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	6
Ток утечки, мкА, не более:	
для конденсаторов с зарядом $C_{ extsf{hom}}U_{ extsf{hom}} <$	
<500 мкКл	$(0.01C_{\text{hom}} U_{\text{hom}} +$
	+1) или 2,
	если $(0.01C_{\text{ном}} \ U_{\text{ном}} +$
для конденсаторов с зарядом $C_{ ext{ t hom}} U_{ ext{ t hom}} >$	+1)<2
>500 мкКл	$0.01C_{\text{HOM}}$ $U_{\text{HOM}}+$
	+1

		Полное сопротивление, Ом, при номинальном наприжении, В						
Номинальная емкость, мкФ	6,3	10	16	25	32	40		
1,0	<u> </u>		_		-	3,5		
1,5	-			_	2,5	2,5		
2,2	_	-		2,0	2,0	2,0		
3,3	-	_	1,8	1,8	1,8	1,8		
4,7		1,5	1,5	1,5	1,5	0,8		
6,8	1,2	1,2	1,2	1,2	0,7	0,7		
10	1,0	1,0	1,0	0,6	0,6	0,6		
15	0,8	0,8	0,4	0,4	0,4	0,4*		
22	0,6	0,3	0,3	0,3	0,2	0,3*		
33	0,25	0,25	0,25	0,15	0,15	-		

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжени

	Полное сопротивление, Ом, при номинальном напряжении, В						
Номинальная емкость, мкФ	6,3	10	16	25	32	40	
47	0,2	0,2	0,12	0,12	0,12*		
68	0,2	0,1	0,1	0,09*	0,09*	_	
100	0,09	0,09	0,06*	0,06*	-	-	
150	0,08	0,05*	0,04 *		_		
220	0,04*	0,04*	0,03 *		-	-	
330	0,03*	0,03*	_		_	_	
470	0,025*		_		-		

^{*} Значения - по черт. 2.

надежность

Минимальная наработка, ч	15 000
Срок сохраняемости, лет	15
95%-ный срок сохраняемости, ч	30 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	± 50
тангенса угла потерь не более	10-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	50-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления	2-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	•••
емкости, %, не болсе	± 20
тангенса угла потерь не более	5-кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	10-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не болег	1,5-кратных значений, указанных в разделе «Основные технические данные»

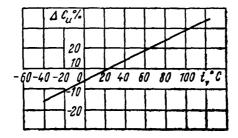
K53-28

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

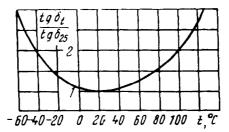
Указания по применению и эксплуатации по ОСТ В 11 464.002—74 с дополцениями, изложенными в настоящем разделе.

Руководство по применению конденсаторов ОСТ 11 074.011-79.

Допускается промывка конденсаторов в спирто-бензиновой смеси в пропорции 1:1.

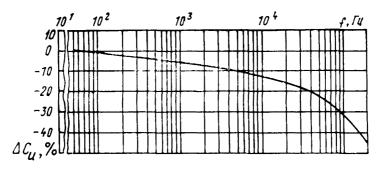

Способ крепления конденсаторов в аппаратуре с помощью приклейки (заливки) клеем, например, типа «Вилад-11К» и др. и пайкой за выводы.

Приклейка производится за небольшую поверхность конденсатора.

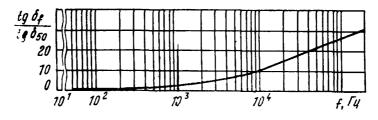

При пайке применяют припой марки ПОССу-61-0,5 или ПОС-61 (ГОСТ 21970—76).

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

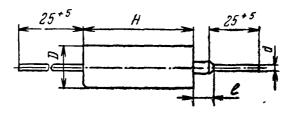


Зависимость тангенса угла потерь от температуры

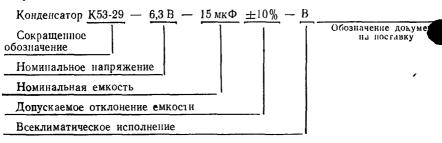


КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Зависимость изменения емкости от частоты



Зависимость тангенса угла потерь от частоты


Конденсаторы Қ53-29 оксидно полупроводниковые танталовые герметичные полярные постоянной емкости предназ⊦ачены для работы в цепях по•тоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают во всеклиматическом исполнении (В).

				Разме	еры, мм				
Номинальная	Номи- нальное				<u> </u>		d	l, не	Macca, r.
емкость, мкФ	напря- жение, В	Но- мин.	Пред. откл.	Но- ь ин.	Пред откл.	Но- мин.	Пред. откл.	более	не более
15; 22 68; 100		3,2 4,0	+0,5 0,1	7,5 13		0,6		3,5	1,0 1,8
330; 470	6,3	7,0	$+0,5 \\ -0,2$	16					6,0
680; 1000; 1500		9,0	±0,5	21		0,8		6,0	10,0
10; 15 47; 68	10	3,2 4,0	+0,5 -0,1	7,5 13		0,6			1,0 1,8
220; 330	 	7,0	+0,5 0,2	16	±0,3	0,8	±0,1		6,0
6,8; 10 33; 47	16	3,2 4,0	+0,5 -0,1	7,5 13		0,6		3,5	1,0
150; 220		7,0	$^{+0,5}_{-0,2}$	16		0,8			6,0
4,7; 6,8 22; 33	20	3,2 4,0	+0,5 -0,1	7,5 13		0,6			1,0 1,8
100; 150		7,0	$+0.5 \\ -0.2$	16		0,8		Ì	6,0

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕПСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	15000
амплитуда ускорения, м \cdot с $^{-2}$ (g), не более	392 (40)
Акустический шум:	
диапазон частот, Гц	50-10 000
уровень звукового давления, дБ, не более	160
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не бо-	
лее	9810 (1000)
длительность действия ударьюго ускорения, мс	0,21
многократного действия	
пиковое ударное ускорение, м·с-2 (g), не бо-	
лее	1471 (150)
длительность действия ударного ускорения, мс	1—3
Линейное ускорение, м·с $^{-2}$ (g), не более	4905 (500)
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700-0,00013
	(800-10-6)
Атмосферное повышенное давление, Па (кгс · см - 2)	до 297 198 (до 3)
Повышенная температура среды, °С	125
Пониженная температура среды, °C	минус 60
Смена температур, °C:	•
от повышенной температуры среды	125
до пониженной » »	минус 60
Повышенная относительная влажность для испол-	•
нения В при t до 35°C, %	до 98 ் ▮
•	

Атмосферные конденсированные осадки (роса, иней). Соляной туман (для исполнения В). Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Номинальная емкость, мкФ	Номинальнос напряжение, В	Тангенс угла потерь, %, не более	Номинальная емкость, мкФ	Номинальное напряжение, В	Тангенс угла потерь, %, не более
0,033÷15	6,3÷100	6	15	6,3; 10	6
15÷330	63÷100	8	33	16	6
, 470; 680; 1000	6,3	15	22	20	6
1500	6,3	20			

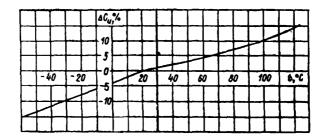
НАДЕЖНОСТЬ

Минимальная наработка, ч	15 000 15 30 000
емкости, %, не более	± 50
тангенса угла потерь не более	10-кратных значений, указанных в разделе «Основные технические данные»
тока утечки, мкА, не более	
для конденсаторов Ø7 мм	600
» » Ø9 mm	1000
» остальных конденсаторов	50-кратных значений, указанных в разделе
	«Основные технические данные»
в течение срока сохраняемости	
в течение срока сохраняемости емкости, %, не более	

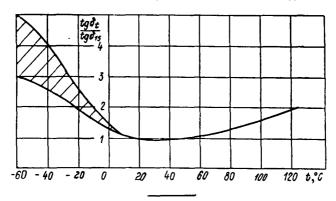
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению и эксплуатации по ОСТ В 11 464.002—74 с дополнениями, изложенными в настоящем разделе.

Руководство по применению конденсаторов — ОСТ 11 074.011—79.


Конденсаторы выдерживают возникающее в результате воздействия электромагнитного импульса импульсное напряжение $1.2\,U_{\rm Hom}$ при длительности импульса до $5\cdot 10^{-2}\,{\rm c}$. Форма импульса прямоугольная. Кратность воздействия 15.

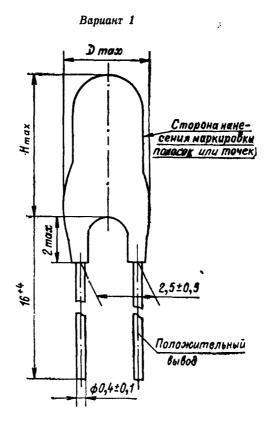
Конденсаторы должны выдерживать пайку выводов на расстоянии 5 мм от трубочки изолятора.


Способ крепления конденсаторов — за корпус с закреплением выводов.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

Зависимость тангенса угла потерь от температуры

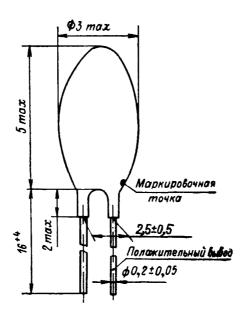

Февраль 1987

K53-30

Конденсаторы К53-30 оксидно-полупроводниковые танталовые защищенные полярные постоянной емкости предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах.

В зависимости от конструкции конденсаторы изготавливают одного типа, двух вариантов.

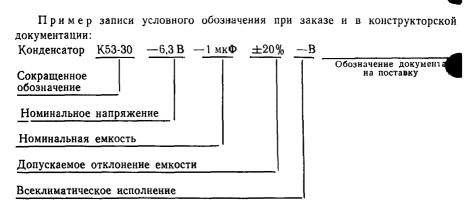
Конденсаторы изготавливают во всеклиматическом исполнении (В).


КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Номинальная	Номинальное	Размеры, мм,	, не более	Масса, г,	
емкость, мкФ	напряжение, В	D max	H max	не более	
3,3; 4,7		4,0	6,5	0,3	
6,8, 10	1,6	4,0	7,0	0,4	
15		4,5	7,5	0,5	
2,2; 3,3		4,0	6,5	0,3	
4,7; 6,8	3,2	4,0	7,0	0,4	
10	1	4,5	7,5	0,5	
1,0; 1,5 2,2		4,0	6,5	0,3	
3,3; 4,7; 6,8	4,0	4,0	7,0	0,4	
10		4,5	7,5	0,5	
1,0; 1,5		4,0	6,5	0,3	
2,2	6,3	4,0	7,0	0,4	
3,3, 4,7; 6,8	1	4,5	7,5	0,5	
0,68; 1,0		4,0	6,5	0,3	
1,5	10	4,0	7,0	0,4	
2,2; 3,3; 4,7	1	4,5	7,5	0,5	
0,47; 0,68		4,0	6,5	0,3	
1,0	16	4,0	7,0	0,4	
1,5; 2,2; 3,3	1	4,5	7,5	0,5	
0,33; 0,47		4,0	6,5	0,3	
0,68	20	4,0	7,0	0,4	
1,0; 1,5; 2,2		4,5	7.5	0,5	
0,22; 0,33		4,0	6,5	0,3	
0,47	32	4,0	7,0	0,4	
0,68; 1,0; 1,5	}	4,5	7,5	0,5	

Февраль 1987 Лист 1

K53-30


Ваоиант 2

Масса не более 0,2 г

Номинальная емкость, мкФ	Номинальное напряжение, В
1,5; 2,2	1,6
1,0; 1,5	3,2
0,68	6,3
0,47	10
0,33	16
0,22	20
0,1; 0,15	32

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

внешние воздействующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	1—5000
амплитуда ускорения, м c^{-2} (g)	400 (40)
Акустический шум:	
диапазон частот, Гц	5010 000
уровень звукового давления, дБ	170
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м.с-2 (д)	15 000 (1500)
длительность действия ударного ускорения, мс	0,1—2
многократного действия	
пиковое ударное ускорение, м·с-2 (g)	1500 (150)
длительность действия ударного ускорения, мс	15
Линейное ускорение, м·с-2 (g)	5000 (500)
Атмосферное пониженное давление. Па (мм рт. ст.)	$133 \cdot 10^{-6} (10^{-6})$
Атмосферное повышенное давлениє, Па (кгс·см-2)	294 000 (3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, °C:	
от повышенной температуры срєды	85
до пониженной » »	минус 60
Повышенная относительная влажность для испол-	•
нения В при $t=35$ °C, $\%$	98
Атмосферные конденсированные осадки (роса, иней).	
Соляной туман (для исполнения В).	.*

Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкости, %	±20; ±30
Тангенс угла потерь, %, не более:	
для конденсаторов на $U_{ном} \leqslant$ 4 В	12
» » $U_{\text{HOM}} = \epsilon, 3; 10 \text{ B} \dots$	10
\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	8
Ток утечки, мкА, не более	2
НАДЕЖНОСТЬ	
Минимальная наработка, ч	15 000
Минимальный срок сохраняемости, лет	15
95%-ный ресурс, ч	30 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	± 50
тангенса угла потерь, %, на более	80
тока утечки	50-кратных значений, указанных в разделе «Основные технические данпые»
в течение минимального срока сохраняемости	
емкости, %, не более	± 20
тангенса угла потерь	5-кратных значений, указанных в разделе «Основные технические данные»
тока утечки	10-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0025—84 с дополнениями и уточнениями, изложенными в настоящем разделе.

При монтаже конденсаторов в єппаратуру следует применять припой марки ПОС-61 или ПОССу-61-05 по ГОСТ 21930—76. Температура пайки 260±5°С.

Применяемый флюс должен состоять из 25% по массе канифоли (ГОСТ 19113-73) и 75% по массе изопропилового (ГОСТ 9805-76) или этилового спирта (ГОСТ 18300-72).

Может быть применен активированный флюс, полученный добавлением к указанному выше флюсу диэтиламина гидрохлорида по ГОСТ 13279—77 в ко-

личестве 0,5% содержания канифоли (в пересчете на свободный хлор) Время пайки не более 4 с.

Минимальное расстояние от границы компаунда до места пайки 5 мм. При пайке применяют тепловой экран из асбеста толщиной 2 мм.

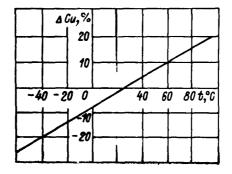
Приклеивание (заливка) производится клесм, гапример типа ВК-9. Температура полимеризации не более 80°C Время полимеризации 2 ч

При монтаже конденсаторов изгис выводов следует производить на расстоянии не менее 1,5 мм от границы компаунда

Допускается промывка конденсаторов в спирто-белзиновой смеси в пропорции 1:1.

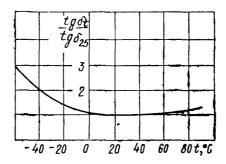
Значение низшей резонансной частоты превышает 5000 Гц Значение растягивающей силы.

3 Н (0,3 кгс) — для конденсаторов с диамегром вывода 0,2 мм;

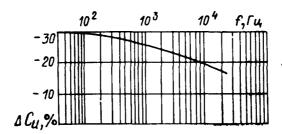

5 H (0,5 krc) -- » » 0,4 mm.

Время сохранения паяемости выводов конденсаторов без дополнительного облуживания 12 месяцев.

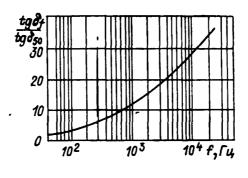
Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 5000 Гц.


ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

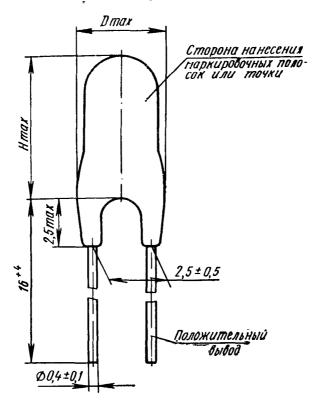


K53-30


Зависимость тангенса угла потерь от температуры

Зависимость изменения емкости от частоты

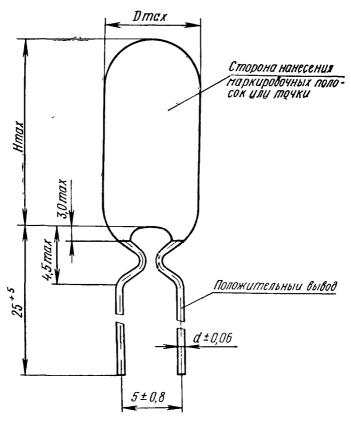
Зависимость тангенса угла потерь от частоты


Конденсаторы К53-34 оксидио-полупроводниковые танталовые защищенные полярные постоянной емкости предназначены для работы в качестве встроенных элементов внутри комплектных изделий в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают одного типа двух вариантов: 1 и 2. Конденсаторы варианта 1 предназначены для ручной, а варианта 2 — для автоматизированной и ручной сборки аппаратуры.

Конденсаторы с высотой $H_{\max} = 8.5$ и 9.5 мм изготавливают во всеклиматическом исполнении (B).

Остальные конденсаторы изготаьливают в исполнении для умеренного и холодного климата (УХЛ) при пониженной рабочей температуре среды минус 60°C.


Вариант 1

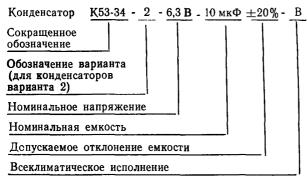
КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Номинальная	Номинальное	Размеры, мм		Масса, г,
емкость, мкФ	напряжение, В	D _{max}	H _{max}	не более
47; 58	1,6	5,0	8,5	1,0
33; 47	3,2	5,0	8,5	1,0
68; 100	0,2	6,0	9,5	1,5
22; 33	4	5,0	8,5	1,0
47; 68		6,3	9,5	1,5
10; 15; 22	6,3	5,3	8,5	1,0
33; 47	0,3	6,0	9,5	1,5
10; 15	10	5,0	8,5	1,0
22; 33	10	6,0	9,5	1,5
6; 8; 10	16	5,0	8,5	1,0
15; 22	10	6,0	9,5	1,5
4,7; 6,8	20	5,0	8,5	1,0
10; 15	20	6,0	9,5	1,5

Вариант 2

Примечание. Конденсаторы с \mathcal{D}_{\max} = 5,0 мм имеют подформовку выводов в наружные стороны.

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ


Номинальная	Номиналь-	Размеры, мм			Macca, r,
емкость, мкФ	пряжение,	Dmax	H _{max}	d	не более
47; 68	1,6	5,0	8,5	0,5	1,0
33; 47		5,0	8,5		1,0
68; 100		6,0	9,5		1,5
150; 220	3,2	7,1	12,0	0,6	2,5
330; 470		9,0	12,0		3,5
680		9,0	16,0		4,5
22;_33		5,0	8,5	0,5	1,0
47; 68	4	6,0	9,5		1,5
100; 150	•	7,1	12,0	0,6	2,5
220; 330		9,0	12,0		3,5
10; 15; 22		5,0	8,5	0,5	1,0
33; 47		6,0	9,5		1,5
68; 100	6,3	7,1	12,0	0,6	2,5
150; 220		9,0	12,0	0,0	3,5
330	.[9,0	16,0		4,5
10; 15		5,0	8,5	0,5	1,0
22; 33		6,0	9,5		1,5
47; 68	100	7,1	12,0	0,6	2,5
100; 150	}	9,0	12,0	0,0	3,5
220		9,0	16,0		4,5
6,8; 10		5,0	8,5	0,5	1,0
15; 22		6,0	9,5		1,5
33; 47	16	7,1	12,0	0.6	2,5
68; 100		9,0	12,0	0,6	3,5
150; 220		9,0	16,0		4,5
4,7; 6,8		5,0	8,5	0,5	1,0
10; 15		6,0	9,5		1,5
22; 33	20	7,1	12,0	0,6	2,5
47; 68		9,0	12,0	0,0	3,5
100		9,0	16,0	ļ	4,5

K53-34

Продолжение

Номинальная	Номиналь- ное на-	Размеры, мм			Macca, r,
	пряжение, В	D _{max}	H _{max}	d	не более
3,3; 4,7		5,0	8,5	0,5	1,0
6,8; 10	:	6,0	9,5		1,5
15; 22	32	7,1	12,0	0,6	2,5
33		9,0	12,0	0,0	3,5
47; 68		9,0	16,0		4,5
1,0; 1,5; 2,2		5,0	8,5	0,5	1,0
3,3; 4,7	40	6,0	9,5	0,6	1,5
6,8; 10; 15_		7,1	12,0	0,0	2,5
0,68; 1,0	50	5,0	8,5	0,5	1,0
1,5; 2,2		6,0	9,5		1,5
3,3; 4,7		7,1	12,0	0,6	2,5
6,8; 10		9,0	12,0		3,5

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

ОЖ0.464.238 ТУ обозначение документа на поставку

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:

диапазон частот, Гц	15000
амплитуда ускорения, м·с $^{-2}$ (\mathfrak{z})	400 (40)

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

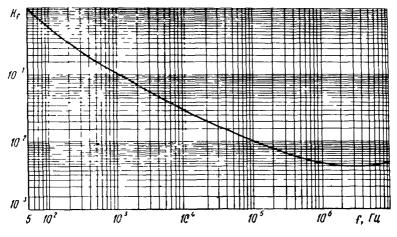
Механический удар:	
одиночного действия	
пиковое ударное ускорение, м·c-2 (g)	10 000 (1000)
многократного действия	
пиковое ударное ускорение, м·с-2 (g)	1500 (150)
Атмосферное пониженное давление, кПа (мм рт. ст.):	
рабочее	$0.13 (10^{-6})$
предельное	19,4 (145)
Повышенная рабочая температура среды, °C	85
Пониженная рабочая (предельная) температура	
среды, °С	минус 60
Смена температур, °C:	
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность для испол-	
нения В при $t=35^{\circ}$ С, для исполнения УХ.Л при $t=25^{\circ}$ С	98
Атмосферные конденсированные осадки (иней и роса).	
Плесневые грибы (для исполнения В).	

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Допускаемые отклонения емкости, % $\pm 20, \pm 30$ Тангенс угла потерь:

Номинальное напряжение, В	Номинальная емкость, мкФ	Тангенс угла потерь, %, не более	
3,2	330 680	20	
32	1568	10	
40	10; 15		
32	33 10		
40 1 6,8		8	
50	0,68 10		
Для остальных конденсаторов		15	

Ток утечки, мкА, не более:

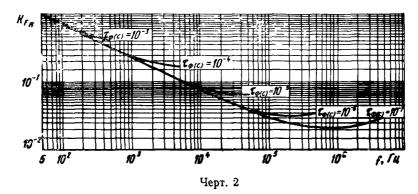

 $0.02~C_{\text{ном}}U_{\text{ном}}$ или не более 2~мкA, если вычисленное по формуле меньше

K53-34

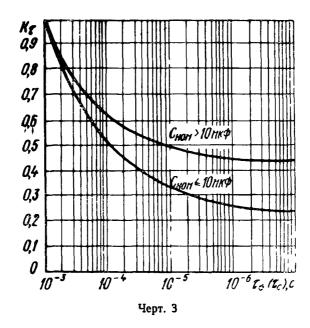
св. 500 до 1000 мкКл	$0.01 C_{\text{HOM}} U_{\text{HOM}} + 1$
св. 1000 мкҚл	$0.01C_{\text{hom}}U_{\text{hom}}$
	где $C_{\text{ном}}$ (мк Φ),
	U_{now} (B)
Допускаемая амплитуда переменной синусоидаль-	
ной составляющей пульсирующего напряжения $U_{\it f}$. В,	
не более	$0.2~U_{\scriptsize{ ext{HOM}}}$

 $U_f = U_{f50} K_f,$

где U_{150} — амплитуда переменной синусоидальной составляющей пульсирующего напряжения на частоте 50 Гп, определяемая по табл. 1, В; K_{l} — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт. 1:



Черт. 1


Примечание. Сумма постоянной и допускаемой амплитуды переменной синусои дальной составляющих пульсирующего напряжения не должна превышать номинального напряжения, а амплитуда переменной синусоидальной составляющей не должна превышать значений постоянного напряжения.

где $\Delta U_{\text{изо}}$ — размах импульсного напряжения на частоте 50 Γ ц, определяемый по табл. 1, \mathbf{B} ;

 $K_{\text{Fи}}$ — коэффициент снижения размаха импульсного напряжения в зависимости от частоты следсвания импульсов, определяемый по черт. 2:

 K_{τ} — коэффициент снижения размаха импульсного напряжения в зависимости от длительности фронта (спада), импульса, определяемый по черт. 3:

0,01

K53-34

Tabauua 1

-																					
	ß.	Одн	120	66	6'08	8,99	28	48,5	43	35,5		l	1		1	Ī	l		ļ	1	
		UF50	82	29	22	45	39	33	53	24	1	١		1		1	1			1	1
	9	ΔU _{μ50}	l	66	80,9	8,99	28	48,5	40	35,5	23,8	ı	}	1	1	l	İ	I	1	1	l
	4	0810	1	29	22	45	39	33	27	24	20,6	ì	١	ı	l	Π	l	l		!	l
	32	одн∩Г	1	i	İ	١	28	48,5	38	31	21	20	12	13,5	12	1	i	ı	1	ł	١
		Uffo		١		1	39	33	25,8	21	18,5	15	13	11,6	9,7	I	Ī	Ī	1	1	l
		ОДН	1	l	l	l	l	45,7	38	31,4	21,4	20	14	13	12	11,5	ı	1	l	1	1
В	20	0910	1	I	l	١	ı	27,5	22,8	15,6	15,0	13	12,5	==	6	∞	ļ	Ī	1	Ī	l
_	9	VΩ ^{N20}		1	1	١	1		38		21,4	20	14	12,5	12	11,5	7,5	9	l	i	1
апряж	91	Uffo	1	١	١	I	ı	i	22,8		12,7	10,5	12,4	10	6	∞	6,	ъ	ı	١	1
Номинальное напряжение,		оѕи∩∇		ı	-!	1	l	1	I	31.4	21.4	. 8	13,6	12,5	12	11,5	7,2	9	l	1	1
иналь	2	0910		l	-	I	l	1	I	15,6	12,7	10,5	8,6	6	7,8	7	5,6	4,6	Ī	1	1
Hon	1	^{OgH} ∩∇			ı				1	31.4	21.4	20,	13,6	12,5	12	11,5	7,2	5,6	2	1	1
	6.3	0910			- 1	ı	I	1	Ī	15.6	12.7	10,5	8,6	7,2	7,8	9	5,6	4	3,8	١	Ī
		V N ^{H20}	7						ļ	1	l	20	13.6	12,5	12	11,5	7,2	5,6	2	1	1
	0.4	094									1	10.5	8,6	7,2	9	9	8,4	3,8	က	1	ı
		OgH _O O	,			1				l	i	1	13.6	12,5	12	11,5	8'9	5,6	4,7	4	3,5
	3.2	021				l .				 	١	١	8,6	7.2	9	2	4	3,5	2,7	81	1,9
		VO ^{N20}	7				1				1			12.5	12	1	1	1	-	1	l
	1	ا الموادد الم		l	l	l	1					Į.	l	7.2	9	I	Ī	Ī		1	i
RA Ф;	Hqu'	Номиня емк о сть	09	0,00	- т	o, 1	2,2	٥, ۲ ۲	4,1	ç, <u>-</u>	5 E	3 6	33 6	47	. 89	8	150	220	330	470	089

НАДЕЖНОСТЬ

Наработка, ч	30 000
Интенсивность отказов, 1/ч, не более	5·10-8
99,5%-ный срок сохраняемости, лет, не менее	25
Изменение электрических параметров:	
в течение наработки:	
емкости, %, не более	±50
тангенса угла потерь	
для конденсаторов варианта 1 и конденса-	
торов варианта 2 высотой $H_{\text{max}} = 8,5$ и	
9,5 мм на $U_{\text{ном}} \leq 20$ В, %, не более	100
для остальных конденсаторов, не более	
, , , , , , , , , , , , , , , , , , ,	указанных в разделе
	«Основные технические
	данные»
тока утечки, не более	50-кратных значений,
,	указанных в разделе
	«Основные технические
	данн ые»
в течение 99,5%-ного срока сохраняемости:	
емкости, %, не более	±30
тангенса угла потерь, не более	5-кратных значений,
• • •	указанных в разделе
	«Основные технические
	данные»
тока утечки, не более	10-кратных значений,
,	указанных в разделе
	«Основные технические
	данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

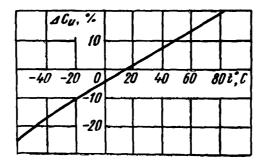
При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 0518—87.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 по ГОСТ 21930—76. Температура припоя 260±5°С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—84) и 75% по массе изопропилового (ГОСТ 9805—89) или этилового спирта (ГОСТ 18300—87). Время пайки не более 4 с. Расстояние от границы компаунда до места пайки для конденсаторов варианта 1 не менее 5 мм.

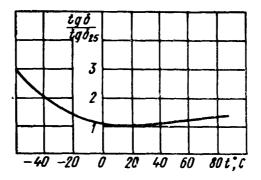
K53-34

При монтаже в аппаратуру допускается групповая пайка конденсаторов. При монтаже конденсаторов с целью защиты мест крепления выводов изгиб выводов следует производить на расстоянии не менее 2,5 мм от границы компаунда.

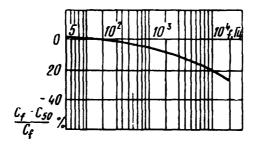
Допускается промывка конденсаторов в спирто-бензиновой смеси в соотношении 1:1 по объему.

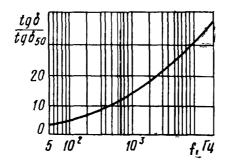

Значение низшей резонансной частоты превышает 5000 Гц при креплении конденсатора за корпус приклейкой (заливкой).

Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздействие растягивающей силы, направленной вдоль оси вывода 5 H (3,5 кгс) для конденсаторов варианта 1 и 10 H (1 кгс) для конденсаторов варианта 2.

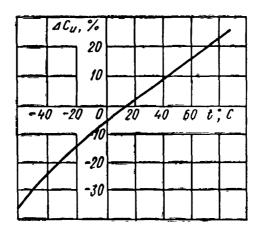

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

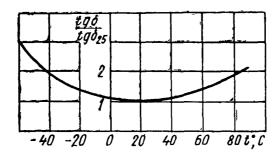
для конденсаторов варианта 1 и варианта 2 высотой $H_{\max} = 8.5$ и 9.5 мм на $U_{\max} \leq 20$ В


Зависимость изменения емкости от температуры

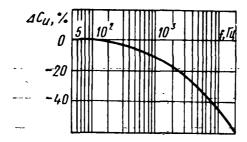

Зависимость изменения тангенса угла потерь от температуры

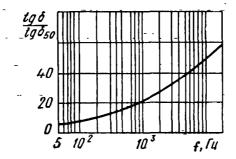
Зависимость изменения емкости от частоты


Зависимость изменения тангенса угла потерь от частоты

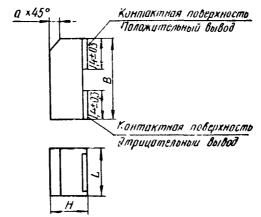

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

для конденсаторов варианта 2, кроме конденсаторов высотой $H_{\rm max}{=}8,5$ и 9,5 мм на $U_{\rm Hom}{\leqslant}20$ В


Зависимость изменения емкости от температуры


Зависимость изменения тангенса угла потерь от температуры

Зависимость изменения емкости от частоты

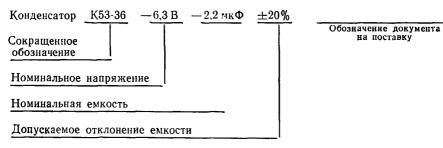

Зависимость изменения тангенса угла потерь от частоты

K53-36

Конденсаторы Қ53-36 оксидно-полупроводниковые танталовые защищенные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов.

Конденсаторы изготавливают в исполнении для умеренного и холодного имата (УХЛ).

Номинальная	Номи-			Масса, г,					
емкость, мкФ	ное на- пряже- ние, В	а	£	Пред. откл.	Н	Пред откл.	L	не болсе	
1,5		0,6±0,125			2			0,15	
3,3	3,2		4,2				2,50,4		
2,2; 3,3	6,3	1±0,2			2,5			0,2	
6,8	0,3		4,5				50,48	0,4	
1,0		0,6±0,125	4.2	-0,3	2	0,25	2,50,4	0,15	
1,5	10	1.00			0.5		_,~	0,2	
4,7		1±0,2	4.5		2,5		5 _0,48	0,4	
0,68		0,6±0,125	10		2	,		0,15	
1,0	16	1±0,2	4,2		2,5		2,50,4	0,2	
2,2	}	1 150,2	4,5		2,0		50,48	0,4	


K53-36

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжен

Номинальная	Номи-			Масса, г,				
емеость, мкФ	ное на- пряже- ние, В	а	В	Пред. откл.	Н	Пред. откл.	L	не более
0,47		0,6±0,125	1.0		2		2,5 _{—0,4}	0,15
0,68	20	1±0,2	4,2		2,5		2,0 -0,4	0,2
3,3		1±0,2	4,5	t 			5 $_{-0,48}$	0,4
0,1								
0,15		0,6±0,125	4,2	0,3	2	- 0,25		0.15
0,22	32	0,00,120					$^{2,5}_{-0,4}$	0,15
0,33	02							
0,47		1±0,2			2,5			0,2
1,0]	4,0,0	4,5		<u> </u>		5 _0,48	0,4

Пример записи условного обозгачения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

Синусоидальная вибрация:	
диапазон частот, Гц	1-5000
амплитуда ускорения, м·с-2 (gi	400 (40)
Акустический шум:	
диапазон частот, Гц	50-10 000
уровень звукового давления, дБ	170

K53-36

Механический удар:	
одиночного действия	
пиковое ударное ускорение, к·с-2 (g)	15 000 (1500)
длительность действия ударного ускорения, мс	0,1—2
многократного действия	
пиковое ударное ускорение, к·с-2 (g) : .	1500 (150)
длительность действия ударного ускорения, мс	15
Линейное ускорение, м \cdot с $^{-2}$ (g)	5000 (500)
Атмосферное пониженное давленье:	
рабочее, Па (мм рт. ст.)	$133 \cdot 10^{-6} (10^{-6})$
Атмосферное повышенное давление:	
рабочее, Па (кгс \cdot см $^{-2}$)	294 000 (3)
Повышенная температура среды, °С	85
Пониженная температура среды, °С	минус 60
Смена температур, °C:	
от повышенной температуры среды	85
до пониженной температуры среды	минус 60
Повышенная относительная влажность при $t=$	
= 25°C, %	98
Атмосферные конденсированные осадки (роса, иней).	
основные технические данны	ME
Допускаемые отклонения емкоств, %	$\pm 20; \pm 30$
Тангенс угла потерь, %, не более:	_ ,
	12
для конденсаторов на $U_{\text{ном}}=3.2~\mathrm{B}$	10
\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim	8
Ток утечки, мкА, не более	2
НАДЕЖНОСТЬ	
Минимальная наработка, ч	15 000
Минимальный срок сохраняемости, лет	20
95%-ный ресурс, ч	30 000
Изменение электрических параметров:	
в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	80
тока утечки, мкА, не более	100

В	течение минимального	срока	CO	xpa	HS	ien	100	T	1		
	емкости, %, не более										±20 ·
	тангенс угла потерь не	более	•	•	•	•	•	,	•	•	5-кратных значений, указанных в разделе «Основные технические данные»
	тока утечки не более		•	•	•	•	•		•	•	10-кратных значений, указанных в разделе «Основные технические данные»

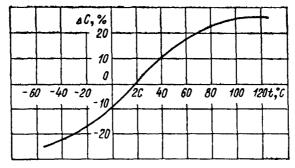
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуатации конденсаторов по ОСТ В 11 0025—84 с дополнениями и уточнениями, изложенными в настоящем разлеле.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 или ПОССу-61-05 по ГОСТ 21930—76. Температура жала паяльника 260±5°С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—73) и 75% по массе изопропилового (ГОСТ 9805—76) или этилового спирта (ГОСТ 18300—72). Время пайки не более 4 с.

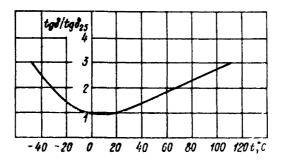
Значение низшей резонансной частоты превышает 5000 Гц.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, 5000 Гц.

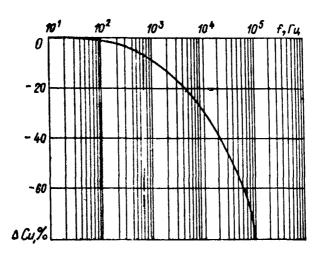

Значение сдвигающей силы 6,5 Н (0,65 кгс).

Время сохраняемости паяемости контактных поверхностей конденсаторов без дополнительного облуживания 12 месяцев.

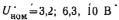
Конденсаторы допускают эксплуатацию при температуре 125°C и напряжении, равном 0,7 $U_{\rm ном}$ в течение минимальной наработки.

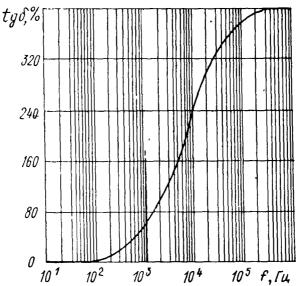

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

Зависимость изменения емкости от температуры

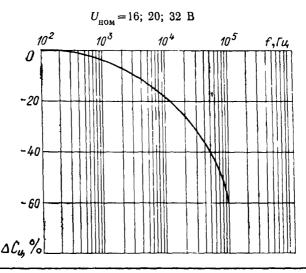

K53-36

Зависимость тангенса угла потерь от температуры

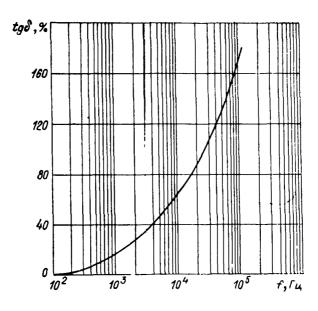



Зависимость изменения емкости от частоты

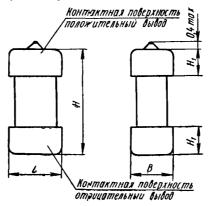
 $U_{\text{HOM}} = 3.2; 6.3; 10 \text{ B}$



Зависимость тангенса угла потерь от частоты


Зависимость изменен ия емкости от частоты

K53-36


Зависимость тангенса угла потерь от частоты

 $U_{\text{HOM}} = 16.20; 32 \text{ B}$

K53-37

Конденсаторы оксидно-полупровсдниковые танталовые незащищенные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсном режиме.

	Номи-	Размеры, мм													
Номиналь- ная ем-	нальное напря-	11		1	L		В		са, г, не бо-						
кость, мкФ	женис, В	Ho-	Пред. откл.	По- мин.	Пред. огкл.	Но- мин.	Пред. откл.	H ₁	лее						
2,2	4,0														
1,5	6,3														
1,0	10														
0,68	16						:		0.10						
0,47	25		±0,24	±0,24	±0,24	±0,24	±0,24	±0,24	±0,24	1,6	$\pm 0,125$				0,12
0,33	32										l				
0,15	40			ļ											
0,1	50														
6,8	4,0	4,0				1,6	±0,125	0,9							
4,7	6,3														
3,3	10														
2,2	16														
1,5	25		$\pm 0,375$	2,8	±0,3		1		0,2						
1,0	32														
0,47	40		1												
0,33	50														

K53-37

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

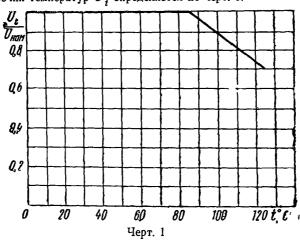
Продолжение

	Номи-	[P	азмеры, м	ı M			Mac-
Номиналь- ная ем-	нальное напря-		Н		L		В	H_1	са, г, не бо-
кссть, мкФ	жение, В	Но- мин.	Пред. огкл.	Но- мин	Пред. откл.	Но- мин.	Пред. откл.	H ₁	лее
22	4,0								
15	6,3	}		i			ļ		
10	10								
6,8	16	5,6	±0,375	3,6	±0,375	2,0	±0,3	0,9	0,4
4,7	25	0,0	0,0,0	0,0	20,070	2,0	0,0	0,0	0,,,
3,3	32								
1,5	40	ļ							
1,0	50								
68	4,0				į į				ļ
47	6,3								
33	10								ļ
22	16	l							
15	25	7,1							0,8
10	32	1							
4,7	40	1							
3,3	50		$\pm 0,450$	4,0	$\pm 0,24$	3,0	± 0.2	1,4	
100	4,0					ĺ			
68	6,3				ļ				
47	10					•			
33	16	8,5		ļ		ļ	1		1,0
22	25				1				
15	32								

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

Конденсатор	К53-37-32 В -10 мкФ ±	-30% ОЖ0.464.260 ТУ
Сокращенно е обо з	начение	Обозначение документа на поставку
Номинальное напр	яжение	
Номинальная емко	ОСТЬ	1
Допускаемое откл	онение емкости	_]

ВНЕШНИЕ ВОЗДЕИ ТВУЮЩИЕ ФАКТОРЫ

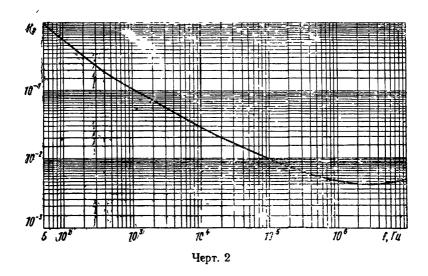

Синусоидальная вибрация	
диапазон частот, Гц	15000
амплитуда ускорения, м с $^{-2}$ \cdot g)	400 (40)
Акустический шум	
диапазон частот, Гц .	50-10 000
уровень звукового давления (относительно	
2·10-5 Па), дБ	170
Механический удар	
одиночного действия	
пиковое ударное ускорение, и с ² (g)	15 000 (1500)
длительность действия, мс	0,1—2
многократно го действия	
пиковое ударное ускорсние, и c^{-2} (g)	1500 (150)
длительнос ть действия, мс	1-5
Линейное ускорение, м c^{-2} (g)	5000 (500)
Атмосферное пониженное давление, Па (мм рт ст)	
рабочее	133 10-6 (10-6)
предельное	12 000 (90)
Атмосферное рабочее повышенное давление, Па	
(krc/cm²)	294 000 (3)
Повышенная температура среды, °С	
рабочая .	125
предельная	70
Пониженная температура среды, °С	минус 60
Смена температур, °С	
ог рабочей повышенной .	125
до предельной пониженной	минус 60
Относительная влажность при температуре 25°C, %	80
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЬ	ΙE
Допускаемые отклонения емкости, % .	$\pm 20, \pm 30$
Тангенс угла потерь и ток утечки	

Номинальное напря жение В	Танген∪ угла потерь °₀ не более	Ток утечки мкА, не более
4,0	12	
6 °	10	$0.01 C_{\text{hom}} U_{\text{hom}} + 1$ или 2 мкА,
10, 16, 25, 32, 40, 50	8	если (0,01 С _{ном} U _{ном} +1)<2

Полное сопротивление

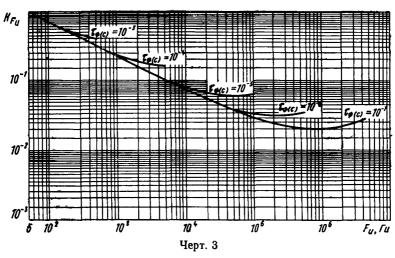
Номинальная	Полное сопротивление, Ом, не болсе для конденсаторов на $U_{ m HOM}$, В									
емкость, мкФ	4,0	6.3	10	16	25	32	40	50		
1	_		_	-	_	10	_	10		
1,5	_		_	-	10		5	_		
2,2	_	-	_	10	-	_		_		
3,3	-	-	10		_	5	- 1	5		
4,7	_		l — 1	-	5	_	5	_		
6,8	_			5		-		_		
10			5	-	-	2		_		
15	_	5		-	2	2	-	_		
22	5		-	2	2	-	-	-		
33	-	\ - -	2	2	-	_		-		
47	_	2	2	-	-	-	-	-		
68	2	2	-	-	-	-	-	_		
100	2	_	_		_		-			

Допускаемое постоянное или пульсирующее напряжение на конденсаторе в интервале рабочих температур \boldsymbol{U}_t определяется по черт. 1.

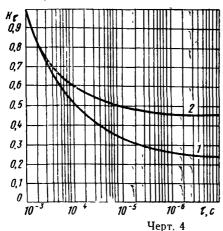


K53-37

 $0.2~U_{\scriptsize HOM}$


$$U_f = U_{f50} K_f,$$

где $U_{f^{50}}$ — амплитуда переменной синусоидальной составляющей пульсирующего напряжения на частоте 50 Гц, определяемая по табл. 1. K_f — коэффициент снижения амплитуды переменной синусоидальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт. 2.



где $\Delta U_{\mathrm{и}50}$ — размах импульсного напряжения на частоте 50 Гц, определяемый по табл. 1;

 $K_{P_{\rm H}}$ — коэффициент снижения размаха импульсного напряжения в зависимости от частоты следования импульсов, определяемый по черт. 3.

 K_{τ} — коэффициент снижения размаха импульсного напряжения в зависимости от длительности фронта (спада) импульса, определяемый по черт. 4.

 $1-C_{\text{ном}} \leqslant 10$ мк Φ ; $2-C_{\text{ном}} > 10$ мк Φ

Амплитудное значение импульсного тока на единицу емкости, $A/m \kappa \Phi$, не более

0.01

K53-37

Ταδλυψα 1

	20	$ \Delta U_{H50} $	3 46	1	33	١	!	1 29,3	i	١	24	l	l	I	ı	1	I	!	١	1
		U_{f50}	17,3	1	13	1	l	11,1	l	<u> </u>	9,1	1	1		1	1	1			!
	40	$U_{f50} \mid_{\Delta U_{H50}}$!	37	ļ	27,3	1	1	23,6		1	8	1		I	1	1	1	1	1
		U f50	-	14	İ	Ξ	١	١	9,1	l	1	7,7	1	ł	!	t	l	١	l	!
UHOM' B	32	$U_{f50} \left \Delta U_{\mu50} \right $		1	25	ĺ	1	19	l	Ī	91	l	1	13,9	12	1	l		ľ	1
ов на	٠٠٫	U_{f50}	1	l	9,5	i	1	7,3	ļ	ł	6,1	1	1	5,3	4,6	1	ĺ	ı	Į	l
для конденсаторов на	25	$U_{f50} \left \Delta U_{H50} \right $	I	١	ł	20,7	ı	1	15,3	ı		13,3	ı	1	11,2	01	l	I	1	1
для кон,	5		1	1	١	∞	1	i	9	1	l	5,1	ŀ	I	4,3	3,8	l	i	I	1
ΔU _{N50})	91	ΔU_{B50}	1	ı	١	I	17,3	1	l	12,7	1	I	=	ı	1	6,3	8,2	1	ı	١
H	1	U_{f50}	ï	İ	١	1	9'9	١	ı	4,9	1	1	4,3	١	1	3,6	3,1	1	1	1
Значение U f50	01	$U_{f50} \left \Delta U_{H50} \right $		l	ı	I	1	14,4	ı	١	10,4	l	1	9,3	١	l	2,6	6,9	ŀ	ļ
Значе			1	١	-	l	I	5,5	ł	İ	4	!	1	3,5	l	1	2,9	5,6	ļ	1
	3	$U_{f50} \left ^{\Delta U_{H50}} \right $	1	l	١	١	!	ļ	11,6	1	l	8,6	l	I	7,5	ı	I	6,3	5,7	1
	6,3			!	١	١	1	١	4	١	١	က	1	1	2,6	١	ı	2,2	2	ı
	4	ΔU и50	1	١	i	١	١	١	I	10	1	1	7,2	l	1	6,2	1	Į	5,3	4,8
		U f50	1	!	1	1		I	1	က	1	1	2,3	-	1	1,9	i	I	1,6	1,5
Ho-	ии. Наль-	ная ем- кость. мкф	0,1	0,15	0,33	0,47	89,0	1,0	1,5	2,5	3,3	4,7	8,9	10	15	22	33	47	89	100

K53-37

КОНДЕНСАТОРЫ ОКСИДЕО-ПОЛУПРОВОДНИКОВЫЕ

надежность

Минимальная наработка, ч	50 000 25 . 100 000
емкости, %, не более	±50
emkocin, 70, he obliee	•
тангенса угла потерь не более тока утечки не более полного сопрогивления не более .	10-кратных значений, ука- занных в разделе «Основ- ные технические данные» 50-кратных значений, ука- занных в разделе «Основ- ные технические данные» 2 кратных значений, ука- занных в рэзделе «Основ-
	ные технические данные»
минимального срока сохраняемости	
емкости, %, не более	. ±30
тангенса угла потерь не более	5-кратных значений, ука- занных в разделе «Основ- ные технические данные»
тока утечки не более	10-кратных значений, ука- занных в разделе «Основ- ные технические данные»
полного сопротивления не более	1,5-кратных значений, ука- занных в разделе «Основ- ные технические панные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Указания по применению, монтажу и эксплуагации кондечсаторов по ОСТ В 11 0025—84 с дополнениями и уточнениями, приведенными ниже.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС 61 или ПОССу 61-0,5 по ГОСТ 21930—76

Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли по ГОСТ 19113-73 и 75% по массе изопропилового по ГОСТ 9805-76 или этилового по ГОСТ 18300-72 спирта,

Время пайки не более 4 с

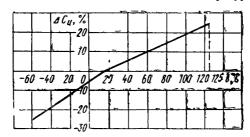
Перед пайкой конденсаторы, смоченные спирто канифольным флюсом, нагревают до температуры, при которой перепад между температурой нагрева конденсаторов и температурой расплавленного припоя составляет не более 80°C.

Допускается промывка конденсаторов в спирто-бензиновой смеси в соотнощении 1:1 по объему

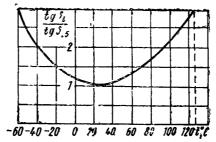
Конструкция конденсатора допускает возможность магнитной ориентации по полярности. При этом положительный вывод изготовлен из магнитного материала

K53-37

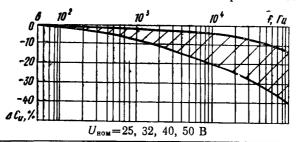
Значение низшей резонансной частоты превышает 5000 Гц

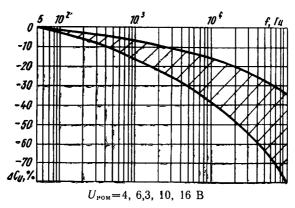

Время сохранечия паяемости ко-тактных поверхностей конденсаторов без дополнительного облуживания 12 месяцев

Значение сдвигающей силы

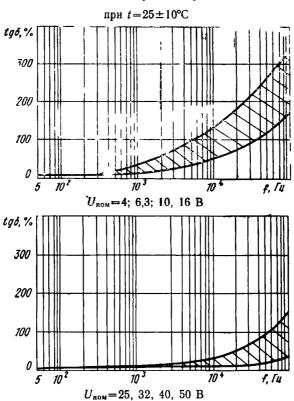

для конденсаторов размерами 1,6 \times 1,6 мм и 1,6 \times 2,8 мм — 2,5 Н (0,25 кгс) для остальных конденсаторов — 6,5 Н (0,65 кгс)

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

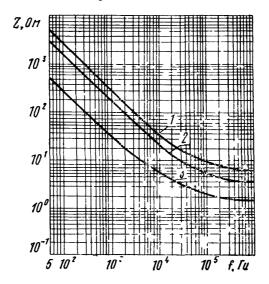

Зависимость изменения емкости от температуры



Зависимость изменения тангенса угла потерь от температуры

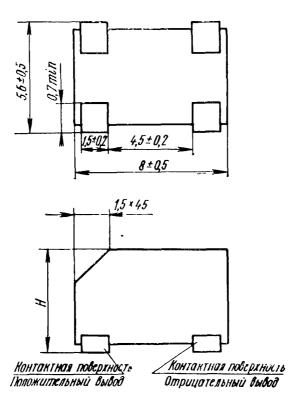


Зависимость изменения емкости от частоты при $t = 25 \pm 10^{\circ} \text{C}$



Зависимость тангенса угла потерь от частоты

Зависимость полного сопротивления от частоты


при $t = 25 \pm 10$ °C

Номер кривой	$oldsymbol{U}_{ ext{HOM}} imes C_{ ext{HOM}}$, MK $oldsymbol{\Phi} imes ext{B}$					
1	10×3,3; 16×2,2; 25×1,5; 32×1; 50×1					
2	4×22 ; 6,3×15; 10×10; 16×6,8; 25×4,7; 32×3,3, 40×1,5, 40×4,7; 50×3,3					
3	4×68 , 6,3×47; 10×33; 16×22; 25×15; 32×10, 4×100; 6,3×68, 10×47; 16×33; 25×2,2 32×15					

Конденсаторы оксидно-полупроводниковые алюминиевые защищенные полярные постоянной емкости К53-40 предназначены для работы в качестве встроснных элементов внутри комплектных изделий в цепях постоянного и пульсирующего токов и в импульсных режимах.

Конденсаторы изготавливают в исполнении для умеренного и холодного климата (УХЛ).

K53-40

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

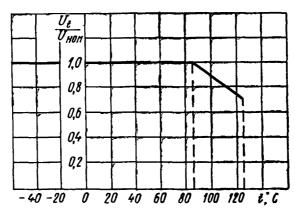
	Номинальное	Н	Масса, г,	
Номинальная емкость, мкФ	напряжение, - В	Номин.	Пред. откл.	не более
3,3	3,2	3,2		0,4
4,7; 6,8; 10	0,2	5,1		0,6
2,2	6,3	3,2		0,4
3,3; 4,7; 6,8	0,3	5,1		0,6
1,5	10	3,2		0,4
2,2; 3,3; 4,7	10	5,1		0,6
1,0	16	3,2	±0,2	0,4
1,5; 2,2; 3,3		5,1		0,6
0,47; 0,68	25	3,2		0,4
1,0; 1,5	20	5,1		0,6
0,1; 0,15; 0,22;		3,2		0,4
0,33; 0,47	32			U,7
0,68; 1,0		5,1		0,6

Пример записи условного обозначения при заказе и в конструкторской документации:

Конденсатор К53-40 - 10 В - 3,2 мкФ ±30% ОЖ0.464 264 ТУ

Сокращенное обозначение
Номинальная емкость
Допускаемое отклонение емкости

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

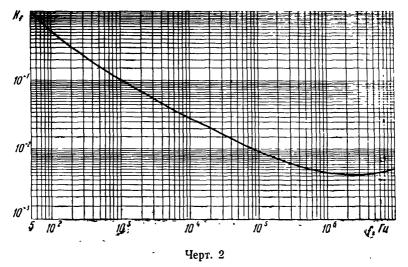


K53-40

многократного действия	
пиковое ударное ускорение, м·с-2 (g)	400 (40)
Атмосферное пониженное давление, кIIa (мм рт. ст.):	•
рабочее	53,3 (400)
предельное	19,4 (145)
Повышенная рабочая температура среды, °C	125
Пониженная рабочая температура среды, °C	минус 60
Смена температур, °C:	
ог рабочей повышенной	125
до предельной пониженной	минус 60
Повышенная относительная влажность при $t=25$ °C,	
%	98
Атмосферные конденсированные осадки (ипей и роса).	
основные технические данные	

Допускаемое отклонение емкости			±30
Тангенс угла потерь, %, не более			15
Ток утечки, мкА, не более			$0.1 C_{\text{hom}} U_{\text{hom}} + 10,$
		где	C_{hom} (MK Φ), U_{hom} (B)
Попускаемое напражение на конленсатор	e B	интепвале	пабочих температур

Допускаемое напряжение на конденсаторе в интервале рабочих температур U_t не должно превышать значений, определяемых по черт. 1:


Черт. 1

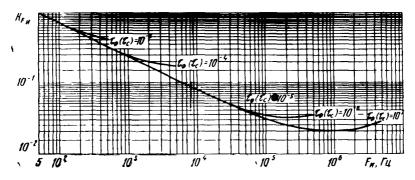
 $0.2~U_{\scriptsize{\scriptsize{HOM}}}$

$$U_f = U_{f50}K_f$$
,

где U_{I50} — амилитуда переменной синусоидальной составляющей пульсирующего напряжения на частоте 50 Гц, определяемая по табл. 1, В; K_I — коэффициент спижения амилитуды переменной синусопдальной со-

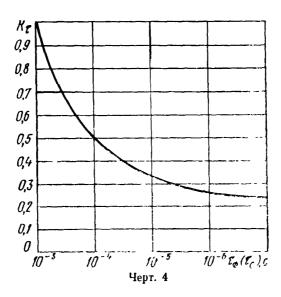
К_I — коэффициент спижения амплигуды переменной спиусопдальной составляющей пульсирующего напряжения в зависимости от частоты, определяемый по черт. 2:

Примечание. Сумма постоянной и допускаемой амплитуды переменной синусоидальной составляющих пульспрующего напряжения не должна превышать номинального напряжения, а допускаемая амплитуда переменной синусопдальной составляющей не должна превышать значений постоянного напряжения.


 $\Delta U_{\rm H} = \Delta U_{\rm H50} K_{\rm FH} K_{\tau},$

где $\Delta U_{\rm H50}$ — размах импульсного напряженья на частоте 50 Γ ц, определяемый по табл. 1, B;

Таблица 1


Номн-	Номинальное напряжение, В											
ная ем-				10		16	2	5	32			
кость, мкФ	U_{f50}	$\Delta U_{\mu 50}$	U_{f50}	$\Delta U_{\mu 50}$	U_{f50}	ΔU_{H50}	U_{f50}	ΔU _{μ50}	U_{f50}	ΔU_{H50}	U_{f50}	$\Delta U_{\mu 50}$
0,1		1	-	-		_	_	_	_		158,1	318,4
0,15	_ [_ !	_	-		- 1	_	_	_	_	129,1	260,0
0,22		-	_ '	- '		_	_ '	_	_	_	106,6	214,7
0,33	-			_ '	_		_ '	_	_	_	87,1	175,4
0,47	_	_ '	_		_	_	_	_	73,0	147,0	73,0	147,0
0,68	- 1	_	-	-				-	60,6	122,0	63,7	128,3
1,0	-	_	-		-		50,0	100,7	52,5	105,7	52,5	105,7
1,5	-	-	-		40,8	82,2	42,9	86,4	42,9	86,4	-	-
2,2	- '	 	33,7	67,9	35,4	71,3	35,4	71,3	_	—		-
3,3	27,5	55,4	28,9	58,2	28,9	58,2	28,9	58,2	-	-	_	-
4,7	24,2	48,7	24,2	48,7	24,2	48,7	—	_	-	-	-	-
6,8	20,2	40,7	20,2	40,7		_	 	-	-	-	-	_
10	16,6	33,4	-	-		-	_	_	_	-	-	-

 K_{FH} — коэффициент снижения размаха импульсного напряжения в зависимости от частоты следования импульсов, определяемый по черт. 3:

Черт. 3

 K_{τ} — коэффициент снижения размаха импульсного напряжения в зависимости от длительности фронга (спада) импульса, определяемый по черт. 4:

НАДЕЖНОСТЬ

Наработка, ч	10 000
Интенсивность отказов, 1/ч, не болсе	$5 \cdot 10^{-8}$
99,5%-ный срок сохраняемости, лет, не менее	10
Изменение электрических параметров:	
в течение наработки:	
емкости, %, не более	±40
тангенса угла потерь, не более	8-кратных значений,
•	указанных в разделе
	«Основные технические
	данные»
тока утечки, не более	50-кратных значений,
,	указанных в разделе
	«Основные технические
	данные>

10 000

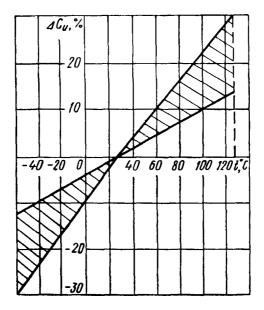
K53-40

в течение 99,5%-ного срока сохраняемости:	
емкости, %, не более	±40
тангенса угла потерь, не более	8-кратных зпачений,
	указанных в разделе
	«Основные технические
	данные»
тока утечки, не более	10-кратных значений,
	указанных в разделе
	«Основные технические
	данные»

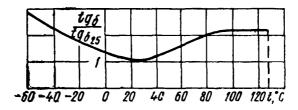
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

При применении, монтаже и экс ілуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 0518—87.

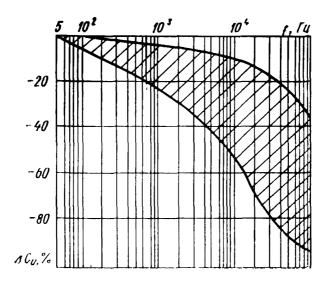
При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 по ГОСТ 21930—76. Темпер≥тура припоя не выше 265°С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—84) и 75% по массе изопропилового (ГОСТ 9805—89) или этилового (ГОСТ 18300—87) спирта. Время пайки не более 4 с.

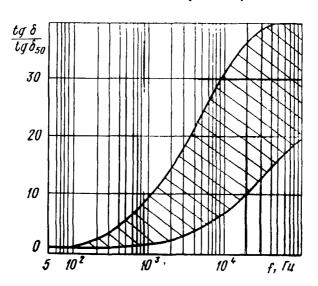

Перед пайкой конденсаторы, смоченные спирто-канифольным флюсом, пагревают до температуры, при которой перепад между температурой нагрева конденсаторов и гемпературой расплавленного припоя составляет не более 80°С. Конденсаторы допускают промывку в спирто-бензиновой смеси в соотношении 1:1 по объему.

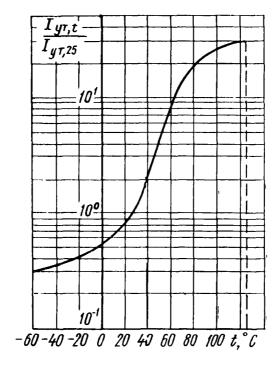
Значение низшей резонансной частоты превышает 5000 Гц при креплении конденсатора пайкой за контактные поверхности с приклейкой.

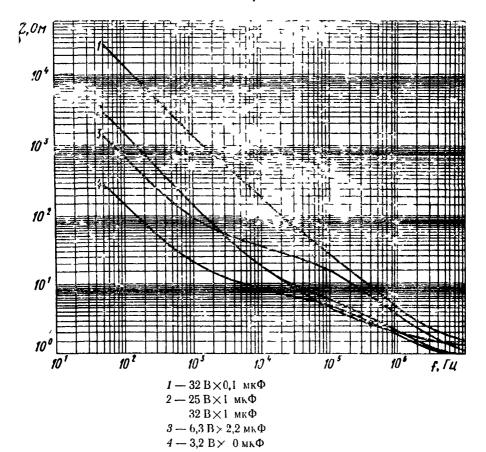

Контактные узлы конденсаторов должны выдерживать воздействие сдвигающей силы 6,5 H (0,65 кге).

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

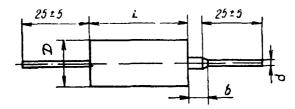

Зависимость изменения емкости от температуры


Зависимость изменения тангенса угла потерь от температуры


Зависимость изменения емкости от частоты


Зависимость изменения тангенса угла потерь от частоты

Зависимость изменения тока утечки от температуры



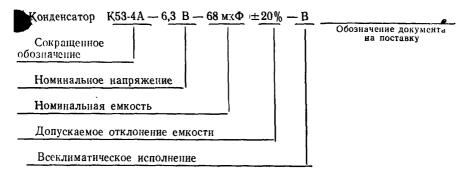
Зависимость полного сопротивления от частоты

Конденсаторы K53-4A оксидно-волупроводниковые ниобиевые постоянной емкости герметизированные предназначены для работы в цепях постоянного и пульсирующего токов.

Конденсаторы изготавливают в двух климатических исполнениях: в исполнении для умеренного и холодного климата (УХЛ) и во всеклиматическом исполнении (В).

Номи-				Разт	иеры, мм	ı			
нальное напря-	Номинальная емкость, мкФ	I		I					Масса, г, не
жение, В		Но¬ мин.	Пред отвл	Но- мин.	Пред. Откл.	Но _т мин.	Пред. откл.	ь	более
	0,68; 1,0; 1,5	3,2		7,5		0,6			0,6
	2,2; 3,3; 4,7	3,2		7,5		0,6		'	0,6
[6,8; 10	4	+05 0.2	10	+0,5	0,6		3,5	1,0
	15; 22	4		13	0,3	0,6		0,0	1,1
6,3	33; 47	7,2		12	l	0,8			3,5
0,0	68; 100	7,2		16		8,0			4,0
	150	9		16,5	±0,5		±0,1		7,5
	220	9	±05	21,5		0,8		6,0	10,8
	330	10		25					14,0
	0,47; 0,68; 1,0	3,2		7,5		0,6			0,6
	1,5; 2,2; 3,3	3,2		7,5		0,6			0,6
	4,7; 6,8	4	+0.5	10	+0,5	0,6		3,5	1,0
1	10; 15	4	-0.2	13	-0.3	0,6		<i>3</i> ,5 	1,1
16	22; 33	7,2		12		0,8			3,5
Į	47; 68	7,2		16		0,8			4,0
	100	9		16,5	± 0,5			3,5	7,5
	150	9	±0,5	21,5	±0,5	0,8		6	10,8
P	220	10	}	25	±0,5		}	6	14,0

K53-4A


КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Поми-				1	Размеры	, мм			Ī.,
нальное напря-	Номинальная емкость, мкФ						d	.	Масса, г, не
жение, В		Но ⁴	Пред откл	Пред откл	Но- мин	Но- мин.	Пред. о ткл.	b	более
	1,0; 1,5; 2,2	3,2		7,5		0,6			0,6
00	3,3; 4,7	4,0		10		0,6	}		1,0
20	6,8; 10	4,0		13		0,6	1		1,1
	15; 22	7,2	\	12		0,8	}		3,5
	33; 47	7,2	_	16		0,8			4,0
	0,47; 0,68; 1,0	3,2		7,5		0,6		3,5	0,8
Ì	1,5; 2,2	4		10		0,6	±0,1		1,2
30	3,3; 4,7; 6,8	4		13	'	0,6			1,3
"	10; 15	7,2		12		0,8			4,0
	22; 33	7,2		16		0,8			5,0
	0,1; 0,15; 0,22	3,2	+0,5	7,5	+0,5	0,6			0,8
	0,33	3,2	-0,2	7,5	0,3	0,6]		0,8
40	0,47; 0,68	3,2	ļ	7,5		0,6	1		0,8
	1,0; 1,5	4		10		0,6			1,2
	2,2; 3,3	4		13		0,6			1,3
	4,7; 6,8; 10	7,2		12		0,8			4,0
	0,1; 0,15; 0,22	3,2		7,5		0,6			0,8
1	0,33; 0,47; 0,68	3,2		7,5		0,6			0,8
50	1,0	4,0		10		0,6			1,2
"	1,5; 2,2	4,0		13		0,6			1,3
	4,7; 6,8	7,2		12		0,8			4,0
]	<u> </u>				<u> </u>	

Для конденсаторов всеклиматического исполнения пред. откл. $D_{-0,2}^{+0.6}$

K53-4A

Пример записи условного обозвачения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ

	Синусоидальная вибрация:	
	диапазон частот, Гц	13000
	амплитуда ускорения, м·с-2 (g), не более	196 (20)
	Акустический шум:	, ,
	днапазон частот, Гц	50—10 000
	уровень звукового давления, дБ, не более	150
	Механический удар:	
	одиночного действия	
	пиковое ударное ускорение, м·c-2 (g), не более	9810 (1000)
	длительность действия ударного ускорения, мс	0,2—1
	многократного действия	
	пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не более	1471 (150)
	длительность действия ударного ускорения, мс	1-3
	Линейное ускорение, м c^{-2} (g), не более	1962 (200)
	Атмосферное пониженное давление, Па (мм рт. ст.)	106 7000,00013
		(800-10-6)
	Атмосферное повышенное давление, Па (кгс · см-2)	до 297 198 (до 3)
_	Повышенная температура среды, °С	85
•	Пониженная температура среды, °С	минус 60
	Смена температур, °C:	·
	от повышенной температуры среды	85
	до пониженной » >	минус 60
	Повышенная относительная влажнесть, %:	•
	для исполнения В при t до 35°C	до 98

K53-4A

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

для исполнения УХЛ при t до $25^{\circ}\mathrm{C}$	до 98									
Атмосферные конденсированные осадки (роса, иней).										
Соляной туман (для исполнения В.										
Плесневые грибы (для исполнения В).										
основные технические данные										
Допускаемые отклонения емкости, %	±10; ±20; ±30									

Ток утечки:

Номинальная емкость, мкФ	Номинальное напряжение, В	Ток утечки, мкА, не более
10-33	30	20
0,1—1,5	40	10
0,1—1,0	50	10
2,2—10	40	2 5
1,5—6,8	50	25

НАДЕЖНОСТЬ

Минимальная наработка, ч	10 000
Срок сохраняемости, лет	15
95%-ный ресурс, ч	20 000
Изменение электрических парамет зов:	
в течение минимальной наработки	
емкости, %, не более	± 50
тангенса угла потерь, %, не более	100
тока утечки	

Номинальное напряжение, В	Номинальшая емкость, мкФ	Изменение тока утечки мкА, не более			
6,3	0,6822				
16	0,47—15	250			
20	1,0—10	200			
30	0,47—6,8				

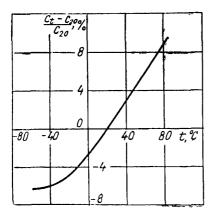
K53-4A

Продолжение

Номинальное напряжение, В	Номинальная емкость, мкФ	Изменение тока утечки, мкА, не более		
6,3	33—100			
16	<i>2</i> 2—68	750		
20	15—47			
30	1033	1000		
6,3	150—330	1500		
16	100—220	1500		
40	0,1—1,5	FA0.		
50	0,1—1,0	500		
40	2.2—10	1000		
50	1 5—6,8	1000		

в течение срока сохраняемост емкости, %, не более								+30
тангенса угла потерь не бо								3-кратных значений, указанных в разделе «Основные технические
тока утечки не более	 •	•	•	•	•	•	•	«Основные технические данные» 20-кратных значений, указанных в разделе «Основные технические ланные»

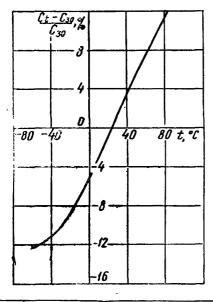
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

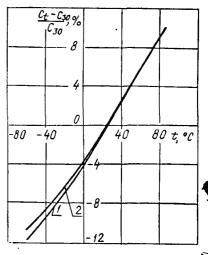

Указания по применению и эксплуатации по ОСТ В 11 464.002—74. Конденсаторы диаметром 3,2—7,2 мм на рабочие напряжения 6,3—20 В допускают эксплуатацию кратковременно (не более 3 ч) в условиях вибрации в диапазоне частот от 1 до 3000 Гц с ускорением до 30 g.

Способ крепления конденсаторов — за корпус.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ

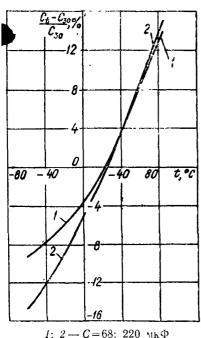
Зависимость изменения емкости от температуры


U=20 В и C=47 мк Φ

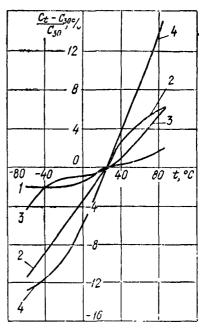

 $U = 50 \text{ B } \text{ H } C = 0.68 \text{ мк} \Phi$

U = 40 В и C = 10 мкФ

U = 6.3 B


1; 2 — C=100; 330 мкФ соответственно

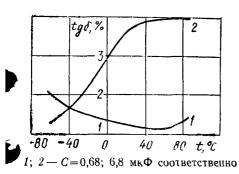
K53-4A

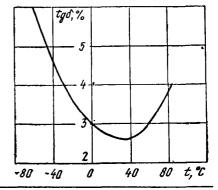

Зависимость изменения емкости от температуры

U = 16 B

U = 30 B

 $I; 2 - C = 68; 220 \text{ MK}\Phi$ соответственно

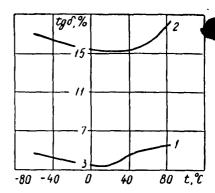



1; 2; 3; 4 - C = 3.3; 6.8; 22; 33 MK Φ соответственно

Зависимость тангенса угла потерь от температуры

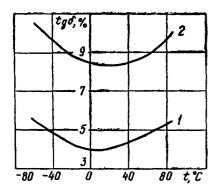
U = 50 B

U = 40 B и $C = 10 \text{ мк}\Phi$

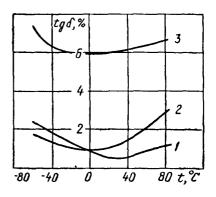


Зависимость тангенса угла потерь от температуры

U=20 В и C=47 мкФ



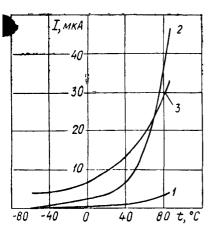
U = 16 B

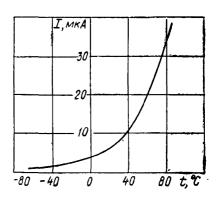

1; 2 — C = 68; 220 мкФ соответственно

$$U = 6,3 \text{ B}$$

1; 2—C=100; 330 мкФ соответственно

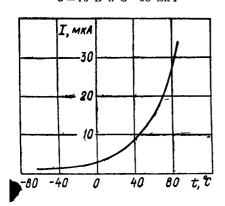
U = 30 B

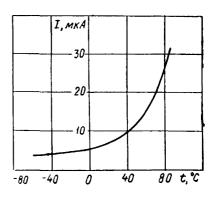

1; 2; 3 — C=3,3; 22; 33 мкФ соответственно


K53-4A

Зависимость тока утечки от температуры

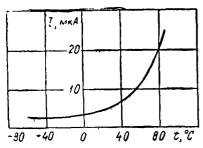
$$U = 30 \text{ B}$$



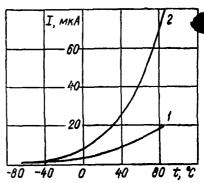


1; 2; 3 — C = 3,3; 22; 33 мк Φ соответственно

$$U = 16$$
 В и $C = 68$ мк Φ

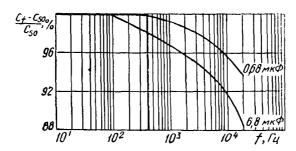


K53-4A

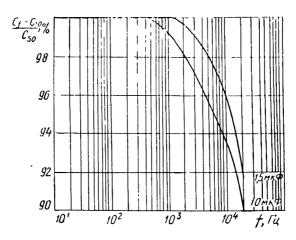

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Зависимость тока утечки от температуры

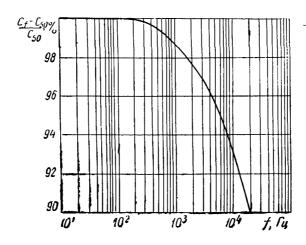
 $U = 40 \, \text{ B} \, \text{ и } C = 10 \, \text{мк} \Phi$


U = 6,3 B

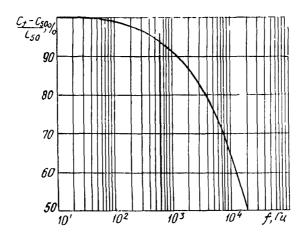
1; 2 — C = 100; 330 мкФ соответственно


Зависимость изменения емкости от частоты

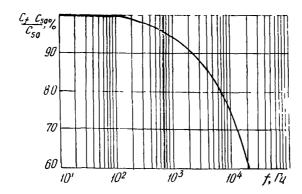
U = 50 B



Зависимость изменения емкости от частоты

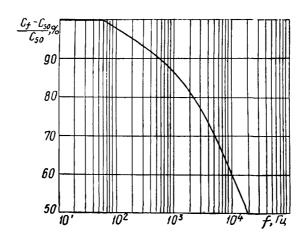


U = 30 Е и C = 22 мкФ

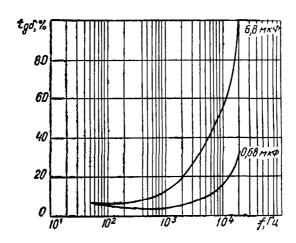


Зависимость изменения емкости от частогы

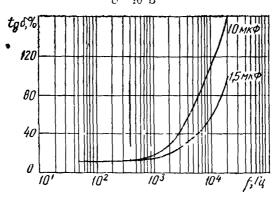
$$U = 20$$
 В в $C = 17$ мкФ


U = 16 В и C = 68 мкФ

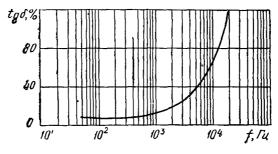
K53-4A

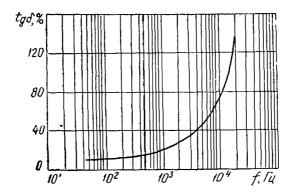

Зависимость изменения емкости от частоты

 $U\!=\!6,\!3$ В и $C\!=\!100$ мк Φ

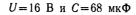


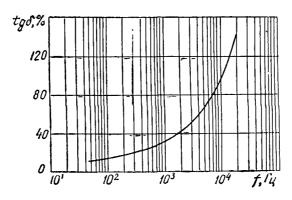
Зависимость тангенса угла погерь от частоты

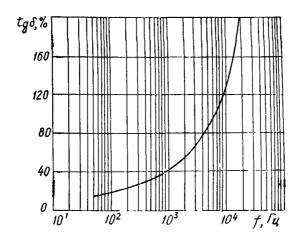

L = 50 B


Зависимость тангенса угла потерь от частоты $U=10~\mathrm{B}$

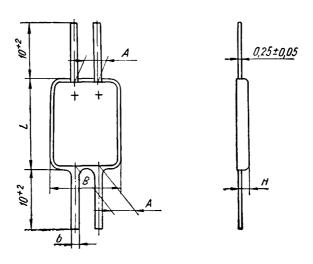
 $U=30~\mathrm{B}$ r $C=22~\mathrm{mk}\Phi$




 $U = 20 \text{ B n } C = 47 \text{ m.} \Phi$


K53-4A

Зависимость тангенса угла потерь от частоты



U = 6.3 В и C = 100 мкФ

K53-31

Конденсаторы К53-31 оксидно-пслупроводниковые пиобиевые в оболочках из органических материалов полярные постоянной емкости предназначены для работы в цепях постоянного и пульсирующего токов и в импульсных режимах. Конденсаторы изготавливают в двух климатических исполнениях: во всеклиматическом исполнении (В) и исполнении для умеренного и холодного климата (УХЛ).

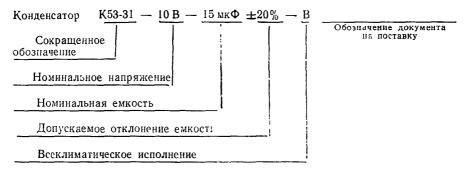
Ī	Номи-	Номи-					Разм	еры, мы	(,,
	нальное напря-	нальная емкость,	L		В		A		Н		b		Масса, г, не
	жение, В	мкФ	Но- мин.	Пред. откл.		Пред. 01 кл.	Но- мин	Пред. откл.	Но- мин.	Пред откл.	Но- мин.	Пред. откл.	более
		10 15 22	10		7,1		2,5		20		1,0		1,5
	6,3	33 47 68	15	+1,3 -0,2	12	+1,0 -0,2	5,0	±0,5	3,0	+1,0 0,2	1,5	±0,2	2,5
)	100 150					-,- 		4,5				4,0

Февраль 1987

K53-31

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

Продолжение


1		Размеры, мм											
Номи- нальное	Номи- нальная		,	1	D					1		Macca,	
напря- жение, В	нальная емкость, мкФ		<u>L</u> Пред. откл	Но-	В Пред. откл	<i>А</i> По- мин.		Н Но Пред. мин откл.		<u>b</u> Но- Пред.		г, не более	
• '	6,8 10 15	10	СТКЛ	7,1	2,5	откл.	мин	откл.	1,0	откл.	1,5		
10	22 33 47	15		12		5,0	±0,5	3,0		1,5		2,5	
	68 100			-		3,0		4,5		1,0	±0,2	4,0	
	4,7 6,8 10	10	+1,3 -0,2	7,1		2,5		3,0		1,0		1,5	
16	15 22 33	15		12	+10	5,0			+1,0	1,5		2,5	
	47 68				$^{+1,0}_{-0,2}$			4,5				4,0	
	3,3 4,7 6,8	10		7,1		2,5		3,0		1,0		1,5	
25	10 15 22	15	15	12		5,0				1,5		2,5	
	33							4,5				4,0	
32	2,2 3,3 4,7	10	,	7,1		2,5		3,0		1,0		1,5	

K53-31

Продолжение

Номи-	Номи-	Размеры, мм												
нальное напря- жение, В	нальная емкость, мкФ		L Пред. откл.	Но-	В Пред. Отн.л.		Пред. откл.		Пред. отк л.		<i>b</i> Пред. откл.	Масса, г, не более		
32	6,8 10 15	15		12		5,0				1,5		2,5		
40	0,68 1,0 1,5 2,2	10	+1,3 -0,2	7,1	+ ,0 -0,2	2,5	±0,5	3,0	+1,0 -0,2	1,0	±0,2	1,5		

Пример записи условного обосначения при заказе и в конструкторской документации:

ВНЕШНИЕ ВОЗДЕПСТВУЮЩИЕ ФАКТОРЫ

i — 3000
196 (20)
5010 000
120
1819 (11(50)
0.2-1

K53-31

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

многократного действия пиковое ударное ускорение, м \cdot с $^{-2}$ (g), не более 1471 (150) длительность действия ударного ускорения, мс 1—3 Линейное ускорение, м \cdot с $^{-2}$ (g), не более \cdot . . . 1962 (200)

Воздействующие факторы	Климат исполнение и	ическое онденс атор ов
333,000,000,000,000	В	УХЛ
Атмосферное пониженное давление, Па (мм рт. ст.)	106 700— 133,32 (800—1)	106 700— 0,00013 (800—10 ⁻⁶)
Атмосферное повышенное давление, Па (кгс см-2)	До 297 1	98 (до 3)
Повышенная температура среды, °С		35
Пониженная температура среды, °С	мин	yc 60
Смена температур, °C:		
от повышенной температуры средь	8	35
до пониженной » »	мин	yc 60
Повышенная относительная влажность, %: при t до 35°C	98	_
» t до 25°C	-	98

Атмосферные конденсированные осадки (роса, иней). Соляной туман (для исполнения В). Плесневые грибы (для исполнения В).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

	Допуска	емые откл	онения емкости, %	±20, ±30
١.	Тангенс	угла потер	ь, %, не более:	
;	для ко	нденсатор	ов с С _{ном} ≤ 15 мкФ	10
	*	»	» С _{ном} > 15 мкФ	
	Ток утеч	ĸu.	2001	

Номинальная емкость, мкФ	Номинальное напряжение, В	Ток утечки, мкА, не более
10—22	6,3	
6,8—15	10	_
4,7—15	16	5
3,36,8	25	
3,3—6,8 2,2—6,8	32	

K53-31

Продолжение

Номинальная емкость, мкФ	Номинальное напряжение, В	Ток утечки, мкА, не более
0,68—2,2	40	10
33—100	6,3	
22—68	10	
22—68	16	15
10—33	25	
10—15	32	20
150	6,3	50
100	10	

Полное сопротивление конденсаторов на частоте 200 кГц:

Номинальная	Полное сог	гротивление,	Ом, при н	мо нальн ом	напряжен	ии, В
емкость, мкФ	6,3	10	16	25	32	40
0,68		_	_	_	_	5,00
1,0		_	_	-	-	4,00
1,5	-	_	_	-	_	2,00
2,2	-			-	1,50	1,50
3,3	_ '		_	1,00	1,00	
4,7	-	-	1,00	1,00	1,00	-
6,8	–	1,00	1,00	1,00	1,00	-
10	1,00	1,00	1,00	0,50	0,50	-
15	1,00	0,80	0,80	0,50	0,50	-
22	1,00	0,55	0,50	0,50	_	<u> </u>
33	0,40	0,40	0,40	0,30	-	_
47	0,40	0,40	0,40	- 1	_	-
68	0,40	0,30	0,30	_	-	-
100	0,25	0,30		_	_] _
150	0,25	-		-	_	
	<u> </u>	<u> </u>	2	\		\

надежность

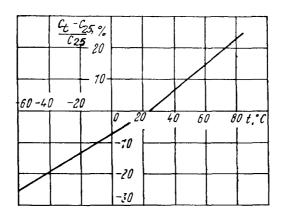
Минимальная наработка, ч	15 000 15
Срок сохраняемости, лет	30 000
Изменение электрических параметрсв: в течение минимальной наработки	
емкости, %, не более	±50
тангенса угла потерь, %, не более	100
тока утечки не более	50-кратных значений, указанных в разделе «Основные технические данные», но не более 150 мкА
полного сопротивления не более	2-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости	
емкости, %, не более	± 30
тангенса угла потерь не более	З кратных значений, указанных в разделе «Основные технические данные»
тока утечки не более	20-кратных значений, указанных в разделе «Основные технические данные»
полного сопротивления не богее	1,5-кратных значений, указанных в разделе «Основные технические данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

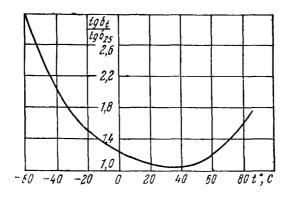
Указания по применению и эксплуатации по ОСТ В 11 464 002—74 с дополнениями, изложенными в настоящем разделе.

При применелии, монтаже и эксплуатации конденсаторов следует пользоваться указаниями, приведенными в руководстве по применению конденсаторов ОСТ 11 074 011—79.

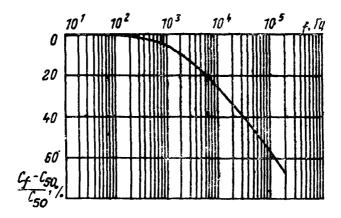
Допускается промывка конденсаторов в спирто-бензиновой смеси в пропорции 1:!.

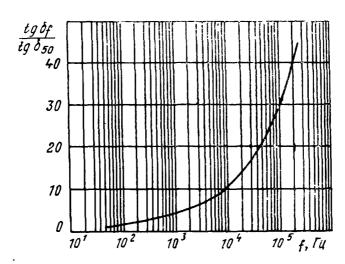

Конденсаторы выдерживают возникающее в результате воздействия электромагнитного импульса импульсное напряжение $1.2\,U_{\rm non}$ при длительностимпульса до $5\cdot 10^{-2}$ с. Форма импульса прямоугольная. Кратность воздейставия— 15.

Способ крепления конденсаторов в аппаратуре с помощью приклейки (заливки) клеем, например, типа ВК-9 или ЭТА по ОС1 4 Г0.029.204 и пайкой за выводы.

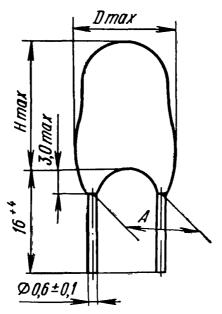

При пайке применяются припой марки ПОССу-61-0,5 или ПОС-61 (ГОС 21.930—76).

ТИПОВЫЕ ХАГАКТЕРИСТИКИ


Зависимость изменевия емкости от температуры


Зависимость тангенса угла потерь от температуры

Зависимость изменения емкости от частоты



Зависимость тангенса угла потерь от частоты

Конденсаторы оксидно-полупроводниковые ниобиевые защищенные полярные постоянной емкости типа K53-35 предназначены для работы в качестве встроенных элементов внутри комплектных изделий в цепях постоянного и пульспрующего токов и в импульсных режимах.

Конденсаторы изготавливают во всеклиматическом исполнении В.

Номинальная	Номиналь- ное на-		Размеры, мм		
емкость, мкФ	пряжение, В	D _{mex}	H _{max}	A	не более
10; 15; 22 33; 47		4,5 5,0	8,5	- 2,5±0,5	0,50 0,55
68; 100 150; 220	6,3	6,0 6,3	9,5 15,0	2,01,0	0,90 1,15
330; 470		9,0	11,5	5±0,6	1,90
68; 10; 15 22; 33	10	4,5 5,0	8,5	2,5±0,5	0,50 0,55

K53-35

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

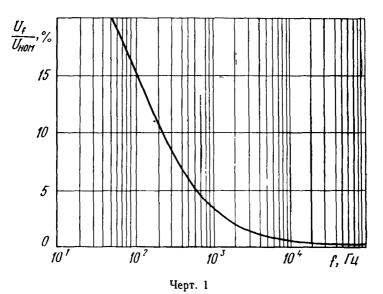
Продолжение

Номинальная	Номиналь-		Размеры, мм		
емкость, мкФ	пряжение, В	D _{max}	ı II _{max}	A	Масса, г, не более
47; 68 100; 150	10	6,0 6,3	9,5 15,0	2,5±0,5	0,90 1,15
220; 330		9,0	11,5	5±0,6	1,90
4,7; 6,8; 10 15; 22		4,5 5,0	8,5	2,5±0,5	0,50 0,55
33; 47 68; 100	16	6,0 6,3	9,5 15,0	2,0±0,0	0,90 1,15
150; 220		9,0	11,5	5±0,6	1,90
3,3; 4,7; 6,8 10; 15	20	4,5 5,0	8,5	2,5±0,5	0,50 0,55
22; 33		6,0	9,5		0,90

 Π р и м е р записи условного обозначения при заказе и в конструкторской документации:

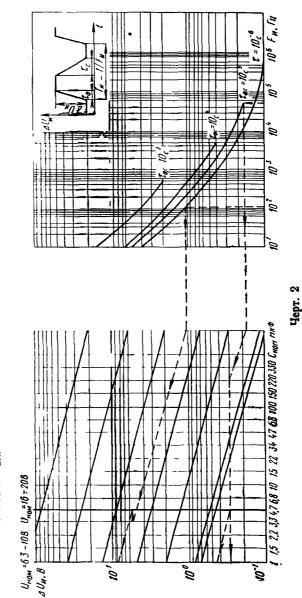
Конденсатор	K53-35 - 10 B	. <u>15 мк</u> Ф	±20%	ОЖ0 464 256 ТУ
Сокращенное обознач	енне			обозначение документа на поставку
Номинальное напряже	ение	İ		-
Номинальная емкость			1	
Допускаемое отклонен	не емкости			

ВНЕШНИЕ ВОЗДЕГІСТВУЮЩИЕ ФАКТОРЫ


Синусондальная вибрация: диапазон частот, Гц	1—5000 400 (40)
Механический удар: одиночного действия	100 (10)
пиковое ударное ускорение, м·с-2 (g) многократного действия	15 000 (1500)
пиковое ударное ускорение, м·c-2 (g)	1500 (150)

K53-35

Атмосферное пониженное давлежие, кПа (мм рт. ст.):	
	0,133 · 10-6 (10-6)
предельное	12 (90)
Повышенное давление воздуха, к Π а (кгс \cdot см $^{-2}$)	294 (3)
Повышенная рабочая температура среды, °C	85
Пониженная рабочая температура среды, °С Смена температур, °С:	минус 60
от рабочей повышенной	85
до предельной пониженной	минус 60
Повышенная относительная влажность при $t=35^{\circ}$ С,	•
%	98
Агмосферные конденсированные осадки (ипей и роса)	
Плесневые грибы.	
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЬ	IE
Допускаемые отклонения емкости, %	±20, ±30


Номинальная емкость, мкФ	Номинальное напряжение, В	Тангенс угл і потерь, %, не более	Ток утечки, мкА, не более
10		10	5
15 100	6,3	15	20
150 470		25	50
6,8; 10		10	5
15 68	10	15	20
100 330		25	50
4,7; 6,8		10	5
10 47	16	15	20
68 220		25	50
3,3; 4,7	20	10	5
6,8 33	20	15	20

Допускаемая амплитуда переменной синусоидальной составляющей пульсирующего напряжения U_f определяется по черт. 1:

Примечание Сумма постоянной и допускаемой амплитуды переменной синусоидальной составляющих пульсирующего напряжения ($U_{\rm f}$) не должна превышать номинального напряжения ($U_{\rm hom}$), при этом $U_{\rm f}$ не должна превышать значений постоянного напряжения.

-ни и номинальной стоты следования импульсов $F_{\mathbf{s}}$, длительности наименьшего из временных Зависимость допускаемого размаха импульсного напряжения $\Delta U_{\scriptscriptstyle
m H}$ от тервалов, соответствующих фронту или спаду импульса тф-с EMKOCTH CHOM

K53-35

КОНДЕНСАТОРЫ ОКСИДНО-ПОЛУПРОВОДНИКОВЫЕ

НАЛЕЖНОСТЬ

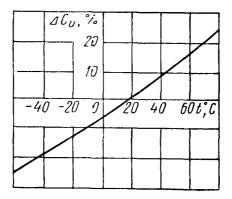
Наработка, ч	15 000 5·10 ⁻⁸ 12
емкости, %, не более	±50 10-кратных значений, указанных в разделе «Основные технические
тока утечки, не более	данные» 50-кратных значений, указанных в разделе «Основные технические данные»
в течение срока сохраняемости:	
емкости, %, не более	±35 З-кратн ых значений,
тока утечки, не более	указанных в разделе «Основные технические данные» 20-кратных значений, указанных в разделе «Основные технические
	данные»

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

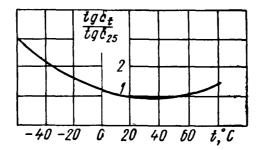
При применении, монтаже и эксплуатации конденсаторов следует руководствоваться указаниями, приведенными в ОСТ 11 0518—87.

При монтаже конденсаторов в аппаратуру следует применять припой марки ПОС-61 по ГОСТ 21930—76. Температура припоя $260\pm5^{\circ}$ С. Применяемый флюс состоит из 25% по массе канифоли (ГОСТ 19113—84) и 75% по массе изопропилового (ГОСТ 9805—89) или этилового спирта (ГОСТ 18300—87). Время пайки не более 4 с. Расстояние от границы компаунда до места пайки 3 мм. При монтаже в аппаратуру допускается групповая пайка конденсаторов.

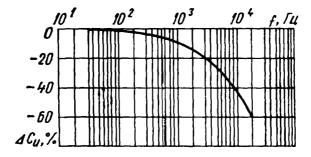
При монтаже конденсаторов с целью защиты мест крепления выводов изгиб выводов следует производить на расстоянии не менее 2,5 мм от границы компаунда.

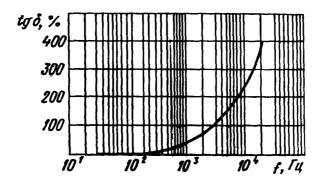

Конденсаторы допускают промывку в спирто-бензиновой смеси в соотношении 1:1 по объему.

Значение низшей резонансной частоты превышает 5000 Гц.


Выводы конденсаторов, включая места их присоединения, должны выдерживать без механических повреждений воздействие растягивающей силы направленной вдоль оси вывода 10,0 Н (1,0 кгс). Выводы конденсаторов должны выдерживать без механических повреждений 3-кратное воздействие изгибающей силы. Выводы конденсаторов должны обладать паяемостью без дополнительного облуживания в течение 12 мес с даты изготовления.

ТИПОВЫЕ ХАРАКТЕРИСТИКИ


Зависимость изменения емкости от температуры


Зависимость изменения тангенса угла потерь от температуры

Зависимость изменения емкости от частоты

Зависимость тангенса угла потерь от частоты

