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Laser Power Handling for DMDs

1 The Challenge

Historically, the primary application of digital micromirror device (DMD) technology has been in display
systems, although in the last five years many new applications are being explored by DLP embedded
customers. Many of these applications contemplate the use of lasers with DMDs.

Laser applications use continuous and pulsed mode operation. One of the many advantages of pulsed
operation is that during the pulse very high peak powers can be reached with relatively low average power
consumption. This mode of operation enables various ablation modes (thermal and non-thermal) for
deposition, medical and other applications. (1)

For lamp (broadband), LED, and continuous laser illumination, steady-state thermal models can be used
to predict the temperature of the array and pixels, given the ambient temperature and the optical power
spectrum or laser wavelength of the illumination light.

With such models, it is fairly straightforward to determine the limit on the optical illumination power. The
limit is determined by the maximum allowable array/pixel temperature. Therefore, for a given set of
environmental conditions and optical spectrum, the power limit can be calculated. These limits form in part
the basis of the maximum illumination power density specification on DMD data sheets.

However, when considering pulsed laser illumination, the transient temperature of the pixels can no longer
be ignored. Large temperature differentials and high temperatures present significant challenges for
semiconductor devices that can affect device lifetime. Therefore, it is desirable to keep pixel surface
temperature below a critical temperature of 150°C. The effect is often cumulative, so that even if the pixels
reach these temperatures for very short periods of time, over many cycles of operation damage may be
evidenced. Therefore, a more robust pseudo-transient model is needed to predict the peak transient
temperatures of DMD pixels in pulsed laser systems.

With such a model, it then becomes possible to determine a limit on pulsed laser power based on duty
cycle, repetition rate (pulse frequency), wavelength, and peak laser power in conjunction with the
environmental conditions that a DMD is operating in.

The challenge then is to develop a model that predicts the temperature of a DMD pixel for a given
illumination power, wavelength, frequency, and duty cycle (or pulse power/energy, duration, and repetition
rate).

2 The Model

The purpose of the model is to predict the peak momentary temperature that the pixels reach during
pulsed laser operation. Regardless of the average areal input density, the temperature of individual pixels
must remain below 150°C. Above this temperature, it is possible for thermo-chemistry to occur.

The following assumptions are made to simplify the model:

1. The reflectivity of the pixels follows the reflectivity curve of bulk aluminum within the useful range of the
device (400 nm–2500 nm).

2. The repetition rate is high enough (> 100 Hz) and the thermal mass of the underlying substrate is large
enough (>> thermal mass of the pixel) so that the temperature of the substrate (array) is just the
temperature that the array would reach with continuous illumination with the same average power.

(1) Dr. Rüdiger Paschotta, Pulsed Laser Deposition, http://www.rp-photonics.com/pulsed_laser_deposition.html (May 2008).

1DLPA027–January 2012 Laser Power Handling for DMDs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.rp-photonics.com/pulsed_laser_deposition.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=DLPA027


Array

( ) ( ) - ×
D = D - D - D ×

t

f f iT t T T T e a

G005

Ti

The Model www.ti.com

Figure 1. Pixel Heat Transfer to the Array

We will only consider the case where the average areal power is equal to the specified maximum
continuous areal power density for a given DMD. Therefore, as the duty cycle varies, the average peak
power is given by areal power densityavg/duty cycle (e.g., 25% duty cycle results in a peak areal power
density of 100 W/cm2).

For this simple model, Equation 1 governs the temperature of the pixel above the array:

(1)

where:
ΔTf is the temperature the pixels would reach as t → ∞ if the power were applied continuously.
ΔTI is the initial temperature above the array temperature.
α is the thermal decay constant. It is determined by the thermal conductivity of the pixel to the array
divided by the thermal capacity of the pixel.

Let us look at the equation for a minute to see if it makes sense.

• If ΔTI = ΔTf then it remains at ΔTf.

Figure 2.

• If ΔTI > ΔTf then it decays to ΔTf exponentially.
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Figure 3.

• If ΔTI < ΔTf then it approaches ΔTf asymptotically.

Figure 4.

This is exactly what we expect.

For our model, we want to look at the temperature profile over one pulse cycle. We can break the cycle
down into two parts. The first part is when the illumination is on and we are putting in energy at a constant
rate. The second part is after the illumination is off and the pixel cools down. Each part has its own TI and
Tf.

Figure 5.

Now if we assume that ΔTI = 0 at the beginning of the cycle, we may not end with ΔTend = 0 at the end of a
pulse cycle. We are interested in the pseudo-steady state after the system has been up and running. In
this state, we require that ΔTI = ΔTend. This requires matching the two endpoints, which can be
accomplished by calculating iteratively until the difference is smaller than some small delta. The delta
chosen for matching in this model is 10–10.
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Figure 6.

The specification is 25 W/cm2 input power in the visible spectrum, where the pixel reflectivity is about 92%,
so that about 8% of the energy is absorbed by the pixel surface (2) (see Figure 7). For ranges outside the
visible spectrum, use the power specification in the data sheet and the absorption for the wavelength
being used.

Figure 7. Reflectance vs Wavelength

This part of the model only tells the delta above the array temperature. We must calculate the equivalent
array temperature later.

Using the 10.8 µm pixel as an example, Figure 8 shows what happens for 25 W/cm2 average power and
25% duty cycle as we vary the frequency.

(2) Bob Mellish, Reflectance vs. wavelength curves for aluminium (Al), silver (Ag), and gold (Au) metal mirrors at normal incidence,
http://en.wikipedia.org/wiki/File:Image-Metal-reflectance.png (November 2005).
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Figure 8. Temperature Over One Cycle for 25% Duty Cycle at Various Frequencies

For 25% duty cycle at 100 Hz, the pulse is long enough that the peak temperature easily reaches the
steady state temperature equivalent to 100 W/cm2 (i.e. Avg_Pwr/Duty_Cycle), whereas at 1 MHz we have
essentially reached the same solution as the steady state. This happens because at higher frequencies
the energy in each pulse is very small and the pixels do not have time to cool down before more energy is
imparted by the next pulse.

For the same pixel size, what happens if we hold the frequency constant and vary the duty cycle?

Remember that the peak power is proportional to 1/duty cycle. The result for three frequencies is shown in
Figure 9, Figure 10, and Figure 11.

Figure 9. Temperature Over One Cycle for Various Duty Cycles at 100 Hz
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Figure 10. Temperature Over One Cycle for Various Duty Cycles at 10 kHz

Figure 11. Temperature Over One Cycle for Various Duty Cycles at 1 MHz

We can learn several things from these figures:

1. For lower frequencies, the pulse energies are large enough that the pixels can reach very high
temperatures for small duty cycles.

2. For higher frequencies, as the pulse duration decreases, the temperature is dictated by the pulse
energy alone. Effectively, there is no appreciable heat transport out of the pixel during the heating
phase of the cycle.

We can characterize a critical time for each pixel below which the peak temperature is determined by
pulse energy alone. Above this, the peak temperature is limited by the pulse energy / pixel conductivity to
the array (i.e., the steady-state equivalent for the peak power).

This value is when the exponential has fallen to 1/e2 in Equation 1. This happens when α•t = 2. Table 1
shows these times.
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Table 1. Critical Time for Different Pixel Sizes

PIXEL SIZE CRITICAL DURATION

5.4 µm 13 µs

7.56 µm 31 µs

10.8 µm 90 µs

13.68 µm 106 µs

2.1 Array Temperature

The modeling above only predicts the temperature rise above the array temperature. In order to determine
the total pixel temperature, we must also know the array temperature.

Array temperature is dependent on the particular package. This varies from about 3–5 degrees above the
temperature at the ceramic on the back of the package for 25 W/cm2 input in the visible spectrum.

Table 2 shows the thermal resistance of the array to the ceramic at the back of the package, the electrical
heat load, and the equivalent ΔT for 25 W/cm2 input for different packages. These values are taken from
the respective data sheets.

Table 2. Thermal Resistance, Circuit Heat and Resulting ΔT for 25 W/cm2

Average Power

THERMAL ΔT ABOVEPACKAGE CIRCUIT HEATRESISTANCE CERAMIC

0.7-inch (17.78-mm) XGA (A) 0.9°C/W 2 W 11°C
0.95-inch (24.13-mm) 1080p (A) 0.5°C/W 4.4 W 10°C

0.55-inch (13.97-mm) XGA (S450) 0.6°C/W 2 W 5°C
0.17-inch (4.318-mm) HVGA 5°C/W 0.075 W 13°C

These numbers can vary highly, depending on the operating conditions of the pixel (on versus off),
illumination angle, and other DMD characteristics such as Darkchip level and any overfill.

2.2 Overall Temperature

Typical consumer projection systems can easily reach 50–55 °C at the ceramic, putting the array
temperature in the range of 55–70 °C. The pixel temperature must then be added to this value to evaluate
the final peak temperature. Assuming that the array temperature is at 50°C then the ΔT must be kept
below 100°C. If an application or system designed results in array temperature lower than 50°C then ΔT
can be larger. The critical relationship is shown in Equation 2.

t (2)

Looking at the devices for three frequencies and two duty cycles, Table 3 shows the pixel peak
temperature above the array for 25 W/cm2 average areal power:

Table 3. Peak Pixel Temperatures for Various Packages Under Various Operating Conditions

ΔT TO ARRAY 100 Hz 1 kHz 10 kHz

0.098% DC 0.098% DC 0.098% DC25% DC (1/4) 25% DC (1/4) 25% DC (1/4)PACKAGE (1/1024) (1/1024) (1/1024)[2.5 ms pulse] [250 µs pulse] [25 µs pulse][9.78 µs pulse] [978 ns pulse] [97.8 ns pulse]

0.7-inch
(17.78-mm) XGA 5.3°C 225°C 5.2°C 24.4°C 2.3°C 3.0°C

(A)

0.95-inch
(24.13-mm) 4.4°C 217°C 4.3°C 23.8°C 2.1°C 2.7°C
1080p (A)

0.55-inch
(13.97-mm) XGA 4.4°C 217°C 4.3°C 23.8°C 2.1°C 2.7°C

(S450)
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Table 3. Peak Pixel Temperatures for Various Packages Under Various Operating Conditions
(continued)

ΔT TO ARRAY 100 Hz 1 kHz 10 kHz

0.098% DC 0.098% DC 0.098% DC25% DC (1/4) 25% DC (1/4) 25% DC (1/4)PACKAGE (1/1024) (1/1024) (1/1024)[2.5 ms pulse] [250 µs pulse] [25 µs pulse][9.78 µs pulse] [978 ns pulse] [97.8 ns pulse]

0.17-inch
(4.318-mm) 2.6°C 312°C 2.6°C 40.8°C 2.1°C 4.2°C

HVGA

2.3 Temperature Charts

Figure 12, Figure 13, and Figure 14 show ΔT above the array temperature for an average power density
of 25 W/cm2. For each pulse duration and peak power density, there is a corresponding repetition rate.
Exceeding the repetition rate at the same peak power density results in an average power density that
exceeds 25 W/cm2. However, Figure 12, Figure 13, and Figure 14 demonstrate that even for peak power
density and pulse durations that do not violate the average power density, there are combinations that
exceed ΔT = 150°C – Tarray.

As an example for the 10.8-µm pixel with 4-kW/cm2 peak power and a pulse duration of 100 µs at a 60-Hz
repetition rate yields an average power of 24 W/cm2. However, from Chart 6 below, ΔT ≈ 150°C for this
peak power and pulse duration, leaving no margin. Therefore, these operational parameters cannot be
used.

Figure 12. Pixel ΔT for 7.56 µm Pixel
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Figure 13. Pixel ΔT for 10.86 µm Pixel
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Figure 14. Pixel ΔT for 13.68 µm Pixel

3 Conclusion

This model gives a limit on the pulse energies that can be handled by the DMD for a given pixel type and
package.

Therefore, there are two limits we can place with this first level of modeling:

1. The average power density (peak power density • duty cycle) cannot exceed the specification of
25 W/cm2.

2. If the total pulse energy density delivered instantaneously would cause the pixel to exceed a ΔTinst of
(150°C – Tarray), then the pulse duration must be greater than:

(3)

where the value of 100°C can be relaxed if Tarray + ΔT ≤ 150°C is not violated. So if the array
temperature is lower than 50°C, then ΔT can be larger than 100°C.

Using these principles as guidelines helps ensure the prevention of long-term thermal damage to the DMD
in a pulsed laser system.
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