64 Channel Analog Front End for Digital X-Ray Detector
 Check for Samples :AFE0064

FEATURES

- 64 Channels
- 28.32μ Sec Min Scan Time (including integration and data transfer for all 64 channels)
- 7.5 MHz Max Data Transfer Rate
- Noise 824 e-RMS with 30 pF Sensor Capacitor in 1.2 pC Range
- Integral Nonlinearity: $\pm 0.006 \%$ of FSR
- Eight Adjustable Full Scale Ranges (0.13 pC min to 9.5 pC max)
- Built in CDS (signal sample - offset sample)
- Selectable Integration Up/Down Mode
- Low Power: 175 mW
- NAP Mode: 49.5 mW
- 14 mm $\times 14$ mm 128 Pin TQFP Package

APPLICATIONS

- Digital Radiography
- CT Scanners
- Baggage Scanners

DESCRIPTION

The AFE0064 is a 64 channel analog front end designed to suit the requirements of flat panel detector based digital X-ray systems.
The device includes 64 integrators, a PGA for full scale charge level selection, correlated double sampler, 64 as to 2 multiplexer, and two differential output drivers.
Hardware selectable Integration polarity allows integration of a positive or negative charge and provides more flexibility in system design. In addition, the device features TFT (Thin Film Transistor from Flat Panel Detector) charge injection compensation. This feature helps maximize the usable signal charge range of the device.

The nap feature enables substantial power saving. This is especially useful for power saving during long X-ray exposure periods.

The AFE0064 is available in a 128 pin TQFP package.

- Infrared Spectroscopy

ORDERING INFORMATION ${ }^{(1)}$

MODEL	INTEGRAL LINEARITY \% of FS	POWER DISSIPATION	$\begin{aligned} & \text { MIN SCAN } \\ & \text { TIME } \\ & (\mu \mathrm{Sec}) \end{aligned}$	NUMBER OF CHANNELS	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION	TRANSPORT MEDIA QUANTITY
AFE0064	0.006	175 mW	28.32	64	TQFP	PBK	-40 to $85^{\circ} \mathrm{C}$	AFE0064IPBK	90(5+1)
								AFE0064IPBKR	1000

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

IN <n> to VSS	VALUE / UNIT
VDD to AGND	-0.3 V to $+\mathrm{VDD}+0.3 \mathrm{~V}$
Digital input voltage to GND	-0.3 V to 5 V
Digital output to GND	-0.3 V to (+VDD +0.3 V)
Operating temperature range	-0.3 V to $(+\mathrm{VDD}+0.3 \mathrm{~V})$
Storage temperature range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction temperature (TJmax)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
TQFP package ${ }^{(2)}$	$150^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Device confirms to MSL level 3 at $260^{\circ} \mathrm{C}$ as per JEDEC -033.

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25$ to $85^{\circ} \mathrm{C},+\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=15 \mathrm{MHz}$ for sequential mode and 3.75 MHz for simultaneous mode, scan time $=28.32$ $\mu \mathrm{s}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT RANGE					
Range 0			0.13		pC
Range 1			0.25		pC
Range 2			0.5		pC
Range 3			1.2		pC
Range 4			2.4		pC
Range 5			4.8		pC
Range 6			7.2		pC
Range 7			9.6		¢C
Input current			30		$\mu \mathrm{A}$
Integrator positive input voltage		1.66	1.68	1.70	V
ANALOG OUTPUT					
Differential full scale analog output	For all ranges	$\begin{array}{r} \hline \text { (REFP- } \\ \text { REFM) } \end{array}$	± 1.4	(REFP- REFM)	V
Output common-mode voltage (REFP+REFM)/2			1.55		

InSTRUMENTS

SPECIFICATIONS (continued)

$\mathrm{T}_{\mathrm{A}}=25$ to $85^{\circ} \mathrm{C},+\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=15 \mathrm{MHz}$ for sequential mode and 3.75 MHz for simultaneous mode, scan time $=28.32$ $\mu \mathrm{s}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ACCURACY					
Noise in electrons referred to input of integrator	C-sensor ${ }^{(1)} 1=30 \mathrm{pF}$, Range 3, $14 \mu \mathrm{Sec}$ integration time		824		e-
	C-sensor ${ }^{(1)}=20 \mathrm{pF}$, Range $314 \mu \mathrm{Sec}$ integration time		600		
	$\begin{aligned} & \text { C-sensor }{ }^{(1)}=30 \mathrm{pF} \text {, Range 3, } 270 \mu \mathrm{Sec} \\ & \text { integration time } \end{aligned}$		1400		
Integral nonlinearity			± 0.006		$\begin{gathered} \% \text { of } \\ \text { FSR }^{(2)} \end{gathered}$
Analog input channel leakage current	This current is integrated and reflects as a part of offset error.		2		pA
Channel to channel full-scale error matching	For ranges 3 to 7		± 0.7		$\begin{gathered} \% \text { of } \\ \text { FSR }^{(2)} \end{gathered}$
Offset error	Device output offset, resulting from integration of input leakage current		± 0.07		$\begin{gathered} \% \text { of } \\ \text { FSR }^{(2)} \end{gathered}$
Channel to channel offset error matching			± 0.07		$\begin{gathered} \% \text { of } \\ \text { FSR }^{(2)} \end{gathered}$
Integrator input offset:(difference between integrator positive and negative terminal)	Integrator input offset mean across channels		± 0.002		mV
Integrator input offset matching across channels	± 3 sigma limit of integrator input offset across channels		± 1.5		mV
Channel to channel crosstalk	Aggressor channel with full scale charge to next adjacent channel		0.08		$\begin{gathered} \% \text { of } \\ \text { FSR }^{(2)} \end{gathered}$
EXTERNAL REFERENCE INPUT					
REFP		2.24	2.25	$\begin{array}{r} + \text { VDD - } \\ 0.85 \\ \hline \end{array}$	V
REFM		0.84	0.85	0.86	V
Input current			50		nA
P_REF output			1.68		V
P_REF current source capacity			± 1		mA
POWER SUPPLY REQUIREMENTS					
Power supply voltage, +VDD		3.2	3.3	3.6	
Power supply current	During operation		53	58	mA
	During NAP		15		mA
Power up time from NAP			10		$\mu \mathrm{Sec}$
DIGITAL INPUT OUTPUT					
Logic levels					
V_{IH}		$0.8 \times \mathrm{VDD}$		VDD+0.1	
$\mathrm{V}_{\text {IL }}$		-0.1		$0.2 \times$ VDD	
V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	VDD-0.4			
$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	
TEMPERATURE RANGE					
Operating free air		0		85	${ }^{\circ} \mathrm{C}$

(1) C-Sensor is total external capacitance seen at $\operatorname{IN}(x)$ pin. This includes capacitance of all the TFT switches connected to that node and the routing capacitance.
(2) FSR is full-scale range. There are eight ranges from 0.13 pC to 9.6 pC .

TIMING REQUIREMENTS

$\mathrm{T}_{\mathrm{A}}=0$ to $85^{\circ} \mathrm{C},+\mathrm{VDD}=3.3 \mathrm{~V}$

PARAMETER		MIN	TYP MAX	UNIT
SAMPLING AND CONVERSION RELATED				
t-scan	Scan time, See Figure 1, Figure 7	$\begin{array}{r} 28.3 \\ 2 \end{array}$	See ${ }^{(1)}$	$\mu \mathrm{Sec}$
t1	IRST, SHR, SHS, STI high duration, See Figure 1, Figure 7	30		nSec
t2	Setup time, STI falling edge to first clock rising edge, See Figure 1, Figure 7	30		nSec
t2	Setup time, IRST falling edge to first clock rising edge, See Figure 1, Figure 7	30		nSec
t3	Delay time, $133{ }^{\text {rd }}$ clock rising edge to SHR rising edge, See Figure 1, Figure 7	400		nSec
t4	Delay time, SHR rising edge to INTG rising edge, See Figure 1, Figure 7	30		nSec
t5	INTG high duration (TFT on time), See Figure 1, Figure 7	14	See ${ }^{(2)}$	$\mu \mathrm{Sec}$
t6	Delay time, INTG falling edge to SHS rising edge, See Figure 1, Figure 7	4.5		$\mu \mathrm{Sec}$
t7	Delay time, SHS rising edge to IRST rising edge, See Figure 1	30		nSec
t8	Delay time, SHS rising edge to STI rising edge, See Figure 1, Figure 7	30		nSec
t9	Hold time, STI falling edge to IRST falling edge, See Figure 1, Figure 7	10		nSec
In sequential mode	Clock (CLK) frequency	1	15	MHz
In simult mode		0.25	3.75	
	OUTP or OUTM settling time to 16 bit accuracy with 30 pF load and full scale step		375	nSec
	OUTP or OUTM settling time to 16 bit accuracy with 15 pF load and full scale step		250	nSec

(1) See max specification for $t 5$ and minimum specification for CLK frequency. Also see the section Running the Device at Higher Scan Time.
(2) There is no real limit on maximum integration time, however as integration time increases the offset value changes due to integration of leakage current (2 pA typical) also the $1 / \mathrm{f}$ noise contribution to output increases, refer to the typical noise numbers at 14 and $270 \mu \mathrm{Sec}$ integration time in the Specifications table and also see Figure 28.

DEVICE INFORMATION

PIN ASSIGNMENTS

PIN FUNCTIONS

PIN		1/0	DESCRIPTION
NUMBER	NAME		
ANALOG INPUT PINS			
$113 . .128$	$\begin{gathered} \mathrm{I} \mathrm{~N}<0>\ldots \\ \mathrm{I} \mathrm{~N}<15> \end{gathered}$	1	Analog input channels from 0 to 63
1.. 48	$\begin{gathered} \mathrm{I} \mathrm{~N}<16>\ldots \\ \mathrm{I} \mathrm{~N}<63> \end{gathered}$	1	
DIFFERENTIAL ANALOG OUTPUT PINS			
84	OUTP-0	0	Driver 0-analog output positive terminal
83	OUTM-0	O	Driver 0-analog output negative terminal
Driver 0 outputs analog data for channels 31 to 0			

PIN FUNCTIONS (continued)

PIN		I/O	
NUMBER	NAME		
78	OUTP-1	O	Driver 1-analog output positive terminal
77	OUTM-1	O	Driver 1-analog output negative terminal
Driver 1 outputs analog data for channels 63 to 32			

Driver 1 outputs analog data for channels 63 to 32
Note that the device output is differential (OUTP-OUTM) with common mode of (OUTP+OUTM)/2
REFERENCE

105	REFP	I	Positive reference input
104	REFM	I	Negative reference input

Decouple REFP and REFM terminals to VSS with suitable capacitor and use low noise reference, noise on these terminals will add to noise at output terminals.

112	EXT_C	O	Terminal available for decoupling internally generated integrator common-mode voltage (1.68 V). Decouple this pin to VSS with 1μ F ceramic capacitor. Internally connected to + ve terminals of all 64 integrators.			
50	P_REF	O	Internally generated 1.68 V reference output available for referencing photodiode cathodes.			
CONTROL PINS						

PGA-I/P RANGE SELECTION

94	PGA-2	I
95	PGA-1	I
96	PGA-0	I

Selects eight different analog input ranges. Three bit word with these three bits represents binary number corresponding to Analog Input Range. PGA-2 is MSB and PGA-0 is LSB. Example 000 is range 0 and 100 is range 4.

MODE SELECTION					
93	INTUPz	I	High level selects 'integration-down' mode. In this mode device integrates positive pixel current into each channels, starting from reset level (REFP) down to REFM low level selects 'integration-up' mode. In this mode the device integrates negative pixel current into each channel, starting from reset level (REFM) up to REFP.		
98	SMT-MD	I	High level selects simultaneous mode. Device outputs data simultaneously on both differential output drivers OUTP-OUTM<0> and OUTP-OUTM<1> in this mode. Low level on this input selects sequential mode. In this mode device output data for driver 0 is skewed by two clocks from driver 1. This is useful when a two channel multiplexed ADC is used after AFE.		
POWER SUPPLY					
$53,55,60$, $81,75,81$, $87,100,106$, 108	VDD	I	Device power supply		

PIN FUNCTIONS (continued)

PIN		I/O	
NUMBER	NAME		
$49,51,52$, $54,59,62$, $65,71,73$, $74,76,79$, $80,82,85$, $86,90,91$, $99,101,102$, 103,10, 109,110	VSS		

DESCRIPTIONS AND TIMING DIAGRAMS

IRST

Figure 1. Integrator Channel Schematic
Figure 1 shows the typical schematic of an integrator channel. As shown, each integrator has a reset (IRST) switch which resets the integrator output to the 'reset-level'. The device integrates input current while this switch is open. There are two sample and hold circuits connected to each integrator output. SHR samples integrator reset level output and SHS samples integrator output post integration of signal charge. The device subtracts the SHR sample from the SHS sample. The difference is then available at device output in a differential format. This action is called 'Correlated Double Sampling' (CDS). CDS removes integrator offset and low frequency noise from device output.
Each sample and hold has a built-in low pass filter. This filter limits sampling bandwidth so as to limit sampled noise to an acceptable level. Detailed functioning of individual blocks is described further with timing diagrams.

AFE0064
www.ti.com

Figure 2. Integration and Data Read
As shown in Figure 2, the device performs two functions, 'Integration' and 'Data Read' during each scan (indicated by 't-Scan'). Signals IRST, SHR, SHS, INTG, CLK control 'Integration Function' and STI, CLK control 'Data Read Function'. EOC is a device output and a low level on the EOC pin indicates a data read is in progress.

Charge Integration

Integration function consists of two phases namely 'Reset' and 'Integration'.
IRST rising edge starts the 'Reset' phase which ends with SHR rising edge. Figure 3 shows the detailed timing waveform for the reset phase.

Figure 3. Timing Diagram Showing Details of Reset Phase
In this phase the device resets all 64 integration capacitors. This reset-level voltage depends on the integration mode (selected by the INTUPz pin). Integrator output is reset to REFM for 'integration-up' mode and is reset to REFP in 'integration-down' mode. Note that the integrator reset switch is on from IRST rising edge to the end of the $32^{\text {nd }}$ clock for sequential mode and up to the 8th clock for simultaneous mode. SHR and filter bypass switches (see Figure 1) are on right from IRST rising edge to the $64^{\text {th }}$ clock falling edge.

In this period, the reset sample capacitor is tracking the integrator output voltage. On the 64th CLK falling edge, the filter bypass switch is opened. This kicks in the low pass filter. The filter has a fixed time constant of $1 \mu \mathrm{Sec}$ (160 kHz BW). The device samples and holds (SHR switch opens) the integrator reset output at rising edge of SHR. The low pass filter cuts off high frequency noise during sampling.

Figure 4. Timing Diagram Showing Details of Integration Phase
Here after the integration phase starts. The device integrates pixel charge during on time of the external TFT switch. The device integrates pixel charge starting from the reset level (as described previously).
In integration up mode, the integrator output moves up from REFM (reset level). As shown in the Specifications table there are 8 different ranges for the integrator. For any range, the device can linearly integrate input charge until the integrator output reaches REFP.

In integration down mode, the integrator output moves down from REFP (reset level). For any analog input range , the device can linearly integrate input charge until the integrator output reaches REFM.
It is clear that the linear output range for the integrator is 'REFP-REFM' volts. One can calculate the integrator feedback capacitor with formula; $\mathrm{Q}=\mathrm{CV}$. Here Q is the specified charge for range ' 0 to 7 ' and V is the linear output range of the integrator (REFP-REFM). Refer to Table 1 for more details.
It is recommended to assert (pull high) the INTG signal along with TFT switch turn on. Note that the TFT switch is external to the device, and the device still integrates without the INTG signal. INTG can be held high for 0.5 μ Sec after TFT switch turn off. This makes sure the SHS low pass filter is bypassed all through integration and for $0.5 \mu \mathrm{Sec}$ after integration. This extra $0.5 \mu \mathrm{Sec}$ ensures charge injection during TFT switch turn off is settled and the SHS sampling capacitor is tracking the integrator output. As shown in Figure 4, the device turns on the LPF on the falling edge of INTG. Like SHR sampling, this filter has a $1 \mu \mathrm{Sec}$ time constant (160 kHz BW), and it cuts off high frequency noise during sampling. Timing 't6' in the Timing Requirements table specifies that the settling of voltage on the SHS capacitor is close to the 16 bit level while filter BW is low.
On the rising edge of SHS, the device samples and holds integrator output voltage on the correlated double sampler (CDS). The CDS output voltage is proportional to the difference of the 'SHS' and 'SHR' samples. This scheme removes offset and noise coming from integrator reset. The integration phase ends with the SHS falling edge and data corresponding to all 64 channels is ready to read during the next 'scan'.

Data Read:

Device output is differential even though the integrator output (internal to device) is single ended. Here is the relation between integrator output and AFE0064 output (OUTP and OUTM):
Case 1: (Integrator up mode, $\operatorname{INTUPz=0)}$

AFE0064
www.ti.com
As explained before the device samples the integrator output twice, Reset sample (SHR) and Signal sample (SHS).

$$
\begin{aligned}
& \mathrm{V}_{\text {OUTM }}=\mathrm{REFM}+\left(\mathrm{V}_{\text {SHS }}-\mathrm{V}_{\text {SHR }}\right) \\
& \mathrm{V}_{\text {OUTP }}=\mathrm{REFP}-\left(\mathrm{V}_{\mathrm{SHS}}-\mathrm{V}_{\text {SHR }}\right)
\end{aligned}
$$

Case 2: (Integrator down mode, $\operatorname{INTUPz}=1$)
As explained before the device samples the integrator output twice, Reset sample (SHR) and Signal sample (SHS).

$$
\begin{aligned}
& \mathrm{V}_{\text {OUTM }}=\mathrm{REFP}+\left(\mathrm{V}_{\text {SHS }}-\mathrm{V}_{\text {SHR }}\right) \\
& \mathrm{V}_{\text {OUTP }}=\mathrm{REFM}-\left(\mathrm{V}_{\text {SHS }}-\mathrm{V}_{\text {SHR }}\right)
\end{aligned}
$$

The differential output from the AFE0064 rejects common-mode noise from the board helping to maximize noise performance of the system. The following table provides details of integrator feedback ranges, feedback capacitor, and corresponding AFE0064 output at zero and full scale input charge.

Table 1. AFE0064 Range Selection to Device Analog Output Mapping

$\begin{array}{\|c\|} \hline \text { REFP } \\ \hline \text { REFM } \end{array}$	$\begin{aligned} & 2.25 \\ & \hline 0.85 \end{aligned}$	REFP-REFM	1.4							
			INTEGRATE UP MODE (INTUPz=0), e- counting				INTEGRATE DOWN MODE (INTUPz=1), hole+ counting			
			At 0 charge I/p		At FS charge l/p		At 0 charge I/p		At FS charge I/p	
Range	Typical FS Charge Range (Qr) pC	Int FB Cap= (Qr) (REFP-REFM) ... pF	OUTP	OUTM	OUTP	OUTM	OUTP	OUTM	OUTP	OUTM
0	0.13	0.0929	2.25	0.85	0.85	2.25	0.85	2.25	2.25	0.85
1	0.25	0.1786								
2	0.5	0.3571								
3	1.2	0.8571								
4	2.4	1.7143								
5	4.8	3.4286								
6	7.2	5.1429								
7	9.6	6.8571								

The following section provides detailed timing of data read. There are two output drivers. Data for channel number 63 to 32 is available on output driver 1 and data for channel number 31 to 0 is available on output driver 0 . Data from two drivers can be available simultaneously or sequentially depending on the status of pin SMT_MD.

Figure 5. Device Data Read in Sequential Mode (SMT_MD = 0)

A high pulse on STI activates the data read function and resets the channel counter to zero. As shown in Figure 5, the device outputs the analog voltage from channel 63 on the first rising edge of CLK after STI falling edge. Channel 63 to 32 data is available on the OUTP<1> and OUTM<1> terminals. Next the lower output channel is connected to the output after four clocks.
Data on the OUTP<0> and OUTM<0> terminals is skewed by two clocks with respect to OUTP<1> and OUTM $<1>$. Channel 31 to 0 data is available on the OUTP $<0>$ and OUTM $<0>$ terminals.
The skew between the two output drivers allows the user to connect a two channel multiplexed input ADC to the AFE output.

The device output goes to 3 -state after all of the data on the particular differential output driver (0 or 1) is transferred, if ENTRI is tied to high level. Otherwise, both differential output drivers stay at output common-mode voltage after data transfer.
Maximum Data Transfer Rate: As shown in Figure 5, the device outputs new channel data on every alternate rising edge of the clock. Effectively the data transfer rate is one-half of the clock speed. The maximum data transfer rate is 7.5 MHz as the device supports a maximum 15 MHz clock frequency.

Figure 6. Device Data Read in Simultaneous Mode (SMT_MD=1)
A high level on the 'SIMULT_MODE' pin selects simultaneous mode. the device outputs data simultaneously on both differential output drivers OUTP-OUTM<0> and OUTP-OUTM<1> in this mode. This means the device outputs both Ch31 and Ch63 outputs on the first rising edge of the clock, Ch30 and Ch62 on the 2nd rising edge and so on. This mode is useful when two separate single channel ADCs or one simultaneous sampling ADC is used to digitize OUTP-OUTM<0> and OUTP-OUTM<1>. Unlike sequential mode, simultaneous mode needs only 33 clocks to read all 64 channels of data. In this case the output data transfer rate per output driver is the same as the clock frequency. The device can work at a maximum clock frequency of 3.75 MHz .

Running the Device at Minimum Scan Time:

Minimum scan time is achieved if a data read overlaps the reset phase (as shown in Figure 1). This can be done if an IRST rising edge and STI rising edge occur simultaneously. It is recommended to stop the clock after the device receives 133 clocks after STI falling edge, if sequential mode selected (or 33 clocks if simultaneous mode is selected). It is possible to keep the clock free running throughout the scan, but it can potentially deteriorate noise performance. With t -scan $(\mathrm{min})=\mathrm{t} 1+\mathrm{t} 2+132(\mathrm{t}-\mathrm{clk})+\mathrm{t} 3+\mathrm{t} 4+\mathrm{t} 5+0.5 \mu \mathrm{Sec}+\mathrm{t} 6+\mathrm{t} 7$ and all timing values used are the minimum specified values, then t -scan $(\mathrm{min})=28.32 \mu \mathrm{Sec}$.

Running the Device at Higher Scan Time (for lesser frame rate):

It is possible to run the device at a higher scan time to achieve a lesser frame rate without affecting performance. (Note that violating the maximum limits on the specified timings and also the minimum specification on the clock frequency results in charge leakage on the integration or CDS capacitors. This causes additional offset and gain errors.)

Figure 7. Device Operation at Higher Scan Times (sequential mode shown, however the same is possible for simultaneous mode)

As shown in Figure 7, a data read can be started by issuing a STI pulse after SHS and well before IRST. In this case the device goes into a 'wait' state after the data read is complete. The device remains in this wait state until it receives IRST and STI rising edges. Note that the clock can be stopped (or kept running) in the wait state however it is necessary to provide an additional 133 or 33 clocks after IRST falling edge depending on sequential or simultaneous mode selection respectively. It is recommended to stop the clock after the device receives 133 or 33 clocks depending on mode selection until the next STI pulse. This helps to get maximum SNR from the device. However it is allowed to use a free running clock.

Cascading Two AFE0064 Devices to Scan 128 Channels:

It is possible to cascade two AFE0064 devices to scan 128 channels. This feature is useful for sequential mode and allows the use of a 4 channel, multiplexed input ADC for two AFEs.
In that case, STO of device 1 is connected to STI of device 2. Other control pins (INTG, IRTS, SHR, SHS, CLK) of both devices are connected to each other.

As shown in figure 8, STO falling edge is delayed by one clock from STI falling edge. (STO falling edge aligns with first clock falling edge.) Device 2 data out starts with the second clock rising edge (the first CLK rising edge after STI falling edge for device 2). Effectively, data from the four output drivers of the two devices is presented on every rising edge in the following sequence:

Clock 1,5,9...: OUT-1 of Device 1
Clock 2,6,10...: OUT-1 of Device 2
Clock 3,7,11...: OUT-0 of Device 1
Clock 4,8,12...: OUT-0 of Device 2
Note this output sequence when connecting a multiplexed input ADC at a device output.

Figure 8. Data Read with Two Devices in Cascade
This mode allows the use of a single, four channel, 15 MHz (or more) ADC for digitizing the data from 128 channels in single scan. In this mode the effective maximum data transfer rate is 15 MHz .
TFT Charge Injection Compensation: The AFE0064 allows compensation for the charge injected by the TFT during turn on and turn off. During turn on, typically a TFT injects a positive charge forcing the integrator output below zero. One way to handle this is to allow negative swing on the integrator. In that case the pixel charge is integrated from the -ve value resulting from TFT charge injection. For this scheme the device output dynamic range covers all voltage levels starting from fixed -ve voltage arising from maximum anticipated charge injection to maximum positive voltage from the integrator. This can result in loss of dynamic range in the case where TFT charge injection is less than the maximum anticipated charge injection.
To overcome this problem, the AFE0064 provides a special feature to compensate for positive or negative charge during TFT turn on and opposite polarity charge during TFT turn off. The user can adjust the compensation charge with the help of external voltage on the VTEST-A and VTEST-B pins.

INSTRUMENTS

Figure 9. TFT Charge Injection Compensation Scheme

As shown in Figure 9, the TFT injects a charge during turn on and an opposite polarity charge during turn off. (For this example the injected charge during TFT turn on is positive.) This drives the integrator output -ve. Depending on the magnitude of the injected charge, the integrator may saturate or may be within linear range. The device starts integration from this -ve output voltage. At the end of integration the device sees an opposite polarity charge injection roughly of the same magnitude. This opposite polarity charge may or may not nullify the initial injected charge depending on whether the integrator was still within linear range or there was charge leakage due to integrator output saturation. The voltage at pins 56,57 can be adjusted so that the compensation charge equals the TFT injected charge with opposite polarity. This nullifies the TFT injected charge both during turn on and turn off, to always keep the integrator in the linear region. So for the positive charge injection during TFT turn on, inject a -ve compensation charge. For this, the voltage at pins 56,57 needs to be set below the voltage at 'EXT_C'. The device injects the charge on the falling edge of the DF_SM signal. The compensation charge formulas are:

Compensation charge for TFT turn on $=(\mathrm{V}$ at pins $56,57-\mathrm{V}$ 'EXT_C' $) \times 0.857 \mathrm{pC}$
Compensation charge for TFT turn off $=-\left(\mathrm{V}\right.$ at pins $56,57-\mathrm{V}_{-}$'EXT_C' $) \times 0.857 \mathrm{pC}$
Select voltage at pins 56,57 higher than the voltage at 'EXT_C' for compensating -ve charge during TFT turn on.
The device always injects an equal and opposite compensation charge at the rising edge of the DF_SM signal.

Allowing Limited Hole Counting (+ve charge) for Applications with Electron Counting (-ve charge) and Vice a Versa:

The charge compensation scheme can be used to offset the integrator output at the start of integration so as to allow a linear charge range in both directions. As discussed previously (refer to Figure 9), it is possible to inject a fixed +ve or -ve charge at the start of integration. The device can integrate up or down starting from this offset level. Note the integrator output is linear within the bounds of REFM and REFP. One can calculate the offset charge at integration start as Qcomp $=(\mathrm{V}$ at pins $56,57-\mathrm{V}$ _'EXT_C') $\times 0.857 \mathrm{pC}$.
The resulting integrator o / p offset voltage in the case of integration up or down is given by the following formula:
In the case of integration up:
 Qcomp is negative for integration up, so that the integration output has a positive offset allowing headroom for hole counting.
In the case of integration down:
Vint_off = REFP - (Qcomp \times Int FB cap $)$ - Refer to Table 1 for the Int FB cap for the selected range. Qcomp is positive for integration up, so that the integration output has a negative offset allowing headroom for electron counting.
As shown in Figure 10, DF_SM rising edge is pushed after SHS rising edge. This avoids opposite charge injection which can corrupt integrator output.

InSTRUMENTS

Figure 10. Handling Bipolar Charge Range Using Charge Injection Scheme
Note the relation between the integrator output and AFE0064 output (OUTP and OUTM) described in the Data Read section.

TYPICAL CHARACTERISTICS

HISTOGRAM OF OUTPUT OFFSET DRIFT WITH +VDD SUPPLY
VARIATION

Figure 11.

HISTOGRAM OF GAIN ERROR VARIATION WITH +VDD

Figure 13.

HISTOGRAM OF OUTPUT OFFSET DRIFT WITH FREE-AIR
TEMPERATURE

Figure 12.
HISTOGRAM OF GAIN ERROR DRIFT WITH FREE-AIR TEMPERATURE

Figure 14.

TYPICAL CHARACTERISTICS (continued)

Figure 15.
SCAN TO SCAN CROSSTALK
vs
CHANNEL NUMBER

Figure 17.

CHANNEL TO CHANNEL CROSSTALK
VS
CHANNEL NUMBER

Figure 16.
COUNT OF CHANNELS
VS
LEAKAGE CURRENT DRIFT WITH +VDD

Figure 18.

TYPICAL CHARACTERISTICS (continued)

Figure 19.
NOISE
vs
CHANNEL NUMBER IN RANGE 1

Figure 21.

NOISE
VS
CHANNEL NUMBER IN RANGE 0

Figure 20.
NOISE
VS
CHANNEL NUMBER IN RANGE 2

Figure 22.

TYPICAL CHARACTERISTICS (continued)

Figure 23.
NOISE
vs
CHANNEL NUMBER IN RANGE 5

Figure 25.

CHANNEL NUMBER IN RANGE 4

Figure 24.

NOISE
vs
CHANNEL NUMBER IN RANGE 6

Figure 26.

TYPICAL CHARACTERISTICS (continued)

Figure 27.
NONLINEARITY ACROSS 30 DEVICES/64 CHANNELS

Figure 29.

NOISE
vs
INTEGRATION TIME

Figure 28.

NONLINEARITY ACROSS 30 DEVICES/64 CHANNELS

Figure 30.

Figure 31.

APPLICATION INFORMATION

INTERFACING FLAT PANEL DETECTOR (FPD)

The following figure shows interfacing a flat panel detector to an AFE0064. The flat panel detector is a matrix of pixels. Each pixel consists of a photo diode and Thin Film Transistor switch. All of the pixels in a single row (or column depending on the convention used) are connected to a single bus. This bus interfaces with a single integrator. There is a separate integrator channel per row.
On X-Ray exposure (converted to light with scintillator) individual photo diodes acquire a charge proportional to incident light intensity. This charge is sampled in self capacitance of the photo diode. The columns are scanned one by one and the AFE0064 converts an individual photo diode charge into a proportional voltage.

ADC INTERFACE WITH AFE OUTPUT

Each AFE0064 has two differential output drivers as mentioned previously. AFE allows cascading of two devices which can work together like a single 128 channel device. Refer to Figure 8 for the timing diagram.

Contact TI sales for suitable ADC.
Figure 32. Typical Schematic Showing Four Channel ADC Interface with Two AFEs

RESETTING THE FPD PANEL

It is possible to reset the photo diodes using IRST. The integrator acts like a unity gain buffer during reset and the device can source or sink $50 \mu \mathrm{~A}$ through each of the 64 input pins while in the reset phase. For example, to reset a 10 pC charge it requires $10 \mathrm{pC} / 50 \mu \mathrm{~A}=1 / 5 \mu \mathrm{Sec}$.
Refer to Figure 3 for the reset timing details. The device is in the reset phase for $32 / 8$ clocks after IRST rising edge in sequential/simultaneous mode respectively. The reset duration is controlled by selecting a clock speed or holding one of the $32 / 8$ clocks for the required time in sequential/simultaneous mode respectively.

AFE TRANSFER CHARACTERISTICS

The plot above shows AFE transfer characteristics in integrator down mode. (For integrator up mode the P and M plots are interchanged.) AFE output is linear in the charge range bound by the rectangle shown.
The four corners of the rectangle in clockwise direction, starting with bottom left corner are as follows: $(0 \%, 0.85 \mathrm{~V}),(0 \%, 2.25 \mathrm{~V}),(100 \%, 2.25 \mathrm{~V}),(100 \%, 0.85 \mathrm{~V})$ where REFP $=2.25 \mathrm{~V}$ and REFM $=0.85 \mathrm{~V}$.
Beyond this range, the AFE output still responds to input charge however linearity is not specified. Linearity deteriorates as the output reaches close to the rails.
One can detect overrange once the output is beyond the linear rectangle and select a higher AFE range. It is also recommended to clamp the ADC input once it crosses 100% FS.

AFE REFERENCE DRIVING

Figure 33 shows generation of the 0.85 V and 2.25 V references for an AFE. Note that the device uses internal buffers on the reference inputs. As a result, it is possible to share a reference to multiple AFEs in a system. However, it is recommended to use a separate $100-\Omega, 1-\mu \mathrm{F}$ LPF for each individual AFE. Use 1% tolerance resistors for dividing 2.5 V to 2.25 V and 0.85 V .

Figure 33. Typical Reference Generation and Driving Circuit for the AFE0064

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
AFE0064IPBK	ACTIVE	LQFP	PBK	128	90	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064	Samples
AFE0064IPBKR	ACTIVE	LQFP	PBK	128	1000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AFE0064	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature $\left({ }^{\circ} \mathbf{C}\right)$	L (mm)	W $(\mathbf{m m})$	K0 $(\boldsymbol{\mu m})$	P1 $(\mathbf{m m})$	CL $(\mathbf{m m})$
AFE0064IPBK	PBK	LQFP	128	90	6×15	150	315	135.9	7620	20.3	15.4
$(\mathbf{m m})$											

PBK (S-PQFP-G128) PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

PBK (S-PQFP-G128)

Example Board Layout
Via pattern and copper area under solder mask may vary depending on layout constraints

Stencil Openings based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

TEXAS
INSTRUMENTS
www.ti.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

