
Sitara Processor
Security
Embedded processor security

Amrit Mundra
Security Architect and Systems Engineer
Texas Instruments

Security Enablers for Sitara Devices

Addition Resources

 I 2

Sitara Processor Security May 2019

Introduction

Computer security once meant annoying viruses on PCs. Then, the stakes increased.
Hacking into business and government systems exposed personal and financial
information to fraud, theft and embezzlement. Now though, the security of embedded
systems—or, more accurately, the insecurity of embedded systems—poses a threat to
very critical data.

Today, the world runs on data and every bit or byte should be considered a potential
target of attack. At the same time, both software and hardware systems are becoming
much more complex, connected and interdependent. And with complexity comes vulner-
abilities. The billions or trillions of lines of code and the interrelated hardware modules,
subsystems and partitions all crammed on tiny slices of silicon are a hacker’s delight.

Of course, hackers are not standing still. Reports of vulnerabilities in embedded systems
go on and on: satellite communication systems, wireless base stations, laser printers in
residences and businesses, the smart electrical grid, medical devices like defibrillators
and many other systems are at risk. There has only been an increased need for security
in multicore embedded systems-on-chips (SoCs) as the years have passed. Embedded
devices like heart equipment, smartphones and automotive control units rely on
multiple components including embedded SoCs to protect the control center.

First, let’s introduce these elements that must be present to help secure multicore
SoCs in embedded applications. Second, the foundational layer of security for
embedded processors, secure boot, is examined in greater detail because with secure
boot the system is protected from “power on.” Without secure boot the system has a
gap from “power on” to usage. With the ever changing nature of threats, security will
always be a moving target.

Risk management

Security threats are always present and, with the

rapid proliferation of the Internet of Things (IoT),

those threats can come from anywhere, even

inconspicuous and low-cost end-node devices.

So the basic security question is not whether a

system will be attacked, but rather, when it will be.

This leads to the conclusion that security is just as

much about risk management as it is protection.

Given that the system may come under attack, how

can system designers reduce the risk of a security

breach to the absolute lowest level?

What to protect?

Anything of value could be subject to attack. And,

of course, depending on the perspective and

intent of the hacker, just about everything could be

perceived as valuable. At the crudest level, the mere

thrill of breaking into a system has value for a large

 I 3

Sitara Processor Security May 2019

portion of the hacker community. Most hackers

are not innocuous thrill seekers. Many hackers

would not hesitate to dip into an electronic wallet

or steal financial information like credit card and

bank account numbers for fraudulent use. IP can

be stolen for sale or competitive advantage, while

government secrets could be misappropriated and

applied to disrupt, damage or destroy transportation

systems, water suppliers, energy distribution

networks, nuclear power plants and other aspects

of a country’s public infrastructure.

Of course, all of these valuables must be protected,

but before that can happen, the security system

itself must be secure. For embedded systems, the

security elements within the system and what it

protects must be safeguarded. At the most basic

level, this means securing the cryptographic keys

and identity that are used to validate software, users

and connectivity links. It also means ensuring the

integrity of the software running on every system or

node in a network. This requires visibility into and

control over the boot-up and run-time software on

even the most unassuming node in a network or on

the Internet.

How much security?

Security, like everything else, comes with a cost.

The cost of security for system developers includes

the cost of designing and integrating security

measures into the system, as well as the toll on the

system’s performance that those security measures

will exact. Given the constantly changing nature of

security threats, as well as the continuing ubiquity

of embedded systems through initiatives like the

IoT, the design of a new system should include the

development of a set of metrics that will measure

the cost of security against its benefits. Embedded

devices can be taken over and used as a launching

pad for attacks on other systems where more

valuable resources may be located. For example,

hacking into a printer/copier may not yield much

value to the hacker, but if every document the

printer prints or copies is captured and sent to

hackers, the damage could be immense.

Embedded systems have an advantage when

it comes to the cost of security as many of the

products based on embedded systems are

produced in great numbers. As a result, the cost

of the security subsystem developed for these

products can be amortized over large production

runs, lowering the per unit cost of security. In

addition, a versatile, scalable and portable security

architecture developed for a new design can often

be transferred to closely related systems or the

architecture might be modified slightly to suit the

needs of other products.

Architectural
considerations

Many security subsystems are architected in layers

and take advantage of compartmentalization.

Deploying security measures in layers has a

cumulative effect on the security of the system

because each layer can certify the security of the

layer below or above it before any action is taken.

Compartmentalization is important for ensuring

run-time security of software running on the system

and it gives designers the ability to tailor security

measures depending on the relative value of the

resource or process being protected.

Embedded security starts in hardware.

Coupling software and hardware security features

together enables a more secure layer of protection

than either solution working independently. In

addition, the tools provided by vendors can

streamline the development of security subsystems

 I 4

Sitara Processor Security May 2019

and ensure that the resulting architecture meets

the developers’ requirements. For example,

hardware-based security accelerators can mitigate

performance cost of a security subsystem.

Of course, the strength of a security architecture

will depend on the foundation upon which it is built.

Three aspects of the foundational layer are essential:

a secure boot process, hardware-based device ID/

keys and cryptographic acceleration.

The security pyramid

The security pyramid (Figure 1) illustrates

the various layers and constituent parts of a

comprehensive security subsystem for a multicore

SoC embedded processor.

Secure boot

A secure boot process establishes a root-of-trust

for the embedded system. Even when booting is

initiated from external Flash memory, a secure boot

process verifies the integrity of the boot firmware

through any number of mechanisms, including

embedded cryptographic keys and others. The

secure boot layer safeguards against takeover of

the system by malware, any possible cloning of the

in-system IP, inadvertent execution of unwanted

applications and other security risks.

Secure boot also assists in providing an additional

layer of protection by encrypting the IP and copying

it securely to protect internal memories. Having the

ability to encrypt also provides additional security

for code base as it prohibits carrying out directed

exploration attacks.

Bottom-line, secure boot assists in establishing a

foundation for embedded system security.

Cryptographic acceleration

Cryptographic processing, involving the generation,

verification and certification of various public and

private keys, can take a toll on the performance and

throughput of an embedded system. Some SoCs

are equipped with hardware-based accelerators

or co-processors that speed up the coding/

decoding processes tremendously. Software-based

acceleration is also available, but, as software,

it is not as inherently secure as hardware-based

cryptographic acceleration.

Figure 1: Security pyramid

Physical
security

Physical
security

Secure firmware and
software update

Initial secure
programming

Software IP
protection

Software and key
provisioning security

Run-time security

Foundation for
security

Debug security

Device
identity and keys

Secure boot Cryptographic
acceleration

Secure storage Network security

Trusted execution
environment

External memory
protection Common crytographic elements

Random number
generator (RNG)

Used by cryptographic algorithms and hashing
functions. Hardware-generated random numbers are
more secure than software-generated RNG.

Crytographic algorithms

3Data encryption
standard (3DES)

3DES performs DES encryption three times to
strengthen the protection of the encrypted data
and overcome some of vulnerabilities of the DES
algorithm.

Advanced
encryption
standard (AES)

AES is one of the most advanced cryptographic
algorithms in widespread use today.

Hashing functions (for signatures, authentication, etc.)

Message digest
algorithm (MD5)

Although this hashing function has been widely
deployed, it has certain vulnerabilities in some
applications.

Secure hash
algorithm 2
(SHA2)

Processes large hash, so more secure than SHA1.

Table 1: Examples of common cryptographic functions

 I 5

Sitara Processor Security May 2019

Debug security

During system development, designers need

access to embedded multicore processors in

order to debug firmware and software, and to

troubleshoot possible hardware problems. In most

cases, the port that provides this access is the

JTAG port. In an operating environment, the debug

port must either be sealed closed by some sort

of fuse, or it should only be accessible through

certified cryptographic keys. Otherwise, the debug

port could provide an easy way into the system

for hackers (Figure 2).

Device-ID and keys

In order to trust communications over a local-area

network (LAN), wide-area network (WAN) or the

Internet, devices must have a unique identity which

can be shared. Communicating devices can then

decide the authenticity or trustworthiness of the

other devices participating in the conversation.

Embedded processors often come with a unique

identification (ID) code of some sort. Alternatively,

or in addition to the ID code, devices might identify

themselves through a signature or certificate key

with a corresponding public key that is accessible

through a cloud service, for example.

Trusted execution environment

The run-time security layer is comprised of several

distinct capabilities which all play a part in protecting

the system following the boot-up process and while

the system’s operating system (OS) is executing. An

important aspect of run-time security is to monitor

all aspects of the system to determine when an

intrusion has either occurred or been attempted.

Trusted execution environment security provides the

ability for a system to host secure and non-secure

applications concurrently and maintain the partition

through the system such that there is no leak of

data. It is important to run sensitive applications

where the application and associated code/data

base is fully sand-boxed from other applications.

A trusted execution environment essentially provides

a secured partition within a multicore system

where only certified secure firmware, software and

applications can execute, and certified data can

be stored.

Figure 2: MSP430™ MCU debug port

 I 6

Sitara Processor Security May 2019

Walling off the trusted execution environment from

the rest of the multicore/multiprocessing system

prevents suspect code, applications and data that

may pass through the system from contaminating

mission-critical software, data and other IP.

External memory protection

When designers must add another application or

subsystem to the system, they usually are faced

with adding memory that is external to the main

processor and connected to it by a memory bus.

Designers must protect the data stored in external

memory against tampering or replacement so they

can be ensured that only trusted data or application

code are stored in external memory. A number

of methods can be employed to safeguard the

contents of external memory, such as secured

execute-in-place directly from external memory

without loading data into the processor’s integrated

memory, decrypt-on-the-fly which can maintain

confidentiality while allowing applications to run on

the main processor and other methods.

Network security

Hackers are quite adept at intercepting wireless

or wired network communications. In fact, some

communication protocols have known security

weaknesses that have been exploited. Deploying

only highly secure communication protocols often

involves a significant number of processing cycles

to encrypt and decrypt the communication stream,

as well as verify the authenticity of the sender

or receiver. Designers are sometimes faced with

balancing communication throughput and security,

but some embedded processors avoid this dilemma

by integrating hardware-based accelerators for

the cryptographic algorithms that are used in

conjunction with standard communication protocols.

Secure storage

Cryptographic keys and security data must be

stored in system memory in locations that are

impervious to unwanted access. A number of

capabilities can be used to provide secure storage,

including encrypted blob of keys, anti-tamper

protection that can only be unlocked by a master

key, a private key bus between non-volatile memory

and cryptographic engines, and others.

Initial secure programming

In today’s era of globalization where the design,

key provisioning and manufacturing are disjoin,

and something occur oceans apart, it creates a

challenge to keep security assets like keys safe.

To make things more complex the business model

may involve ODM with completely un-trusted

manufacturing setup.

 I 7

Sitara Processor Security May 2019

Security enablers like initial secure programming

provides a methodology that customer can evaluate

and elect to use to strengthen the confidentiality,

integrity and authenticity of initial firmware or keys

programmed in an untrusted facility or during the

first boot of the application.

Security firmware and
software updates

Ability to update the system is essential part of

security framework, this provides the opportunity for

customers to patch or update the software remotely

to combat identified vulnerability in the system,

however the biggest challenge during update is to

deter against spy, impersonate and replays.

Security framework provides additional keys and

mechanism like authentication, encryption and

integrity checks that can be deployed to ensure the

genuineness of the updates.

Software Intellectual
Property (IP) protection

Customer does significant investment to create

an Intellectual Property (IP) that may represents

the critical value proposition for customer in the

market, hence it becomes imperative that security

framework provides mechanisms like encrypted

boot, ability to carry isolated processing, firewalling

to allow customers to protect their IP.

Physical security

Sophisticated and not-so-sophisticated hacking

organizations have been known to remove chips

from a system or a silicon die from a chip package

to access the embedded assets (Figure 3).

Once the device or die have been removed, hackers

can bombard them with lasers, power them up

beyond their specified power limits or employ other

means. Their objective is to observe how the device

reacts to the stimulus because this response may

betray vulnerabilities that the hackers can then

exploit to access the device. Some embedded

processors have been integrated with hardware

and software features to thwart these physical

intrusions into both the digital and analog sections

of SoCs. Tamper-protection modules integrated

into embedded multicore processors can contain

power and temperature monitors, reset functionality,

frequency monitors and programmable tamper-

protection capabilities.

Enclosure protection

Enclosure protection features are physical measures

that safeguard the enclosure which encases a

system. These can range from locking mechanisms

to electronic switches, break-away wire tripping

mechanisms and others (Figure 4).

Figure 3: An example of a device under physical attack

Figure 4: Enclosure protection

 I 8

Sitara Processor Security May 2019

Where to start with
embedded security?
The fundamental basis for the security of

an embedded multicore processor begins

in hardware. If the hardware is not secure, no

amount of security software will assist in making

it so. Assuming security features are built into the

hardware, the first place to look to begin building a

security subsystem is in the first software that will

execute following power up, the boot code. If the

booting process cannot be authenticated, then no

other software running on the system can be either.

So, securing the boot process is the fulcrum upon

which all of the security in the system depends.

A secure boot process establishes the root-of-

trust, which is the goal of every security subsystem.

Establishing a root-of-trust through a secure boot

process helps to ensure the integrity of the system

and guards against hackers taking over any part

of the system. This also helps protect customer

software in the system and acts as an anti-cloning

barrier so the system or any part of it cannot

be copied.

Usually, a secure boot process involves program-

ming a public cryptographic key into non-volatile,

one-time-programmable memory somewhere

in the system. Then, this public key must be

matched up with private/public keys associated

with the boot code to authenticate the validity of

the encrypted boot code before execution begins.

Booting firmware can either be loaded into the

embedded processor’s RAM or, for added security;

can be secured and executed-in-place out of

memory external to the embedded processor.

Some firmware images are made up of various

components or modules. Requiring authentication

before decrypting and executing each module

enhances boot security.

Conclusion

Embedded processor security is a multifaceted,

complex subject. With the ascent of the IoT and the

ubiquity of embedded systems, hackers, now more

so than ever, have an abundance of prime targets.

Of course, fundamental security features must

already be present in the hardware, but building

a security subsystem for an embedded multicore

SoC should start at the foundational layer of secure

boot. Without a root-of-trust derived from a secure

boot process, no other security measures matter.

Once this root-of-trust is established, other facets

of system security, such as debug security, run-time

security and networking security, have a solid footing.

Otherwise, every security measure is built on sand.

© 2019 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing
orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents.
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

The platform bar and MSP430 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

SPRY303D

Security Enabler AM335x AM437x AM438x AM570x AM571x/
AM572x AM574x 66AK2Gx AM65x

Cryptographic acceleration P P P P P P P P

Device identity/Keys P P P P P P P P

Secure boot P P P P P P P P

Debug security P P P P P P P P

External memory protection P P

Trusted execution

environment (TEE)
P P P P P P P

Network security P P

Secure storage P P P P P P P

Software IP protection P P P P P P P P

Initial secure programming P P P P P P P P

Secure firmware update P P P P P P P P

Physical security P

How to request access Contact TI
representative NDA request NDA request NDA request Contact TI

representative
NDA request
coming soon

NDA
request

NDA
request
coming
soon

Title

Enable security and amp up chip performance w/ hardware-accelerated cryptography

Secure Boot on embedded Sitara™ processors

Sitara AM438x processor: tamper protection

E-book: Building your application with security in mind

Security enablers for Sitara devices

TI Sitara processors offer a comprehensive set of security enablers to help developers implement their

security measures to protect their assets (data, code, identity and keys).

Additional Resources

https://www.ti.com/licreg/docs/swlicexportcontrol.tsp?form_id=244085&prod_no=TMDXEVM437X-SECUREBOOT&ref_url=sitara_sec
https://www.ti.com/licreg/docs/swlicexportcontrol.tsp?form_id=250333&prod_no=AM438X_RESTRICTED_SW&ref_url=sitara
https://www.ti.com/licreg/docs/swlicexportcontrol.tsp?form_id=244085&prod_no=AM57X_RESTRICTED_SW&ref_url=EP-Proc-Sitara
https://www.ti.com/licreg/docs/swlicexportcontrol.tsp?form_id=264095&prod_no=EVMK2GXS&ref_url=dsp
https://www.ti.com/licreg/docs/swlicexportcontrol.tsp?form_id=264095&prod_no=EVMK2GXS&ref_url=dsp
http://www.ti.com/lit/pdf/spry198
http://www.ti.com/lit/pdf/spry305
http://www.ti.com/lit/pdf/spry309
http://www.ti.com/lit/SWPB021

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

