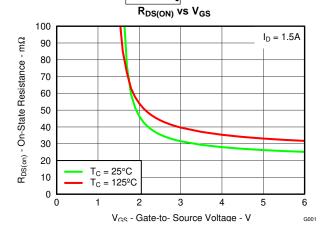




# **CSD25211W1015, P-Channel NexFET™ Power MOSFET**

#### **Features**

- Ultra-Low On Resistance
- Ultra-Low Q<sub>a</sub> and Q<sub>ad</sub>
- Small Footprint 1.0 mm x 1.5 mm
- Low Profile 0.62 mm Height
- Pb Free
- Gate-Source Voltage Clamp
- Gate ESD Protection 3 kV
- **RoHS Compliant**
- Halogen Free


# **Applications**

- **Battery Management**
- Load Switch
- **Battery Protection**

### Description

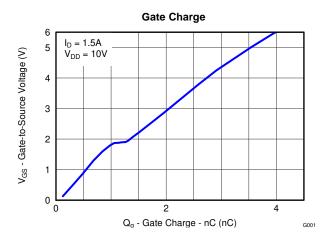
The device is designed to deliver the lowest on resistance and gate charge in the smallest outline possible with excellent thermal characteristics in an ultra-low profile.





### **Product Summary**

| $T_A = 25^{\circ}$  | C unless otherwise stated     | TYPICAL VA                | UNIT |    |  |
|---------------------|-------------------------------|---------------------------|------|----|--|
| $V_{DS}$            | Drain-to-Source Voltage       | -20                       | -20  |    |  |
| $Q_g$               | Gate Charge Total (-4.5V)     | 3.4                       | nC   |    |  |
| $Q_{gd}$            | Gate Charge Gate to Drain     | 0.2                       | nC   |    |  |
| В                   | Drain-to-Source On Resistance | $V_{GS} = -2.5 \text{ V}$ | 36   | mΩ |  |
| R <sub>DS(on)</sub> | Drain-to-Source On Resistance | $V_{GS} = -4.5 \text{ V}$ | 27   | mΩ |  |
| V <sub>GS(th)</sub> | Voltage Threshold             | -0.8                      | V    |    |  |


### **Ordering Information**

| Device        | Package                        | Media       | Qty  | Ship             |  |
|---------------|--------------------------------|-------------|------|------------------|--|
| CSD25211W1015 | 1 x 1.5 Wafer<br>Level Package | 7-inch reel | 3000 | Tape and<br>Reel |  |

### **Absolute Maximum Ratings**

| 5°C unless otherwise stated                                    | VALUE                                                                                                                                                                                                                                                                               | UNIT |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Drain-to-Source Voltage                                        | -20                                                                                                                                                                                                                                                                                 | V    |
| Gate-to-Source Voltage                                         | -6                                                                                                                                                                                                                                                                                  | V    |
| Continuous Drain Current, T <sub>A</sub> = 25°C <sup>(1)</sup> | -3.2                                                                                                                                                                                                                                                                                | Α    |
| Pulsed Drain Current, T <sub>A</sub> = 25°C <sup>(2)</sup>     | -9.5                                                                                                                                                                                                                                                                                | Α    |
| Continuous Drain Current, T <sub>A</sub> = 25°C                | -0.5                                                                                                                                                                                                                                                                                | Α    |
| Pulsed Drain Current                                           | -7                                                                                                                                                                                                                                                                                  | Α    |
| Power Dissipation <sup>(1)</sup>                               | 1                                                                                                                                                                                                                                                                                   | W    |
| Storage Temperature Range                                      | 55 to 450                                                                                                                                                                                                                                                                           | °C   |
| Operating Junction Temperature Range                           | -55 to 150                                                                                                                                                                                                                                                                          | ٠.   |
|                                                                | Drain-to-Source Voltage  Gate-to-Source Voltage  Continuous Drain Current, $T_A = 25^{\circ}C^{(1)}$ Pulsed Drain Current, $T_A = 25^{\circ}C^{(2)}$ Continuous Drain Current, $T_A = 25^{\circ}C$ Pulsed Drain Current  Power Dissipation <sup>(1)</sup> Storage Temperature Range |      |

- (1) Typical  $R_{\theta JA}$  = 119°C/W on 1 inch² of 2 oz. Cu on 0.06-inch thick FR4 PCB.
- (2) Pulse width ≤ 10 µs, duty cycle ≤ 2%



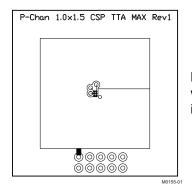
### **Electrostatic Discharge Caution**



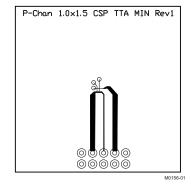
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.



### 3.2 Electrical Characteristics


 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$ 

|                     | PARAMETER                        | TEST CONDITIONS                                                                   | MIN  | TYP  | MAX  | UNIT      |
|---------------------|----------------------------------|-----------------------------------------------------------------------------------|------|------|------|-----------|
| Static C            | haracteristics                   |                                                                                   |      |      |      |           |
| BV <sub>DSS</sub>   | Drain-to-Source Voltage          | $V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$                                  | -20  |      |      | V         |
| $BV_{GSS}$          | Gate-to-Source Voltage           | $V_{DS} = 0 \text{ V}, I_{G} = -250 \mu\text{A}$                                  | -6.1 |      | -7.2 | V         |
| I <sub>DSS</sub>    | Drain-to-Source Leakage Current  | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = -16 V                                    |      |      | -1   | μΑ        |
| I <sub>GSS</sub>    | Gate-to-Source Leakage Current   | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = -6 V                                     |      |      | -100 | nA        |
| V <sub>GS(th)</sub> | Gate-to-Source Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                             | -0.5 | -0.8 | -1.1 | V         |
|                     | Drain-to-Source On Resistance    | $V_{GS} = -2.5 \text{ V}, I_D = -1.5 \text{ A}$                                   |      | 36   | 44   | mΩ        |
| R <sub>DS(on)</sub> | V <sub>GS</sub> =                | $V_{GS} = -4.5 \text{ V}, I_D = -1.5 \text{ A}$                                   |      | 27   | 33   | $m\Omega$ |
| 9 <sub>fs</sub>     | Transconductance                 | $V_{DS} = -10 \text{ V}, I_{D} = -1.5 \text{ A}$                                  |      | 12   |      | S         |
| Dynamic             | C Characteristics                |                                                                                   |      |      |      |           |
| C <sub>ISS</sub>    | Input Capacitance                |                                                                                   |      | 475  | 570  | pF        |
| Coss                | Output Capacitance               | $V_{GS} = 0 \text{ V}, V_{DS} = -10 \text{ V}, f = 1 \text{ MHz}$                 |      | 234  | 281  | pF        |
| C <sub>RSS</sub>    | Reverse Transfer Capacitance     |                                                                                   |      | 10.5 | 13.1 | pF        |
| Qg                  | Gate Charge Total (-4.5 V)       |                                                                                   |      | 3.4  | 4.1  | nC        |
| $Q_{gd}$            | Gate Charge Gate to Drain        | V <sub>DS</sub> = -10 V, I <sub>D</sub> = -1.5 A                                  |      | 0.2  |      | nC        |
| Q <sub>gs</sub>     | Gate Charge Gate to Source       | $V_{DS} = -10 \text{ V}, I_{D} = -1.5 \text{ A}$                                  |      | 1.1  |      | nC        |
| Q <sub>g(th)</sub>  | Gate Charge at V <sub>th</sub>   |                                                                                   |      | 0.6  |      | nC        |
| Q <sub>OSS</sub>    | Output Charge                    | V <sub>DS</sub> = -10 V, V <sub>GS</sub> = 0 V                                    |      | 3.8  |      | nC        |
| t <sub>d(on)</sub>  | Turn On Delay Time               |                                                                                   |      | 13.6 |      | ns        |
| t <sub>r</sub>      | Rise Time                        | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1.5 \text{ A}$         |      | 8.8  |      | ns        |
| t <sub>d(off)</sub> | Turn Off Delay Time              | $R_G = 4 \Omega$                                                                  |      | 36.9 |      | ns        |
| t <sub>f</sub>      | Fall Time                        |                                                                                   |      | 14.2 |      | ns        |
| Diode C             | haracteristics                   |                                                                                   |      |      |      |           |
| V <sub>SD</sub>     | Diode Forward Voltage            | $I_S = -1.5 \text{ A}, V_{GS} = 0 \text{ V}$                                      |      | -0.8 | -1   | V         |
| Q <sub>rr</sub>     | Reverse Recovery Charge          | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                            |      | 6.9  |      | nC        |
| t <sub>rr</sub>     | Reverse Recovery Time            | $V_{dd} = -10 \text{ V}, I_F = -1.5 \text{ A}, di/dt = 200 \text{ A}/\mu\text{s}$ |      | 11.6 |      | ns        |

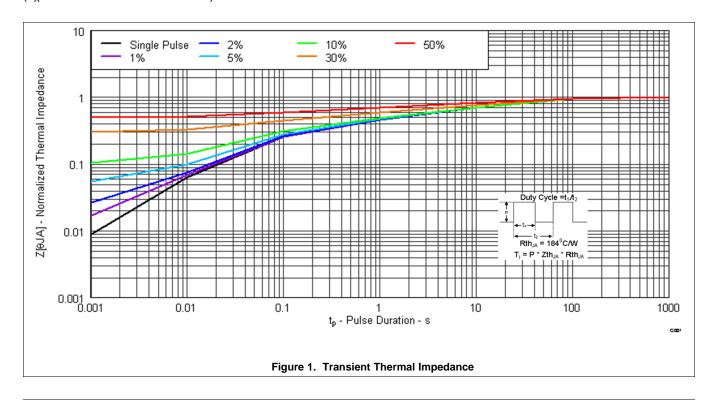

### 3.3 Thermal Characteristics

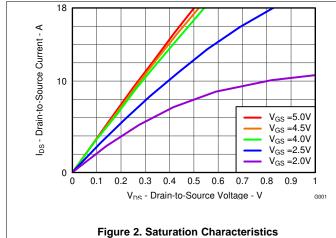
 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$ 

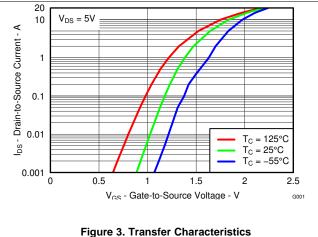
|                  | PARAMETER                                                          | MIN | TYP | MAX | UNIT |
|------------------|--------------------------------------------------------------------|-----|-----|-----|------|
| В                | Thermal Resistance Junction to Ambient (Minimum Cu area)           |     |     | 230 | °C/W |
| R <sub>θJA</sub> | Thermal Resistance Junction to Ambient (1 in <sup>2</sup> Cu area) |     |     | 149 | °C/W |



Max  $R_{\theta JA} = 149^{\circ}C/W$  when mounted on 1 inch<sup>2</sup> of 2 oz. Cu.

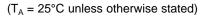


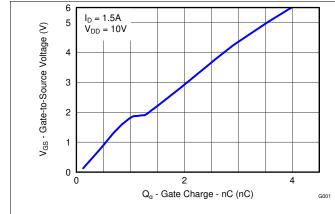


Max  $R_{\theta JA} = 230 ^{\circ} C/W$  when mounted on minimum pad area of 2 oz. Cu.




# 4 Typical MOSFET Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$ 








# **Typical MOSFET Characteristics (continued)**





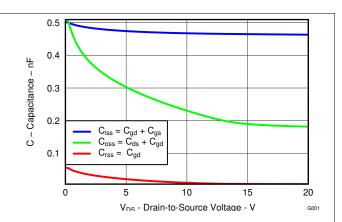



Figure 4. Gate Charge

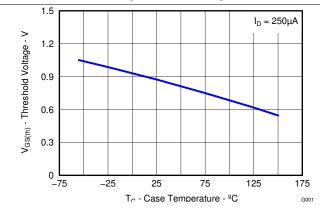



Figure 5. Capacitance

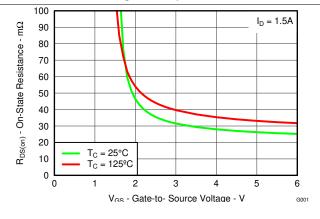
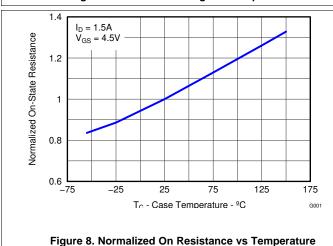
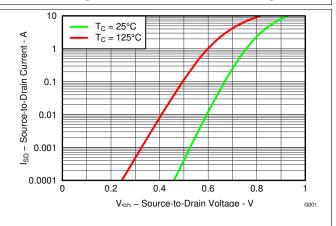
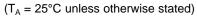
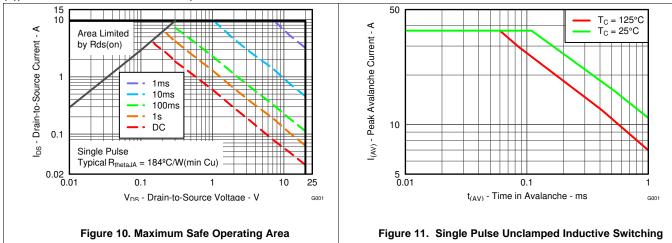



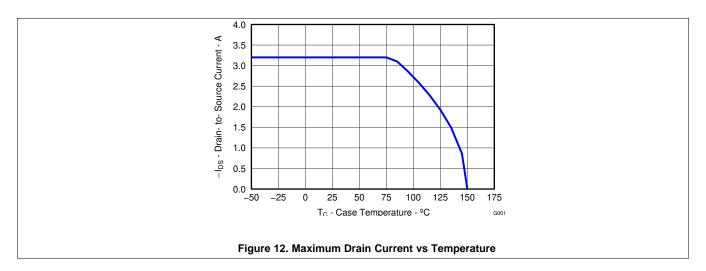

Figure 6. Threshold Voltage vs Temperature





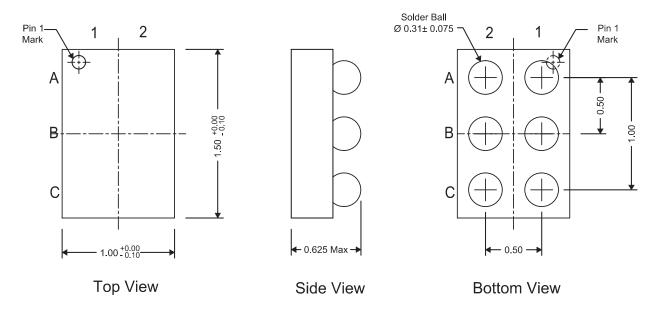


Figure 9. Typical Diode Forward Voltage

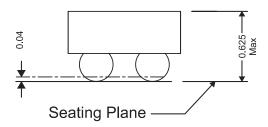

Submit Documentation Feedback



# **Typical MOSFET Characteristics (continued)**







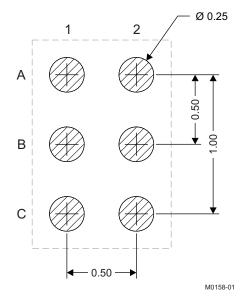

# 5 Mechanical Data

# 5.1 CSD25211W1015 Package Dimensions





Front View


NOTE: All dimensions are in mm (unless otherwise specified)

### **Pinout**

| POSITION   | DESIGNATION |
|------------|-------------|
| C1, C2     | Drain       |
| A1         | Gate        |
| A2, B1, B2 | Source      |



# 5.2 Land Pattern Recommendation



NOTE: All dimensions are in mm (unless otherwise specified)



# **6 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| CI | hanges from Original (February 2012) to Revision A           | Page |
|----|--------------------------------------------------------------|------|
| •  | Included part number in title                                | 1    |
| •  | Added more precision in the CSD25211W1015 Package Dimensions | 6    |



# PACKAGE OPTION ADDENDUM

10-Dec-2020

#### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp Op Temp (°C |            | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------------|------------|-------------------------|---------|
|                  |        |              |                    |      |                |              | (6)                           |                           |            |                         |         |
| CSD25211W1015    | ACTIVE | DSBGA        | YZC                | 6    | 3000           | RoHS & Green | SNAGCU                        | Level-1-260C-UNLIM        | -55 to 150 | 25211                   | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

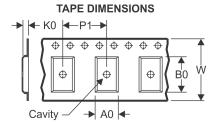
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

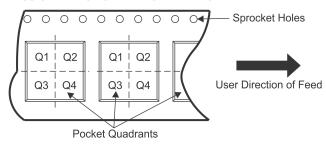
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

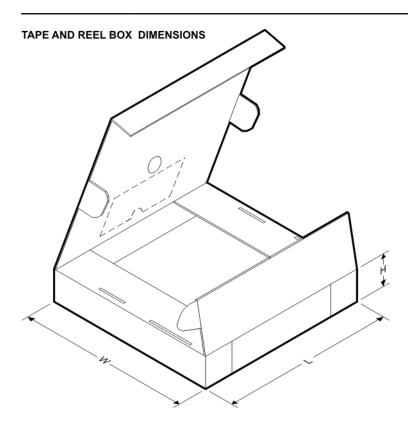
www.ti.com 18-Sep-2020


# TAPE AND REEL INFORMATION





| _ |    |                                                           |
|---|----|-----------------------------------------------------------|
|   |    | Dimension designed to accommodate the component width     |
|   | В0 | Dimension designed to accommodate the component length    |
|   | K0 | Dimension designed to accommodate the component thickness |
|   | W  | Overall width of the carrier tape                         |
| ı | P1 | Pitch between successive cavity centers                   |


### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



### \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |   |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CSD25211W1015 | DSBGA           | YZC                | 6 | 3000 | 180.0                    | 8.4                      | 1.09       | 1.56       | 0.65       | 2.0        | 8.0       | Q1               |

www.ti.com 18-Sep-2020



#### \*All dimensions are nominal

| ĺ | Device Package Type |       | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |  |
|---|---------------------|-------|-----------------|------|------|-------------|------------|-------------|--|
|   | CSD25211W1015       | DSBGA | YZC             | 6    | 3000 | 182.0       | 182.0      | 20.0        |  |

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (<a href="www.ti.com/legal/termsofsale.html">www.ti.com/legal/termsofsale.html</a>) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated