	74AC OCTAL BUS TRANSO WITH 3-STATE OU SCAS059A – D2957, JULY 1987 – REVISED
Local Bus-Latch Capability	DW OR NT PACKAGE (TOP VIEW)
Inputs Are TTL-Voltage Compatible	
Flow-Through Architecture Optimizes	А1 🛛 1 💛 24 🛛 GAB
PCB Layout	A2 🛛 2 23 🛛 B1
Center-Pin V _{CC} and GND Configurations	A3 🛛 3 22 🛛 B2
Minimize High-Speed Switching Noise	A4 🛛 4 🛛 21 🛛 B3
 EPIC[™] (Enhanced-Performance Implanted 	GND 🛛 5 20 🛛 B4
CMOS) 1-µm Process	GND 6 19 V _{CC}
• 500-mA Typical Latch-Up Immunity	GND [] 7 18 [] V _{CC}
at 125°C	GND 🛛 8 17 🗍 B5
	A5 🛛 9 🛛 16 🗋 B6
Package Options Include Plastic Small- Outline Packages and Standard Plastic	A6 🛛 ¹⁰ 15 🗍 B7
Outline Packages and Standard Plastic	A7 🚺 ¹¹ 14 🗍 B8
300-mil DIPs	А8 🛛 12 🛛 13 🗍 🔂 ВА

description

The 74ACT11623 is designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\overline{G}BA$ and GAB). The enable inputs can be used to disable the device so that the buses are effectively isolated.

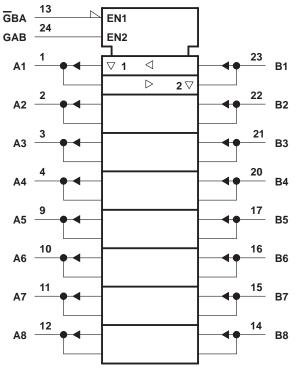
The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of GBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the 74ACT11623.

The 74ACT11623 is characterized for operation from -40° C to 85° C.

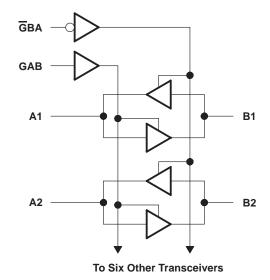
ENABLI	E INPUTS	OPERATION
GBA	GAB	OPERATION
L	L	B data to A bus
Н	Н	A data to B bus
Н	L	Isolation
	н	B data to A bus,
-		A data to B bus

FUNCTION TABLE

EPIC is a trademark of Texas Instruments Incorporated.


T11623

DAPRIL 1993


74ACT11623 OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

SCAS059A - D2957, JULY 1987 - REVISED APRIL 1993

logic symbol[†]

logic diagram (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$\dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	± 20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	$\dots \dots \pm 50 \text{ mA}$
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	± 200 mA
Storage temperature range	–65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	V
VIH	High-level input voltage	2		V
V_{IL}	Low-level input voltage		0.8	V
VI	Input voltage	0	VCC	V
Vo	Output voltage	0	VCC	V
IOH	High-level output current		-24	mA
IOL	Low-level output current		24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V
Т _А	Operating free-air temperature	- 40	85	°C

electrical characteristics over recommended operating free-air temperature range

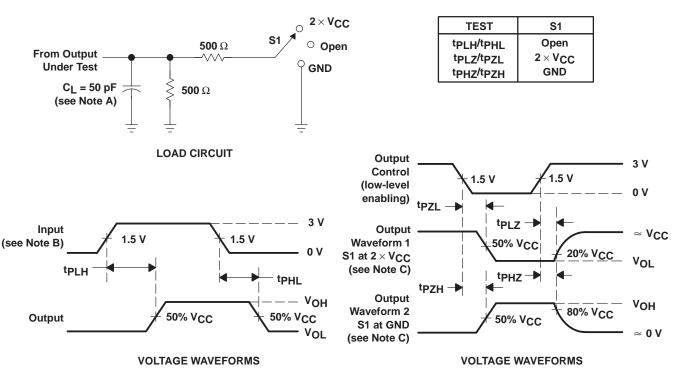
PARAMETER		TEST CONDITIONS	N.	T,	4 = 25°C	;	MIN	МАХ	
PA	RAMEIER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIIN	MAX	UNIT
		1	4.5 V	4.4			4.4		
		I _{OH} = - 50 μA	5.5 V	5.4			5.4		
∨он		1 04 mA	4.5 V	3.94			3.8		V
		I _{OH} = – 24 mA	5.5 V	4.94			4.8		
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
		1	4.5 V			0.1		0.1	
		I _{OL} = 50 μA	5.5 V			0.1		0.1	
VOL			4.5 V			0.36		0.44	V
		I _{OL} = 24 mA	5.5 V			0.36		0.44	
		I _{OL} = 75 mA [†]	5.5 V					1.65	
I _{OZ}	A or B ports‡	$V_{O} = V_{CC}$ or GND	5.5 V			± 0.5		±5	μA
lj –	GBA or GAB	$V_I = V_{CC}$ or GND	5.5 V			± 0.1		± 1	μA
ICC		$V_I = V_{CC} \text{ or } GND, I_O = 0$	5.5 V			4		40	μA
∆ICC§		One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1	mA
Ci	GBA or GAB	$V_I = V_{CC}$ or GND	5 V		4				pF
C _{io}	A or B ports	$V_{O} = V_{CC} \text{ or } GND$	5 V		20				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

For I/O ports, the parameter I_{OZ} includes the input leakage.
 § This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

74ACT11623 **OCTAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS

SCAS059A - D2957, JULY 1987 - REVISED APRIL 1993


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	ТО	T,	ן = 25°C	;			
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	UNIT
^t PLH	A at D	D er A	1.5	6	7.5	1.5	8.5	
^t PHL	A or B	B or A	1.5	5.5	7.2	1.5	7.9	ns
^t PZH	Gва		1.5	6.9	8.6	1.5	9.7	
^t PZL		A	1.5	6.9	9	1.5	10	ns
^t PHZ	GBA	•	1.5	8.1	10	1.5	10.9	
^t PLZ	GBA	A	1.5	8.5	10.5	1.5	11.5	ns
^t PZH	GAB	В	1.5	7.7	9.3	1.5	10.7	
tPZL	GAB	В	1.5	7.7	9.7	1.5	10.9	ns
^t PHZ	GAB	В	1.5	7.1	8.8	1.5	9.5	~~~
^t PLZ	GAB	В	1.5	7.3	9.2	1.5	10	ns

operating characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER	TEST CON	IDITIONS	TYP	UNIT	
		Outputs enabled	0 50 - 5		41	
C _{pd}	Power dissipation capacitance per transceiver	Outputs disabled	C _L = 50 pF,	f = 1 MHz	8	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
74ACT11623DWR	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11623	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

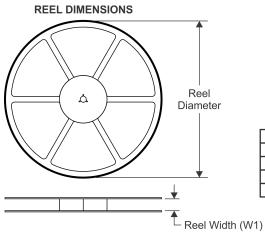
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

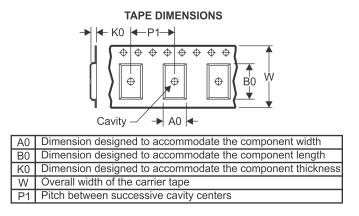
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

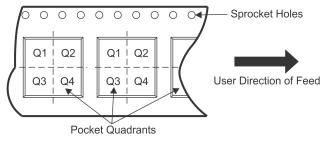
(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

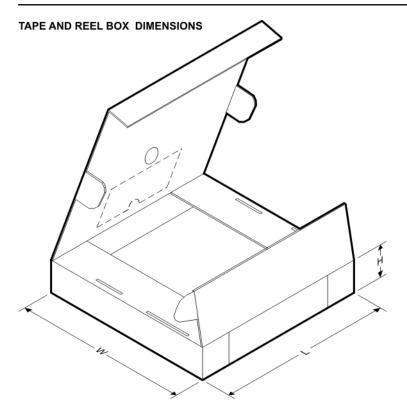

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

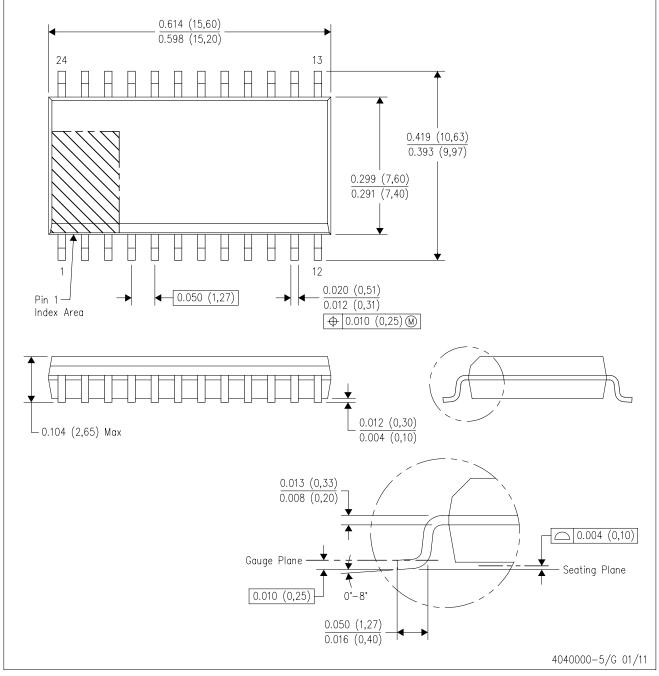

1	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	74ACT11623DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Feb-2019



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
74ACT11623DWR	SOIC	DW	24	2000	350.0	350.0	43.0	

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated